51
|
Wobbe L, Bassi R, Kruse O. Multi-Level Light Capture Control in Plants and Green Algae. TRENDS IN PLANT SCIENCE 2016; 21:55-68. [PMID: 26545578 DOI: 10.1016/j.tplants.2015.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/16/2015] [Accepted: 10/05/2015] [Indexed: 05/02/2023]
Abstract
Life on Earth relies on photosynthesis, and the ongoing depletion of fossil carbon fuels has renewed interest in phototrophic light-energy conversion processes as a blueprint for the conversion of atmospheric CO2 into various organic compounds. Light-harvesting systems have evolved in plants and green algae, which are adapted to the light intensity and spectral composition encountered in their habitats. These organisms are constantly challenged by a fluctuating light supply and other environmental cues affecting photosynthetic performance. Excess light can be especially harmful, but plants and microalgae are equipped with different acclimation mechanisms to control the processing of sunlight absorbed at both photosystems. We summarize the current knowledge and discuss the potential for optimization of phototrophic light-energy conversion.
Collapse
Affiliation(s)
- Lutz Wobbe
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Roberto Bassi
- Universita degli Studi di Verona, Department of Biotechnology, Strada Le Grazie 15, 37134 Verona, Italy
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
52
|
Khorobrykh AA, Klimov VV. Involvement of molecular oxygen in the donor-side photoinhibition of Mn-depleted photosystem II membranes. PHOTOSYNTHESIS RESEARCH 2015; 126:417-425. [PMID: 25862644 DOI: 10.1007/s11120-015-0135-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/26/2015] [Indexed: 06/04/2023]
Abstract
It has been shown by Khorobrykh et al. (Biochemistry (Moscow) 67:683-688, 2002); Yanykin et al. (Biochim Biophys Acta 1797:516-523, 2010); Khorobrykh et al. (Biochemistry 50:10658-10665, 2011) that Mn-depleted photosystem II (PSII) membrane fragments are characterized by an enhanced oxygen photoconsumption on the donor side of PSII which is accompanied with hydroperoxide formation and it was suggested that the events are related to the oxidative photoinhibition of PSII. Experimental confirmation of this suggestion is presented in this work. The degree of photoinhibition was determined by the loss of the capability of exogenous electron donors (Mn(2+) or sodium ascorbate) to the reactivation of electron transport [measured by the light-induced changes of chlorophyll fluorescence yield (∆F)] in Mn-depleted PSII membranes. The transition from anaerobic conditions to aerobic ones significantly activated photoinhibition of Mn-depleted PSII membranes both in the absence and in the presence of exogenous electron acceptor, ferricyanide. The photoinhibition of Mn-depleted PSII membranes was suppressed upon the addition of exogenous electron donors (Mn(2+), diphenylcarbazide, and ferrocyanide). The addition of superoxide dismutase did not affect the photoinhibition of Mn-depleted PSII membranes. It is concluded that the interaction of molecular oxygen (rather than superoxide anion radical formed on the acceptor side of PSII) with the oxidized components of the donor side of PSII reflects the involvement of O2 in the donor-side photoinhibition of Mn-depleted PSII membranes.
Collapse
Affiliation(s)
- A A Khorobrykh
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - V V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
53
|
Mattila H, Khorobrykh S, Havurinne V, Tyystjärvi E. Reactive oxygen species: Reactions and detection from photosynthetic tissues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:176-214. [PMID: 26498710 DOI: 10.1016/j.jphotobiol.2015.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have long been recognized as compounds with dual roles. They cause cellular damage by reacting with biomolecules but they also function as agents of cellular signaling. Several different oxygen-containing compounds are classified as ROS because they react, at least with certain partners, more rapidly than ground-state molecular oxygen or because they are known to have biological effects. The present review describes the typical reactions of the most important ROS. The reactions are the basis for both the detection methods and for prediction of reactions between ROS and biomolecules. Chemical and physical methods used for detection, visualization and quantification of ROS from plants, algae and cyanobacteria will be reviewed. The main focus will be on photosynthetic tissues, and limitations of the methods will be discussed.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
54
|
Trehalose stimulation of photoinduced electron transfer and oxygen photoconsumption in Mn-depleted photosystem 2 membrane fragments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:279-85. [PMID: 26386978 DOI: 10.1016/j.jphotobiol.2015.08.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 11/21/2022]
Abstract
It is known that the removal of manganese from the water-oxidizing complex (WOC) of photosystem 2 (PS2) leads to activation of oxygen photoconsumption (OPC) [Khorobrykh et al., 2002; Yanykin et al., 2010] that is accompanied by the formation of organic hydroperoxides on the electron-donor side of PS2 [Khorobrykh et al., 2011]. In the present work the effect of trehalose on the OPC in Mn-depleted PS2 preparations (apo-WOC-PS2) was investigated. A more than two-fold increase of the OPC is revealed upon the addition of 1M trehalose. Drastic (30%-70%) inhibition of the OPC upon the addition of either electron acceptor or electron donor indicates that the trehalose-induced activation of the OPC occurs on both donor and acceptor sides of PS2. A two-fold increase in the rate of superoxide-anion radical photoproduction on the electron-acceptor side of PS2 was also shown. Applying the "variable" chlorophyll fluorescence (ΔF) it was shown that the addition of trehalose induces: (i) a significant increase in the ability of exogenous Mn(2+) to donate electrons to the reaction center of PS2, (ii) slowing down the photoaccumulation of the primary quinone electron acceptor of PS2 (QA(-)) under aerobic conditions, (iii) acceleration of the reoxidation of QA(-) by QB (and by QB(-)) as well as the replacement of QB(2-) by a fully oxidized plastoquinone, and (iv) restoration of the electron transfer between the quinone electron carriers in the so-called "closed reaction centers of PS2" (their content in the apo-WOC-PS2 is 41%). It is suggested that the trehalose-induced increase in efficiency of the O2 interaction with the electron-donor and electron-acceptor sides of apo-WOC-PS2 is due to structural changes leading to both a decrease in the proportion of the "closed PS2 reaction centers" and an increase in the electron transfer rate in PS2.
Collapse
|
55
|
Zulfugarov IS, Tovuu A, Eu YJ, Dogsom B, Poudyal RS, Nath K, Hall M, Banerjee M, Yoon UC, Moon YH, An G, Jansson S, Lee CH. Production of superoxide from Photosystem II in a rice (Oryza sativa L.) mutant lacking PsbS. BMC PLANT BIOLOGY 2014; 14:242. [PMID: 25342550 PMCID: PMC4219129 DOI: 10.1186/s12870-014-0242-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/08/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND PsbS is a 22-kDa Photosystem (PS) II protein involved in non-photochemical quenching (NPQ) of chlorophyll fluorescence. Rice (Oryza sativa L.) has two PsbS genes, PsbS1 and PsbS2. However, only inactivation of PsbS1, through a knockout (PsbS1-KO) or in RNAi transgenic plants, results in plants deficient in qE, the energy-dependent component of NPQ. RESULTS In studies presented here, under fluctuating high light, growth of young seedlings lacking PsbS is retarded, and PSII in detached leaves of the mutants is more sensitive to photoinhibitory illumination compared with the wild type. Using both histochemical and fluorescent probes, we determined the levels of reactive oxygen species, including singlet oxygen, superoxide, and hydrogen peroxide, in leaves and thylakoids. The PsbS-deficient plants generated more superoxide and hydrogen peroxide in their chloroplasts. PSII complexes isolated from them produced more superoxide compared with the wild type, and PSII-driven superoxide production was higher in the mutants. However, we could not observe such differences either in isolated PSI complexes or through PSI-driven electron transport. Time-course experiments using isolated thylakoids showed that superoxide production was the initial event, and that production of hydrogen peroxide proceeded from that. CONCLUSION These results indicate that at least some of the photoprotection provided by PsbS and qE is mediated by preventing production of superoxide released from PSII under conditions of excess excitation energy.
