51
|
Kamath RV, Leary DJ, Huang S. Nucleocytoplasmic shuttling of polypyrimidine tract-binding protein is uncoupled from RNA export. Mol Biol Cell 2001; 12:3808-20. [PMID: 11739782 PMCID: PMC60757 DOI: 10.1091/mbc.12.12.3808] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Revised: 08/21/2001] [Accepted: 09/05/2001] [Indexed: 02/05/2023] Open
Abstract
Polypyrimidine tract binding protein, PTB/hnRNP I, is involved in pre-mRNA processing in the nucleus and RNA localization and translation in the cytoplasm. In this report, we demonstrate that PTB shuttles between the nucleus and cytoplasm in an energy-dependent manner. Deletion mutagenesis demonstrated that a minimum of the N terminus and RNA recognition motifs (RRMs) 1 and 2 are necessary for nucleocytoplasmic shuttling. Deletion of RRM3 and 4, domains that are primarily responsible for RNA binding, accelerated the nucleocytoplasmic shuttling of PTB. Inhibition of transcription directed by either RNA polymerase II alone or all RNA polymerases yielded similar results. In contrast, selective inhibition of RNA polymerase I did not influence the shuttling kinetics of PTB. Furthermore, the intranuclear mobility of GFP-PTB, as measured by fluorescence recovery after photobleaching analyses, increased significantly in transcriptionally inactive cells compared with transcriptionally active cells. These observations demonstrate that nuclear RNA transcription and export are not necessary for the shuttling of PTB. In addition, binding to nascent RNAs transcribed by RNA polymerase II and/or III retards both the nuclear export and nucleoplasmic movement of PTB. The uncoupling of PTB shuttling and RNA export suggests that the nucleocytoplasmic shuttling of PTB may also play a regulatory role for its functions in the nucleus and cytoplasm.
Collapse
Affiliation(s)
- R V Kamath
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
52
|
Palancade B, Dubois MF, Dahmus ME, Bensaude O. Transcription-independent RNA polymerase II dephosphorylation by the FCP1 carboxy-terminal domain phosphatase in Xenopus laevis early embryos. Mol Cell Biol 2001; 21:6359-68. [PMID: 11533226 PMCID: PMC99784 DOI: 10.1128/mcb.21.19.6359-6368.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphorylation of the RNA polymerase II (RNAP II) carboxy-terminal domain (CTD) plays a key role in mRNA metabolism. The relative ratio of hyperphosphorylated RNAP II to hypophosphorylated RNAP II is determined by a dynamic equilibrium between CTD kinases and CTD phosphatase(s). The CTD is heavily phosphorylated in meiotic Xenopus laevis oocytes. In this report we show that the CTD undergoes fast and massive dephosphorylation upon fertilization. A cDNA was cloned and shown to code for a full-length xFCP1, the Xenopus orthologue of the FCP1 CTD phosphatases in humans and Saccharomyces cerevisiae. Two critical residues in the catalytic site were identified. CTD phosphatase activity was observed in extracts prepared from Xenopus eggs and cells and was shown to be entirely attributable to xFCP1. The CTD dephosphorylation triggered by fertilization was reproduced upon calcium activation of cytostatic factor-arrested egg extracts. Using immunodepleted extracts, we showed that this dephosphorylation is due to xFCP1. Although transcription does not occur at this stage, phosphorylation appears as a highly dynamic process involving the antagonist action of Xp42 mitogen-activated protein kinase and FCP1 phosphatase. This is the first report that free RNAP II is a substrate for FCP1 in vivo, independent from a transcription cycle.
Collapse
Affiliation(s)
- B Palancade
- Génétique Moléculaire, UMR 8541 CNRS, Ecole Normale Supérieure, 75230 Paris Cedex 05, France
| | | | | | | |
Collapse
|
53
|
Lavoie SB, Albert AL, Handa H, Vincent M, Bensaude O. The peptidyl-prolyl isomerase Pin1 interacts with hSpt5 phosphorylated by Cdk9. J Mol Biol 2001; 312:675-85. [PMID: 11575923 DOI: 10.1006/jmbi.2001.4991] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We identify and characterize several phosphorylated forms of the hSpt5 subunit of the DRB sensitivity-inducing factor (DSIF). A 175-kDa phosphorylated form of hSpt5 is bound to nuclei of interphase HeLa cells. This form is rapidly dephosphorylated when cultured cells are exposed to various drugs belonging to distinct chemical families. All these compounds are known to inhibit the protein kinase Cdk9, which phosphorylates in vitro hSpt5 and Rpb1, the largest subunit of RNA polymerase II. The efficiency to promote the dephosphorylation of both proteins matches their capacity to inhibit purified Cdk9 kinase, suggesting that Cdk9 is the major kinase phosphorylating hSpt5 and Rpb1 in vivo. We show that Cdk9 phosphorylates both the CTR1 and the CTR2 domains of recombinant hSpt5. These domains contain numerous serine-proline and threonine-proline residues similar to those found in the carboxyl-terminal domain (CTD) of Rpb1. The structural homology between hSpt5 CTRs and the Rpb1 CTD is further highlighted by the presence on both proteins of a phosphoepitope recognized by the monoclonal antibody CC-3. Of particular interest, the peptidyl-prolyl isomerase Pin1 interacts with Cdk9-phosphorylated hSpt5. Cdk9 dependent phosphorylation of Rpb1 and hSpt5 followed by Pin1 interaction might thus contribute to the regulation of transcription, pre-mRNA maturation, and the dynamics of these proteins in interphase and mitosis.
Collapse
Affiliation(s)
- S B Lavoie
- Génétique Moléculaire, UMR 8541 CNRS, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
54
|
Ljungman M, O'Hagan HM, Paulsen MT. Induction of ser15 and lys382 modifications of p53 by blockage of transcription elongation. Oncogene 2001; 20:5964-71. [PMID: 11593403 DOI: 10.1038/sj.onc.1204734] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2001] [Revised: 06/07/2001] [Accepted: 06/14/2001] [Indexed: 11/09/2022]
Abstract
Blockage of transcription has been shown to induce the tumor suppressor p53 in human cells. We here show that RNA synthesis inhibitors blocking the phosphorylation of the carboxyl terminal domain (CTD) of RNA polymerase II, such as DRB and H7, induced rapid nuclear accumulation of p53 proteins that were not phosphorylated at ser15 or acetylated at lys382. In contrast, agents that inhibit the elongation phase of transcription, such as UV light, camptothecin or actinomycin D, induced the accumulation of nuclear p53 proteins that were modified at both of these sites. Furthermore, using a panel of DNA repair-deficient cells we show that persistent DNA lesions in the transcribed strand of active genes are responsible for the induction of the ser15 and lys382 modifications following UV-irradiation. We conclude that inhibition of transcription is sufficient for the accumulation of p53 in the nucleus regardless of whether the ser15 site of p53 is phosphorylated or not. Importantly, blockage of the elongation phase of transcription triggers a distinct signaling pathway leading to p53 modifications on ser15 and lys382. We propose that the elongating RNA polymerase complex may act as a sensor of DNA damage and as an integrator of cellular stress signals.
Collapse
Affiliation(s)
- M Ljungman
- Department of Radiation Oncology, Division of Cancer Biology, University of Michigan Comprehensive Cancer Center, 150 E. Medical Center Drive, Ann Arbor, MI 48109-0936, USA.
| | | | | |
Collapse
|
55
|
Abstract
Cajal bodies are small nuclear organelles first described nearly 100 years ago by Ramón y Cajal in vertebrate neural tissues. They have since been found in a variety of animal and plant nuclei, suggesting that they are involved in basic cellular processes. Cajal bodies contain a marker protein of unknown function, p80-coilin, and many components involved in transcription and processing of nuclear RNAs. Among these are the three eukaryotic RNA polymerases and factors required for transcribing and processing their respective nuclear transcripts: mRNA, rRNA, and pol III transcripts. A model is discussed in which Cajal bodies are the sites for preassembly of transcriptosomes, unitary particles involved in transcription and processing of RNA. A parallel is drawn to the nucleolus and the preassembly of ribosomes, which are unitary particles involved in translation of proteins.
