51
|
Alzoubi KH, Srivareerat M, Tran TT, Alkadhi KA. Role of α7- and α4β2-nAChRs in the neuroprotective effect of nicotine in stress-induced impairment of hippocampus-dependent memory. Int J Neuropsychopharmacol 2013; 16:1105-1113. [PMID: 23067572 DOI: 10.1017/s1461145712001046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have previously shown that nicotine prevents stress-induced memory impairment. In this study, we have investigated the role of α7- and α4β2-nicotinic acetylcholine receptors (nAChRs) in the protective effect of nicotine during chronic stress conditions. Chronic psychosocial stress was induced using a form of rat intruder model. During stress, specific antagonist for either α7-nAChRs [methyllycaconitine (MLA)] or α4β2-nAChRs [dihydro-β-erythroidine (DHβE)] was infused into the hippocampus using a 4-wk osmotic pump at a rate of 82 μg/side.d and 41 μg/side.d, respectively. Three weeks after the start of infusion, all rats were subjected to a series of cognitive tests in the radial arm water maze (RAWM) for six consecutive days or until the animal reached days to criterion (DTC) in the fourth acquisition trial and in all memory tests. DTC is defined as the number of days the animal takes to make no more than one error in three consecutive days. In the short-term memory test, MLA-infused stressed/nicotine-treated rats made similar errors to those of stress and significantly more errors compared to those of stress/nicotine, nicotine or control groups. This finding was supported by the DTC values for the short memory tests. Thus, MLA treatment blocked the neuroprotective effect of nicotine during chronic stress. In contrast, DHβE infusion did not affect the RAWM performance of stress/nicotine animals. These results strongly suggest the involvement of α7-nAChRs, but not α4β2-nAChRs, in the neuroprotective effect of chronic nicotine treatment during chronic stress conditions.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | |
Collapse
|
52
|
Prestori F, Bonardi C, Mapelli L, Lombardo P, Goselink R, De Stefano ME, Gandolfi D, Mapelli J, Bertrand D, Schonewille M, De Zeeuw C, D’Angelo E. Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. PLoS One 2013; 8:e64828. [PMID: 23741401 PMCID: PMC3669396 DOI: 10.1371/journal.pone.0064828] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation.
Collapse
Affiliation(s)
- Francesca Prestori
- Brain Connectivity Center, C. Mondino National Institute of Neurology Foundation, IRCCS, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Claudia Bonardi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Lisa Mapelli
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Paola Lombardo
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Rianne Goselink
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Maria Egle De Stefano
- Pasteur Institute–Cenci Bolognetti Foundation, Department of Biology and Biotechnology “Charles Darwin” Sapienza University of Rome, Rome, Italy
- “Daniel Bovet” Center for Research in Neurobiology, Sapienza University of Rome, Rome, Italy
| | - Daniela Gandolfi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Jonathan Mapelli
- Brain Connectivity Center, C. Mondino National Institute of Neurology Foundation, IRCCS, Pavia, Italy
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniel Bertrand
- Department of Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | | | - Chris De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Sciences (KNAW), Amsterdam, The Netherlands
- * E-mail: (ED); (CDZ)
| | - Egidio D’Angelo
- Brain Connectivity Center, C. Mondino National Institute of Neurology Foundation, IRCCS, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- * E-mail: (ED); (CDZ)
| |
Collapse
|
53
|
Cognitive stimulation during lifetime and in the aged phase improved spatial memory, and altered neuroplasticity and cholinergic markers of mice. Exp Gerontol 2013; 48:831-8. [PMID: 23707230 DOI: 10.1016/j.exger.2013.05.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/22/2022]
Abstract
In the central nervous system, the degree of decline in memory retrieval along the aging process depends on the quantity and quality of the stimuli received during lifetime. The cholinergic system modulates long-term potentiation and, therefore, memory processing. This study evaluated the spatial memory, the synaptic plasticity and the density of cholinergic markers in the hippocampi of mice submitted to cognitive stimulation during lifetime or during their aged phase. Male C57Bl/6 mice (2 months old) were exposed to enriched environment during 15 months (EE-15). An age-matched group was left in standard cages during the same period (SC-15). Spatial memory was evaluated using the Barnes maze at 2, 5, 11 and 17 months of age. At the 17-month-old time point, EE-15 mice showed better performance in the spatial memory task (P<0.05), when compared to C-15 mice. Other two groups of mice were left in regular cages until the age of 15 months, and then one of the groups was transferred to an enriched environment for two months (EE-2). The other group was kept in regular cages (C-2). After two months of stimulation, EE-2 showed a significant increase in spatial memory (P<0.01). At the end, brains were extracted and kept at -80°C. Slices were obtained from one hemisphere in a cryostat (20 μm, -18°C) and thaw-mounted on gelatin coated slides. Synaptic densities, cellular bodies, BDNF densities and α4β2 nicotinic cholinergic receptors (nAChR) were evaluated by immunohistochemistry. Autoradiography for α7 nAChR was conducted using [(125)I]-α-bungarotoxin. The other half of the brains was used for Western blotting analysis of choline acetyltransferase (ChAT) density. There was no difference in synaptophysin or MAP-2 densities, but BDNF was increased in some hippocampal areas of EE-15 and EE-2, in comparison to control groups. In the same way, increases in ChAT and α7 densities, but not in α4β2, were observed. Both cognitive stimuli during lifetime or during the aged phase improved spatial memory of mice. No difference in structural plasticity was observed, but the maintenance of memory can be due to improvement in long-term potentiation functionality in the hippocampus, modulated, at least, by BDNF and the cholinergic system.
Collapse
|
54
|
Alkadhi K, Zagaar M, Alhaider I, Salim S, Aleisa A. Neurobiological consequences of sleep deprivation. Curr Neuropharmacol 2013; 11:231-249. [PMID: 24179461 PMCID: PMC3648777 DOI: 10.2174/1570159x11311030001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/15/2013] [Accepted: 02/02/2013] [Indexed: 01/30/2023] Open
Abstract
Although the physiological function of sleep is not completely understood, it is well documented that it contributes significantly to the process of learning and memory. Ample evidence suggests that adequate sleep is essential for fostering connections among neuronal networks for memory consolidation in the hippocampus. Sleep deprivation studies are extremely valuable in understanding why we sleep and what are the consequences of sleep loss. Experimental sleep deprivation in animals allows us to gain insight into the mechanism of sleep at levels not possible to study in human subjects. Many useful approaches have been utilized to evaluate the effect of sleep loss on cognitive function, each with relative advantages and disadvantages. In this review we discuss sleep and the detrimental effects of sleep deprivation mostly in experimental animals. The negative effects of sleep deprivation on various aspects of brain function including learning and memory, synaptic plasticity and the state of cognition-related signaling molecules are discussed.
Collapse
Affiliation(s)
- Karim Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas, USA
| | - Munder Zagaar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas, USA
| | - Ibrahim Alhaider
- College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Kingdom of Saudi Arabia
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas, USA
| | - Abdulaziz Aleisa
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
55
|
Yakel JL. Cholinergic receptors: functional role of nicotinic ACh receptors in brain circuits and disease. Pflugers Arch 2013; 465:441-50. [PMID: 23307081 PMCID: PMC3633680 DOI: 10.1007/s00424-012-1200-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 12/13/2022]
Abstract
The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability throughout the nervous system by acting on both the cys-loop ligand-gated nicotinic ACh receptor channels (nAChRs) and the G protein-coupled muscarinic ACh receptors (mAChRs). The hippocampus is an important area in the brain for learning and memory, where both nAChRs and mAChRs are expressed. The primary cholinergic input to the hippocampus arises from the medial septum and diagonal band of Broca, the activation of which can activate both nAChRs and mAChRs in the hippocampus and regulate synaptic communication and induce oscillations that are thought to be important for cognitive function. Dysfunction in the hippocampal cholinergic system has been linked with cognitive deficits and a variety of neurological disorders and diseases, including Alzheimer's disease and schizophrenia. My lab has focused on the role of the nAChRs in regulating hippocampal function, from understanding the expression and functional properties of the various subtypes of nAChRs, and what role these receptors may be playing in regulating synaptic plasticity. Here, I will briefly review this work, and where we are going in our attempts to further understand the role of these receptors in learning and memory, as well as in disease and neuroprotection.
Collapse
Affiliation(s)
- Jerrel L Yakel
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, P.O. Box 12233, Mail Drop F2-08, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
56
|
Raval AP, Borges-Garcia R, Diaz F, Sick TJ, Bramlett H. Oral contraceptives and nicotine synergistically exacerbate cerebral ischemic injury in the female brain. Transl Stroke Res 2013; 4:402-12. [PMID: 24323338 DOI: 10.1007/s12975-013-0253-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
Oral contraceptives (OC) and smoking-derived nicotine (N) are known to synergistically increase the risk and severity of cerebral ischemia in women. Although it has been known for some time that long-term use of OC and nicotine will have an increased risk of peripheral thrombus formation, little is known about how the combination of OC and nicotine increases severity of brain ischemia. Recent laboratory studies simulating the conditions of nicotine exposure produced by cigarette smoking and OC regimen of women in female rats confirms that the severity of ischemic hippocampal damage is far greater in female rats simultaneously exposed to OC than to nicotine alone. These studies also demonstrated that the concurrent exposure of OC and nicotine reduces endogenous 17β-estradiol levels and inhibits estrogen signaling in the brain of female rats. The endogenous 17β-estradiol plays a key role in cerebrovascular protection in women during their pre-menopausal life and loss of circulating estrogen at reproductive senescence increases both the incidence and severity of cerebrovascular diseases. Therefore, OC and nicotine induced severe post-ischemic damage might be a consequence of lack of estrogen signaling in the brain. In the present review we highlight possible mechanisms by which OC and nicotine inhibits estrogen signaling that could be responsible for severe ischemic damage in females.
