51
|
Abstract
It is emerging that the pathways that process newly transcribed RNA molecules also regulate the response to DNA damage at multiple levels. Here, we discuss recent insights into how RNA processing pathways participate in DNA damage recognition, signaling, and repair, selectively influence the expression of genome-stabilizing proteins, and resolve deleterious DNA/RNA hybrids (R-loops) formed during transcription and RNA processing. The importance of these pathways for the DNA damage response (DDR) is underscored by the growing appreciation that defects in these regulatory connections may be connected to the genome instability involved in several human diseases, including cancer.
Collapse
Affiliation(s)
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
52
|
AĞUŞ HH, ERSON BENSAN AE. Mechanisms of mRNA polyadenylation. Turk J Biol 2016. [DOI: 10.3906/biy-1505-94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
53
|
K.M. Ip C, 1 Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA;, Yin J, K.S. Ng P, Lin SY, B. Mills G. Genomic-Glycosylation Aberrations in Tumor Initiation, Progression and Management. AIMS MEDICAL SCIENCE 2016. [DOI: 10.3934/medsci.2016.4.386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
54
|
Zhang X, Devany E, Murphy MR, Glazman G, Persaud M, Kleiman FE. PARN deadenylase is involved in miRNA-dependent degradation of TP53 mRNA in mammalian cells. Nucleic Acids Res 2015; 43:10925-38. [PMID: 26400160 PMCID: PMC4678859 DOI: 10.1093/nar/gkv959] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/13/2015] [Indexed: 01/10/2023] Open
Abstract
mRNA deadenylation is under the control of cis-acting regulatory elements, which include AU-rich elements (AREs) and microRNA (miRNA) targeting sites, within the 3' untranslated region (3' UTRs) of eukaryotic mRNAs. Deadenylases promote miRNA-induced mRNA decay through their interaction with miRNA-induced silencing complex (miRISC). However, the role of poly(A) specific ribonuclease (PARN) deadenylase in miRNA-dependent mRNA degradation has not been elucidated. Here, we present evidence that not only ARE- but also miRNA-mediated pathways are involved in PARN-mediated regulation of the steady state levels of TP53 mRNA, which encodes the tumor suppressor p53. Supporting this, Argonaute-2 (Ago-2), the core component of miRISC, can coexist in complexes with PARN resulting in the activation of its deadenylase activity. PARN regulates TP53 mRNA stability through not only an ARE but also an adjacent miR-504/miR-125b-targeting site in the 3' UTR. More importantly, we found that miR-125b-loaded miRISC contributes to the specific recruitment of PARN to TP53 mRNA, and that can be reverted by the ARE-binding protein HuR. Together, our studies provide new insights into the role of PARN in miRNA-dependent control of mRNA decay and into the mechanisms behind the regulation of p53 expression.
Collapse
Affiliation(s)
- Xiaokan Zhang
- Chemistry Department, Belfer Research Building, Hunter College and Graduate Center, City University of New York, New York, NY 10021, USA
| | - Emral Devany
- Chemistry Department, Belfer Research Building, Hunter College and Graduate Center, City University of New York, New York, NY 10021, USA Department of Biological Sciences, Kingsborough Community College, City University of New York, 2001 Oriental Boulevard, Brooklyn, NY 11235, USA
| | - Michael R Murphy
- Chemistry Department, Belfer Research Building, Hunter College and Graduate Center, City University of New York, New York, NY 10021, USA
| | - Galina Glazman
- Chemistry Department, Belfer Research Building, Hunter College and Graduate Center, City University of New York, New York, NY 10021, USA
| | - Mirjana Persaud
- Chemistry Department, Belfer Research Building, Hunter College and Graduate Center, City University of New York, New York, NY 10021, USA
| | - Frida E Kleiman
- Chemistry Department, Belfer Research Building, Hunter College and Graduate Center, City University of New York, New York, NY 10021, USA
| |
Collapse
|
55
|
RATAJSKA MAGDALENA, MATUSIAK MAGDALENA, KUZNIACKA ALINA, WASAG BARTOSZ, BROZEK IZABELA, BIERNAT WOJCIECH, KOCZKOWSKA MAGDALENA, DEBNIAK JAROSLAW, SNIADECKI MARCIN, KOZLOWSKI PIOTR, KLONOWSKA KATARZYNA, PILYUGIN MAXIM, WYDRA DARIUSZ, LAURENT GEOFF, LIMON JANUSZ, IRMINGER-FINGER IRMGARD. Cancer predisposing BARD1 mutations affect exon skipping and are associated with overexpression of specific BARD1 isoforms. Oncol Rep 2015; 34:2609-17. [DOI: 10.3892/or.2015.4235] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/02/2015] [Indexed: 11/05/2022] Open
|
56
|
Shi Y, Manley JL. The end of the message: multiple protein-RNA interactions define the mRNA polyadenylation site. Genes Dev 2015; 29:889-97. [PMID: 25934501 PMCID: PMC4421977 DOI: 10.1101/gad.261974.115] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recent studies have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition. Here, Shi and Manley review the recent advances in this area and provide a perspective for future studies. The key RNA sequence elements and protein factors necessary for 3′ processing of polyadenylated mRNA precursors are well known. Recent studies, however, have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition, painting a picture more complex than previously envisioned and also providing new insights into regulation of this important step in gene expression. Here we review the recent advances in this area and provide a perspective for future studies.