Collapse
Affiliation(s)
- Ismayil S Zulfugarov
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
- />Department of Biology, North-Eastern Federal University, 58 Belinsky Str, Yakutsk, 677-027 Republic of Sakha (Yakutia) Russian Federation
- />Institute of Botany, Azerbaijan National Academy of Sciences, Patamdar Shosse 40, Baku, AZ 1073 Azerbaijan
| | - Altanzaya Tovuu
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
- />Department of Biology, Mongolian State University of Agriculture, Zaisan, Ulaanbaatar, 17024 Mongolia
| | - Young-Jae Eu
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Bolormaa Dogsom
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Roshan Sharma Poudyal
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Krishna Nath
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Michael Hall
- />Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, SE-901 87 Sweden
| | - Mainak Banerjee
- />Department of Chemistry, Pusan National University, Jangjeon-dong, Keumjung-gu, Busan, 609-735 Korea
| | - Ung Chan Yoon
- />Department of Chemistry, Pusan National University, Jangjeon-dong, Keumjung-gu, Busan, 609-735 Korea
| | - Yong-Hwan Moon
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Gynheung An
- />Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Korea
| | - Stefan Jansson
- />Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, SE-901 87 Sweden
| | - Choon-Hwan Lee
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| |
Collapse
|
56
|
Pospíšil P, Prasad A. Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:39-48. [DOI: 10.1016/j.jphotobiol.2014.04.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 01/10/2023]
|
57
|
Pintó-Marijuan M, Munné-Bosch S. Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: advantages and limitations. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3845-57. [PMID: 24683180 DOI: 10.1093/jxb/eru086] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inside chloroplasts, several abiotic stresses (including drought, high light, salinity, or extreme temperatures) induce a reduction in CO2 assimilation rates with a consequent increase in reactive oxygen species (ROS) production, ultimately leading to leaf senescence and yield loss. Photo-oxidation processes should therefore be mitigated to prevent leaf senescence, and plants have evolved several mechanisms to either prevent the formation of ROS or eliminate them. Technology evolution during the past decade has brought faster and more precise methodologies to quantify ROS production effects and damage, and the capacities of plants to withstand oxidative stress. Nevertheless, it is very difficult to disentangle photo-oxidative processes that bring leaf defence and acclimation, from those leading to leaf senescence (and consequently death). It is important to avoid the mistake of discussing results on leaf extracts as being equivalent to chloroplast extracts without taking into account that other organelles, such as peroxisomes, mitochondria, or the apoplast also significantly contribute to the overall ROS production within the cell. Another important aspect is that studies on abiotic stress-induced leaf senescence in crops do not always include a time-course evolution of studied processes, which limits our knowledge about what photo-oxidative stress processes are required to irreversibly induce the senescence programme. This review will summarize the current technologies used to evaluate the extent of photo-oxidative stress in plants, and discuss their advantages and limitations in characterizing abiotic stress-induced leaf senescence in crops.
Collapse
Affiliation(s)
- Marta Pintó-Marijuan
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
58
|
Telfer A. Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of β-carotene. PLANT & CELL PHYSIOLOGY 2014; 55:1216-23. [PMID: 24566536 PMCID: PMC4080269 DOI: 10.1093/pcp/pcu040] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/14/2014] [Indexed: 05/18/2023]
Abstract
In this review, I outline the indirect evidence for the formation of singlet oxygen ((1)O(2)) obtained from experiments with the isolated PSII reaction center complex. I also review the methods we used to measure singlet oxygen directly, including luminescence at 1,270 nm, both steady state and time resolved. Other methods we used were histidine-catalyzed molecular oxygen uptake (enabling (1)O(2) yield measurements), and dye bleaching and difference absorption spectroscopy to identify where quenchers of (1)O(2) can access this toxic species. We also demonstrated the protective behavior of carotenoids bound within Chl-protein complexes which bring about a substantial amount of (1)O(2) quenching within the reaction center complex. Finally, I describe how these techniques have been used and expanded in research on photoinhibition and on the role of (1)O(2) as a signaling molecule in instigating cellular responses to various stress factors. I also discuss the current views on the role of (1)O(2) as a signaling molecule and the distance it might be able to travel within cells.
Collapse
Affiliation(s)
- Alison Telfer
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
59
|
Karonen M, Mattila H, Huang P, Mamedov F, Styring S, Tyystjärvi E. A tandem mass spectrometric method for singlet oxygen measurement. Photochem Photobiol 2014; 90:965-71. [PMID: 24849296 DOI: 10.1111/php.12291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/15/2014] [Indexed: 11/29/2022]
Abstract
Singlet oxygen, a harmful reactive oxygen species, can be quantified with the substance 2,2,6,6-tetramethylpiperidine (TEMP) that reacts with singlet oxygen, forming a stable nitroxyl radical (TEMPO). TEMPO has earlier been quantified with electron paramagnetic resonance (EPR) spectroscopy. In this study, we designed an ultra-high-performance liquid chromatographic-tandem mass spectrometric (UHPLC-ESI-MS/MS) quantification method for TEMPO and showed that the method based on multiple reaction monitoring (MRM) can be used for the measurements of singlet oxygen from both nonbiological and biological samples. Results obtained with both UHPLC-ESI-MS/MS and EPR methods suggest that plant thylakoid membranes produce 3.7 × 10(-7) molecules of singlet oxygen per chlorophyll molecule in a second when illuminated with the photosynthetic photon flux density of 2000 μmol m(-2 ) s(-1).
Collapse
Affiliation(s)
- Maarit Karonen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, Turku, Finland
| | | | | | | | | | | |
Collapse
|
60
|
Shunmugam S, Jokela J, Wahlsten M, Battchikova N, Vass I, Karonen M, Sinkkonen J, Permi P, Sivonen K, Aro EM, Allahverdiyeva Y. Secondary metabolite from Nostoc XPORK14A inhibits photosynthesis and growth of Synechocystis PCC 6803. PLANT, CELL & ENVIRONMENT 2014; 37:1371-1381. [PMID: 24895757 DOI: 10.1111/pce.12243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Screening of 55 different cyanobacterial strains revealed that an extract from Nostoc XPORK14A drastically modifies the amplitude and kinetics of chlorophyll a fluorescence induction of Synechocystis PCC6803 cells.After 2 d exposure to the Nostoc XPORK14A extract, Synechocystis PCC 6803 cells displayed reduced net photosynthetic activity and significantly modified electron transport properties of photosystem II under both light and dark conditions. However, the maximum oxidizable amount of P700 was not strongly affected. The extract also induced strong oxidative stress in Synechocystis PCC 6803 cells in both light and darkness. We identified the secondary metabolite of Nostoc XPORK14A causing these pronounced effects on Synechocystis cells. Mass spectrometry and nuclear magnetic resonance analyses revealed that this compound, designated as M22, has a non-peptide structure. We propose that M22 possesses a dualaction mechanism: firstly, by photogeneration of reactive oxygen species in the presence of light, which in turn affects the photosynthetic machinery of Synechocystis PCC 6803; and secondly, by altering the in vivo redox status of cells, possibly through inhibition of protein kinases.
Collapse
|
61
|
Yoshioka-Nishimura M, Yamamoto Y. Quality control of Photosystem II: the molecular basis for the action of FtsH protease and the dynamics of the thylakoid membranes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:100-6. [PMID: 24725639 DOI: 10.1016/j.jphotobiol.2014.02.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 01/20/2023]
Abstract
The reaction center-binding D1 protein of Photosystem II is damaged by excessive light, which leads to photoinhibition of Photosystem II. The damaged D1 protein is removed immediately by specific proteases, and a metalloprotease FtsH located in the thylakoid membranes is involved in the proteolytic process. According to recent studies on the distribution and organization of the protein complexes/supercomplexes in the thylakoid membranes, the grana of higher plant chloroplasts are crowded with Photosystem II complexes and light-harvesting complexes. For the repair of the photodamaged D1 protein, the majority of the active hexameric FtsH proteases should be localized in close proximity to the Photosystem II complexes. The unstacking of the grana may increase the area of the grana margin and facilitate easier access of the FtsH proteases to the damaged D1 protein. These results suggest that the structural changes of the thylakoid membranes by light stress increase the mobility of the membrane proteins and support the quality control of Photosystem II.