Collapse
Affiliation(s)
- J G Gall
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21210, USA.
| |
Collapse
|
56
|
Abstract
The past decade has seen an explosive increase in information about regulation of eukaryotic gene transcription, especially for protein-coding genes. The most striking advances in our knowledge of transcriptional regulation involve the chromatin template, the large complexes recruited by transcriptional activators that regulate chromatin structure and the transcription apparatus, the holoenzyme forms of RNA polymerase II involved in initiation and elongation, and the mechanisms that link mRNA processing with its synthesis. We describe here the major advances in these areas, with particular emphasis on the modular complexes associated with RNA polymerase II that are targeted by activators and other regulators of mRNA biosynthesis.
Collapse
Affiliation(s)
- T I Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
57
|
|
58
|
Clement JQ, Wilkinson MF. Rapid induction of nuclear transcripts and inhibition of intron decay in response to the polymerase II inhibitor DRB. J Mol Biol 2000; 299:1179-91. [PMID: 10873444 DOI: 10.1006/jmbi.2000.3745] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcriptional inhibitor 5, 6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB) is an adenosine analog that has been shown to cause premature transcriptional termination and thus has been a useful tool to identify factors important for transcriptional elongation. Here, we establish an efficient system for studying DRB-sensitive steps of transcriptional elongation. In addition, we establish two novel effects of DRB not previously reported: intron stabilization and the induction of long transcripts by a mechanism other than premature termination. We found that DRB had a biphasic effect on T-cell receptor-beta (TCRbeta) transcripts driven by a tetracycline (tet)-responsive promoter in transfected HeLa cells. In the first phase, DRB caused a rapid decrease (within five minutes) of pre-mRNA and its spliced intron (IVS1(Cbeta1)), consistent with the known ability of DRB to inhibit transcription. In the second phase (which began ten minutes to two hours after treatment, depending on the dose), DRB dramatically increased the levels of IVS1(Cbeta1)-containing transcripts by a mechanism requiring de novo RNA synthesis. DRB induced the appearance of short 0.4 to 0.8 kb TCRbeta transcripts in vivo, indicating DRB enhances premature transcriptional termination. A approximately 475 nt prematurely terminated transcript (PT) was characterized that terminated at an internal poly(A) tract in the intron IVS1(Cbeta1). We identified three other effects of DRB. First, we observed that DRB induced the appearance of heterodisperse TCRbeta transcripts that were too long ( approximately 1 kb to >8 kb) to result from the type of premature termination events previously described. Their production was not promoter-specific, as we found that long transcripts were induced by DRB from both the tet-responsive and beta-actin promoters. Second, DRB upregulated full-length normal-sized c-myc mRNA, which provided further evidence that DRB has effects besides regulation of premature termination. Third, DRB stabilized lariat forms of the intron IVS1(Cbeta1), indicating that DRB exerts post-transcriptional actions. We propose that our model system will be useful for elucidating the factors that regulate RNA decay and transcriptional elongation in vivo.
Collapse
Affiliation(s)
- J Q Clement
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | | |
Collapse
|
59
|
Laterza OF, Curthoys NP. Specificity and functional analysis of the pH-responsive element within renal glutaminase mRNA. Am J Physiol Renal Physiol 2000; 278:F970-7. [PMID: 10836985 DOI: 10.1152/ajprenal.2000.278.6.f970] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The specificity and the functional significance of the binding of a specific cytosolic protein to a direct repeat of an eight-base AU sequence within the 3'-nontranslated region of the glutaminase (GA) mRNA were characterized. Competition experiments established that the protein that binds to this sequence is not an AUUUA binding protein. When expressed in LLC-PK(1)-F(+) cells, the half-life of a beta-globin reporter construct, betaG-phosphoenolpyruvate carboxykinase, was only slightly affected (1.3-fold) by growth in acidic (pH 6.9, 10 mM HCO(-)(3)) vs. normal (pH 7.4, 25 mM HCO(-)(3)) medium. However, insertion of short segments of GA mRNA containing the direct repeat or a single eight-base AU sequence was sufficient to impart a fivefold pH-responsive stabilization to the chimeric mRNA. Furthermore, site-directed mutation of the direct repeat of the 8-base AU sequence in a betaG-GA mRNA, which contains 956 bases of the 3'-nontranslated region of the GA mRNA, completely abolished the pH-responsive stabilization of the wild-type betaG-GA mRNA. Thus either the direct repeat or a single eight-base AU sequence is both sufficient and necessary to create a functional pH-response element.
Collapse
Affiliation(s)
- O F Laterza
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523-1870, USA
| | | |
Collapse
|
60
|
Abstract
Cajal bodies (coiled bodies) are nuclear organelles that contain a variety of components required for transcription and processing of RNA. Cajal bodies in amphibian oocytes are stained by mAb H14, which recognizes the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II when the heptapeptide repeat is phosphorylated on serine-5. Oocytes were treated with the transcription inhibitor 5, 6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB), which prevents phosphorylation of the CTD. Cajal bodies from oocytes that had been treated for 2-3 h with DRB no longer stained with mAb H14, but staining reappeared when the inhibitor was washed out. Epitope-tagged transcripts of two small subunits of polymerase II, RPB6 and RPB9, were injected into the cytoplasm of Xenopus and Triturus oocytes. Newly translated RPB6 and RPB9 were specifically targeted to Cajal bodies within 4 h, and Cajal bodies remained the site of highest concentration of tagged protein during the next 2 days. These data suggest that polymerase subunits pass through the Cajal bodies with a transit time no greater than a few hours. We discuss the possibility that Cajal bodies are sites of assembly or modification of the transcription machinery of the nucleus.
Collapse
Affiliation(s)
- G T Morgan
- Institute of Genetics, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | | | | | | |
Collapse
|
61
|
Xu K, Murphy TJ. Reconstitution of angiotensin receptor mRNA down-regulation in vascular smooth muscle. Post-transcriptional control by protein kinase a but not mitogenic signaling directed by the 5'-untranslated region. J Biol Chem 2000; 275:7604-11. [PMID: 10713068 DOI: 10.1074/jbc.275.11.7604] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface receptor activation generally leads to changes in mRNA abundance, which may involve regulatory targets in processes working at the post-transcriptional level. Many types of agonists down-regulate vascular smooth muscle angiotensin receptor (AT(1)-R) gene expression, but it is unclear which of these activate post-transcriptional mechanisms. To reconstitute faithfully the normal AT(1)-R mRNA regulatory environment, tetracycline-suppressible promoters drive highly accurate recombinant AT(1)-R mRNA mimics in vascular smooth muscle cells that co-express an endogenous AT(1)-R mRNA. Down-regulation of the latter occurs shortly after stimulating mitogenic receptors or by using forskolin, but only cAMP signaling reduces expression of the recombinant AT(1)-R mRNA. Transcription of the recombinant mRNA is unaffected by cAMP signaling. Deletions of the AT(1)-R mRNA 3'-untranslated region do not impair cAMP-mediated down-regulation. Both loss of function and gain of function mutants show the response is mediated by the 5'-untranslated region. These observations provide the first direct functional evidence for modulation of vascular AT(1)-R gene expression by a mechanism involving a protein kinase A-regulated post-transcriptional process.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Cells, Cultured
- Colforsin/pharmacology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Down-Regulation
- Half-Life
- Mitogens/pharmacology
- Mitosis
- Muscle, Smooth, Vascular/metabolism
- Mutation
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Messenger/metabolism
- Rats
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Signal Transduction
- Tetracyclines/pharmacology
- Untranslated Regions/metabolism
Collapse
Affiliation(s)
- K Xu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
62
|
Araújo SJ, Tirode F, Coin F, Pospiech H, Syväoja JE, Stucki M, Hübscher U, Egly JM, Wood RD. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev 2000. [PMID: 10673506 DOI: 10.1101/gad.14.3.349] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During human nucleotide excision repair, damage is recognized, two incisions are made flanking a DNA lesion, and residues are replaced by repair synthesis. A set of proteins required for repair of most lesions is RPA, XPA, TFIIH, XPC-hHR23B, XPG, and ERCC1-XPF, but additional components have not been excluded. The most complex and difficult to analyze factor is TFIIH, which has a 6-subunit core (XPB, XPD, p44, p34, p52, p62) and a 3-subunit kinase (CAK). TFIIH has roles both in basal transcription initiation and in DNA repair, and several inherited human disorders are associated with mutations in TFIIH subunits. To identify the forms of TFIIH that can function in repair, recombinant XPA, RPA, XPC-hHR23B, XPG, and ERCC1-XPF were combined with TFIIH fractions purified from HeLa cells. Repair activity coeluted with the peak of TFIIH and with transcription activity. TFIIH from cells with XPB or XPD mutations was defective in supporting repair, whereas TFIIH from spinal muscular atrophy cells with a deletion of one p44 gene was active. Recombinant TFIIH also functioned in repair, both a 6- and a 9-subunit form containing CAK. The CAK kinase inhibitor H-8 improved repair efficiency, indicating that CAK can negatively regulate NER by phosphorylation. The 15 recombinant polypeptides define the minimal set of proteins required for dual incision of DNA containing a cisplatin adduct. Complete repair was achieved by including highly purified human DNA polymerase delta or epsilon, PCNA, RFC, and DNA ligase I in reaction mixtures, reconstituting adduct repair for the first time with recombinant incision factors and human replication proteins.