Collapse
Affiliation(s)
- Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA;
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
57
|
Tummala H, Walne A, Collopy L, Cardoso S, de la Fuente J, Lawson S, Powell J, Cooper N, Foster A, Mohammed S, Plagnol V, Vulliamy T, Dokal I. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J Clin Invest 2015; 125:2151-60. [PMID: 25893599 DOI: 10.1172/jci78963] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/12/2015] [Indexed: 11/17/2022] Open
Abstract
Dyskeratosis congenita (DC) and related syndromes are inherited, life-threatening bone marrow (BM) failure disorders, and approximately 40% of cases are currently uncharacterized at the genetic level. Here, using whole exome sequencing (WES), we have identified biallelic mutations in the gene encoding poly(A)-specific ribonuclease (PARN) in 3 families with individuals exhibiting severe DC. PARN is an extensively characterized exonuclease with deadenylation activity that controls mRNA stability in part and therefore regulates expression of a large number of genes. The DC-associated mutations identified affect key domains within the protein, and evaluation of patient cells revealed reduced deadenylation activity. This deadenylation deficiency caused an early DNA damage response in terms of nuclear p53 regulation, cell-cycle arrest, and reduced cell viability upon UV treatment. Individuals with biallelic PARN mutations and PARN-depleted cells exhibited reduced RNA levels for several key genes that are associated with telomere biology, specifically TERC, DKC1, RTEL1, and TERF1. Moreover, PARN-deficient cells also possessed critically short telomeres. Collectively, these results identify a role for PARN in telomere maintenance and demonstrate that it is a disease-causing gene in a subset of patients with severe DC.
Collapse
|
58
|
Davis R, Shi Y. The polyadenylation code: a unified model for the regulation of mRNA alternative polyadenylation. J Zhejiang Univ Sci B 2015; 15:429-37. [PMID: 24793760 DOI: 10.1631/jzus.b1400076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The majority of eukaryotic genes produce multiple mRNA isoforms with distinct 3' ends through a process called mRNA alternative polyadenylation (APA). Recent studies have demonstrated that APA is dynamically regulated during development and in response to environmental stimuli. A number of mechanisms have been described for APA regulation. In this review, we attempt to integrate all the known mechanisms into a unified model. This model not only explains most of previous results, but also provides testable predictions that will improve our understanding of the mechanistic details of APA regulation. Finally, we briefly discuss the known and putative functions of APA regulation.