Collapse
Affiliation(s)
- Ami P Raval
- Cerebral Vascular Disease Research Center, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Two Story Lab (TSL), Room # 230A, 1420 NW 9th Avenue, Miami, FL, 33101, USA,
| | | | | | | | | |
Collapse
|
57
|
Ide Y, Miyazaki T, Lauwereyns J, Sandner G, Tsukada M, Aihara T. Optical imaging of plastic changes induced by fear conditioning in the auditory cortex. Cogn Neurodyn 2013; 6:1-10. [PMID: 23372615 DOI: 10.1007/s11571-011-9173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 08/19/2011] [Accepted: 08/19/2011] [Indexed: 11/29/2022] Open
Abstract
The plastic changes in the auditory cortex induced by a fear conditioning, through pairing a sound (CS) with an electric foot-shock (US), were investigated using an optical recording method with voltage sensitive dye, RH795. In order to investigate the effects of association learning, optical signals in the auditory cortex in response to CS (12 kHz pure tone) and non-CS (4, 8, 16 kHz pure tone) were recorded before and after normal and sham conditioning. As a result, the response area to CS enlarged only in the conditioning group after the conditioning. Additionally, the rise time constant of the auditory response to CS significantly decreased and the relative peak value and the decay time constant of the auditory response to CS significantly increased after the conditioning. This study introduces an optical approach to the investigation of fear conditioning, representational plasticity, and the cholinergic system. The findings are synthesized in a model of the synaptic mechanisms that underlie cortical plasticity.
Collapse
Affiliation(s)
- Yoshinori Ide
- Tamagawa University Brain Science Institute, 6-1-1 Tamagawa-gakuen, Machida, Tokyo, 194-8610 Japan
| | | | | | | | | | | |
Collapse
|
58
|
DuBois DW, Damborsky JC, Fincher AS, Frye GD, Winzer-Serhan UH. Varenicline and nicotine enhance GABAergic synaptic transmission in rat CA1 hippocampal and medial septum/diagonal band neurons. Life Sci 2013; 92:337-44. [PMID: 23352971 DOI: 10.1016/j.lfs.2012.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/18/2012] [Accepted: 12/26/2012] [Indexed: 11/16/2022]
Abstract
AIMS The FDA approved smoking cessation aid varenicline can effectively attenuate nicotine-stimulated dopamine release. Varenicline may also exert important actions on other transmitter systems that also influence nicotine reinforcement or contribute to the drug's cognitive and affective side effects. In this study, we determined if varenicline, like nicotine, can stimulate presynaptic GABA release. MAIN METHODS Using whole-cell patch-clamp techniques, we measured GABA(A)R-mediated asynchronous, spontaneous miniature inhibitory postsynaptic currents (mIPSCs) in acute brain slices from two brain regions important for learning and memory, the hippocampus and basal forebrain. KEY FINDINGS Both varenicline (10 μM) and nicotine (10 μM) applications alone resulted in small but significant increases in amplitude, as well as robustly enhanced frequency of mIPSCs in hippocampal CA1 pyramidal neurons and medial septum/diagonal band (MS/DB) neurons. A unique subpopulation of MS/DB neurons showed decreases in frequency. In the presence of nicotine, varenicline effectively attenuated the expected enhancement of hippocampal mIPSC frequency like a competitive antagonist. However, in the MS/DB, varenicline only partially attenuated nicotine's effects. Reversing the order of drug application by adding nicotine to varenicline-exposed slices had little effect. SIGNIFICANCE Varenicline, like nicotine, stimulates presynaptic GABA release, and also exerts a partial agonist action by attenuating nicotine-stimulated release in both the hippocampus and basal forebrain. These effects could potentially affect cognitive functions.
Collapse
Affiliation(s)
- Dustin W DuBois
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M System Health Science Center, Bryan, TX 77807, USA
| | | | | | | | | |
Collapse
|
59
|
Cholinergic coordination of presynaptic and postsynaptic activity induces timing-dependent hippocampal synaptic plasticity. J Neurosci 2012; 32:12337-48. [PMID: 22956824 DOI: 10.1523/jneurosci.2129-12.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Correlated presynaptic and postsynaptic activity is the key factor in inducing Hebbian plasticity and memory. However, little is known about the physiological events that could mediate such coordination. Correlated cholinergic input induces spike timing-dependent plasticity-like hippocampal synaptic plasticity. Cholinergic receptors are localized to both presynaptic and postsynaptic glutamatergic sites and thus have the potential to coordinate presynaptic and postsynaptic activity to induce plasticity. By directly monitoring presynaptic and postsynaptic activities with genetically encoded calcium indicators in mouse septohippocampal cocultures, we found interactive but independent presynaptic and postsynaptic modulations in the cholinergic-dependent synaptic plasticity. Neither presynaptic nor postsynaptic modulation alone is sufficient, but instead a coordinated modulation at both sites is required to induce the plasticity. Therefore, we propose that correlated cholinergic input can coordinate presynaptic and postsynaptic activities to induce timing-dependent synaptic plasticity, providing a novel mechanism by which neuromodulators precisely modulate network activity and plasticity with high efficiency and temporal precision.
Collapse
|
60
|
The expression changes of EphA3 receptor during synaptic plasticity in mouse hippocampus through activation of nicotinic acetylcholine receptor. Neuroreport 2012; 23:746-51. [PMID: 22811059 DOI: 10.1097/wnr.0b013e3283565144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have reported that systemic application of nicotinic agonists results in expression of a long-term potentiation-like facilitation, a model of synaptic plasticity, in the mouse hippocampus in vivo. Eph receptors and their ephrin ligands, are thought to participate in synaptic plasticity. The present study was conducted to clarify the involvement of EphA3 receptor in synaptic plasticity by investigating the time-dependent change of the expression levels of EphA3 receptor during long-term potentiation-like facilitation in the mouse hippocampus. EphA3 receptor mRNA and protein expression was found in adult mouse hippocampus. EphA3 receptor was localized in neuronal cells but not astrocytes or microglia of hippocampus. After intraperitoneal application of nicotine (3 mg/kg), the protein expression of EphA3 receptor in hippocampus increased during 2-24-h period, significantly increasing during 2-12-h period, and finally returned to the basal level in 72 h, although the mRNA expression of EphA3 receptor was not changed for 24 h. This enhanced expression of EphA3 receptor protein at 4 h was inhibited by pretreatment of mecamylamine (0.5 mg/kg, intraperitoneally), a nonselective nicotinic acetylcholine receptor antagonist. Our findings demonstrated that EphA3 receptor localized only in neuronal cells of the hippocampus was enhanced without transcriptional regulation during synaptic plasticity through activation of the nicotinic acetylcholine receptor. These results suggest that the enhancement of EphA3 receptor after synaptic plasticity may contribute to long-lasting synaptic plasticity through positive, feedforward mechanisms.
Collapse
|
61
|
Feduccia AA, Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions. Front Mol Neurosci 2012; 5:83. [PMID: 22876217 PMCID: PMC3411089 DOI: 10.3389/fnmol.2012.00083] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/15/2012] [Indexed: 12/23/2022] Open
Abstract
Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.
Collapse
Affiliation(s)
- Allison A Feduccia
- Ernest Gallo Clinic and Research Center, Preclinical Development Emeryville, CA, USA
| | | | | |
Collapse
|
62
|
Transcranial direct current stimulation modulates motor responses evoked by repetitive transcranial magnetic stimulation. Neurosci Lett 2012; 522:167-71. [DOI: 10.1016/j.neulet.2012.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/02/2012] [Accepted: 06/13/2012] [Indexed: 11/23/2022]
|
63
|
Learning and nicotine interact to increase CREB phosphorylation at the jnk1 promoter in the hippocampus. PLoS One 2012; 7:e39939. [PMID: 22761932 PMCID: PMC3386232 DOI: 10.1371/journal.pone.0039939] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/29/2012] [Indexed: 12/29/2022] Open
Abstract
Nicotine is known to enhance long-term hippocampus dependent learning and memory in both rodents and humans via its activity at nicotinic acetylcholinergic receptors (nAChRs). However, the molecular basis for the nicotinic modulation of learning is incompletely understood. Both the mitogen activated protein kinases (MAPKs) and cAMP response element binding protein (CREB) are known to be integral to the consolidation of long-term memory and the disruption of MAPKs and CREB are known to abrogate some of the cognitive effects of nicotine. In addition, the acquisition of contextual fear conditioning in the presence of nicotine is associated with a β2-subunit containing nAChR-dependent increase in jnk1 (mapk8) transcription in the hippocampus. In the present study, chromatin immunoprecipitation (ChIP) was used to examine whether learning and nicotine interact to alter transcription factor binding or histone acetylation at the jnk1 promoter region. The acquisition of contextual fear conditioning in the presence of nicotine resulted in an increase in phosphorylated CREB (pCREB) binding to the jnk1 promoter in the hippocampus in a β2-subunit containing nAChR dependent manner, but had no effect on CREB binding; neither fear conditioning alone nor nicotine administration alone altered transcription factor binding to the jnk1 promoter. In addition, there were no changes in histone H3 or H4 acetylation at the jnk1 promoter following fear conditioning in the presence of nicotine. These results suggest that contextual fear learning and nicotine administration act synergistically to produce a unique pattern of protein activation and gene transcription in the hippocampus that is not individually generated by fear conditioning or nicotine administration alone.
Collapse
|
64
|
Newman EL, Gupta K, Climer JR, Monaghan CK, Hasselmo ME. Cholinergic modulation of cognitive processing: insights drawn from computational models. Front Behav Neurosci 2012; 6:24. [PMID: 22707936 PMCID: PMC3374475 DOI: 10.3389/fnbeh.2012.00024] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/21/2012] [Indexed: 11/20/2022] Open
Abstract
Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory, and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory, and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm plays a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers.