Collapse
Affiliation(s)
- S J Araújo
- Imperial Cancer Research Fund (ICRF), Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Bonnet F, Vigneron M, Bensaude O, Dubois MF. Transcription-independent phosphorylation of the RNA polymerase II C-terminal domain (CTD) involves ERK kinases (MEK1/2). Nucleic Acids Res 1999; 27:4399-404. [PMID: 10536148 PMCID: PMC148722 DOI: 10.1093/nar/27.22.4399] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The largest subunit of the mammalian RNA polymerase II possesses a C-terminal domain (CTD) consisting of 52 repeats of the consensus sequence, Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7). Phosphorylation of the CTD is known to play a key role in gene expression. We now show that treatments such as osmotic and oxidative shocks or serum stimulation generate a new type of phosphorylated subunit, the IIm form. This IIm form might be generated in vivo by ERK-type MAP kinase phosphorylation as: (i) ERK1/2 are major CTD kinases found in cell extracts; (ii) the immunoreactivity of the IIm form against a panel of monoclonal antibodies indicates that the CTD is exclusively phosphorylated on Ser-5 in the repeats, like RNA polymerase II phosphorylated in vitro by an ERK1/2; and (iii) the IIm form does not appear when ERK activation is prevented by treating cells with low concentrations of highly specific inhibitors of MEK1/2. Since the IIm subunit is not affected by inhibition of transcription and is not bound to chromatin, it does not participate in transcription.
Collapse
Affiliation(s)
- F Bonnet
- Laboratoire de Régulation de l'Expression Génétique, CNRS UMR 8541, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | |
Collapse
|
64
|
te Poele RH, Okorokov AL, Joel SP. RNA synthesis block by 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) triggers p53-dependent apoptosis in human colon carcinoma cells. Oncogene 1999; 18:5765-72. [PMID: 10523857 DOI: 10.1038/sj.onc.1202961] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most modern chemo- and radiotherapy treatments of human cancers use the DNA damage pathway, which induces a p53 response leading to either G1 arrest or apoptosis. However, such treatments can induce mutations and translocations leading to secondary malignancies or recurrent disease, which often have a poor prognosis because of resistance to therapy. Here we report that 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), an inhibitor of CDK7 TFIIH-associated kinase, CKI and CKII kinases, blocking RNA polymerase II in the early elongation stage, triggers p53-dependent apoptosis in human colon adenocarcinoma cells in a transcription independent manner. The fact that DRB kills tumour-derived cells without employment of DNA damage gives rise to the possibility of the development of a new alternative chemotherapeutic treatment of tumours expressing wild type p53, with a decreased risk of therapy-related, secondary malignancies.
Collapse
Affiliation(s)
- R H te Poele
- Barry Reed Oncology Laboratory, ICRF Department of Medical Oncology, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | | | | |
Collapse
|
65
|
Albert A, Lavoie S, Vincent M. A hyperphosphorylated form of RNA polymerase II is the major interphase antigen of the phosphoprotein antibody MPM-2 and interacts with the peptidyl-prolyl isomerase Pin1. J Cell Sci 1999; 112 ( Pt 15):2493-500. [PMID: 10393805 DOI: 10.1242/jcs.112.15.2493] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The monoclonal antibody MPM-2 recognizes a subset of M phase phosphoproteins in a phosphorylation-dependent manner. It is believed that phosphorylation at MPM-2 antigenic sites could regulate mitotic events since most of the MPM-2 antigens identified to date have M phase functions. In addition, many of these proteins are substrates of the mitotic regulator Pin1, a peptidyl-prolyl isomerase which is present throughout the cell cycle and which is thought to alter its mitotic targets by changing their conformation. In interphase cells, most MPM-2 reactivity is confined to nuclear speckles. We report here that a hyperphosphorylated form of the RNA polymerase II largest subunit is the major MPM-2 interphase antigen. These findings were made possible by the availability of another monoclonal antibody, CC-3, that was previously used to identify a 255 kDa nuclear matrix protein associated with spliceosomal components as a hyperphosphorylated form of the RNA polymerase II largest subunit. MPM-2 recognizes a phosphoepitope of the large subunit that becomes hyperphosphorylated upon heat shock in contrast to the phosphoepitope defined by CC-3, whose reactivity is diminished by the heat treatment. Therefore, these two antibodies may discriminate between distinct functional forms of RNA polymerase II. We also show that RNA polymerase II large subunit interacts with Pin1 in HeLa cells. Pin1 may thus regulate transcriptional and post-transcriptional events by catalyzing phosphorylation-dependent conformational changes of the large RNA polymerase II subunit.
Collapse
Affiliation(s)
- A Albert
- Département de médecine and CREFSIP, Pavillon C.-E.-Marchand, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4
| | | | | |
Collapse
|
66
|
Pancetti F, Bosser R, Krehan A, Pyerin W, Itarte E, Bachs O. Heterogeneous nuclear ribonucleoprotein A2 interacts with protein kinase CK2. Biochem Biophys Res Commun 1999; 260:17-22. [PMID: 10381337 DOI: 10.1006/bbrc.1999.0849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The catalytic subunit of protein kinase CK2 (CK2alpha) was found associated with heterogeneous nuclear ribonucleoprotein particles (hnRNPs) that contain the core proteins A2 and C1-C2. High levels of CK2 activity were also detected in these complexes. Phosphopeptide patterns of hnRNP A2 phosphorylated in vivo and in vitro by protein kinase CK2 were similar, suggesting that this kinase can phosphorylate hnRNPA2 in vivo. Binding experiments using human recombinant hnRNP A2, free human recombinant CK2alpha or CK2beta subunits, reconstituted CK2 holoenzyme and purified native rat liver CK2 indicated that hnRNP A2 associated with both catalytic and regulatory CK2 subunits, and that the interaction was independent of the presence of RNA. However, the capability of hnRNP A2 to bind to CK2 holoenzyme was lower than its binding to the isolated subunits. These data indicate that the association of CK2alpha with CK2beta interferes with the subsequent binding of hnRNP A2. HnRNP A2 inhibited the autophosphorylation of CK2beta. This effect was stronger with reconstituted human recombinant CK2 than with purified native rat liver CK2.
Collapse
Affiliation(s)
- F Pancetti
- Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
67
|
Cassé C, Giannoni F, Nguyen VT, Dubois MF, Bensaude O. The transcriptional inhibitors, actinomycin D and alpha-amanitin, activate the HIV-1 promoter and favor phosphorylation of the RNA polymerase II C-terminal domain. J Biol Chem 1999; 274:16097-106. [PMID: 10347161 DOI: 10.1074/jbc.274.23.16097] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Actinomycin D and alpha-amanitin are commonly used to inhibit transcription. Unexpectedly, however, the transcription of the human immunodeficiency virus (HIV-1) long terminal repeats (LTR) is shown to be activated at the level of elongation, in human and murine cells exposed to these drugs, whereas the Rous sarcoma virus LTR, the human cytomegalovirus immediate early gene (CMV), and the HSP70 promoters are repressed. Activation of the HIV LTR is independent of the NFkappaB and TAR sequences and coincides with an enhanced average phosphorylation of the C-terminal domain (CTD) from the largest subunit of RNA polymerase II. Both the HIV-1 LTR activation and the bulk CTD phosphorylation enhancement are prevented by several CTD kinase inhibitors, including 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole. The efficacies of the various compounds to block CTD phosphorylation and transcription in vivo correlate with their capacities to inhibit the CDK9/PITALRE kinase in vitro. Hence, the positive transcription elongation factor, P-TEFb, is likely to contribute to the average CTD phosphorylation in vivo and to the activation of the HIV-1 LTR induced by actinomycin D.