Collapse
Affiliation(s)
- Ryan Davis
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
59
|
Di Giammartino DC, Li W, Ogami K, Yashinskie JJ, Hoque M, Tian B, Manley JL. RBBP6 isoforms regulate the human polyadenylation machinery and modulate expression of mRNAs with AU-rich 3' UTRs. Genes Dev 2014; 28:2248-60. [PMID: 25319826 PMCID: PMC4201286 DOI: 10.1101/gad.245787.114] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Campigli Di Giammartino et al. find that RBBP6 is a component of a large multisubunit protein complex that mediates polyadenylation of mRNA precursors. Genome-wide analyses following RBBP6 knockdown revealed decreased transcript levels, especially of mRNAs with AU-rich 3′ UTRs such as c-Fos and c-Jun, and increased usage of distal poly(A) sites. Polyadenylation of mRNA precursors is mediated by a large multisubunit protein complex. Here we show that RBBP6 (retinoblastoma-binding protein 6), identified initially as an Rb- and p53-binding protein, is a component of this complex and functions in 3′ processing in vitro and in vivo. RBBP6 associates with other core factors, and this interaction is mediated by an unusual ubiquitin-like domain, DWNN (“domain with no name”), that is required for 3′ processing activity. The DWNN is also expressed, via alternative RNA processing, as a small single-domain protein (isoform 3 [iso3]). Importantly, we show that iso3, known to be down-regulated in several cancers, competes with RBBP6 for binding to the core machinery, thereby inhibiting 3′ processing. Genome-wide analyses following RBBP6 knockdown revealed decreased transcript levels, especially of mRNAs with AU-rich 3′ untranslated regions (UTRs) such as c-Fos and c-Jun, and increased usage of distal poly(A) sites. Our results implicate RBBP6 and iso3 as novel regulators of 3′ processing, especially of RNAs with AU-rich 3′ UTRs.
Collapse
Affiliation(s)
| | - Wencheng Li
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Koichi Ogami
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jossie J Yashinskie
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Mainul Hoque
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Bin Tian
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA;
| |
Collapse
|
60
|
Hill SJ, Rolland T, Adelmant G, Xia X, Owen MS, Dricot A, Zack TI, Sahni N, Jacob Y, Hao T, McKinney KM, Clark AP, Reyon D, Tsai SQ, Joung JK, Beroukhim R, Marto JA, Vidal M, Gaudet S, Hill DE, Livingston DM. Systematic screening reveals a role for BRCA1 in the response to transcription-associated DNA damage. Genes Dev 2014; 28:1957-75. [PMID: 25184681 PMCID: PMC4197947 DOI: 10.1101/gad.241620.114] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BRCA1 is a breast and ovarian tumor suppressor. Given its numerous incompletely understood functions and the possibility that more exist, we performed complementary systematic screens in search of new BRCA1 protein-interacting partners. New BRCA1 functions and/or a better understanding of existing ones were sought. Among the new interacting proteins identified, genetic interactions were detected between BRCA1 and four of the interactors: TONSL, SETX, TCEANC, and TCEA2. Genetic interactions were also detected between BRCA1 and certain interactors of TONSL, including both members of the FACT complex. From these results, a new BRCA1 function in the response to transcription-associated DNA damage was detected. Specifically, new roles for BRCA1 in the restart of transcription after UV damage and in preventing or repairing damage caused by stabilized R loops were identified. These roles are likely carried out together with some of the newly identified interactors. This new function may be important in BRCA1 tumor suppression, since the expression of several interactors, including some of the above-noted transcription proteins, is repeatedly aberrant in both breast and ovarian cancers.
Collapse
Affiliation(s)
- Sarah J Hill
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas Rolland
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Xianfang Xia
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Matthew S Owen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Amélie Dricot
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Travis I Zack
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; The Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Nidhi Sahni
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Yves Jacob
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, F-75015 Paris, France; UMR3569, Centre National de la Recherche Scientifique, F-75015 Paris, France; Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, F-75015 Paris, France
| | - Tong Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Kristine M McKinney
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Allison P Clark
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Deepak Reyon
- Molecular Pathology Unit, Center for Computational and Integrative Biology, Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA; Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shengdar Q Tsai
- Molecular Pathology Unit, Center for Computational and Integrative Biology, Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA; Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - J Keith Joung
- Molecular Pathology Unit, Center for Computational and Integrative Biology, Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA; Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; The Broad Institute, Cambridge, Massachusetts 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Marc Vidal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Suzanne Gaudet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - David E Hill
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - David M Livingston
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
61
|
Di Giammartino DC, Manley JL. New links between mRNA polyadenylation and diverse nuclear pathways. Mol Cells 2014; 37:644-9. [PMID: 25081038 PMCID: PMC4179132 DOI: 10.14348/molcells.2014.0177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/28/2014] [Indexed: 11/27/2022] Open
Abstract
The 3' ends of most eukaryotic messenger RNAs must undergo a maturation step that includes an endonuc-leolytic cleavage followed by addition of a polyadenylate tail. While this reaction is catalyzed by the action of only two enzymes it is supported by an unexpectedly large number of proteins. This complexity reflects the necessity of coordinating this process with other nuclear events, and growing evidence indicates that even more factors than previously thought are necessary to connect 3' processing to additional cellular pathways. In this review we summarize the current understanding of the molecular machinery involved in this step of mRNA maturation, focusing on new core and auxiliary proteins that connect polyadenylation to splicing, DNA damage, transcription and cancer.