Collapse
Affiliation(s)
- Ehren L. Newman
- Center for Memory and Brain, Boston University, BostonMA, USA
| | | | | | | | | |
Collapse
|
65
|
Neuroplasticity in cigarette smokers is altered under withdrawal and partially restituted by nicotine exposition. J Neurosci 2012; 32:4156-62. [PMID: 22442079 DOI: 10.1523/jneurosci.3660-11.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nicotine improves cognitive functions by modulating neuroplasticity and cortical excitability in nonsmoking subjects. As shown recently, the positive effect of nicotine on cognition might at least partially be caused by a focusing effect of nicotine on neuroplasticity in these subjects. Concordant to this, smokers under nicotine withdrawal show reduced cognitive abilities, which are at least partially restituted by nicotine consumption. We aimed to explore the neurophysiological foundation of these effects by exploring nonfocal and focal plasticity-inducing protocols in human smokers under nicotine withdrawal and exposition. Focal, synapse-specific plasticity was induced by paired associative stimulation (PAS), while nonfocal plasticity was induced by transcranial direct current stimulation (tDCS). Each subject (12) received placebo and nicotine patches combined with one of the stimulation protocols to the primary motor cortex. Corticospinal excitability was monitored by transcranial magnetic stimulation-induced motor-evoked potential amplitudes. In smokers during nicotine withdrawal, facilitatory plasticity induced by tDCS and PAS was abolished, but restituted by nicotine. In contrast, excitability-diminishing plasticity was not affected by nicotine withdrawal. Under nicotine, the inhibitory aftereffects of PAS were delayed and prolonged, while the tDCS-generated excitability reduction was abolished. Thus, absent facilitatory plasticity in smokers during nicotine withdrawal is restituted by nicotine, favoring the deficit-compensating hypothesis of nicotine consumption. These results might shed further light on the proposed mechanism of nicotine on cognition and attention, which might be connected to nicotine addiction and probability of relapse in smokers.
Collapse
|
66
|
Mahar I, Bagot RC, Davoli MA, Miksys S, Tyndale RF, Walker CD, Maheu M, Huang SH, Wong TP, Mechawar N. Developmental hippocampal neuroplasticity in a model of nicotine replacement therapy during pregnancy and breastfeeding. PLoS One 2012; 7:e37219. [PMID: 22615944 PMCID: PMC3352874 DOI: 10.1371/journal.pone.0037219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/15/2012] [Indexed: 11/18/2022] Open
Abstract
RATIONALE The influence of developmental nicotine exposure on the brain represents an important health topic in light of the popularity of nicotine replacement therapy (NRT) as a smoking cessation method during pregnancy. OBJECTIVES In this study, we used a model of NRT during pregnancy and breastfeeding to explore the consequences of chronic developmental nicotine exposure on cerebral neuroplasticity in the offspring. We focused on two dynamic lifelong phenomena in the dentate gyrus (DG) of the hippocampus that are highly sensitive to the environment: granule cell neurogenesis and long-term potentiation (LTP). METHODS Pregnant rats were implanted with osmotic mini-pumps delivering either nicotine or saline solutions. Plasma nicotine and metabolite levels were measured in dams and offspring. Corticosterone levels, DG neurogenesis (cell proliferation, survival and differentiation) and glutamatergic electrophysiological activity were measured in pups. RESULTS Juvenile (P15) and adolescent (P41) offspring exposed to nicotine throughout prenatal and postnatal development displayed no significant alteration in DG neurogenesis compared to control offspring. However, NRT-like nicotine exposure significantly increased LTP in the DG of juvenile offspring as measured in vitro from hippocampal slices, suggesting that the mechanisms underlying nicotine-induced LTP enhancement previously described in adult rats are already functional in pups. CONCLUSIONS These results indicate that synaptic plasticity is disrupted in offspring breastfed by dams passively exposed to nicotine in an NRT-like fashion.
Collapse
Affiliation(s)
- Ian Mahar
- Departments of Psychiatry, Neurology and Neurosurgery, Douglas Mental Health University Institute, McGill University, Verdun, Québec, Canada
| | - Rosemary C. Bagot
- Departments of Psychiatry, Neurology and Neurosurgery, Douglas Mental Health University Institute, McGill University, Verdun, Québec, Canada
| | - Maria Antonietta Davoli
- Departments of Psychiatry, Neurology and Neurosurgery, Douglas Mental Health University Institute, McGill University, Verdun, Québec, Canada
| | - Sharon Miksys
- Departments of Pharmacology and Toxicology and Psychiatry, Centre for Addiction and Mental Health and University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - Rachel F. Tyndale
- Departments of Pharmacology and Toxicology and Psychiatry, Centre for Addiction and Mental Health and University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - Claire-Dominique Walker
- Departments of Psychiatry, Neurology and Neurosurgery, Douglas Mental Health University Institute, McGill University, Verdun, Québec, Canada
| | - Marissa Maheu
- Departments of Psychiatry, Neurology and Neurosurgery, Douglas Mental Health University Institute, McGill University, Verdun, Québec, Canada
| | - Sheng-Hai Huang
- Department of Microbiology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Tak Pan Wong
- Departments of Psychiatry, Neurology and Neurosurgery, Douglas Mental Health University Institute, McGill University, Verdun, Québec, Canada
- Department of Pharmacology & Therapeutics, Douglas Mental Health University Institute, McGill University, Verdun, Québec, Canada
| | - Naguib Mechawar
- Departments of Psychiatry, Neurology and Neurosurgery, Douglas Mental Health University Institute, McGill University, Verdun, Québec, Canada
| |
Collapse
|
67
|
dos Santos Coura R, Granon S. Prefrontal neuromodulation by nicotinic receptors for cognitive processes. Psychopharmacology (Berl) 2012; 221:1-18. [PMID: 22249358 DOI: 10.1007/s00213-011-2596-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/17/2011] [Indexed: 11/30/2022]
Abstract
RATIONALE The prefrontal cortex (PFC) mediates executive functions, a set of control processes that optimize performance on cognitive tasks. It enables appropriate decision-making and mediates adapted behaviors, all processes impaired in psychiatric or degenerative disorders. Key players of normal functioning of the PFC are neurotransmitter (NT) systems arising from subcortical nuclei and targeting PFC subareas and, also, neuronal nicotinic acetylcholine receptors (nAChRs). These ion channels, located on multiple cell compartments in all brain areas, mediate direct cholinergic transmission and modulate the release of NTs that cross onto PFC neurons or interneurons. OBJECTIVE We compiled current knowledge concerning the role of nAChRs in NT release, focusing on the PFC. We point out plausible mechanisms of interaction among PFC circuits implicated in executive functions and emphasized the role of β2-containing nAChRs, the high-affinity receptors for acetylcholine (ACh). These receptors are more directly implicated in behavioral flexibility either when located on PFC neurons or in the monoaminergic or cholinergic systems targeting the PFC. RESULTS We shed light on potentially crucial roles played by nAChRs in complex interactions between local and afferent NTs. We show how they could act on cognition via PFC networks. CONCLUSIONS nAChRs are crucial for decision-making, during integration of emotional and motivational features, both mediated by different NT pathways in the PFC. We review the knowledge recently gained on cognitive functions in mice and our current understanding of PFC NT modulation. The combination of these data is expected to provide new hypotheses concerning the role of AChRs in cognitive processes.
Collapse
|
68
|
Chronic treatment with rivastigmine in patients with Alzheimer’s disease: A study on primary motor cortex excitability tested by 5Hz-repetitive transcranial magnetic stimulation. Clin Neurophysiol 2012; 123:902-9. [DOI: 10.1016/j.clinph.2011.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 12/27/2022]
|
69
|
Chronic nicotine exposure inhibits estrogen-mediated synaptic functions in hippocampus of female rats. Neurosci Lett 2012; 517:41-6. [PMID: 22521583 DOI: 10.1016/j.neulet.2012.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/24/2012] [Accepted: 04/05/2012] [Indexed: 11/24/2022]
Abstract
Nicotine, the addictive agent in cigarettes, reduces circulating estradiol-17β (E₂) and inhibits E₂-mediated intracellular signaling in hippocampus of female rats. In hippocampus, E₂-signaling regulates synaptic plasticity by phosphorylation of the N-methyl-D-aspartic acid receptor subunit NR2B and cyclic-AMP response element binding protein (pCREB). Therefore, we hypothesized that chronic nicotine exposure induces synaptic dysfunction in hippocampus of female rats. Female rats were exposed to nicotine or saline for 16 days followed by electrophysiological analysis of hippocampus. Briefly, population measurements of excitatory post-synaptic field potentials (fEPSPs) were recorded from stratum radiatum of the CA1 hippocampal slice subfield. A strict software-controlled protocol was used which recorded 30 min of baseline data (stimulation rate of 1/min), a paired-pulse stimulation sequence followed by tetanic stimulation, and 1h of post-tetanus recording. EPSP amplitude and the initial EPSP slope were measured off-line. We then investigated by Western blot analysis the effects of nicotine on hippocampal estrogen receptor-beta (ER-β), NR2B and pCREB. The results demonstrated significantly decreased post-tetanic potentiation and paired-pulse facilitation at the 40, and 80 ms interval in nicotine-exposed rats compared to the saline group. Western blot analysis revealed that nicotine decreased protein levels of ER-β, NR2B, and pCREB. We also confirmed the role of E₂ in regulating NR2B and pCREB phosphorylation by performing Western blots in hippocapmal tissue obtained from E₂-treated ovariectomized rats. In conclusion, chronic nicotine exposure attenuates short-term synaptic plasticity, and the observed synaptic defects might be a consequence of loss of estradiol-17β-signaling. However, determining the exact molecular mechanisms of chronic nicotine exposure on synaptic plasticity specific to the female brain require further investigation.