Collapse
Affiliation(s)
- C Cassé
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
68
|
Abstract
Biochemical evidence indicates that pre-mRNA splicing factors physically interact with the C-terminal domain of the largest subunit of RNA polymerase II. We have investigated the in vivo function of this interaction. In mammalian cells, truncation of the CTD of RNA pol II LS prevents the targeting of the splicing machinery to a transcription site. In the absence of the CTD, pre-mRNA splicing is severely reduced. The presence of unspliced RNA alone is not sufficient for the accumulation of splicing factors at the transcription site, nor for its efficient splicing. Our results demonstrate a critical role for the CTD of RNA pol II LS in the intranuclear targeting of splicing factors to transcription sites in vivo.
Collapse
Affiliation(s)
- T Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
69
|
Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 1999; 97:41-51. [PMID: 10199401 DOI: 10.1016/s0092-8674(00)80713-8] [Citation(s) in RCA: 641] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DRB is a classic inhibitor of transcription elongation by RNA polymerase II (pol II). Since DRB generally affects class II genes, factors involved in this process must play fundamental roles in pol II elongation. Recently, two elongation factors essential for DRB action were identified, namely DSIF and P-TEFb. Here we describe the identification and purification from HeLa nuclear extract of a third protein factor required for DRB-sensitive transcription. This factor, termed negative elongation factor (NELF), cooperates with DSIF and strongly represses pol II elongation. This repression is reversed by P-TEFb-dependent phosphorylation of the pol II C-terminal domain. NELF is composed of five polypeptides, the smallest of which is identical to RD, a putative RNA-binding protein of unknown function. This study reveals a molecular mechanism for DRB action and a regulatory network of positive and negative elongation factors.
Collapse
Affiliation(s)
- Y Yamaguchi
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Collas P, Liang MR, Vincent M, Aleström P. Active transgenes in zebrafish are enriched in acetylated histone H4 and dynamically associate with RNA Pol II and splicing complexes. J Cell Sci 1999; 112 ( Pt 7):1045-54. [PMID: 10198286 DOI: 10.1242/jcs.112.7.1045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the functional organization of active and silent integrated luciferase transgenes in zebrafish, with the aim of accounting for the variegation of transgene expression in this species. We demonstrate the enrichment of transcriptionally active transgenes in acetylated histone H4 and the dynamic association of the transgenes with splicing factor SC35 and RNA Pol II. Analysis of interphase nuclei and extended chromatin fibers by immunofluorescence and in situ hybridization reveals a co-localization of transgenes with acetylated H4 in luciferase-expressing animals only. Enrichment of expressed transgenes in acetylated H4 is further demonstrated by their co-precipitation from chromatin using anti-acetylated H4 antibodies. Little correlation exists, however, between the level of histone acetylation and the degree of transgene expression. In transgene-expressing zebrafish, most transgenes co-localize with Pol II and SC35, whereas no such association occurs in non-expressing individuals. Inhibition of Pol II abolishes transgene expression and disrupts association of transgenes with SC35, although inactivated transgenes remains enriched in acetylated histones. Exposure of embryos to the histone deacetylation inhibitor TSA induces expression of most silent transgenes. Chromatin containing activated transgenes becomes enriched in acetylated histones and the transgenes recruit SC35 and Pol II. The results demonstrate a correlation between H4 acetylation and transgene activity, and argue that active transgenes dynamically recruit splicing factors and Pol II. The data also suggest that dissociation of splicing factors from transgenes upon Pol II inhibition is not a consequence of changes in H4 acetylation.
Collapse
Affiliation(s)
- P Collas
- Department of Biochemistry, Norwegian College of Veterinary Medicine, Oslo, Norway.
| | | | | | | |
Collapse
|
71
|
Snaar SP, Vincent M, Dirks RW. RNA polymerase II localizes at sites of human cytomegalovirus immediate-early RNA synthesis and processing. J Histochem Cytochem 1999; 47:245-54. [PMID: 9889260 DOI: 10.1177/002215549904700213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pre-mRNA synthesis in eukaryotic cells is preceded by the formation of a transcription initiation complex and binding of unphosphorylated RNA polymerase II (Pol II) at the promoter region of a gene. Transcription initiation and elongation are accompanied by the hyperphosphorylation of the carboxy-terminal domain (CTD) of Pol II large subunit. Recent biochemical studies provided evidence that RNA processing factors, including those required for splicing, associate with hyperphosphorylated CTDs forming "transcription factories." To directly visualize the existence of such factories, we simultaneously detected human cytomegalovirus immediate-early (IE) DNA and RNA with splicing factors and Pol II in rat 9G cells inducible for IE gene expression. Combined in situ hybridization and immunocytochemistry revealed that, after induction, both splicing factors and Pol II are present at the sites of IE mRNA synthesis and of IE mRNA processing that extend from the transcribing gene. Noninduced cells revealed no such associations. When IE mRNA-synthesizing cells were treated with a transcription inhibitor, these associations disappeared within 30 min. Our results show that the association of Pol II and splicing factors with IE DNA is dependent on its transcriptional activity and furthermore suggest that splicing factors are still associated with Pol II during active splicing.
Collapse
Affiliation(s)
- S P Snaar
- Department of Molecular Cell Biology, Laboratory for Cytochemistry and Cytometry, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | |
Collapse
|
72
|
Sankrithi N, Eskin A. Effects of cyclin-dependent kinase inhibitors on transcription and ocular circadian rhythm of Aplysia. J Neurochem 1999; 72:605-13. [PMID: 9930732 DOI: 10.1046/j.1471-4159.1999.0720605.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinases (CDKs) mediate cell-cycle phase transitions. Recently, CDKs have been associated with non-cell-cycle roles such as DNA repair, transcription, and phosphate metabolism in yeast. The cyclical processes, circadian rhythms and the eukaryotic cell cycle, are similar in many respects. It is possible that a kinase like CDK is involved in the control of circadian rhythms. In this study, the effects of CDK inhibitors (olomoucine, roscovitine, and butyrolactone I) on the Aplysia ocular circadian rhythm were investigated. Continuous treatments with olomoucine (10 microM) lengthened the free-running period of the rhythm, and pulse treatments of olomoucine (6 h, 100 microM) delayed the rhythm. The effects of olomoucine on the rhythm were qualitatively similar to those of a reversible inhibitor of transcription, 5,6-dichloro-beta-1-ribobenzimidazole. Subsequently, olomoucine was found to inhibit RNA synthesis in the eye of Aplysia and Bulla. All of the other CDK inhibitors used in this study also inhibited transcription in the eye of Aplysia, and their effects on transcription correlated with their effects on the circadian rhythm. This study adds substantial evidence to that previously obtained by using 5,6-dichloro-beta-1-ribobenzimidazole for a role of transcription in the mechanism responsible for circadian rhythmicity in the eye of Aplysia. Also, these results indicate that caution is warranted in interpreting results obtained by using CDK inhibitors, because these drugs appear to inhibit transcription as well as CDKs.