Collapse
Affiliation(s)
| | - James L Manley
- Columbia University, Department of Biological Sciences, New York NY, 10027, USA
| |
Collapse
|
62
|
Napolitano G, Lania L, Majello B. RNA polymerase II CTD modifications: how many tales from a single tail. J Cell Physiol 2014; 229:538-44. [PMID: 24122273 DOI: 10.1002/jcp.24483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/30/2013] [Indexed: 12/31/2022]
Abstract
Eukaryote's RNA polymerases II (RNAPII) have the feature to contain, at the carbossi-terminal region of their largest subunit Rpb1, a unique CTD domain. Rpb1-CTD is composed of an increasing number of repetitions of the Y1 S2 P3 T4 S5 P6 S7 heptad that goes in parallel with the developmental level of organisms. Because of its composition, the CTD domain has a huge structural plasticity; virtually all the residues can be subjected to post-translational modifications and the two prolines can either be in cis or trans conformations. In light of these features, it is reasonable to think that different specific nuances of CTD modification and interacting factors take place not only on different gene promoters but also during different stages of the transcription cycle and reasonably might have a role even if the polymerase is on or off the DNA template. Rpb1-CTD domain is involved not only in regulating transcriptional rates, but also in all co-transcriptional processes, such as pre-mRNA processing, splicing, cleavage, and export. Moreover, recent studies highlight a role of CTD in DNA replication and in maintenance of genomic stability and specific CTD-modifications have been related to different CTD functions. In this paper, we examine results from the most recent CTD-related literature and give an overview of the general function of Rpb1-CTD in transcription, transcription-related and non transcription-related processes in which it has been recently shown to be involved in.
Collapse
|
63
|
Delineating the structural blueprint of the pre-mRNA 3'-end processing machinery. Mol Cell Biol 2014; 34:1894-910. [PMID: 24591651 DOI: 10.1128/mcb.00084-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing of mRNA precursors (pre-mRNAs) by polyadenylation is an essential step in gene expression. Polyadenylation consists of two steps, cleavage and poly(A) synthesis, and requires multiple cis elements in the pre-mRNA and a megadalton protein complex bearing the two essential enzymatic activities. While genetic and biochemical studies remain the major approaches in characterizing these factors, structural biology has emerged during the past decade to help understand the molecular assembly and mechanistic details of the process. With structural information about more proteins and higher-order complexes becoming available, we are coming closer to obtaining a structural blueprint of the polyadenylation machinery that explains both how this complex functions and how it is regulated and connected to other cellular processes.
Collapse
|
64
|
Dutertre M, Lambert S, Carreira A, Amor-Guéret M, Vagner S. DNA damage: RNA-binding proteins protect from near and far. Trends Biochem Sci 2014; 39:141-9. [DOI: 10.1016/j.tibs.2014.01.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 12/14/2022]
|
65
|
A recently evolved class of alternative 3'-terminal exons involved in cell cycle regulation by topoisomerase inhibitors. Nat Commun 2014; 5:3395. [PMID: 24577238 DOI: 10.1038/ncomms4395] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/06/2014] [Indexed: 12/13/2022] Open
Abstract
Alternative 3'-terminal exons, which use intronic polyadenylation sites, are generally less conserved and expressed at lower levels than the last exon of genes. Here we discover a class of human genes, in which the last exon appeared recently during evolution, and the major gene product uses an alternative 3'-terminal exon corresponding to the ancestral last exon of the gene. This novel class of alternative 3'-terminal exons are downregulated on a large scale by doxorubicin, a cytostatic drug targeting topoisomerase II, and play a role in cell cycle regulation, including centromere-kinetochore assembly. The RNA-binding protein HuR/ELAVL1 is a major regulator of this specific set of alternative 3'-terminal exons. HuR binding to the alternative 3'-terminal exon in the pre-messenger RNA promotes its splicing, and is reduced by topoisomerase inhibitors. These findings provide new insights into the evolution, function and molecular regulation of alternative 3'-terminal exons.