Collapse
Affiliation(s)
- Miho Yoshioka-Nishimura
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Yasusi Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
62
|
Bersanini L, Battchikova N, Jokel M, Rehman A, Vass I, Allahverdiyeva Y, Aro EM. Flavodiiron protein Flv2/Flv4-related photoprotective mechanism dissipates excitation pressure of PSII in cooperation with phycobilisomes in Cyanobacteria. PLANT PHYSIOLOGY 2014; 164:805-18. [PMID: 24367022 PMCID: PMC3912107 DOI: 10.1104/pp.113.231969] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/16/2013] [Indexed: 05/20/2023]
Abstract
Oxygenic photosynthesis evolved with cyanobacteria, the ancestors of plant chloroplasts. The highly oxidizing chemistry of water splitting required concomitant evolution of efficient photoprotection mechanisms to safeguard the photosynthetic machinery. The role of flavodiiron proteins (FDPs), originally called A-type flavoproteins or Flvs, in this context has only recently been appreciated. Cyanobacterial FDPs constitute a specific protein group that evolved to protect oxygenic photosynthesis. There are four FDPs in Synechocystis sp. PCC 6803 (Flv1 to Flv4). Two of them, Flv2 and Flv4, are encoded by an operon together with a Sll0218 protein. Their expression, tightly regulated by CO2 levels, is also influenced by changes in light intensity. Here we describe the overexpression of the flv4-2 operon in Synechocystis sp. PCC 6803 and demonstrate that it results in improved photochemistry of PSII. The flv4-2/OE mutant is more resistant to photoinhibition of PSII and exhibits a more oxidized state of the plastoquinone pool and reduced production of singlet oxygen compared with control strains. Results of biophysical measurements indicate that the flv4-2 operon functions in an alternative electron transfer pathway from PSII, and thus alleviates PSII excitation pressure by channeling up to 30% of PSII-originated electrons. Furthermore, intact phycobilisomes are required for stable expression of the flv4-2 operon genes and for the Flv2/Flv4 heterodimer-mediated electron transfer mechanism. The latter operates in photoprotection in a complementary way with the orange carotenoid protein-related nonphotochemical quenching. Expression of the flv4-2 operon and exchange of the D1 forms in PSII centers upon light stress, on the contrary, are mutually exclusive photoprotection strategies among cyanobacteria.
Collapse
|
63
|
Rastogi A, Yadav DK, Szymańska R, Kruk J, Sedlářová M, Pospíšil P. Singlet oxygen scavenging activity of tocopherol and plastochromanol in Arabidopsis thaliana: relevance to photooxidative stress. PLANT, CELL & ENVIRONMENT 2014; 37:392-401. [PMID: 23848570 DOI: 10.1111/pce.12161] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 05/24/2023]
Abstract
In the present study, singlet oxygen (¹O₂) scavenging activity of tocopherol and plastochromanol was examined in tocopherol cyclase-deficient mutant (vte1) of Arabidopsis thaliana lacking both tocopherol and plastochromanol. It is demonstrated here that suppression of tocopherol and plastochromanol synthesis in chloroplasts isolated from vte1 Arabidopsis plants enhanced ¹O₂ formation under high light illumination as monitored by electron paramagnetic resonance spin-trapping spectroscopy. The exposure of vte1 Arabidopsis plants to high light resulted in the formation of secondary lipid peroxidation product malondialdehyde as determined by high-pressure liquid chromatography. Furthermore, it is shown here that the imaging of ultra-weak photon emission known to reflect oxidation of lipids was unambiguously higher in vte1 Arabidopsis plants. Our results indicate that tocopherol and plastochromanol act as efficient ¹O₂ scavengers and protect effectively lipids against photooxidative damage in Arabidopsis plants.
Collapse
Affiliation(s)
- Anshu Rastogi
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, 783 71, Czech Republic
| | | | | | | | | | | |
Collapse
|
64
|
Nath K, Poudyal RS, Eom JS, Park YS, Zulfugarov IS, Mishra SR, Tovuu A, Ryoo N, Yoon HS, Nam HG, An G, Jeon JS, Lee CH. Loss-of-function of OsSTN8 suppresses the photosystem II core protein phosphorylation and interferes with the photosystem II repair mechanism in rice (Oryza sativa). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:675-86. [PMID: 24103067 DOI: 10.1111/tpj.12331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/07/2013] [Accepted: 09/02/2013] [Indexed: 05/10/2023]
Abstract
STN8 kinase is involved in photosystem II (PSII) core protein phosphorylation (PCPP). To examine the role of PCPP in PSII repair during high light (HL) illumination, we characterized a T-DNA insertional knockout mutant of the rice (Oryza sativa) STN8 gene. In this osstn8 mutant, PCPP was significantly suppressed, and the grana were thin and elongated. Upon HL illumination, PSII was strongly inactivated in the mutants, but the D1 protein was degraded more slowly than in wild-type, and mobilization of the PSII supercomplexes from the grana to the stromal lamellae for repair was also suppressed. In addition, higher accumulation of reactive oxygen species and preferential oxidation of PSII reaction center core proteins in thylakoid membranes were observed in the mutants during HL illumination. Taken together, our current data show that the absence of STN8 is sufficient to abolish PCPP in osstn8 mutants and to produce all of the phenotypes observed in the double mutant of Arabidopsis, indicating the essential role of STN8-mediated PCPP in PSII repair.
Collapse
Affiliation(s)
- Krishna Nath
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Korea; Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Fischer BB, Hideg É, Krieger-Liszkay A. Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal 2013; 18:2145-62. [PMID: 23320833 DOI: 10.1089/ars.2012.5124] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SIGNIFICANCE In photosynthetic organisms, excited chlorophylls (Chl) can stimulate the formation of singlet oxygen ((1)O(2)), a highly toxic molecule that acts in addition to its damaging nature as an important signaling molecule. Thus, due to this dual role of (1)O(2), its production and detoxification have to be strictly controlled. RECENT ADVANCES Regulation of pigment synthesis is essential to control (1)O(2) production, and several components of the Chl synthesis and pigment insertion machineries to assemble and disassemble protein/pigment complexes have recently been identified. Once produced, (1)O(2) activates a signaling cascade from the chloroplast to the nucleus that can involve multiple mechanisms and stimulate a specific gene expression response. Further, (1)O(2) signaling was shown to interact with signal cascades of other reactive oxygen species, oxidized carotenoids, and lipid hydroperoxide-derived reactive electrophile species. CRITICAL ISSUES Despite recent progresses, hardly anything is known about how and where the (1)O(2) signal is sensed and transmitted to the cytoplasm. One reason for that is the limitation of available detection methods challenging the reliable quantification and localization of (1)O(2) in plant cells. In addition, the process of Chl insertion into the reaction centers and antenna complexes is still unclear. FUTURE DIRECTIONS Unraveling the mechanisms controlling (1)O(2) production and signaling would help clarifying the specific role of (1)O(2) in cellular stress responses. It would further enable to investigate the interaction and sensitivity to other abiotic and biotic stress signals and thus allow to better understand why some stressors activate an acclimation, while others provoke a programmed cell death response.