Collapse
|
70
|
Yakel JL. Nicotinic ACh receptors in the hippocampus: role in excitability and plasticity. Nicotine Tob Res 2012; 14:1249-57. [PMID: 22472168 DOI: 10.1093/ntr/nts091] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION The nicotinic ACh receptors (nAChRs) are in the cys-loop family of ligand-gated ion channels. They are widely expressed throughout the brain, including in the hippocampus where they are thought to be involved in regulating excitability, plasticity, and cognitive function. In addition, dysfunction in hippocampal nAChRs has been linked to a variety of neurological disorders and diseases, including Alzheimer's disease, schizophrenia, and epilepsy. In order to understand how to treat nAChR-related disorders and diseases, it is critical to understand how these receptors participate in normal brain function; this entails not only understanding the biophysical properties of ion channel function and their pattern of expression but also how these receptors are regulating excitability and circuit behavior. DISCUSSION The primary cholinergic input to the hippocampus comes from the medial septum and diagonal band of Broca; however, the mechanistic details are unknown of how activation of cholinergic receptors, either through exogenous nAChR ligands or the activation of endogenous acetylcholine release, regulates hippocampal network activity. This entails direct study of the excitatory and inhibitory neuronal networks, as well as the role of nonneuronal cells, in regulating hippocampal function. CONCLUSIONS Here, I will review the latest work from my laboratory in which we have attempted to do just that, with the overall goal of learning more about the role of the hippocampal nAChR in synaptic plasticity.
Collapse
Affiliation(s)
- Jerrel L Yakel
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, P.O. Box 12233, Mail Drop F2-08, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
71
|
Nakauchi S, Sumikawa K. Endogenously released ACh and exogenous nicotine differentially facilitate long-term potentiation induction in the hippocampal CA1 region of mice. Eur J Neurosci 2012; 35:1381-95. [PMID: 22462479 DOI: 10.1111/j.1460-9568.2012.08056.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We examined the role of α7- and β2-containing nicotinic acetylcholine receptors (nAChRs) in the induction of long-term potentiation (LTP). Theta-burst stimulation (TBS), mimicking the brain's naturally occurring theta rhythm, induced robust LTP in hippocampal slices from α7 and β2 knockout mice. This suggests TBS is capable of inducing LTP without activation of α7- or β2-containing nAChRs. However, when weak TBS was applied, the modulatory effects of nicotinic receptors on LTP induction became visible. We showed that during weak TBS, activation of α7 nAChRs occurs by the release of ACh, contributing to LTP induction. Additionally, bath-application of nicotine activated β2-containing nAChRs to promote LTP induction. Despite predicted nicotine-induced desensitization, synaptically mediated activation of α7 nAChRs still occurs in the presence of nicotine and contributed to LTP induction. Optical recording of single-stimulation-evoked excitatory activity with a voltage-sensitive dye revealed enhanced excitatory activity in the presence of nicotine. This effect of nicotine was robust during high-frequency stimulation, and was accompanied by enhanced burst excitatory postsynaptic potentials. Nicotine-induced enhancement of excitatory activity was observed in slices from α7 knockout mice, but was absent in β2 knockout mice. These results suggest that the nicotine-induced enhancement of excitatory activity is mediated by β2-containing nAChRs, and is related to the nicotine-induced facilitation of LTP induction. Thus, our study demonstrates that the activation of α7- and β2-containing nAChRs differentially facilitates LTP induction via endogenously released ACh and exogenous nicotine, respectively, in the hippocampal CA1 region of mice.
Collapse
Affiliation(s)
- Sakura Nakauchi
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
72
|
Griguoli M, Cherubini E. Regulation of hippocampal inhibitory circuits by nicotinic acetylcholine receptors. J Physiol 2012; 590:655-66. [PMID: 22124144 PMCID: PMC3381299 DOI: 10.1113/jphysiol.2011.220095] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 11/24/2011] [Indexed: 11/08/2022] Open
Abstract
The hippocampal network comprises a large variety of locally connected GABAergic interneurons exerting a powerful control on network excitability and which are responsible for the oscillatory behaviour crucial for information processing. GABAergic interneurons receive an important cholinergic innervation from the medial septum-diagonal band complex of the basal forebrain and are endowed with a variety of muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs) that regulate their activity. Deficits in the cholinergic system lead to the impairment of high cognitive functions, which are particularly relevant in neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases as well as in schizophrenia. Here, we highlight some recent advances in the mechanisms by which cholinergic signalling via nAChRs regulates local inhibitory circuits in the hippocampus, early in postnatal life and in adulthood. We also discuss recent findings concerning the functional role of nAChRs in controlling short- and long-term modifications of synaptic efficacy. Insights into these processes may provide new targets for the therapeutic control of pathological conditions associated with cholinergic dysfunctions.
Collapse
Affiliation(s)
- Marilena Griguoli
- Neuroscience Programme, International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy
| | | |
Collapse
|
73
|
Speed HE, Blaiss CA, Kim A, Haws ME, Melvin NR, Jennings M, Eisch AJ, Powell CM. Delayed reduction of hippocampal synaptic transmission and spines following exposure to repeated subclinical doses of organophosphorus pesticide in adult mice. Toxicol Sci 2012; 125:196-208. [PMID: 21948870 PMCID: PMC3247802 DOI: 10.1093/toxsci/kfr253] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/19/2011] [Indexed: 12/12/2022] Open
Abstract
Agricultural and household organophosphorus (OP) pesticides inhibit acetylcholinesterase (AchE), resulting in increased acetylcholine (Ach) in the central nervous system. In adults, acute and prolonged exposure to high doses of AchE inhibitors causes severe, clinically apparent symptoms, followed by lasting memory impairments and cognitive dysfunction. The neurotoxicity of repeated environmental exposure to lower, subclinical doses of OP pesticides in adults is not as well studied. However, repeated exposure to acetylcholinesterase inhibitors, such as chlorpyrifos (CPF), pyridostigmine, and sarin nerve agent, has been epidemiologically linked to delayed onset symptoms in Gulf War Illness and may be relevant to environmental exposure in farm workers among others. We treated adult mice with a subclinical dose (5 mg/kg) of CPF for 5 consecutive days and investigated hippocampal synaptic transmission and spine density early (2-7 days) and late (3 months) after CPF administration. No signs of cholinergic toxicity were observed at any time during or after treatment. At 2-7 days after the last injection, we found increased synaptic transmission in the CA3-CA1 region of the hippocampus of CPF-treated mice compared with controls. In contrast, at 3 months after CPF administration, we observed a 50% reduction in synaptic transmission likely due to a corresponding 50% decrease in CA1 pyramidal neuron synaptic spine density. This study is the first to identify a biphasic progression of synaptic abnormalities following repeated OP exposure and suggests that even in the absence of acute cholinergic toxicity, repeated exposure to CPF causes delayed persistent damage to the adult brain in vivo.
Collapse
MESH Headings
- Acetylcholinesterase/metabolism
- Animals
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/enzymology
- CA1 Region, Hippocampal/pathology
- CA1 Region, Hippocampal/physiopathology
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/enzymology
- CA3 Region, Hippocampal/pathology
- CA3 Region, Hippocampal/physiopathology
- Cell Count
- Chlorpyrifos/toxicity
- Dendritic Spines/drug effects
- Dendritic Spines/pathology
- Dose-Response Relationship, Drug
- Hippocampus/drug effects
- Hippocampus/enzymology
- Hippocampus/pathology
- Hippocampus/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Patch-Clamp Techniques
- Pesticides/toxicity
- Pyramidal Cells/drug effects
- Pyramidal Cells/pathology
- Synaptic Transmission/drug effects
- Time Factors
Collapse
Affiliation(s)
| | | | - Ahleum Kim
- Department of Neurology & Neurotherapeutics
| | - Michael E. Haws
- Department of Neurology & Neurotherapeutics
- Neuroscience Graduate Program
| | - Neal R. Melvin
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | | | - Amelia J. Eisch
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Craig M. Powell
- Department of Neurology & Neurotherapeutics
- Neuroscience Graduate Program
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| |
Collapse
|
74
|
Kenney JW, Adoff MD, Wilkinson DS, Gould TJ. The effects of acute, chronic, and withdrawal from chronic nicotine on novel and spatial object recognition in male C57BL/6J mice. Psychopharmacology (Berl) 2011; 217:353-65. [PMID: 21487656 PMCID: PMC3161157 DOI: 10.1007/s00213-011-2283-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 03/25/2011] [Indexed: 11/29/2022]
Abstract
RATIONALE Spatial and novel object recognition learning is different from learning that uses aversive or appetitive stimuli to shape acquisition because no overt contingencies are needed. While this type of learning occurs on a daily basis, little is known about how nicotine administration affects it. OBJECTIVES To determine the effects of acute, chronic, and withdrawal from chronic nicotine on two related but distinct incidental learning tasks, novel and spatial object recognition. METHODS In C57BL/6J mice, the effects of acute (0.045-0.18 mg/kg), chronic (6.3 mg/kg/day), and withdrawal from chronic nicotine on novel and spatial object recognition were examined. RESULTS With a 48-h delay between training and testing, acute nicotine enhanced spatial (difference score, saline = 3.34 s, nicotine = 7.71 s, p = 0.029) but resulted in a deficit in novel object recognition (difference score, saline = 8.76 s, nicotine = 4.48 s, p = 0.033). Chronic nicotine resulted in a strong trend towards a deficit in spatial object recognition (difference score, saline = 4.01 s, nicotine = 1.81 s, p = 0.059) but had no effect on novel object recognition, and withdrawal from chronic nicotine disrupted spatial object recognition (difference score, saline = 3.00 s, nicotine = 0.17 s, p = 0.004) but had no effect on novel object recognition. CONCLUSIONS The effects of nicotine on spatial object recognition shift from enhancement to deficit as administration changes from acute to chronic and withdrawal. These effects were specific for spatial object recognition, which may be due to differing underlying neural substrates involved in these tasks. Understanding how nicotine alters learning has implications for understanding diseases associated with altered cholinergic function.