Collapse
|
66
|
Chen W, Qin L, Wang S, Li M, Shi D, Tian Y, Wang J, Fu L, Li Z, Guo W, Yu W, Yuan Y, Kang T, Huang W, Deng W. CPSF4 activates telomerase reverse transcriptase and predicts poor prognosis in human lung adenocarcinomas. Mol Oncol 2014; 8:704-16. [PMID: 24618080 DOI: 10.1016/j.molonc.2014.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/06/2014] [Accepted: 02/05/2014] [Indexed: 01/01/2023] Open
Abstract
The elevated expression and activation of human telomerase reverse transcriptase (hTERT) is associated with the unlimited proliferation of cancer cells. However, the excise mechanism of hTERT regulation during carcinogenesis is not well understood. In this study, we discovered cleavage and polyadenylation specific factor 4 (CPSF4) as a novel tumor-specific hTERT promoter-regulating protein in lung cancer cells and identified the roles of CPSF4 in regulating lung hTERT and lung cancer growth. The ectopic overexpression of CPSF4 upregulated the hTERT promoter-driven report gene expression and activated the endogenous hTERT mRNA and protein expression and the telomerase activity in lung cancer cells and normal lung cells. In contrast, the knockdown of CPSF4 by siRNA had the opposite effects. CPSF4 knockdown also significantly inhibited tumor cell growth in lung cancer cells in vitro and in a xenograft mouse model in vivo, and this inhibitory effect was partially mediated by decreasing the expression of hTERT. High expression of both CPSF4 and hTERT proteins were detected in lung adenocarcinoma cells by comparison with the normal lung cells. Tissue microarray immunohistochemical analysis of lung adenocarcinomas also revealed a strong positive correlation between the expression of CPSF4 and hTERT proteins. Moreover, Kaplan-Meier analysis showed that patients with high levels of CPSF4 and hTERT expression had a significantly shorter overall survival than those with low CPSF4 and hTERT expression levels. Collectively, these results demonstrate that CPSF4 plays a critical role in the regulation of hTERT expression and lung tumorigenesis and may be a new prognosis factor in lung adenocarcinomas.
Collapse
Affiliation(s)
- Wangbing Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Lijun Qin
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shusen Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Mei Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Dingbo Shi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yun Tian
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jingshu Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Lingyi Fu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Zhenglin Li
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Yuhui Yuan
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Dalian, China
| | - Tiebang Kang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wenlin Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China.
| | - Wuguo Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China.
| |
Collapse
|
67
|
Abstract
SIGNIFICANCE Production of proteins requires the synthesis, maturation, and export of mRNAs before their translation in the cytoplasm. Endogenous and exogenous sources of DNA damage pose a challenge to the co-ordinated regulation of gene expression, because the integrity of the DNA template can be compromised by DNA lesions. Cells recognize and respond to this DNA damage through a variety of DNA damage responses (DDRs). Failure to deal with DNA damage appropriately can lead to genomic instability and cancer. RECENT ADVANCES The p53 tumor suppressor plays a dominant role in DDR-dependent changes in gene expression, but this transcription factor is not solely responsible for all changes. Recent evidence indicates that RNA metabolism is integral to DDRs as well. In particular, post-transcriptional processes are emerging as important contributors to these complex responses. CRITICAL ISSUES Transcriptional, post-transcriptional, and translational regulation of gene expression is subject to changes in response to DNA damage. How these processes are intertwined in the unfolding of DDR is not fully understood. FUTURE DIRECTIONS Many complex regulatory responses combine to determine cell fate after DNA damage. Understanding how transcriptional, post-transcriptional, and translational processes interdigitate to create a web of regulatory interactions will be one of the key challenges to fully understand DDRs.