Collapse
Affiliation(s)
- N Sankrithi
- Department of Biology and Biochemistry, University of Houston, Texas 77204, USA
| | | |
Collapse
|
73
|
Rickert P, Corden JL, Lees E. Cyclin C/CDK8 and cyclin H/CDK7/p36 are biochemically distinct CTD kinases. Oncogene 1999; 18:1093-102. [PMID: 10023686 DOI: 10.1038/sj.onc.1202399] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphorylation of the carboxyl-terminal domain (CTD) of RNA polymerase II is important for basal transcriptional processes in vivo and for cell viability. Several kinases, including certain cyclin-dependent kinases, can phosphorylate this substrate in vitro. It has been proposed that differential CTD phosphorylation by different kinases may regulate distinct transcriptional processes. We have found that two of these kinases, cyclin C/CDK8 and cyclin H/CDK7/p36, can specifically phosphorylate distinct residues in recombinant CTD substrates. This difference in specificity may be largely due to their varying ability to phosphorylate lysine-substituted heptapeptide repeats within the CTD, since they phosphorylate the same residue in CTD consensus heptapeptide repeats. Furthermore, this substrate specificity is reflected in vivo where cyclin C/ CDK8 and cyclin H/CDK7/p36 can differentially phosphorylate an endogenous RNA polymerase II substrate. Several small-molecule kinase inhibitors have different specificities for these related kinases, indicating that these enzymes have diverse active-site conformations. These results suggest that cyclin C/CDK8 and cyclin H/CDK7/p36 are physically distinct enzymes that may have unique roles in transcriptional regulation mediated by their phosphorylation of specific sites on RNA polymerase II.
Collapse
Affiliation(s)
- P Rickert
- Department of Cell Signaling, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, California 94304, USA
| | | | | |
Collapse
|
74
|
Ljungman M, Zhang F, Chen F, Rainbow AJ, McKay BC. Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene 1999; 18:583-92. [PMID: 9989808 DOI: 10.1038/sj.onc.1202356] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanisms by which the p53 response is triggered following exposure to DNA-damaging agents have not yet been clearly elucidated. We and others have previously suggested that blockage of RNA polymerase II may be the trigger for induction of the p53 response following exposure to ultraviolet light. Here we report on the correlation between inhibition of mRNA synthesis and the induction of p53, p21WAF1 and apoptosis in diploid human fibroblasts treated with either UV light, cisplatin or the RNA synthesis inhibitors actinomycin D, DRB, H7 and alpha-amanitin. Exposure to ionizing radiation or the proteasome inhibitor LLnL, however, induced p53 and p21WAF1 without affecting mRNA synthesis. Importantly, induction of p53 by the RNA synthesis or proteasome inhibitors did not correlate with the induction of DNA strand breaks. Furthermore, cisplatin-induced accumulation of active p53 in repair-deficient XP-A cells occurred despite the lack of DNA strand break induction. Our results suggest that the induction of the p53 response by certain toxic agents is not triggered by DNA strand breaks but rather, may be linked to inhibition of mRNA synthesis either directly by the poisoning of RNA polymerase II or indirectly by the induction of elongation-blocking DNA lesions.
Collapse
Affiliation(s)
- M Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor 48109-0936, USA
| | | | | | | | | |
Collapse
|
75
|
Liu W, Feifel E, Holcomb T, Liu X, Spitaler N, Gstraunthaler G, Curthoys NP. PMA and staurosporine affect expression of the PCK gene in LLC-PK1-F+ cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F361-9. [PMID: 9729508 DOI: 10.1152/ajprenal.1998.275.3.f361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The addition of phorbol 12-myristate 13-acetate (PMA) to renal LLC-PK1-F+ cells caused a rapid decrease in the level of phosphoenolpyruvate carboxykinase (PCK) mRNA and reversed the stimulatory effects of exposure to acidic medium (pH 6.9, 10 mM HCO-3) or cAMP. In contrast, prolonged treatment with PMA increased the levels of PCK mRNA. The two effects correlated with the membrane translocation and downregulation of the alpha-isozyme of protein kinase C and were blocked by pretreatment with specific inhibitors of protein kinase C. The rapid decrease in PCK mRNA caused by PMA occurred with a half-life (t1/2 = 1 h) that is significantly faster than that measured during recovery from acid medium or following inhibition of transcription (t1/2 = 4 h). The effect of PMA was reversed by staurosporine, which apparently acts by inhibiting a signaling pathway other than protein kinase C. Staurosporine had no effect on the half-life of the PCK mRNA, but it stimulated the activity of a chloramphenicol acetyltransferase gene that was driven by the initial 490 base pairs of the PCK promoter and transiently transfected into LLC-PK1-F+ cells. This effect was additive to that of cAMP, and neither stimulation was reversed by PMA. The stimulatory effect of staurosporine was mapped to the cAMP response element (CRE-1) and P3(II) element of the PCK promoter. The data indicate that, in LLC-PK1-F+ cells, activation of protein kinase C decreases the stability of the PCK mRNA, whereas transcription of the PCK gene may be suppressed by a kinase that is inhibited by staurosporine.
Collapse
Affiliation(s)
- W Liu
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Wang X, Murphy TJ. Inhibition of cyclic AMP-dependent kinase by expression of a protein kinase inhibitor/enhanced green fluorescent fusion protein attenuates angiotensin II-induced type 1 AT1 receptor mRNA down-regulation in vascular smooth muscle cells. Mol Pharmacol 1998; 54:514-24. [PMID: 9730910 DOI: 10.1124/mol.54.3.514] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of the angiotensin II type 1 receptor (AT1-R) mRNA in vascular smooth muscle cells (VSMC) is down-regulated by a variety of agonists, including growth factors, agonists of Galphaq protein-coupled receptors, and activators of adenylyl cyclase. To determine whether cAMP-dependent protein kinases (PKA) participates in AT1-R mRNA down-regulation controlled by multiple classes of receptors, a PKA inhibitor peptide (PKIalpha) was developed and expressed in rat VSMC as a fusion with the enhanced green fluorescent protein (eGFP). PKA activity elicited both by forskolin and angiotensin II is suppressed in cells expressing this fusion protein (PKIalpha-eGFP), but platelet-derived growth factor-BB does not stimulate PKA activity in this preparation. PKIalpha-eGFP expression fully inhibits the forskolin-stimulated down-regulation of AT1-R mRNA levels and blocks 50% of the effect elicited by angiotensin II. This indicates that PKA plays a substantial role in angiotensin II-stimulated AT1-R mRNA down-regulation. However, inhibition of PKA has no effect on AT1-R mRNA down-regulation caused by platelet-derived growth factor-BB. These findings show how agonists such as angiotensin II that are not normally considered as activators of PKA can use PKA-dependent processes to modulate gene expression. These findings also provide definitive evidence that PKA-dependent pathways are involved in modulation of AT1-R mRNA levels in VSMC.
Collapse
Affiliation(s)
- X Wang
- Department of Pharmacology, Emory University School of Medicine, and Program in Molecular Therapeutics and Toxicology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
77
|
Egyházi E, Ossoinak A, Lee JM, Greenleaf AL, Mäkelä TP, Pigon A. Heat-shock-specific phosphorylation and transcriptional activity of RNA polymerase II. Exp Cell Res 1998; 242:211-21. [PMID: 9665818 DOI: 10.1006/excr.1998.4112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carboxyl-terminal domain (CTD) of the largest RNA polymerase II (pol II) subunit is a target for extensive phosphorylation in vivo. Using in vitro kinase assays it was found that several different protein kinases can phosphorylate the CTD including the transcription factor IIH-associated CDK-activating CDK7 kinase (R. Roy, J. P. Adamczewski, T. Seroz, W. Vermeulen, J. P. Tassan, L. Schaeffer, E. A. Nigg, J. H. Hoeijmakers, and J. M. Egly, 1994, Cell 79, 1093-1101). Here we report the colocalization of CDK7 and the phosphorylated form of CTD (phosphoCTD) to actively transcribing genes in intact salivary gland cells of Chironomus tentans. Following a heat-shock treatment, both CDK7 and pol II staining disappear from non-heat-shock genes concomitantly with the abolishment of transcriptional activity of these genes. In contrast, the actively transcribing heat-shock genes, manifested as chromosomal puff 5C on chromosome IV (IV-5C), stain intensely for phosphoCTD, but are devoid of CDK7. Furthermore, the staining of puff IV-5C with anti-PCTD antibodies was not detectably influenced by the TFIIH kinase and transcription inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). Following heat-shock treatment, the transcription of non-heat-shock genes was completely eliminated, while newly formed heat-shock gene transcripts emerged in a DRB-resistant manner. Thus, heat shock in these cells induces a rapid clearance of CDK7 from the non-heat-shock genes, indicating a lack of involvement of CDK7 in the induction and function of the heat-induced genes. The results taken together suggest the existence of heat-shock-specific CTD phosphorylation in living cells. This phosphorylation is resistant to DRB treatment, suggesting that not only phosphorylation but also transcription of heat-shock genes is DRB resistant and that CDK7 in heat shock cells is not associated with TFIIH.