Collapse
Affiliation(s)
- Beat B Fischer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| | | | | |
Collapse
|
66
|
Rehman AU, Cser K, Sass L, Vass I. Characterization of singlet oxygen production and its involvement in photodamage of Photosystem II in the cyanobacterium Synechocystis PCC 6803 by histidine-mediated chemical trapping. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:689-98. [DOI: 10.1016/j.bbabio.2013.02.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
|
67
|
Chen D, Xu G, Tang W, Jing Y, Ji Q, Fei Z, Lin R. Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. THE PLANT CELL 2013; 25:1657-73. [PMID: 23645630 PMCID: PMC3694698 DOI: 10.1105/tpc.112.104869] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/06/2013] [Accepted: 04/16/2013] [Indexed: 05/18/2023]
Abstract
The critical developmental switch from heterotrophic to autotrophic growth of plants involves light signaling transduction and the production of reactive oxygen species (ROS). ROS function as signaling molecules that regulate multiple developmental processes, including cell death. However, the relationship between light and ROS signaling remains unclear. Here, we identify transcriptional modules composed of the basic helix-loop-helix and bZIP transcription factors PHYTOCHROME-INTERACTING FACTOR1 (PIF1), PIF3, ELONGATED HYPOCOTYL5 (HY5), and HY5 HOMOLOGY (HYH) that bridge light and ROS signaling to regulate cell death and photooxidative response. We show that pif mutants release more singlet oxygen and exhibit more extensive cell death than the wild type during Arabidopsis thaliana deetiolation. Genome-wide expression profiling indicates that PIF1 represses numerous ROS and stress-related genes. Molecular and biochemical analyses reveal that PIF1/PIF3 and HY5/HYH physically interact and coordinately regulate the expression of five ROS-responsive genes by directly binding to their promoters. Furthermore, PIF1/PIF3 and HY5/HYH function antagonistically during the seedling greening process. In addition, phytochromes, cryptochromes, and CONSTITUTIVE PHOTOMORPHOGENIC1 act upstream to regulate ROS signaling. Together, this study reveals that the PIF1/PIF3-HY5/HYH transcriptional modules mediate crosstalk between light and ROS signaling and sheds light on a new mechanism by which plants adapt to the light environments.
Collapse
Affiliation(s)
- Dongqin Chen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Xu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijiang Tang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qiang Ji
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
68
|
Chan T, Shimizu Y, Pospíšil P, Nijo N, Fujiwara A, Taninaka Y, Ishikawa T, Hori H, Nanba D, Imai A, Morita N, Yoshioka-Nishimura M, Izumi Y, Yamamoto Y, Kobayashi H, Mizusawa N, Wada H, Yamamoto Y. Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination. PLoS One 2012; 7:e52100. [PMID: 23300595 PMCID: PMC3531424 DOI: 10.1371/journal.pone.0052100] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 11/09/2012] [Indexed: 11/19/2022] Open
Abstract
Environmental stresses lower the efficiency of photosynthesis and sometimes cause irreversible damage to plant functions. When spinach thylakoids and Photosystem II membranes were illuminated with excessive visible light (100–1,000 µmol photons m−1 s−1) for 10 min at either 20°C or 30°C, the optimum quantum yield of Photosystem II decreased as the light intensity and temperature increased. Reactive oxygen species and endogenous cationic radicals produced through a photochemical reaction at and/or near the reaction center have been implicated in the damage to the D1 protein. Here we present evidence that lipid peroxidation induced by the illumination is involved in the damage to the D1 protein and the subunits of the light-harvesting complex of Photosystem II. This is reasoned from the results that considerable lipid peroxidation occurred in the thylakoids in the light, and that lipoxygenase externally added in the dark induced inhibition of Photosystem II activity in the thylakoids, production of singlet oxygen, which was monitored by electron paramagnetic resonance spin trapping, and damage to the D1 protein, in parallel with lipid peroxidation. Modification of the subunits of the light-harvesting complex of Photosystem II by malondialdehyde as well as oxidation of the subunits was also observed. We suggest that mainly singlet oxygen formed through lipid peroxidation under light stress participates in damaging the Photosystem II subunits.
Collapse
Affiliation(s)
- Tiffanie Chan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yurika Shimizu
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Nobuyoshi Nijo
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Anna Fujiwara
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yoshito Taninaka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Tomomi Ishikawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Haruka Hori
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Daisuke Nanba
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Aya Imai
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Noriko Morita
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | - Yohei Izumi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Yoko Yamamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Hideki Kobayashi
- Center for Faculty Development, Okayama University, Okayama, Japan
| | - Naoki Mizusawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Yasusi Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
69
|
Cazzaniga S, Li Z, Niyogi KK, Bassi R, Dall’Osto L. The Arabidopsis szl1 mutant reveals a critical role of β-carotene in photosystem I photoprotection. PLANT PHYSIOLOGY 2012; 159:1745-58. [PMID: 23029671 PMCID: PMC3425210 DOI: 10.1104/pp.112.201137] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/20/2012] [Indexed: 05/18/2023]
Abstract
Carotenes and their oxygenated derivatives, the xanthophylls, are structural determinants in both photosystems (PS) I and II. They bind and stabilize photosynthetic complexes, increase the light-harvesting capacity of chlorophyll-binding proteins, and have a major role in chloroplast photoprotection. Localization of carotenoid species within each PS is highly conserved: Core complexes bind carotenes, whereas peripheral light-harvesting systems bind xanthophylls. The specific functional role of each xanthophyll species has been recently described by genetic dissection, however the in vivo role of carotenes has not been similarly defined. Here, we have analyzed the function of carotenes in photosynthesis and photoprotection, distinct from that of xanthophylls, by characterizing the suppressor of zeaxanthin-less (szl) mutant of Arabidopsis (Arabidopsis thaliana) which, due to the decreased activity of the lycopene-β-cyclase, shows a lower carotene content than wild-type plants. When grown at room temperature, mutant plants showed a lower content in PSI light-harvesting complex I complex than the wild type, and a reduced capacity for chlorophyll fluorescence quenching, the rapidly reversible component of nonphotochemical quenching. When exposed to high light at chilling temperature, szl1 plants showed stronger photoxidation than wild-type plants. Both PSI and PSII from szl1 were similarly depleted in carotenes and yet PSI activity was more sensitive to light stress than PSII as shown by the stronger photoinhibition of PSI and increased rate of singlet oxygen release from isolated PSI light-harvesting complex I complexes of szl1 compared with the wild type. We conclude that carotene depletion in the core complexes impairs photoprotection of both PS under high light at chilling temperature, with PSI being far more affected than PSII.
Collapse
|
70
|
Khorobrykh SA, Khorobrykh AA, Yanykin DV, Ivanov BN, Klimov VV, Mano J. Photoproduction of Catalase-Insensitive Peroxides on the Donor Side of Manganese-Depleted Photosystem II: Evidence with a Specific Fluorescent Probe. Biochemistry 2011; 50:10658-65. [DOI: 10.1021/bi200945v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sergey A. Khorobrykh
- Institute
of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
- Science Research Center, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
| | - Andrei A. Khorobrykh
- Institute
of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Denis V. Yanykin
- Institute
of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Boris N. Ivanov
- Institute
of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vyacheslav V. Klimov
- Institute
of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Jun’ichi Mano
- Science Research Center, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
| |
Collapse
|
71
|
Arellano JB, Li H, González-Pérez S, Gutiérrez J, Melø TB, Vacha F, Naqvi KR. Trolox, a water-soluble analogue of α-tocopherol, photoprotects the surface-exposed regions of the photosystem II reaction center in vitro. Is this physiologically relevant? Biochemistry 2011; 50:8291-301. [PMID: 21866915 DOI: 10.1021/bi201195u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Can Trolox, a water-soluble analogue of α-tocopherol and a scavenger of singlet oxygen ((1)O(2)), provide photoprotection, under high irradiance, to the isolated photosystem II (PSII) reaction center (RC)? To answer the question, we studied the endogenous production of (1)O(2) in preparations of the five-chlorophyll PSII RC (RC5) containing only one β-carotene molecule. The temporal profile of (1)O(2) emission at 1270 nm photogenerated by RC5 in D(2)O followed the expected biexponential behavior, with a rise time, unaffected by Trolox, of 13 ± 1 μs and decay times of 54 ± 2 μs (without Trolox) and 38 ± 2 μs (in the presence of 25 μM Trolox). The ratio between the total (k(t)) and chemical (k(r)) bimolecular rate constants for the scavenging of (1)O(2) by Trolox in aqueous buffer was calculated to be ~1.3, with a k(t) of (2.4 ± 0.2) × 10(8) M(-1) s(-1) and a k(r) of (1.8 ± 0.2) × 10(8) M(-1) s(-1), indicating that most of the (1)O(2) photosensitized by methylene blue chemically reacts with Trolox in the assay buffer. The photoinduced oxygen consumption in the oxygen electrode, when RC5 and Trolox were mixed, revealed that Trolox was a better (1)O(2) scavenger than histidine and furfuryl alcohol at low concentrations (i.e., <1 mM). After its incorporation into detergent micelles in unbuffered solutions, Trolox was able to photoprotect the surface-exposed regions of the D1-D2 heterodimer, but not the RC5 pigments, which were oxidized, together with the membrane region of the protein matrix of the PSII RC, by (1)O(2). These results are discussed and compared with those of studies dealing with the physiological role of tocopherol molecules as a (1)O(2) scavenger in thylakoid membranes of photosynthetic organisms.