Collapse
Affiliation(s)
- Justin W Kenney
- Department of Psychology, Temple University, Weiss Hall, 1701 N. 13th St, Philadelphia, PA 19122, USA
| | | | | | | |
Collapse
|
75
|
Abstract
Much of the addictive power of nicotine in humans may be attributable to learned contextual associations, such that these secondary cues become potent predictive incentives for both maintaining and driving relapse to drug use, even after long periods of abstinence. Here, I review the evidence that chronic nicotine in vivo can induce persistent neuronal changes in excitability within the hippocampal circuitry, with a specific emphasis on the dentate gyrus as an initiator of drug use. The relevance of these early homeostatic (can be fully reversed by acute application of nicotine) neuroadaptations on withdrawal from nicotine is then related to known cognitive deficits also produced following chronic nicotine. I briefly discuss how the hippocampus may influence other parts of the reward circuitry to affect chronic drug use and how periods of drug cessation and/or withdrawal may convert these short-term changes into permanent alterations within the brain that may drive craving and/or relapse many years of abstinence.
Collapse
Affiliation(s)
- Robin A J Lester
- Department of Neurobiology and The McKnight Brain Institute, University of Alabama at Birmingham, AL 35294, USA.
| |
Collapse
|
76
|
Gu Z, Yakel JL. Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron 2011; 71:155-65. [PMID: 21745645 PMCID: PMC3134790 DOI: 10.1016/j.neuron.2011.04.026] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2011] [Indexed: 11/26/2022]
Abstract
Cholinergic modulation of hippocampal synaptic plasticity has been studied extensively by applying receptor agonists or blockers; however, the effect of rapid physiological cholinergic stimuli on plasticity is largely unknown. Here, we report that septal cholinergic input, activated either by electrical stimulation or via an optogenetic approach, induced different types of hippocampal Schaffer collateral (SC) to CA1 synaptic plasticity, depending on the timing of cholinergic input relative to the SC input. When the cholinergic input was activated 100 or 10 ms prior to SC stimulation, it resulted in α7 nAChR-dependent long-term potentiation (LTP) or short-term depression, respectively. When the cholinergic stimulation was delayed until 10 ms after the SC stimulation, a muscarinic AChR-dependent LTP was induced. Moreover, these various forms of plasticity were disrupted by Aβ exposure. These results have revealed the remarkable temporal precision of cholinergic functions, providing a novel mechanism for information processing in cholinergic-dependent higher cognitive functions.
Collapse
Affiliation(s)
- Zhenglin Gu
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
77
|
Aleisa AM, Alzoubi KH, Alkadhi KA. Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment. Neurosci Lett 2011; 499:28-31. [PMID: 21624432 DOI: 10.1016/j.neulet.2011.05.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/28/2011] [Accepted: 05/13/2011] [Indexed: 01/06/2023]
Abstract
Rapid eye movement sleep deprivation (REM-SD) is associated with spatial learning and memory impairment. During REM-SD, an increase in nicotine consumption among habitual smokers and initiation of tobacco use by non-smokers have been reported. We have shown recently that nicotine treatment prevented learning and memory impairments associated with REM-SD. We now report the interactive effects of post-learning REM-SD and/or nicotine. The animals were first trained on the radial arm water maze (RAWM) task, then they were REM-sleep deprived using the modified multiple platform paradigm for 24h. During REM-SD period, the rats were injected with saline or nicotine (1mg/kg s.c. every 12h: a total of 3 injections). The animals were tested for long-term memory in the RAWM at the end of the REM-SD period. The 24h post-learning REM-SD significantly impaired long-term memory. However, nicotine treatment reversed the post-learning REM-SD-induced impairment of long-term memory. On the other hand, post-learning treatment of normal rats with nicotine for 24h enhanced long-term memory. These results indicate that post-learning acute nicotine treatment prevented the deleterious effect of REM-SD on cognitive abilities.
Collapse
Affiliation(s)
- A M Aleisa
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
78
|
Debski EA. Smoking, nicotine and visual plasticity: does what you know, tell you what you can see? Brain Res Bull 2011; 77:221-6. [PMID: 18789378 DOI: 10.1016/j.brainresbull.2008.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/24/2008] [Accepted: 08/07/2008] [Indexed: 11/29/2022]
Abstract
Nicotine exposure alters activity-dependent synaptic plasticity processes. Effects on learning and memory outcomes, and the synaptic changes that underlie them, are well-documented. Parallels in hippocampal and visual system pharmacology suggest that nicotine has the potential to alter activity-dependent structural organization in visual areas. Such alterations may contribute to deficits in visual performance reported in smoking exposed individuals.
Collapse
Affiliation(s)
- Elizabeth A Debski
- Department of Biology, University of Kentucky, 101 TH Morgan Building, Lexington, KY 40506-0225, United States.
| |
Collapse
|
79
|
Penton RE, Quick MW, Lester RAJ. Short- and long-lasting consequences of in vivo nicotine treatment on hippocampal excitability. J Neurosci 2011; 31:2584-94. [PMID: 21325526 PMCID: PMC3095819 DOI: 10.1523/jneurosci.4362-10.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 12/09/2010] [Accepted: 12/18/2010] [Indexed: 11/21/2022] Open
Abstract
The potential for relapse following cessation of drug use can last for years, implying the induction of stable changes in neural circuitry. In hippocampal slices from rats treated with nicotine for 1 week, withdrawal from nicotine in vivo produces an increase in CA1 pyramidal cell excitability that persists up to 9 months. Immediately upon drug cessation, the enhanced excitability depends on input from regions upstream of CA1, while the long-term excitability change (> 4 weeks) is expressed as an increase in the intrinsic excitability of CA1 neurons. Re-exposure to nicotine in vitro restores hippocampal function to control levels via activation of high-affinity nicotinic acetylcholine receptors after 1 d of withdrawal, but not at times >4 weeks. Thus, nicotine in vivo first induces homeostatic adaptations followed by other more robust neural changes. These mechanisms may contribute to hippocampal localized cue-motivated reinstatement of drug-seeking and/or cognitive deficits observed during withdrawal.
Collapse
Affiliation(s)
- Rachel E. Penton
- Department of Neurobiology and the Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | - Michael W. Quick
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Robin A. J. Lester
- Department of Neurobiology and the Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| |
Collapse
|
80
|
Drever BD, Riedel G, Platt B. The cholinergic system and hippocampal plasticity. Behav Brain Res 2010; 221:505-14. [PMID: 21130117 DOI: 10.1016/j.bbr.2010.11.037] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022]
Abstract
Acetylcholine is an essential excitatory neurotransmitter in the central nervous system and undertakes a vital role in cognitive function. Consequently, there is ample evidence to suggest the involvement of both nicotinic and muscarinic acetylcholine receptors in the modulation of synaptic plasticity, which is believed to be the molecular correlate of learning and memory. In the hippocampus in particular, multiple subtypes of both nicotinic and muscarinic receptors are present at presynaptic and postsynaptic loci of both principal neurons and inhibitory interneurons, where they exert profound bi-directional influences on synaptic transmission. Further evidence points to a role for cholinergic activation in the induction and maintenance of synaptic plasticity, and key influences on hippocampal network oscillations. The present review examines these multiple roles of acetylcholine in hippocampal plasticity.
Collapse
Affiliation(s)
- Benjamin D Drever
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | |
Collapse
|
81
|
Nishimoto T, Kadoyama K, Taniguchi T, Takano M, Otani M, Nakamura-Hirota T, Lu Y, Matsumoto A, Matsuyama S. Synaptotagmin1 synthesis induced by synaptic plasticity in mouse hippocampus through activation of nicotinic acetylcholine receptors. Neurosci Lett 2010; 489:25-9. [PMID: 21129439 DOI: 10.1016/j.neulet.2010.11.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/16/2010] [Accepted: 11/19/2010] [Indexed: 11/15/2022]
Abstract
We have reported that systemic application of nicotinic agonists expresses a long-term potentiation (LTP)-like facilitation, a model of synaptic plasticity, in vivo in the mouse hippocampus. The present study conducted to clarify the involvement of synaptotagmin1 in synaptic plasticity by investigating the time-dependent change of the mRNA and protein levels of synaptotagmin1 during LTP-like facilitation in the mouse hippocampus. The mRNA expression of synaptotagmin1 increased during 2- to 8-h period by intraperitoneal application of nicotine (3mg/kg), returning to the basal level in 12-h. Also, the protein level of synaptotagmin1, but not synaptophysin, in a total fraction from hippocampus increased during 4- to 12-h period by the same treatment, returning to the basal level in 24-h. The protein level of synaptotagmin1 in a membrane fraction from hippocampus also increased during 4- to 8-h period by nicotine, returning to the basal level in 12-h. This nicotine-enhanced synaptotagmin1 protein in a membrane fraction was inhibited by pretreatment of mecamylamine (0.3mg/kg, i.p.), a nonselective nicotinic acetylcholine receptors (nAChRs) antagonist. Furthermore, choline (30mg/kg, i.p.), a selective α7 nAChR agonist, or ABT-418 (10mg/kg, i.p.), a selective α4β2 nAChR agonist, enhanced the level of synaptotagmin1 in a membrane fraction. Our findings demonstrate that synaptotagmin1 protein following mRNA which is enhanced without increasing the number of synapse gathers around pre-synaptic membrane during hippocampal LTP-like facilitation through activation of α7 and/or α4β2 nAChRs in the brain. These results suggest that new-synthesized synaptotagmin1 following synaptic plasticity may contribute to long-lasting synaptic plasticity via positive, feedfoward mechanisms.