Collapse
Affiliation(s)
- E Egyházi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
78
|
Trigon S, Serizawa H, Conaway JW, Conaway RC, Jackson SP, Morange M. Characterization of the residues phosphorylated in vitro by different C-terminal domain kinases. J Biol Chem 1998; 273:6769-75. [PMID: 9506978 DOI: 10.1074/jbc.273.12.6769] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal part of the largest subunit of eukaryotic RNA polymerase II is composed solely of the highly repeated consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. This domain, called the C-terminal domain (CTD), is phosphorylated mostly at serine residues during transcription initiation, but the precise role of this phosphorylation remains controversial. Several protein kinases are able to phosphorylate this sequence in vitro. The aim of this work was to define the positions of the amino acids phosphorylated by four of these CTD kinases (transcription factor (TF) IIH-kinase, DNA-dependent protein kinase, and the mitogen-activated protein kinases ERK1 and ERK2) and to compare the specificity of these different protein kinases. We show that TFIIH kinase and the mitogen-activated protein kinases phosphorylate only serine 5 of the CTD sequence, whereas DNA-dependent protein kinase phosphorylates serines 2 and 7. Among the different CTD kinases, only TFIIH kinase is appreciably more active on two repeats of the consensus sequence than on one motif. These in vitro results can provide some clues to the nature of the protein kinases responsible for the in vivo phosphorylation of the RNA polymerase CTD. In particular, the ratio of phosphorylated serine to threonine observed in vivo cannot be explained if TFIIH kinase is the only protein kinase involved in the phosphorylation of the CTD.
Collapse
Affiliation(s)
- S Trigon
- Ecole Normale Superieure, Unité de Génétique Moléculaire, 46, rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
79
|
Wang X, Nickenig G, Murphy TJ. The vascular smooth muscle type I angiotensin II receptor mRNA is destabilized by cyclic AMP-elevating agents. Mol Pharmacol 1997; 52:781-7. [PMID: 9351968 DOI: 10.1124/mol.52.5.781] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although processes involved in mRNA degradation play a significant role in dictating steady state mRNA levels, the influence of cell surface signaling on mRNA stability control is understood incompletely. In this study, the effects of cAMP-elevating agents on type I angiotensin II receptor (AT1-R) mRNA levels were assessed in cultured rat aortic vascular smooth muscle cells (VSMCs). AT1-R mRNA levels are rapidly reduced by forskolin treatment, in which the maximal effect yields an 80% reduction in AT1-R mRNA levels after 6 hr of treatment. The rate of AT1-R mRNA decay in response to forskolin is greater than its apparent intrinsic decay, as assessed in the presence of the transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole, suggesting forskolin treatment destabilizes the AT1-R mRNA. Nuclear run-on analysis indicates forskolin treatment does not affect transcription of the AT1-R gene in VSMCs, implying induced AT1-R mRNA destabilization accounts for the entire effect of forskolin in decreasing AT1-R mRNA levels. Dose-effect studies that assessed AT1-R mRNA levels and cAMP production were conducted using forskolin and the beta-adrenergic receptor agonist isoproterenol as agonists. Isoproterenol is almost 3 orders of magnitude more potent at eliciting the reduction in AT1-receptor mRNA levels than it is at stimulating cAMP production. Similarly, forskolin elicits reductions in AT1-R mRNA, which occur at concentrations that fail to elicit a detectable production of cAMP. However, protein kinase A activity is stimulated maximally by isoproterenol and forskolin concentrations that do not stimulate detectable cAMP production. These data provide evidence that the mechanism for down-regulation of AT1-R mRNA levels by cAMP-elevating agents in VSMCs occurs via a PKA-regulated mRNA destabilization pathway.
Collapse
Affiliation(s)
- X Wang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
80
|
Laterza OF, Hansen WR, Taylor L, Curthoys NP. Identification of an mRNA-binding protein and the specific elements that may mediate the pH-responsive induction of renal glutaminase mRNA. J Biol Chem 1997; 272:22481-8. [PMID: 9278399 DOI: 10.1074/jbc.272.36.22481] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Various segments of the 3'-nontranslated region of the renal glutaminase (GA) mRNA were tested for their ability to enhance turnover and pH responsiveness. The combined effects were retained in the 340-base R-2 segment. However, the combined R-1 and R-3 fragments also imparted a partial destabilization and pH responsiveness to a chimeric beta-globin mRNA. RNA electrophoretic mobility shift assays indicated that cytosolic extracts of rat renal cortex contain a protein that binds to the R-2 and R-3 RNAs. The binding observed with the R-2 RNA was mapped to a direct repeat of an 8-base AU sequence. This binding was effectively competed with an excess of the same RNA, but not by adjacent or unrelated RNAs. UV cross-linking experiments identified a 48-kDa protein that binds to the AU repeats of the R-2 RNA. The apparent binding of this protein was greatly reduced in renal cytosolic extracts prepared from acutely acidotic rats. Two related RNA sequences in the R-3 segment also exhibited specific binding. However, the latter binding was more effectively competed by R-2 RNA than by itself, indicating that the homologous sites may be weaker binding sites for the same 48-kDa protein. Thus, a single protein may bind specifically to multiple instability elements within the 3'-nontranslated region of the GA mRNA and mediate its pH-responsive stabilization.
Collapse
Affiliation(s)
- O F Laterza
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | |
Collapse
|
81
|
Marinoni JC, Rossignol M, Egly JM. Purification of the transcription/repair factor TFIIH and evaluation of its associated activities in vitro. Methods 1997; 12:235-53. [PMID: 9237168 DOI: 10.1006/meth.1997.0476] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We describe here the methodology developed in our laboratory to study the role of TFIIH, a multisubunit protein complex, in the various mechanisms of cell life: transcription, DNA repair, and cell cycle regulation. Protocols are given to purify TFIIH and to study its various enzymatic activities as well as its transcription and nucleotide excision repair activities.
Collapse
Affiliation(s)
- J C Marinoni
- Institut de Biologie et Génétique Moléculaire et Cellulaire, UPR 6520 (CNRS), Unité 184 (INSERM), Illkirch, France
| | | | | |
Collapse
|
82
|
Lee JM, Greenleaf AL. Modulation of RNA polymerase II elongation efficiency by C-terminal heptapeptide repeat domain kinase I. J Biol Chem 1997; 272:10990-3. [PMID: 9110987 DOI: 10.1074/jbc.272.17.10990] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hyperphosphorylation of the C-terminal heptapeptide repeat domain (CTD) of the RNA polymerase II largest subunit has been suggested to play a key role in regulating transcription initiation and elongation. To facilitate investigating functional consequences of CTD phosphorylation we developed new templates, the double G-less cassettes, which make it possible to assay simultaneously the level of initiation and the efficiency of elongation. Using these templates, we examined the effects of yeast CTD kinase I or CTD kinase inhibitors on transcription and CTD phosphorylation in HeLa nuclear extracts. Our results showed that polymerase II elongation efficiency and CTD phosphorylation are greatly reduced by CTD kinase inhibitors, whereas both are greatly increased by CTD kinase I; in contrast, transcription initiation is much less affected. These results demonstrate that CTD kinase I modulates the elongation efficiency of RNA polymerase II and are consistent with the idea that one function of CTD phosphorylation is to promote effective production of long transcripts by stimulating the elongation efficiency of RNA polymerase II.