Collapse
Affiliation(s)
- Juan B Arellano
- Instituto de Recursos Naturales y Agrobiologı́a de Salamanca, Apdo. 257, 37071 Salamanca, Spain. juan.arellano@irnasa
| | | | | | | | | | | | | |
Collapse
|
72
|
Yoshioka M, Yamamoto Y. Quality control of Photosystem II: Where and how does the degradation of the D1 protein by FtsH proteases start under light stress? – Facts and hypotheses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:229-35. [DOI: 10.1016/j.jphotobiol.2011.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/14/2011] [Accepted: 01/14/2011] [Indexed: 11/27/2022]
|
73
|
Dreaden TM, Chen J, Rexroth S, Barry BA. N-formylkynurenine as a marker of high light stress in photosynthesis. J Biol Chem 2011; 286:22632-41. [PMID: 21527632 PMCID: PMC3121407 DOI: 10.1074/jbc.m110.212928] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/28/2011] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) is the membrane protein complex that catalyzes the photo-induced oxidation of water at a manganese-calcium active site. Light-dependent damage and repair occur in PSII under conditions of high light stress. The core reaction center complex is composed of the D1, D2, CP43, and CP47 intrinsic polypeptides. In this study, a new chromophore formed from the oxidative post-translational modification of tryptophan is identified in the CP43 subunit. Tandem mass spectrometry peptide sequencing is consistent with the oxidation of the CP43 tryptophan side chain, Trp-365, to produce N-formylkynurenine (NFK). Characterization with ultraviolet visible absorption and ultraviolet resonance Raman spectroscopy supports this assignment. An optical assay suggests that the yield of NFK increases 2-fold (2.2 ± 0.5) under high light illumination. A concomitant 2.4 ± 0.5-fold decrease is observed in the steady-state rate of oxygen evolution under the high light conditions. NFK is the product formed from reaction of tryptophan with singlet oxygen, which can be produced under high light stress in PSII. Reactive oxygen species reactions lead to oxidative damage of the reaction center, D1 protein turnover, and inhibition of electron transfer. Our results are consistent with a role for the CP43 NFK modification in photoinhibition.
Collapse
Affiliation(s)
- Tina M. Dreaden
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Jun Chen
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Sascha Rexroth
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Bridgette A. Barry
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
74
|
Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:218-31. [PMID: 21641332 DOI: 10.1016/j.bbabio.2011.05.017] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/07/2011] [Accepted: 05/18/2011] [Indexed: 01/05/2023]
Abstract
Photosystem II (PSII) is a multisubunit protein complex in cyanobacteria, algae and plants that use light energy for oxidation of water and reduction of plastoquinone. The conversion of excitation energy absorbed by chlorophylls into the energy of separated charges and subsequent water-plastoquinone oxidoreductase activity are inadvertently coupled with the formation of reactive oxygen species (ROS). Singlet oxygen is generated by the excitation energy transfer from triplet chlorophyll formed by the intersystem crossing from singlet chlorophyll and the charge recombination of separated charges in the PSII antenna complex and reaction center of PSII, respectively. Apart to the energy transfer, the electron transport associated with the reduction of plastoquinone and the oxidation of water is linked to the formation of superoxide anion radical, hydrogen peroxide and hydroxyl radical. To protect PSII pigments, proteins and lipids against the oxidative damage, PSII evolved a highly efficient antioxidant defense system comprising either a non-enzymatic (prenyllipids such as carotenoids and prenylquinols) or an enzymatic (superoxide dismutase and catalase) scavengers. It is pointed out here that both the formation and the scavenging of ROS are controlled by the energy level and the redox potential of the excitation energy transfer and the electron transport carries, respectively. The review is focused on the mechanistic aspects of ROS production and scavenging by PSII. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
75
|
Krieger-Liszkay A, Kós PB, Hideg E. Superoxide anion radicals generated by methylviologen in photosystem I damage photosystem II. PHYSIOLOGIA PLANTARUM 2011; 142:17-25. [PMID: 20875060 DOI: 10.1111/j.1399-3054.2010.01416.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The effect of superoxide anion radicals on the photosynthetic electron transport chain was studied in leaves and isolated thylakoids from tobacco. Superoxide was generated by methylviologen (MV) in the light at the acceptor side of photosystem I (PSI). In isolated thylakoids, the largest damage was observed at the level of the water-splitting activity in photosystem II (PSII), whereas PSI was hardly affected at the light intensities used. Addition of reactive oxygen scavengers protected PSII against damage. In leaves in the presence of MV, the quantum yield of PSII decreased during illumination whereas the size of the P(700) signal remained constant. There was no D1 protein loss in leaves illuminated in the presence of MV and lincomycin, but a modification to a slightly higher molecular mass was observed. These data show that PSII is more sensitive to superoxide or superoxide-derived reactive oxygen species (ROS) than PSI. In our experiments, this susceptibility was not because of any action of the ROS on the translation of the D1 protein or on the repair cycle of photosystem.
Collapse
Affiliation(s)
- Anja Krieger-Liszkay
- Commissariat à l'Energie Atomique (CEA), iBiTec-S, CNRS URA 2096, Service de Bioénergétique Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
76
|
Nishiyama Y, Allakhverdiev SI, Murata N. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. PHYSIOLOGIA PLANTARUM 2011; 142:35-46. [PMID: 21320129 DOI: 10.1111/j.1399-3054.2011.01457.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photoinhibition of photosystem II (PSII) occurs when the rate of photodamage to PSII exceeds the rate of the repair of photodamaged PSII. Recent examination of photoinhibition by separate determinations of photodamage and repair has revealed that the rate of photodamage to PSII is directly proportional to the intensity of incident light and that the repair of PSII is particularly sensitive to the inactivation by reactive oxygen species (ROS). The ROS-induced inactivation of repair is attributable to the suppression of the synthesis de novo of proteins, such as the D1 protein, that are required for the repair of PSII at the level of translational elongation. Furthermore, molecular analysis has revealed that the ROS-induced suppression of protein synthesis is associated with the specific inactivation of elongation factor G via the formation of an intramolecular disulfide bond. Impairment of various mechanisms that protect PSII against photoinhibition, including photorespiration, thermal dissipation of excitation energy, and the cyclic transport of electrons, decreases the rate of repair of PSII via the suppression of protein synthesis. In this review, we present a newly established model of the mechanism and the physiological significance of repair in the regulation of the photoinhibition of PSII.