Collapse
Affiliation(s)
- Takaaki Nishimoto
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Nicotine enhances contextual fear memory reconsolidation in rats. Neurosci Lett 2010; 487:368-71. [PMID: 21035521 DOI: 10.1016/j.neulet.2010.10.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 10/13/2010] [Accepted: 10/21/2010] [Indexed: 11/22/2022]
Abstract
There is increasing evidence that nicotine is involved in learning and memory. However, there remains no study that has explored the relationship between nicotine and memory reconsolidation. At present study, we tested the effects of nicotine on the reconsolidation of contextual fear memory in rats. Behavior procedure involved four training phases: habituation (Day 0), fear conditioning (Day 1), reactivation (Day 2) and test (Day 3). Rats were injected saline or nicotine (0.25, 0.5 and 1.0mg/kg) immediately after reactivation. Percent of time spent freezing was used to measure conditioned fear response. Results showed that compared with saline rats, rats with nicotine at 1.0mg/kg presented a significant increase of freezing response on Day 3. Nicotine at 1.0mg/kg was ineffective when injected 6h after reactivation. Further results showed that the enhancement of freezing response induced by nicotine at 1.0mg/kg was dependent on fear memory reconsolidation, and was not attributed to an enhancement of the nonspecific freezing response 24h after nicotine administration. The results suggest that nicotine administration immediately after reactivation enhances contextual fear memory reconsolidation. Our present finding extends previous research on the nicotinic effects on learning and memory.
Collapse
|
83
|
Activation of nicotinic α(7) acetylcholine receptor enhances long term potentation in wild type mice but not in APP(swe)/PS1ΔE9 mice. Neurosci Lett 2010; 487:325-9. [PMID: 20974225 DOI: 10.1016/j.neulet.2010.10.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/12/2010] [Accepted: 10/19/2010] [Indexed: 11/23/2022]
Abstract
Amyloid β (Aβ) plays a central role in Alzheimer's disease (AD) and binds to the nicotinic α(7) receptor (α(7) nAChR). Little is known about the degree to which the binding of Aβ to the α(7) nAChR influences the role of this receptor in long-term potentiation (LTP), however. We have studied the effect of the partial α(7) nAChR agonist SSR180711 on hippocampal slice preparations from normal wild type (Wt) and APP(swe)/PS1ΔE9 transgenic (Tg) mice. In the hippocampal slices from the 6 months old Wt mice, the application of both nicotine (5μM) and SSR180711 (300nM) resulted in a significant enhancement of LTP expressed in area CA1. However, in the Tg mice the application of SSR180711 did not result in an increase in LTP beyond control levels. The amount of binding of the α(7) nAChR ligand 125-I-α-bungarotoxin was not different between in Tg and Wt mice. These findings indicate that the α(7) nAChR is functionally blocked in the hippocampal neurons, downstream of the α(7) nAChR, and that this is likely due to an interaction between the receptor and Aβ, which leads to changes in LTP.
Collapse
|
84
|
Yamazaki Y. [Effects of nicotine on hippocampal circuits.]. Nihon Yakurigaku Zasshi 2010; 136:31-5. [PMID: 20628211 DOI: 10.1254/fpj.136.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
85
|
Aleisa AM, Helal G, Alhaider IA, Alzoubi KH, Srivareerat M, Tran TT, Al-Rejaie SS, Alkadhi KA. Acute nicotine treatment prevents REM sleep deprivation-induced learning and memory impairment in rat. Hippocampus 2010; 21:899-909. [PMID: 20865738 DOI: 10.1002/hipo.20806] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2010] [Indexed: 11/10/2022]
Abstract
Rapid eye movement (REM) sleep deprivation (SD) is implicated in impairment of spatial learning and memory and hippocampal long-term potentiation (LTP). An increase in nicotine consumption among habitual smokers and initiation of tobacco use by nonsmokers was observed during SD. Although nicotine treatment was reported to attenuate the impairment of learning and memory and LTP associated with several mental disorders, the effect of nicotine on SD-induced learning and memory impairment has not been studied. Modified multiple platform paradigm was used to induce SD for 24 or 48 h during which rats were injected with saline or nicotine (1 mg kg(-1) s.c.) twice a day. In the radial arm water maze (RAWM) task, 24- or 48-h SD significantly impaired learning and short-term memory. In addition, extracellular recordings from CA1 and dentate gyrus (DG) regions of the hippocampus in urethane anesthetized rats showed a significant impairment of LTP after 24- and 48-h SD. Treatment of normal rats with nicotine for 24 or 48 h did not enhance spatial learning and memory or affect magnitude of LTP in the CA1 and DG regions. However, concurrent, acute treatment of rats with nicotine significantly attenuated SD-induced impairment of learning and STM and prevented SD-induced impairment of LTP in the CA1 and DG regions. These results show that acute nicotine treatment prevented the deleterious effect of sleep loss on cognitive abilities and synaptic plasticity.
Collapse
Affiliation(s)
- A M Aleisa
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Jia Y, Yamazaki Y, Nakauchi S, Ito KI, Sumikawa K. Nicotine facilitates long-term potentiation induction in oriens-lacunosum moleculare cells via Ca2+ entry through non-alpha7 nicotinic acetylcholine receptors. Eur J Neurosci 2010; 31:463-76. [PMID: 20113344 DOI: 10.1111/j.1460-9568.2009.07058.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hippocampal inhibitory interneurons have a central role in the control of network activity, and excitatory synapses that they receive express Hebbian and anti-Hebbian long-term potentiation (LTP). Because many interneurons in the hippocampus express nicotinic acetylcholine receptors (nAChRs), we explored whether exposure to nicotine promotes LTP induction in these interneurons. We focussed on a subset of interneurons in the stratum oriens/alveus that were continuously activated in the presence of nicotine due to the expression of non-desensitizing non-alpha7 nAChRs. We found that, in addition to alpha2 subunit mRNAs, these interneurons were consistently positive for somatostatin and neuropeptide Y mRNAs, and showed morphological characteristics of oriens-lacunosum moleculare cells. Activation of non-alpha7 nAChRs increased intracellular Ca(2+) levels at least in part via Ca(2+) entry through their channels. Presynaptic tetanic stimulation induced N-methyl-D-aspartate receptor-independent LTP in voltage-clamped interneurons at -70 mV when in the presence, but not absence, of nicotine. Intracellular application of a Ca(2+) chelator blocked LTP induction, suggesting the requirement of Ca(2+) signal for LTP induction. The induction of LTP was still observed in the presence of ryanodine, which inhibits Ca(2+) -induced Ca(2+) release from ryanodine-sensitive intracellular stores, and the L-type Ca(2+) channel blocker nifedipine. These results suggest that Ca(2+) entry through non-alpha7 nAChR channels is critical for LTP induction. Thus, nicotine affects hippocampal network activity by promoting LTP induction in oriens-lacunosum moleculare cells via continuous activation of non-alpha7 nAChRs.
Collapse
Affiliation(s)
- Yousheng Jia
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | | | | | | | |
Collapse
|
87
|
Huang LT, Sherwood JL, Sun YJ, Lodge D, Wang Y. Activation of presynaptic alpha7 nicotinic receptors evokes an excitatory response in hippocampal CA3 neurones in anaesthetized rats: an in vivo iontophoretic study. Br J Pharmacol 2010; 159:554-65. [PMID: 20105181 DOI: 10.1111/j.1476-5381.2009.00529.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE alpha7 Nicotinic receptors have been suggested to play an important role in hippocampal learning and memory. However, the direct action of this receptor subtype on hippocampal pyramidal neurones in vivo has not yet been fully investigated. The availability of selective agonists for alpha7 receptors [AR-R17779 and (R)-(-)-5'-phenylspiro[1-azabicyclo[2.2.2] octane-3,2'-(3'H)furo[2,3-b]pyridine (PSAB-OFP)] has now allowed this role to be investigated. EXPERIMENTAL APPROACH Single-cell extracellular recordings were made from hippocampal CA3 pyramidal neurones in anaesthetized rats. The effects of nicotine, AR-R17779 and PSAB-OFP, applied either systemically or iontophoretically, were studied on the activity of these neurones. KEY RESULTS Intravenous injection of cumulative doses of nicotine and PSAB-OFP induced dose-related, significant increases in neuronal firing in the majority of neurones tested. This excitation could be inhibited by intravenous administration of methyllycaconitine (MLA), a selective alpha7 nicotinic receptor antagonist. Furthermore, iontophoretic application of nicotine, AR-R17779 and PSAB-OFP each evoked current-dependent excitation of most CA3 pyramidal neurones studied, and this excitation was antagonized by co-iontophoretic application of MLA. In addition, the excitation induced by iontophoretic application of nicotine, AR-R17779 or PSAB-OFP was also blocked by co-iontophoretic application of either 6,7-dinitroquinoxaline-2,3-dione (DNQX) or D(2)-2-amino-5-phosphonopentanoate (D-AP5), selective N-methyl-D-aspartic acid (NMDA) and non-NMDA receptor antagonists respectively. CONCLUSIONS AND IMPLICATIONS CA3 pyramidal neurones are modulated by activation of presynaptic alpha7 nicotinic receptors, which, at least in part, enhances glutamate release onto post-synaptic (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid and NMDA receptors on these CA3 neurones. This mechanism probably contributes to the effects of nicotine on hippocampal learning and memory.