Collapse
Affiliation(s)
- J M Lee
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
83
|
Chang TC, Tsai LC, Hung MW, Chu LL, Chu JT, Chen YC. Effects of transcription and translation inhibitors on a human gastric carcinoma cell line. Potential role of Bcl-X(S) in apoptosis triggered by these inhibitors. Biochem Pharmacol 1997; 53:969-77. [PMID: 9174110 DOI: 10.1016/s0006-2952(96)00868-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of the macromolecular synthesis inhibitors 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole (DRB), actinomycin D, and cycloheximide on the human gastric cancer TMK-1 cell line were studied. These agents inhibited DNA, RNA, or protein synthesis efficiently and induced cell death rapidly in a wide range of concentrations. After 8 hr of exposure to these agents, the cells exhibited morphological features of apoptosis, including cell shrinkage, nuclear condensation, DNA fragmentation, and formation of apoptotic bodies. Western blot analysis revealed that these inhibitors altered the protein levels of apoptosis-related gene products such as c-Myc, Bcl-X(S), and the mutant p53 (mp53) in TMK-1 cells markedly. The c-myc mRNA and protein levels were decreased initially and were then induced markedly to a new level after 4 hr of exposure to DRB, a RNA polymerase II inhibitor. The Bcl-X(S) levels were increased rapidly after treatment with all of these agents, whereas the levels of Bcl-X(L) and Bax remained largely unchanged. Northern blot analysis indicated that the c-myc overexpression is concomitant to DRB-induced DNA fragmentation and that the increased mp53 protein level was mainly a posttranscriptional event. Our observations suggest that the up-regulation of Bcl-X(S) may serve as an important mechanism for the apoptosis triggered by these inhibitors. This study also provides evidence for the notion that interference with the cellular survival pathway may lead to apoptosis.
Collapse
Affiliation(s)
- T C Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
84
|
Dubois MF, Vincent M, Vigneron M, Adamczewski J, Egly JM, Bensaude O. Heat-shock inactivation of the TFIIH-associated kinase and change in the phosphorylation sites on the C-terminal domain of RNA polymerase II. Nucleic Acids Res 1997; 25:694-700. [PMID: 9016617 PMCID: PMC146510 DOI: 10.1093/nar/25.4.694] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit (RPB1) plays a central role in transcription. The CTD is unphosphorylated when the polymerase assembles into a preinitiation complex of transcription and becomes heavily phosphorylated during promoter clearance and entry into elongation of transcription. A kinase associated to the general transcription factor TFIIH, in the preinitiation complex, phosphorylates the CTD. The TFIIH-associated CTD kinase activity was found to decrease in extracts from heat-shocked HeLa cells compared to unstressed cells. This loss of activity correlated with a decreased solubility of the TFIIH factor. The TFIIH-kinase impairment during heat-shock was accompanied by the disappearance of a particular phosphoepitope (CC-3) on the RPB1 subunit. The CC-3 epitope was localized on the C-terminal end of the CTD and generated in vitro when the RPB1 subunit was phosphorylated by the TFIIH-associated kinase but not by another CTD kinase such as MAP kinase. In apparent discrepancy, the overall RPB1 subunit phosphorylation increased during heat-shock. The decreased activity in vivo of the TFIIH kinase might be compensated by a stress-activated CTD kinase such as MAP kinase. These results also suggest that heat-shock gene transcription may have a weak requirement for TFIIH kinase activity.
Collapse
Affiliation(s)
- M F Dubois
- Laboratoire de Génétique Moléculaire, URA CNRS 1302, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | |
Collapse
|
85
|
Marshall NF, Peng J, Xie Z, Price DH. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem 1996; 271:27176-83. [PMID: 8900211 DOI: 10.1074/jbc.271.43.27176] [Citation(s) in RCA: 517] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The entry of RNA polymerase II into a productive mode of elongation is controlled, in part, by the postinitiation activity of positive transcription elongation factor b (P-TEFb) (Marshall, N. F., and Price, D. H. (1995) J. Biol. Chem. 270, 12335-12338). We report here that removal of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II abolishes productive elongation. Correspondingly, we found that P-TEFb can phosphorylate the CTD of pure RNA polymerase II. Furthermore, P-TEFb can phosphorylate the CTD of RNA polymerase II when the polymerase is in an early elongation complex. Both the function and kinase activity of P-TEFb are blocked by the drugs 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and H-8. P-TEFb is distinct from transcription factor IIH (TFIIH) because the two factors have no subunits in common, P-TEFb is more sensitive to DRB than is TFIIH, and most importantly, TFIIH cannot substitute functionally for P-TEFb. We propose that phosphorylation of the CTD by P-TEFb controls the transition from abortive into productive elongation mode.
Collapse
Affiliation(s)
- N F Marshall
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
86
|
Engh RA, Girod A, Kinzel V, Huber R, Bossemeyer D. Crystal structures of catalytic subunit of cAMP-dependent protein kinase in complex with isoquinolinesulfonyl protein kinase inhibitors H7, H8, and H89. Structural implications for selectivity. J Biol Chem 1996; 271:26157-64. [PMID: 8824261 DOI: 10.1074/jbc.271.42.26157] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The discovery of several hundred different protein kinases involved in highly diverse cellular signaling pathways is in stark contrast to the much smaller number of known modulators of cell signaling. Of these, the H series protein kinase inhibitors (1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7), N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide (H8) N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89)) are frequently used to block signaling pathways in studies of cellular regulation. To elucidate inhibition mechanisms at atomic resolution and to enable structure-based drug design of potential therapeutic modulators of signaling pathways, we determined the crystal structures of corresponding complexes with the cAPK catalytic subunit. Complexes with H7 and H8 (2.2 A) and with H89 (2.3 A) define the binding mode of the isoquinoline-sulfonamide derivatives in the ATP-binding site while demonstrating effects of ligand-induced structural change. Specific interactions between the enzyme and the inhibitors include the isoquinoline ring nitrogen ligating to backbone amide of Val-123 and an inhibitor side chain amide bonding to the backbone carbonyl of Glu-170. The conservation of the ATP-binding site of protein kinases allows evaluation of factors governing general selectivity of these inhibitors among kinases. These results should assist efforts in the design of protein kinase inhibitors with specific properties.
Collapse
Affiliation(s)
- R A Engh
- Abteilung Strukturforschung II, Max-Planck Institute for Biochemistry, D-82152 Martinsried, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
87
|
Ljungman M. Effect of differential gene expression on the chromatin structure of the DHFR gene domain in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:171-7. [PMID: 8679702 DOI: 10.1016/0167-4781(96)00037-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Photoactivated psoralen was used to probe region-specific chromatin structure in Chinese hamster ovary (CHO) cells. Specifically, the chromatin structure of six regions within the dihydrofolate reductase (DHFR) gene was probed with photoactivated psoralen in cells cultured in such ways as to differentially express the DHFR gene. Cells were irradiated with X-rays prior to the psoralen photocross-linking reaction in order to eliminate the influence of any DNA torsional tension on the psoralen binding and the sequence-specificity of psoralen binding was adjusted for. It was found that a region encompassing the promoter of the serum-regulated DHFR gene was about 50% more accessible to psoralen photocross-linking in serum-stimulated cells and about 90% more accessible in serum-starved cells than the other five regions of the DHFR gene analyzed and the genome overall. Treating serum-stimulated cells with the RNA polymerase II transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB) or the topoisomerase I inhibitor camptothecin reversed the elevated accessibility of the DHFR promoter region. These results suggest that the accessible chromatin structure of the DHFR promoter is not dependent on serum-stimulated poising of the gene for transcription, but may reflect the ability of the RNA polymerase to clear the promoter.