Collapse
Affiliation(s)
- Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering and Institute for Environmental Science and Technology, Saitama University, Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | | | | |
Collapse
|
77
|
Hakala-Yatkin M, Sarvikas P, Paturi P, Mäntysaari M, Mattila H, Tyystjärvi T, Nedbal L, Tyystjärvi E. Magnetic field protects plants against high light by slowing down production of singlet oxygen. PHYSIOLOGIA PLANTARUM 2011; 142:26-34. [PMID: 21288249 DOI: 10.1111/j.1399-3054.2011.01453.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Recombination of the primary radical pair of photosystem II (PSII) of photosynthesis may produce the triplet state of the primary donor of PSII. Triplet formation is potentially harmful because chlorophyll triplets can react with molecular oxygen to produce the reactive singlet oxygen (¹O₂). The yield of ¹O₂ is expected to be directly proportional to the triplet yield and the triplet yield of charge recombination can be lowered with a magnetic field of 100-300 mT. In this study, we illuminated intact pumpkin leaves with strong light in the presence and absence of a magnetic field and found that the magnetic field protects against photoinhibition of PSII. The result suggests that radical pair recombination is responsible for significant part of ¹O₂ production in the chloroplast. The magnetic field effect vanished if leaves were illuminated in the presence of lincomycin, an inhibitor of chloroplast protein synthesis, or if isolated thylakoid membranes were exposed to light. These data, in turn, indicate that ¹O₂ produced by the recombination of the primary charge pair is not directly involved in photoinactivation of PSII but instead damages PSII by inhibiting the repair of photoinhibited PSII. We also found that an Arabidopsis thaliana mutant lacking α-tocopherol, a scavenger of ¹O₂, is more sensitive to photoinhibition than the wild-type in the absence but not in the presence of lincomycin, confirming that the target of ¹O₂ is the repair mechanism.
Collapse
Affiliation(s)
- Marja Hakala-Yatkin
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, FI-20014, Finland
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Patra RC, Rautray AK, Swarup D. Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int 2011; 2011:457327. [PMID: 21547215 PMCID: PMC3087445 DOI: 10.4061/2011/457327] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 01/21/2011] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress has been implicated to play a role, at least in part, in pathogenesis of many disease conditions and toxicities in animals. Overproduction of reactive oxygen species and free radicals beyond the cells intrinsic capacity to neutralize following xenobiotics exposure leads to a state of oxidative stress and resultant damages of lipids, protein, and DNA. Lead and cadmium are the common environmental heavy metal pollutants and have widespread distribution. Both natural and anthropogenic sources including mining, smelting, and other industrial processes are responsible for human and animal exposure. These pollutants, many a times, are copollutants leading to concurrent exposure to living beings and resultant synergistic deleterious health effects. Several mechanisms have been explained for the damaging effects on the body system. Of late, oxidative stress has been implicated in the pathogenesis of the lead- and cadmium-induced pathotoxicity. Several ameliorative measures to counteract the oxidative damage to the body system aftermath or during exposure to these toxicants have been assessed with the use of antioxidants. The present review focuses on mechanism of lead- and cadmium-induced oxidate damages and the ameliorative measures to counteract the oxidative damage and pathotoxicity with the use of supplemented antioxidants for their beneficial effects.
Collapse
Affiliation(s)
- R. C. Patra
- Department of Medicine, College of Veterinary Science and Animal Husbandry, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Amiya K. Rautray
- Department of Medicine, College of Veterinary Science and Animal Husbandry, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
| | - D. Swarup
- Division of Medicine, Indian Veterinary Research Institute, Izatnagar 243122, India
- Central Institute for Research on Goats, Makhdoom 281122, UP, India
| |
Collapse
|
79
|
Yadav DK, Kruk J, Sinha RK, Pospíšil P. Singlet oxygen scavenging activity of plastoquinol in photosystem II of higher plants: Electron paramagnetic resonance spin-trapping study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1807-11. [DOI: 10.1016/j.bbabio.2010.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
|
80
|
Fischer BB, Rüfenacht K, Dannenhauer K, Wiesendanger M, Eggen RIL. Multiple stressor effects of high light irradiance and photosynthetic herbicides on growth and survival of the green alga Chlamydomonas reinhardtii. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:2211-2219. [PMID: 20872684 DOI: 10.1002/etc.264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exposure of the green alga Chlamydomonas reinhardtii Dangeard to a combination of environmental stress by high light irradiance and chemical stress by each of the three herbicides paraquat, atrazine, and norflurazon resulted in diverse multiple stressor effects on growth and survival of the cells. Under low light conditions, growth analyzed by cell numbers was generally more sensitive to herbicide treatment than optical density-based growth rates or colony-forming unit endpoints, which both also analyzed the viability of the cells. However, growth analyzed by optical density and colony-forming units in herbicide-treated cultures was affected much more strongly by high light irradiance, as shown by reduced 50% effective concentrations, indicating extensive multiple stressor effects of the combined treatment on the viability of the cells. None of the currently used concepts for mixture toxicity (concentration addition, independent action, or effect summation) could accurately describe the effects measured by the two stressors in combination. Both synergistic and antagonistic interactions seem to occur depending on the light conditions and the parameter analyzed. The strong stimulation of toxicity by the combined stresses can be explained by the similar mode of toxic action of the treatments, all increasing the production of reactive oxygen species. Antagonistic effects, conversely, are probably attributable to the various protection mechanisms of photosynthetic organisms to increased light irradiance, which help the cells acclimate to specific light conditions and defend against the deleterious effects of excess light. These protection mechanisms can affect growth and viability under increased light conditions and also might influence the toxicity of the photosynthetic herbicides.
Collapse
Affiliation(s)
- Beat B Fischer
- Eawag, Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland.
| | | | | | | | | |
Collapse
|
81
|
Yanykin DV, Khorobrykh AA, Khorobrykh SA, Klimov VV. Photoconsumption of molecular oxygen on both donor and acceptor sides of photosystem II in Mn-depleted subchloroplast membrane fragments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:516-23. [DOI: 10.1016/j.bbabio.2010.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/03/2010] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
|
82
|
Buchert F, Forreiter C. Singlet oxygen inhibits ATPase and proton translocation activity of the thylakoid ATP synthase CF1CFo. FEBS Lett 2010; 584:147-52. [PMID: 19925794 DOI: 10.1016/j.febslet.2009.11.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/30/2009] [Accepted: 11/12/2009] [Indexed: 11/26/2022]
Abstract
Singlet oxygen ((1)O(2)) produced in plants during photosynthesis has a strong damaging effect not only on both photosystems but also on the whole photosynthetic machinery. This is also applicable for the adenosine triphosphate (ATP) synthase. Here we describe the impact of (1)O(2) generated by the photosensitizer Rose Bengal on the ATP hydrolysis and ATP-driven proton translocation activity of CF1CFo. Both activities were reduced dramatically within 1min of exposure. Interestingly, it is shown that oxidized thylakoid ATP synthase is more susceptible to (1)O(2) than CF1CFo in its reduced state, a new insight on the mechanism of (1)O(2) interaction with the gamma subunit.
Collapse
Affiliation(s)
- Felix Buchert
- Pflanzenphysiologie, Justus-Liebig Universität, Zeughaus, Giessen, Germany
| | | |
Collapse
|
83
|
Khatoon M, Inagawa K, Pospísil P, Yamashita A, Yoshioka M, Lundin B, Horie J, Morita N, Jajoo A, Yamamoto Y, Yamamoto Y. Quality control of photosystem II: Thylakoid unstacking is necessary to avoid further damage to the D1 protein and to facilitate D1 degradation under light stress in spinach thylakoids. J Biol Chem 2009; 284:25343-52. [PMID: 19617353 DOI: 10.1074/jbc.m109.007740] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II is vulnerable to light damage. The reaction center-binding D1 protein is impaired during excessive illumination and is degraded and removed from photosystem II. Using isolated spinach thylakoids, we investigated the relationship between light-induced unstacking of thylakoids and damage to the D1 protein. Under light stress, thylakoids were expected to become unstacked so that the photodamaged photosystem II complexes in the grana and the proteases could move on the thylakoids for repair. Excessive light induced irreversible unstacking of thylakoids. By comparing the effects of light stress on stacked and unstacked thylakoids, photoinhibition of photosystem II was found to be more prominent in stacked thylakoids than in unstacked thylakoids. In accordance with this finding, EPR spin trapping measurements demonstrated higher production of hydroxyl radicals in stacked thylakoids than in unstacked thylakoids. We propose that unstacking of thylakoids has a crucial role in avoiding further damage to the D1 protein and facilitating degradation of the photodamaged D1 protein under light stress.