Collapse
Affiliation(s)
- Lan-Ting Huang
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
88
|
Kenney JW, Florian C, Portugal GS, Abel T, Gould TJ. Involvement of hippocampal jun-N terminal kinase pathway in the enhancement of learning and memory by nicotine. Neuropsychopharmacology 2010; 35:483-92. [PMID: 19776730 PMCID: PMC2794924 DOI: 10.1038/npp.2009.153] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite intense scrutiny over the past 20 years, the reasons for the high addictive liability of nicotine and extreme rates of relapse in smokers have remained elusive. One factor that contributes to the development and maintenance of nicotine addiction is the ability of nicotine to produce long-lasting modifications of behavior, yet little is known about the mechanisms by which nicotine alters the underlying synaptic plasticity responsible for behavioral changes. This study is the first to explore how nicotine interacts with learning to alter gene transcription, which is a process necessary for long-term memory consolidation. Transcriptional upregulation of hippocampal jun-N terminal kinase 1 (JNK1) mRNA was found in mice that learned contextual fear conditioning (FC) in the presence of nicotine, whereas neither learning alone nor nicotine administration alone exerted an effect. Furthermore, the upregulation of JNK1 was absent in beta2 nicotinic receptor subunit knockout mice, which are mice that do not show enhanced learning by nicotine. Finally, hippocampal JNK activation was increased in mice that were administered nicotine before conditioning, and the inhibition of JNK during consolidation prevented the nicotine-induced enhancement of contextual FC. These data suggest that nicotine and learning interact to alter hippocampal JNK1 gene expression and related signaling processes, thus resulting in strengthened contextual memories.
Collapse
Affiliation(s)
- Justin W Kenney
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Cédrick Florian
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas J Gould
- Department of Psychology, Temple University, Philadelphia, PA, USA,Department of Psychology, Weiss Hall, Temple University, Philadelphia, PA 19122, USA, Tel: +1 (215) 204-7495, Fax: +1 (215) 204-5539, E-mail:
| |
Collapse
|
89
|
Lagostena L, Danober L, Challal S, Lestage P, Mocaër E, Trocmé-Thibierge C, Cherubini E. Modulatory effects of S 38232, a non alpha-7 containing nicotine acetylcholine receptor agonist on network activity in the mouse hippocampus. Neuropharmacology 2009; 58:806-15. [PMID: 20004675 DOI: 10.1016/j.neuropharm.2009.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 11/16/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
Extracellular field potentials (fEPSPs) and whole cell patch-clamp recordings were used to test the effect of S 38232, a newly developed potent non-alpha7 nicotinic acetylcholine receptors (nAChR) agonist, on synaptic transmission in hippocampal slices obtained from adult mice. S 38232 increased the amplitude of fEPSPs, evoked in stratum radiatum by Schaffer collateral stimulation. This effect was potentiated by picrotoxin, suggesting that S 38232 exerts at least in part its effect on GABAergic interneurons. The action of S 38232 was mediated by non-alpha7 containing nAChRs since it was prevented by DHbetaE (1muM) but not by alpha-BTX (100nM). A similar potentiating effect on fEPSPs was observed when nicotine (1muM) was applied to hippocampal slices obtained from alpha7 -/- mice in the presence of picrotoxin. The potentiating effect of S 38232 was probably presynaptic in origin since it was associated with a significant reduction in paired-pulse ratio. In addition, in patch clamp experiments, S 38232 enhanced the frequency (but not the amplitude) of spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs, sIPSCs) recorded from CA1 principal cells. Moreover, it enhanced the frequency of miniature IPSCs but not EPSCs, suggesting that it was acting on nAChRs located on presynaptic/pre-terminal regions of GABAergic interneurons. The effect of S 38232 on GABAergic signaling was concentration-dependent with an EC(50) of 43muM. In conclusions, we present evidence that the new nicotine ligand S 38232, by selectively activating non-alpha7 nAChRs located on principal cells and GABAergic interneurons, influences network activity and information processing in the hippocampus.
Collapse
Affiliation(s)
- Laura Lagostena
- Neurobiology Sector, International School for Advanced Studies (SISSA), Via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
90
|
Chronic nicotine selectively enhances alpha4beta2* nicotinic acetylcholine receptors in the nigrostriatal dopamine pathway. J Neurosci 2009; 29:12428-39. [PMID: 19812319 DOI: 10.1523/jneurosci.2939-09.2009] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
These electrophysiological experiments, in slices and intact animals, study the effects of in vivo chronic exposure to nicotine on functional alpha4beta2* nAChRs in the nigrostriatal dopaminergic (DA) pathway. Recordings were made in wild-type and alpha4 nicotinic acetylcholine receptor (nAChR) subunit knock-out mice. Chronic nicotine enhanced methyllycaconitine citrate hydrate-resistant, dihydro-beta-erythroidine hydrobromide-sensitive nicotinic currents elicited by 3-1000 mum ACh in GABAergic neurons of the substantia nigra pars reticulata (SNr), but not in DA neurons of the substantia nigra pars compacta (SNc). This enhancement leads to higher firing rates of SNr GABAergic neurons and consequently to increased GABAergic inhibition of the SNc DA neurons. In the dorsal striatum, functional alpha4* nAChRs were not found on the neuronal somata; however, nicotine acts via alpha4beta2* nAChRs in the DA terminals to modulate glutamate release onto the medium spiny neurons. Chronic nicotine also increased the number and/or function of these alpha4beta2* nAChRs. These data suggest that in nigrostriatal DA pathway, chronic nicotine enhancement of alpha4beta2* nAChRs displays selectivity in cell type and in nAChR subtype as well as in cellular compartment. These selective events augment inhibition of SNc DA neurons by SNr GABAergic neurons and also temper the release of glutamate in the dorsal striatum. The effects may reduce the risk of excitotoxicity in SNc DA neurons and may also counteract the increased effectiveness of corticostriatal glutamatergic inputs during degeneration of the DA system. These processes may contribute to the inverse correlation between tobacco use and Parkinson's disease.
Collapse
|
91
|
Abstract
Both conscious and unconscious memory mechanisms contribute to the rewarding effects of nicotine and other drugs of abuse. In this issue of Neuron, Tang and Dani use in vivo measures of synaptic plasticity in freely moving mice to link nicotine-induced dopamine release in hippocampus to LTP induction and behavioral reinforcement.
Collapse
Affiliation(s)
- Daniel S McGehee
- Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue MC4028, Chicago, IL 60637, USA.
| |
Collapse
|
92
|
Ondrejcak T, Klyubin I, Hu NW, Barry AE, Cullen WK, Rowan MJ. Alzheimer's disease amyloid beta-protein and synaptic function. Neuromolecular Med 2009; 12:13-26. [PMID: 19757208 DOI: 10.1007/s12017-009-8091-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/25/2009] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by the deposition of different forms of amyloid beta-protein (A beta) including variable amounts of soluble species that correlate with severity of dementia. The extent of synaptic loss in the brain provides the best morphological correlate of cognitive impairment in clinical AD. Animal research on the pathophysiology of AD has therefore focussed on how soluble A beta disrupts synaptic mechanisms in vulnerable brain regions such as the hippocampus. Synaptic plasticity in the form of persistent activity-dependent increases or decreases in synaptic strength provide a neurophysiological substrate for hippocampal-dependent learning and memory. Acute treatment with human-derived or chemically prepared soluble A beta that contains certain oligomeric assemblies, potently and selectively disrupts synaptic plasticity causing inhibition of long-term potentiation (LTP) and enhancement of long-term depression (LTD) of glutamatergic transmission. Over time these and related actions of A beta have been implicated in reducing synaptic integrity. This review addresses the involvement of neurotransmitter intercellular signaling in mediating or modulating the synaptic plasticity disrupting actions of soluble A beta, with particular emphasis on the different roles of glutamatergic and cholinergic mechanisms. There is growing evidence to support the view that NMDA and possibly nicotinic receptors are critically involved in mediating the disruptive effect of A beta and that targeting muscarinic receptors can indirectly modulate A beta's actions. Such studies should help inform ongoing and future clinical trials of drugs acting through the glutamatergic and cholinergic systems.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology and Therapeutics, Biotechnology Building and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
93
|
Tu B, Gu Z, Shen JX, Lamb PW, Yakel JL. Characterization of a nicotine-sensitive neuronal population in rat entorhinal cortex. J Neurosci 2009; 29:10436-48. [PMID: 19692619 PMCID: PMC2765695 DOI: 10.1523/jneurosci.2580-09.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/20/2009] [Accepted: 07/22/2009] [Indexed: 11/21/2022] Open
Abstract
The entorhinal cortex (EC) is a part of the hippocampal complex that is essential to learning and memory, and nicotine affects memory by activating nicotinic acetylcholine receptors (nAChRs) in the hippocampal complex. However, it is not clear what types of neurons in the EC are sensitive to nicotine and whether they play a role in nicotine-induced memory functions. Here, we have used voltage-sensitive dye imaging methods to locate the neuronal populations responsive to nicotine in entorhino-hippocampal slices and to clarify which nAChR subtypes are involved. In combination with patch-clamp methods, we found that a concentration of nicotine comparable to exposure during smoking depolarized neurons in layer VI of the EC (ECVI) by acting through the non-alpha7 subtype of nAChRs. Neurons in the subiculum (Sb; close to the deep EC layers) also contain nicotine-sensitive neurons, and it is known that Sb neurons project to the ECVI. When we recorded evoked EPSCs (eEPSCs) from ECVI neurons while stimulating the Sb near the CA1 region, a low dose of nicotine not only enhanced synaptic transmission (by increasing eEPSC amplitude) but also enhanced plasticity by converting tetanus stimulation-induced short-term potentiation to long-term potentiation; nicotine enhanced synaptic transmission and plasticity of ECVI synapses by acting on both the alpha7 and non-alpha7 subtypes of nAChRs. Our data suggest that ECVI neurons are important regulators of hippocampal function and plasticity during smoking.