Collapse
Affiliation(s)
- M Ljungman
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor 48109-0582, USA.
| |
Collapse
|
88
|
Egyházi E, Ossoinak A, Pigon A, Holmgren C, Lee JM, Greenleaf AL. Phosphorylation dependence of the initiation of productive transcription of Balbiani ring 2 genes in living cells. Chromosoma 1996; 104:422-33. [PMID: 8601337 DOI: 10.1007/bf00352266] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using polytene chromosomes of salivary gland cells of Chironomus tentans, phosphorylation state-sensitive antibodies and the transcription and protein kinase inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), we have visualized the chromosomal distribution of RNA polymerase II (pol II) with hypophosphorylated (pol IIA) and hyperphosphorylated (pol II0) carboxyl-terminal repeat domain (CTD). DRB blocks labeling of the CTD with 32Pi within minutes of its addition, and nuclear pol II0 is gradually converted to IIA; this conversion parallels the reduction in transcription of protein-coding genes. DRB also alters the chromosomal distribution of II0: there is a time-dependent clearance from chromosomes of phosphoCTD (PCTD) after addition of DRB, which coincides in time with the completion and release of preinitiated transcripts. Furthermore, the staining of smaller transcription units is abolished before that of larger ones. The staining pattern of chromosomes with anti-CTD antibodies is not detectably influenced by the DRB treatment, indicating that hypophosphorylated pol IIA is unaffected by the transcription inhibitor. Microinjection of synthetic heptapeptide repeats, anti-CTD and anti-PCTD antibodies into salivary gland nuclei hampered the transcription of BR2 genes, indicating the requirement for CTD and PCTD in transcription in living cells. The results demonstrate that in vivo the protein kinase effector DRB shows parallel effects on an early step in gene transcription and the process of pol II hyperphosphorylation. Our observations are consistent with the proposal that the initiation of productive RNA synthesis is CTD-phosphorylation dependent and also with the idea that the gradual dephosphorylation of transcribing pol II0 is coupled to the completion of nascent pol II gene transcripts.
Collapse
Affiliation(s)
- E Egyházi
- Karolinska Institutet, Department of Cell and Molecular Biology, Laboratory of Medical Cell Biology, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
89
|
Yankulov K, Yamashita K, Roy R, Egly JM, Bentley DL. The transcriptional elongation inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription factor IIH-associated protein kinase. J Biol Chem 1995; 270:23922-5. [PMID: 7592583 DOI: 10.1074/jbc.270.41.23922] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Regulation of chain elongation by RNA polymerase II can have an important effect on gene expression (Bentley, D. (1995) Curr. Opin. Genet. Dev. 5, 210-216; Yankulov, K., Blau, J., Purton, T., Roberts, S., and Bentley, D. (1994) Cell 77, 749-759); however the mechanisms that control this step in transcription are not well understood. The adenosine analogue 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) has long been used as an inhibitor of RNA polymerase II elongation, but its target is not known. We show that DRB is a potent inhibitor of Cdk-activating kinase, associated with the general transcription factor TFIIH. Two other inhibitors of this kinase, H-7 and H-8, also inhibited transcriptional elongation. Furthermore, TFIIH kinase bound specifically to the herpes simplex virus VP16 activation domain which stimulates polymerase II elongation in addition to initiation (Yankulov, K., Blau, J., Purton, T., Roberts, S., and Bentley, D. (1994) Cell 77, 749-759). Our results suggest that DRB affects transcription by inhibiting the TFIIH-associated kinase and that this kinase functions in the control of elongation by RNA polymerase II.
Collapse
|
90
|
Lee YJ, Berns CM, Galoforo S, Erdos G, Cho JM, Corry PM. Differential effect of 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) on alpha B-crystallin and hsp70 gene expression in murine cell lines. Biochem Pharmacol 1995; 50:1149-55. [PMID: 7488228 DOI: 10.1016/0006-2952(95)00250-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We studied the effect of isoquinolinesulfonamide derivatives (H-7, H-8, and HA1004) on the expression of two heat shock genes (alpha beta-crystallin and hsp70) in NIH 3T3 and Swiss 3T3 cells after heat shock at 45 degrees for 10 min. Western blots and northern blots showed that H-7 effectively suppressed the accumulation of HSP70 and alpha B-crystallin mRNA as well as the synthesis of their proteins. The degree of suppression was dependent upon the concentration of the drug. Moreover, the expression of the hsp genes was differentially suppressed by H-7. The expression of the alpha B-crystallin gene was more effectively inhibited than that of the hsp70 gene by H-7. Nuclear run-on assay demonstrates that this difference was due to the differential effect of H-7 on the elongation of transcription of different hsp genes.
Collapse
Affiliation(s)
- Y J Lee
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI 48073, USA
| | | | | | | | | | | |
Collapse
|
91
|
Venetianer A, Dubois MF, Nguyen VT, Bellier S, Seo SJ, Bensaude O. Phosphorylation state of the RNA polymerase II C-terminal domain (CTD) in heat-shocked cells. Possible involvement of the stress-activated mitogen-activated protein (MAP) kinases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:83-92. [PMID: 7588777 DOI: 10.1111/j.1432-1033.1995.083_1.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RNA polymerase (RNAP) II is a multisubunit enzyme composed of several different subunits. Phosphorylation of the C-terminal domain (CTD) of the largest subunit is tightly regulated. In quiescent or in exponentially growing cells, both the unphosphorylated (IIa) and the multiphosphorylated (IIo) subunits of RNAP II are found in equivalent amounts as the result of the equilibrated antagonist action of protein kinases and phosphatases. In Drosophila and mammalian cells, heat shock markedly modifies the phosphorylation of the RNAP II CTD. Mild heat shocks result in dephosphorylation of the RNAP II CTD. This dephosphorylation is blocked in the presence of actinomycin D, as the CTD dephosphorylation observed in the presence of protein kinase inhibitors. Thus, heat shock might inactivate CTD kinases which are operative at normal growth temperatures, as some protein kinase inhibitors do. In contrast, severe heat shocks are found to increase the amount of phosphorylated subunit independently of the transcriptional activity of the cells. Mild and severe heat shocks activate protein kinases, which then phosphorylate, in vitro and in vivo, the CTD fused to beta-galactosidase. Most of the heat-shock-activated CTD kinases present in cytosolic lysates co-purify with the activated mitogen-activated protein (MAP) kinases, p42mapk and p44mapk. The weak CTD kinase activation occurring upon mild heat shock might be insufficient to compensate for the heat inactivation of the already existing CTD kinases. However, under severe stress, the MAP kinases are strongly heat activated and might prevail over the phosphatases. A survey of different cells and different heat-shock conditions shows that the RNAP II CTD hyperphosphorylation rates follow the extent of MAP kinase activation. These observations lead to the proposal that the RNAP II CTD might be an in vivo target for the activated p42mapk and p44mapk MAP kinases.
Collapse
Affiliation(s)
- A Venetianer
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
92
|
Dahmus ME. Phosphorylation of the C-terminal domain of RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:171-82. [PMID: 7711060 DOI: 10.1016/0167-4781(94)00233-s] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The CTD has become a focal point in the analysis of RNAP II. The unusual properties of the CTD, including its unique structure and high level of phosphorylation, have stimulated interest in understanding the role this domain plays in the transcription of protein-coding genes. Research during the past ten years suggests that the CTD may function at multiple steps in the transcription cycle and that its involvement is promoter dependent. The general idea, for which there is now considerable support, is that the CTD mediates the interaction of RNAP II with the transcription apparatus and that these interactions are influenced by the phosphorylation that occurs throughout the CTD. The temporal relationship between phosphorylation of the CTD and the progression of RNAP II through the transcription cycle has been established in a general sense. However, it is not clear that the modifications that occur at a given time are causally related to the progression of RNAP II beyond that point in the transcription cycle. The idea that phosphorylation of the CTD mediates the release of RNAP II from the preinitiation complex is an attractive one and consistent with a number of experimental results. However, an increasing number of observations suggest that CTD phosphorylation and promoter clearance may not be causally related. One possibility is that even though phosphorylation occurs concomitant with transcript initiation it plays no real role in the initiation process and is necessary only to establish an elongation competent form of the enzyme. Alternatively, CTD phosphorylation may play an essential role in the release of RNAP II from preinitiation complexes in vivo but may be dispensable in defined in vitro transcription systems. Finally it may be important to distinguish between promoter clearance as defined by RNAP moving off the transcriptional start site and the complete disruption of interactions between RNAP II and the preinitiation complex. Because of the extended nature of the CTD, RNAP II may remain tethered to factors assembled on the promoter even though a short transcript has been synthesized. Clearly additional research is necessary to (a) define the contacts made by the CTD in preinitiation complexes, (b) understand the relationship between the disruption of these contacts and CTD phosphorylation and (c) understand biochemically what is required to generate an elongation competent form of RNAP II. The possibility that the CTD plays a role in transcript elongation has been proposed since the discovery of the CTD [15].(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M E Dahmus
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| |
Collapse
|