Collapse
Affiliation(s)
- Mahbuba Khatoon
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Pospísil P. Production of reactive oxygen species by photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1151-60. [PMID: 19463778 DOI: 10.1016/j.bbabio.2009.05.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 11/29/2022]
Abstract
Photosysthetic cleavage of water molecules to molecular oxygen is a crucial process for all aerobic life on the Earth. Light-driven oxidation of water occurs in photosystem II (PSII) - a pigment-protein complex embedded in the thylakoid membrane of plants, algae and cyanobacteria. Electron transport across the thylakoid membrane terminated by NADPH and ATP formation is inadvertently coupled with the formation of reactive oxygen species (ROS). Reactive oxygen species are mainly produced by photosystem I; however, under certain circumstances, PSII contributes to the overall formation of ROS in the thylakoid membrane. Under limitation of electron transport reaction between both photosystems, photoreduction of molecular oxygen by the reducing side of PSII generates a superoxide anion radical, its dismutation to hydrogen peroxide and the subsequent formation of a hydroxyl radical terminates the overall process of ROS formation on the PSII electron acceptor side. On the PSII electron donor side, partial or complete inhibition of enzymatic activity of the water-splitting manganese complex is coupled with incomplete oxidation of water to hydrogen peroxide. The review points out the mechanistic aspects in the production of ROS on both the electron acceptor and electron donor side of PSII.
Collapse
Affiliation(s)
- Pavel Pospísil
- Laboratory of Biophysics, Department of Experimental Physics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
85
|
Ragàs X, Jiménez-Banzo A, Sánchez-García D, Batllori X, Nonell S. Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green. Chem Commun (Camb) 2009:2920-2. [PMID: 19436910 DOI: 10.1039/b822776d] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescent probe Singlet Oxygen Sensor Green is able to produce singlet oxygen under exposure to UV or visible radiation.
Collapse
Affiliation(s)
- Xavier Ragàs
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | | | | | | | | |
Collapse
|
86
|
Triantaphylidès C, Havaux M. Singlet oxygen in plants: production, detoxification and signaling. TRENDS IN PLANT SCIENCE 2009; 14:219-28. [PMID: 19303348 DOI: 10.1016/j.tplants.2009.01.008] [Citation(s) in RCA: 424] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 01/19/2009] [Accepted: 01/22/2009] [Indexed: 05/18/2023]
Abstract
Singlet oxygen ((1)O(2)) is a singular reactive oxygen species (ROS) that is produced constitutively in plant leaves in light via chlorophylls that act as photosensitizers. This (1)O(2) production is spatially resolved within thylakoid membranes and is enhanced under light stress conditions. (1)O(2) can also be produced by phytotoxins during plant-pathogen interactions. (1)O(2) is highly reactive, can be toxic to cells and can be involved in the signaling of programmed cell death or acclimation processes. Here, we summarize current knowledge on (1)O(2) management in plants and on the biological effects of this peculiar ROS. Compared with other ROS, (1)O(2) has received relatively little attention, but recent developments indicate that it has a crucial role in the responses of plants to light.
Collapse
Affiliation(s)
- Christian Triantaphylidès
- CEA, IBEB, SBVME, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108 Saint-Paul-lez-Durance, France
| | | |
Collapse
|
87
|
Sakthivel K, Watanabe T, Nakamoto H. A small heat-shock protein confers stress tolerance and stabilizes thylakoid membrane proteins in cyanobacteria under oxidative stress. Arch Microbiol 2009; 191:319-28. [PMID: 19169670 DOI: 10.1007/s00203-009-0457-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 11/10/2008] [Accepted: 01/03/2009] [Indexed: 10/21/2022]
Abstract
Small heat-shock proteins are molecular chaperones that bind and prevent aggregation of nonnative proteins. They also associate with membranes. In this study, we show that the small heat-shock protein HspA plays a protective role under oxidative stress in the cyanobacterium Synechococcus elongatus strain ECT16-1, which constitutively expresses HspA. Compared with the reference strain ECT, ECT16-1 showed much better growth and viability in the presence of hydrogen peroxide. Under the peroxide stress, pigments in thylakoid membrane, chlorophyll, carotenoids, and phycocyanins, were continuously reduced in ECT, but in ECT16-1 they decreased only during the first 24 h of stress; thereafter no further reduction was observed. For comparison, we analyzed a wild type and an hspA deletion strain from Synechocystis sp. PCC 6803 and found that lack of hspA significantly affected the viability of the cell and the pigment content in the presence of methyl viologen, suggesting that HspA stabilizes membrane proteins such as the photosystems and phycobilisomes from oxidative damage. In vitro pull down assays showed a direct interaction of HspA with components of phycobilisomes. These results show that HspA and small heat-shock proteins in general play an important role in the acclimation to oxidative stress in cyanobacteria.
Collapse
Affiliation(s)
- Kollimalai Sakthivel
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama, Japan
| | | | | |
Collapse
|
88
|
Photosynthetic water oxidation at elevated dioxygen partial pressure monitored by time-resolved X-ray absorption measurements. Proc Natl Acad Sci U S A 2008; 105:17384-9. [PMID: 18987324 DOI: 10.1073/pnas.0802596105] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The atmospheric dioxygen (O(2)) is produced at a tetramanganese complex bound to the proteins of photosystem II (PSII). To investigate product inhibition at elevated oxygen partial pressure (pO(2) ranging from 0.2 to 16 bar), we monitored specifically the redox reactions of the Mn complex in its catalytic S-state cycle by rapid-scan and time-resolved X-ray absorption near-edge spectroscopy (XANES) at the Mn K-edge. By using a pressure cell for X-ray measurements after laser-flash excitation of PSII particles, we found a clear pO(2) influence on the redox reactions of the Mn complex, with a similar half-effect pressure as determined (2-3 bar). However, XANES spectra and the time courses of the X-ray fluorescence collected with microsecond resolution suggested that the O(2) evolution transition itself (S(3)-->S(0)+O(2)) was not affected. Additional (nonstandard) oxidation of the Mn complex at high pO(2) explains our experimental findings more readily. Our results suggest that photosynthesis at ambient conditions is not limited by product inhibition of the O(2) formation step.
Collapse
|
89
|
Zhang Y, Mi L, Chen JY, Wang PN. The environmental influence on the photoluminescence behavior of thiol-capped CdTe quantum dots in living cells. Biomed Mater 2008. [DOI: 10.1088/1748-6041/4/1/012001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
90
|
Yamamoto Y, Aminaka R, Yoshioka M, Khatoon M, Komayama K, Takenaka D, Yamashita A, Nijo N, Inagawa K, Morita N, Sasaki T, Yamamoto Y. Quality control of photosystem II: impact of light and heat stresses. PHOTOSYNTHESIS RESEARCH 2008; 98:589-608. [PMID: 18937045 DOI: 10.1007/s11120-008-9372-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 09/15/2008] [Indexed: 05/19/2023]
Abstract
Photosystem II is vulnerable to various abiotic stresses such as strong visible light and heat. Under both stresses, the damage seems to be triggered by reactive oxygen species, and the most critical damage occurs in the reaction center-binding D1 protein. Recent progress has been made in identifying the protease involved in the degradation of the photo- or heat-damaged D1 protein, the ATP-dependent metalloprotease FtsH. Another important result has been the discovery that the damaged D1 protein aggregates with nearby polypeptides such as the D2 protein and the antenna chlorophyll-binding protein CP43. The degradation and aggregation of the D1 protein occur simultaneously, but the relationship between the two is not known. We suggest that phosphorylation and dephosphorylation of the D1 protein, as well as the binding of the extrinsic PsbO protein to Photosystem II, play regulatory roles in directing the damaged D1 protein to the two alternative pathways.