Collapse
Affiliation(s)
- Bin Tu
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Zhenglin Gu
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jian-xin Shen
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Patricia W. Lamb
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Jerrel L. Yakel
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| |
Collapse
|
94
|
Jürgensen S, Ferreira ST. Nicotinic receptors, amyloid-beta, and synaptic failure in Alzheimer's disease. J Mol Neurosci 2009; 40:221-9. [PMID: 19690986 DOI: 10.1007/s12031-009-9237-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 11/29/2022]
Abstract
Dysfunctional cholinergic transmission is thought to underlie, at least in part, memory impairment and cognitive deficits in Alzheimer's disease (AD). However, it is still unclear whether this is a consequence of the loss of cholinergic neurons and elimination of nicotinic acetycholine receptors (nAChRs) in AD brain or of a direct impact of molecular interactions of the amyloid-beta (Abeta) peptide with nAChRs, leading to dysregulation of receptor function. This review examines recent progress in our understanding of the roles of nicotinic receptors in mechanisms of synaptic plasticity, molecular interactions of Abeta with nAChRs, and how Abeta-induced dysregulation of nicotinic receptor function may underlie synaptic failure in AD.
Collapse
Affiliation(s)
- Sofia Jürgensen
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21944-590, Brazil
| | | |
Collapse
|
95
|
Mansvelder HD, Mertz M, Role LW. Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits. Semin Cell Dev Biol 2009; 20:432-40. [PMID: 19560048 PMCID: PMC2742626 DOI: 10.1016/j.semcdb.2009.01.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/11/2009] [Accepted: 01/13/2009] [Indexed: 11/19/2022]
Abstract
Nicotine is the principle addictive agent delivered via cigarette smoking. The addictive activity of nicotine is due to potent interactions with nicotinic acetylcholine receptors (nAChRs) on neurons in the reinforcement and reward circuits of the brain. Beyond its addictive actions, nicotine is thought to have positive effects on performance in working memory and short-term attention-related tasks. The brain areas involved in such behaviors are part of an extensive cortico-limbic network that includes relays between prefrontal cortex (PFC) and cingulate cortex (CC), hippocampus, amygdala, ventral tegmental area (VTA) and the nucleus accumbens (nAcc). Nicotine activates a broad array of nAChRs subtypes that can be targeted to pre- as well as peri- and post-synaptic locations in these areas. Thereby, nicotine not only excites different types of neurons, but it also perturbs baseline neuronal communication, alters synaptic properties and modulates synaptic plasticity. In this review we focus on recent findings on nicotinic modulation of cortical circuits and their targets fields, which show that acute and transient activation of nicotinic receptors in cortico-limbic circuits triggers a series of events that affects cognitive performance in a long lasting manner. Understanding how nicotine induces long-term changes in synapses and alters plasticity in the cortico-limbic circuits is essential to determining how these areas interact in decoding fundamental aspects of cognition and reward.
Collapse
Affiliation(s)
- Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
96
|
Srivareerat M, Tran TT, Salim S, Aleisa AM, Alkadhi KA. Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer's disease. Neurobiol Aging 2009; 32:834-44. [PMID: 19464074 DOI: 10.1016/j.neurobiolaging.2009.04.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 04/15/2009] [Accepted: 04/19/2009] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by increased deposition of beta-amyloid (Aβ) peptides and progressive cholinergic dysfunction in regions of the brain involved in learning and memory processing. In AD, progressive accumulation of Aβ peptide impairs nicotinic acetylcholine receptor (nAChR) function by an unknown mechanism believed to involve α(7)- and α(4)β(2)-nAChR blockade. The three approaches of the current study evaluated the effects of chronic nicotine treatment in the prevention of Aβ-induced impairment of learning and short-term memory. Rat AD model was induced by 14-day i.c.v. osmotic pump infusion of a 1:1 mixture of 300 pmol/day Aβ(1-40)/Aβ(1-42) or Aβ(40-1) (inactive peptide, control). The effect of nicotine (2 mg/(kg day)) on Aβ-induced spatial learning and memory impairments was assessed by evaluation of performance in the radial arm water maze (RAWM), in vivo electrophysiological recordings of early-phase long-term potentiation (E-LTP) in urethane-anesthetized rats, and immunoblot analysis to determine changes in the levels of beta-site amyloid precursor protein (APP)-cleaving enzyme (BACE), Aβ and memory-related proteins. The results indicate that 6 weeks of nicotine treatment reduced the levels of Aβ(1-40) and BACE1 peptides in hippocampal area CA1 and prevented Aβ-induced impairment of learning and short-term memory. Chronic nicotine also prevented the Aβ-induced inhibition of basal synaptic transmission and LTP in hippocampal area CA1. Furthermore, chronic nicotine treatment prevented the Aβ-induced reduction of α(7)- and α(4)-nAChR. These effects of nicotine may be due, at least in part, to upregulation of brain derived neurotropic factor (BDNF).
Collapse
Affiliation(s)
- Marisa Srivareerat
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | | | | | | | | |
Collapse
|
97
|
Jia Y, Yamazaki Y, Nakauchi S, Sumikawa K. Alpha2 nicotine receptors function as a molecular switch to continuously excite a subset of interneurons in rat hippocampal circuits. Eur J Neurosci 2009; 29:1588-603. [PMID: 19385992 PMCID: PMC2915898 DOI: 10.1111/j.1460-9568.2009.06706.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rapid activation of nicotinic acetylcholine receptors (nAChRs) at various anatomical and cellular locations in the hippocampus differentially modulates the operation of hippocampal circuits. However, it is largely unknown how the continued presence of nicotine affects the normal operation of hippocampal circuits. Here, we used single and dual whole-cell recordings to address this question. We found that horizontally oriented interneurons in the stratum oriens/alveus continuously discharged action potentials in the presence of nicotine. In these interneurons, bath application of nicotine produced slow inward currents that were well maintained and inhibited by the non-alpha 7 antagonist dihydro-beta-erythroidine. Single-cell reverse transcription-polymerase chain reaction analysis showed that nicotine-responding interneurons were consistently positive for the alpha2 subunit mRNA. These observations suggest that in the presence of nicotine, a subset of interneurons in the stratum oriens/alveus are continuously excited due to the sustained activation of alpha2* nAChRs. These interneurons were synaptically connected to pyramidal cells, and nicotine increased inhibitory baseline currents at the synapses and suppressed phasic inhibition at the same synapses. Nicotine-induced inhibitory activity increased background noise and masked small phasic inhibition in pyramidal cells, originating from other interneurons in the stratum radiatum. Thus, the continued presence of nicotine alters the normal operation of hippocampal circuits by gating inhibitory circuits through activating a non-desensitizing alpha2 nAChR subtype on a distinct population of interneurons.
Collapse
Affiliation(s)
- Yousheng Jia
- Department of Neurobiology and Behavior University of California Irvine, CA 92697-4550, USA
| | - Yoshihiko Yamazaki
- Department of Neurobiology and Behavior University of California Irvine, CA 92697-4550, USA
- Department of Neurophysiology Yamagata University School of Medicine Yamagata 990-9585, Japan
| | - Sakura Nakauchi
- Department of Neurobiology and Behavior University of California Irvine, CA 92697-4550, USA
| | - Katumi Sumikawa
- Department of Neurobiology and Behavior University of California Irvine, CA 92697-4550, USA
| |
Collapse
|
98
|
Habib D, Dringenberg HC. Alternating low frequency stimulation of medial septal and commissural fibers induces NMDA-dependent, long-lasting potentiation of hippocampal synapses in urethane-anesthetized rats. Hippocampus 2009; 19:299-307. [DOI: 10.1002/hipo.20507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
99
|
Welsby PJ, Rowan MJ, Anwyl R. Intracellular mechanisms underlying the nicotinic enhancement of LTP in the rat dentate gyrus. Eur J Neurosci 2008; 29:65-75. [PMID: 19077124 DOI: 10.1111/j.1460-9568.2008.06562.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that activation of nicotinic acetylcholine receptors (nAChRs) enhanced long-term potentiation (LTP) in the rat dentate gyrus in vitro via activation of alpha7 nAChR. In the present studies, mechanisms underlying the acute and chronic nicotinic enhancement of LTP were examined. In particular, the involvement of activation of intracellular kinases was examined using selective kinase antagonists, and the effects of enhancing cholinergic function with positive allosteric modulators of the alpha7 nAChR and with acetylcholinesterase (AChE) inhibitors were also investigated. Activation of extracellular signal-regulated kinase (ERK) and cAMP-dependent protein kinase (PKA) was found to be involved in the induction of the acute nicotinic enhancement of LTP, although not control LTP. In contrast, activation of the tyrosine kinase Src, Ca(2+)-calmodulin-dependent protein kinase II, Janus kinase 2 and p38 mitogen-activated protein kinase was not involved in the acute nicotinic enhancement of LTP, although Src activation was necessary for control LTP. Moreover, activation of phosphoinositide 3-kinase was involved in the acute nicotinic enhancement of LTP to a much lesser extent than in control LTP. Chronic nicotine enhancement of LTP was found to be dependent on PKA, ERK and Src kinases. Acute nicotinic enhancement of LTP was occluded by chronic nicotine treatment. The positive allosteric modulator PNU-120596 was found to strongly reduce the threshold for nicotinic enhancement of LTP, an affect mediated via the alpha7 nAChR as it was blocked by the selective antagonist methyllycaconitine. The AChE inhibitors tacrine and physostigmine enhanced control LTP.
Collapse
Affiliation(s)
- Philip J Welsby
- Department of Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland.
| | | | | |
Collapse
|
100
|
Effects of β-amyloid peptide on the density of M2 muscarinic acetylcholine receptor protein in the hippocampus of the rat: relationship with GABA-, calcium-binding protein and somatostatin-containing cells. Neuropathol Appl Neurobiol 2008; 34:506-22. [DOI: 10.1111/j.1365-2990.2007.00932.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|