Collapse
Affiliation(s)
- Yasusi Yamamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Procházková D, Haisel D, Wilhelmová N. Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life span. Cell Biochem Funct 2008; 26:582-90. [PMID: 18512255 DOI: 10.1002/cbf.1481] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
We studied changes in antioxidant protection during ageing and senescence in chloroplasts of tobacco (Nicotiana tabacum L., cv. Wisconsin) with introduced SAG(12) promoter fused with ipt gene for cytokinin synthesis (transgenic plants with increased levels of cytokinins, SAG) or without it (control). Old leaves of SAG plants as well as their chloroplasts maintained higher physiological parameters compared to controls; accordingly, we concluded that their ageing was diverted due to increased cytokinin content. The chloroplast antioxidant protection did not decrease as well. Although antioxidant protection usually decreased in whole leaves of senescing control plants, ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) activity, which maintained the high redox state of ascorbate, increased in chloroplasts of old control leaves.
Collapse
Affiliation(s)
- Dagmar Procházková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
92
|
No single way to understand singlet oxygen signalling in plants. EMBO Rep 2008; 9:435-9. [PMID: 18451767 DOI: 10.1038/embor.2008.57] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 03/26/2008] [Indexed: 11/08/2022] Open
Abstract
When plant cells are under environmental stress, several chemically distinct reactive oxygen species (ROS) are generated simultaneously in various intracellular compartments and these can cause oxidative damage or act as signals. The conditional flu mutant of Arabidopsis, which generates singlet oxygen in plastids during a dark-to-light transition, has allowed the biological activity of singlet oxygen to be determined, and the criteria to distinguish between cytotoxicity and signalling of this particular ROS to be defined. The genetic basis of singlet-oxygen-mediated signalling has been revealed by the mutation of two nuclear genes encoding the plastid proteins EXECUTER (EX)1 and EX2, which are sufficient to abrogate singlet-oxygen-dependent stress responses. Conversely, responses due to higher cytotoxic levels of singlet oxygen are not suppressed in the ex1/ex2 background. Whether singlet oxygen levels lower than those that trigger genetically controlled cell death activate acclimation is now under investigation.
Collapse
|
93
|
Hideg ÉV, Vass I. SINGLET OXYGEN IS NOT PRODUCED IN PHOTOSYSTEM I UNDER PHOTOINHIBITORY CONDITIONS. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1995.tb09162.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
94
|
Singlet oxygen generation in the reaction centers of Rhodobacter sphaeroides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:843-50. [DOI: 10.1007/s00249-008-0287-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
|
95
|
Signaling and Integration of Defense Functions of Tocopherol, Ascorbate and Glutathione. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
96
|
Nishiyama Y, Allakhverdiev SI, Murata N. Regulation by Environmental Conditions of the Repair of Photosystem II in Cyanobacteria. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
97
|
Fischer BB, Krieger-Liszkay A, Hideg É, Šnyrychová I, Wiesendanger M, Eggen RI. Role of singlet oxygen in chloroplast to nucleus retrograde signaling inChlamydomonas reinhardtii. FEBS Lett 2007; 581:5555-60. [DOI: 10.1016/j.febslet.2007.11.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 10/31/2007] [Accepted: 11/01/2007] [Indexed: 10/22/2022]
|
98
|
Mohanty P, Allakhverdiev SI, Murata N. Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. PHOTOSYNTHESIS RESEARCH 2007; 94:217-24. [PMID: 17554634 DOI: 10.1007/s11120-007-9184-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 04/19/2007] [Indexed: 05/15/2023]
Abstract
Recent investigations of photoinhibition have revealed that photodamage to photosystem II (PSII) involves two temporally separated steps: the first is the inactivation of the oxygen-evolving complex by light that has been absorbed by the manganese cluster and the second is the impairment of the photochemical reaction center by light that has been absorbed by chlorophyll. Our studies of photoinhibition in Synechocystis sp. PCC 6803 at various temperatures demonstrated that the first step in photodamage is not completed at low temperatures, such as 10 degrees C. Further investigations suggested that an intermediate state, which is stabilized at low temperatures, might exist at the first stage of photodamage. The repair of PSII involves many steps, including degradation and removal of the D1 protein, synthesis de novo of the precursor to the D1 protein, assembly of the PSII complex, and processing of the precursor to the D1 protein. Detailed analysis of photodamage and repair at various temperatures has demonstrated that, among these steps, only the synthesis of the precursor to D1 appears to proceed at low temperatures. Investigations of photoinhibition at low temperatures have also indicated that prolonged exposure of cyanobacterial cells or plant leaves to strong light diminishes their ability to repair PSII. Such non-repairable photoinhibition is caused by inhibition of the processing of the precursor to the D1 protein after prolonged illumination with strong light at low temperatures.
Collapse
|
99
|
Ma J, Chen JY, Zhang Y, Wang PN, Guo J, Yang WL, Wang CC. Photochemical Instability of Thiol-Capped CdTe Quantum Dots in Aqueous Solution and Living Cells: Process and Mechanism. J Phys Chem B 2007; 111:12012-6. [PMID: 17887665 DOI: 10.1021/jp073351+] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The process and mechanism of photochemical instability of thiol-capped CdTe quantum dots (QDs) in aqueous solution were experimentally studied. After laser irradiation, the corresponding Raman bands of the Cd-S bond decreased obviously, indicating bond breaking and thiol detachment from the QD surfaces. Meanwhile, a photoinduced aggregation of QDs occurred with the hydrodynamic diameter <Dh> increased to hundreds of nanometers from an initial 20 nm, as detected with dynamic light scattering measurements. The bleaching of the photoluminescence of QDs under laser irradiation could be attributed to the enhanced nonradiative transfer in excited QDs caused by increased surface defects due to the losing of thiol ligands. Singlet oxygen (1O2) was involved in the photooxidation of QDs, as revealed by the inhibiting effects of 1O2 quenchers of histidine or sodium azide (NaN3) on the photobleaching of QDs. The linear relationship in Stern-Volmer measurements between the terminal product and the concentration of NaN3 demonstrated that 1O2 was the main pathway of the photobleaching in QD solutions. By comparing the photostability of QDs in C2C12 cells with and without NaN3 treatment, the photooxidation effect of 1O2 on photobleaching of cellular QDs was confirmed.
Collapse
Affiliation(s)
- Jiong Ma
- Surface Physics Laboratory (National Key Laboratory), Physics Department, State Key Laboratory for Advanced Photonic Materials and Devices, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
100
|
Hideg E, Kós PB, Vass I. Photosystem II damage induced by chemically generated singlet oxygen in tobacco leaves. PHYSIOLOGIA PLANTARUM 2007; 131:33-40. [PMID: 18251922 DOI: 10.1111/j.1399-3054.2007.00913.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the present work, we investigated the role of chemically generated singlet oxygen, produced by photodynamic effect of rose bengal, in damaging the PSII complex in tobacco leaves in which protein synthesis-dependent repair was inhibited by infiltration with lincomycin. A 30-min exposure to low-intensity (150 micromol m(-2) s(-1)) photosynthetically active radiation (PAR) induced singlet oxygen production as detected by quenching of 3-[N-(beta-diethylaminoethyl)-N-dansyl]aminomethyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole fluorescence in leaves infiltrated with both lincomycin and rose bengal. This light treatment caused photoinhibition of PSII, as revealed by the marked loss both of the photochemical yield and the amount of D1 protein in PSII reaction center. When rose bengal was not present in the leaves, these symptoms of photodamage were not induced by the same low-intensity PAR. However, when excitation pressure on PSII was increased to 1500 micromol m(-2) s(-1), irreversible photodamage of PSII was also observed, showing that the lincomycin treatment applied in vivo was sufficiently inhibiting protein repair. Our results show that singlet oxygen is able to cause oxidative damage in PSII directly, as suggested earlier and argue against its recently hypothesized role exclusive to inhibiting PSII protein repair (Nishiyama et al. 2006).
Collapse
Affiliation(s)
- Eva Hideg
- Institute of Plant Biology , Biological Research Center, 6726 Szeged, Temesvári. krt. 62, Hungary
| | | | | |
Collapse
|