Collapse
Affiliation(s)
- Bruce C McKay
- Department of Biology, Institute of Biochemistry, Carleton University , Ottawa, Canada
| |
Collapse
|
68
|
Upregulation of cleavage and polyadenylation specific factor 4 in lung adenocarcinoma and its critical role for cancer cell survival and proliferation. PLoS One 2013; 8:e82728. [PMID: 24358221 PMCID: PMC3865097 DOI: 10.1371/journal.pone.0082728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022] Open
Abstract
Cleavage and polyadenylation specific factor 4 (CPSF4), a member of CPSF complex, plays a key role in mRNA polyadenylation and mRNA 3′ ends maturation. However, its possible role in lung cancer pathogenesis is unknown. In this study, we investigated the biological role and clinical significance of CPSF4 in lung cancer growth and survival and elucidated its underlying molecular mechanisms. We found that CPSF4 was highly expressed in lung adenocarcinoma cell lines and tumor tissue but was undetectable in 8 normal human tissues. We also found that CPSF4 overexpression was correlated with poor overall survival in patients with lung adenocarcinomas (P<0.001). Multivariate survival analyses revealed that higher CPSF4 expression was an independent prognostic factor for overall survival of the patients with lung adenocarcinomas. Suppression of CPSF4 by siRNA inhibited lung cancer cells proliferation, colony formation, and induced apoptosis. Mechanism studies revealed that these effects were achieved through simultaneous modulation of multiple signaling pathways. Knockdown of CPSF4 expression by siRNA markedly inhibited the phosphorylation of PI3K, AKT and ERK1/2 and JNK proteins. In contrast, the ectopic expression of CPSF4 had the opposite effects. Moreover, CPSF4 knockdown also induced the cleavage of caspase-3 and caspse-9 proteins. Collectively, these results demonstrate that CPSF4 plays a critical role in regulating lung cancer cell proliferation and survival and may be a potential prognostic biomarker and therapeutic target for lung adenocarcinoma.
Collapse
|
69
|
Rulten SL, Rotheray A, Green RL, Grundy GJ, Moore DAQ, Gómez-Herreros F, Hafezparast M, Caldecott KW. PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage. Nucleic Acids Res 2013; 42:307-14. [PMID: 24049082 PMCID: PMC3874156 DOI: 10.1093/nar/gkt835] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate their splicing. Here, we have examined the possibility that FUS is also a component of the cellular response to DNA damage. We show that both GFP-tagged and endogenous FUS re-localize to sites of oxidative DNA damage induced by UVA laser, and that FUS recruitment is greatly reduced or ablated by an inhibitor of poly (ADP-ribose) polymerase activity. Consistent with this, we show that recombinant FUS binds directly to poly (ADP-ribose) in vitro, and that both GFP-tagged and endogenous FUS fail to accumulate at sites of UVA laser induced damage in cells lacking poly (ADP-ribose) polymerase-1. Finally, we show that GFP-FUSR521G, harbouring a mutation that is associated with ALS, exhibits reduced ability to accumulate at sites of UVA laser-induced DNA damage. Together, these data suggest that FUS is a component of the cellular response to DNA damage, and that defects in this response may contribute to ALS.
Collapse
Affiliation(s)
- Stuart L Rulten
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK and School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1) account for about 40-45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary) breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s) is (are) most important for tumor suppression, nor is it clear why BRCA1-mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR), which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression.
Collapse
Affiliation(s)
- Eliot M Rosen
- Department of Oncology, Georgetown University School of Medicine Washington, DC, USA ; Department of Biochemistry, Molecular and Cellular Biology, Georgetown University School of Medicine Washington, DC, USA ; Department of Radiation Medicine, Georgetown University School of Medicine Washington, DC, USA
| |
Collapse
|
71
|
Abstract
Systemic response to DNA damage and other stresses is a complex process that includes changes in the regulation and activity of nearly all stages of gene expression. One gene regulatory mechanism used by eukaryotes is selection among alternative transcript isoforms that differ in polyadenylation [poly(A)] sites, resulting in changes either to the coding sequence or to portions of the 3' UTR that govern translation, stability, and localization. To determine the extent to which this means of regulation is used in response to DNA damage, we conducted a global analysis of poly(A) site usage in Saccharomyces cerevisiae after exposure to the UV mimetic, 4-nitroquinoline 1-oxide (4NQO). Two thousand thirty-one genes were found to have significant variation in poly(A) site distributions following 4NQO treatment, with a strong bias toward loss of short transcripts, including many with poly(A) sites located within the protein coding sequence (CDS). We further explored one possible mechanism that could contribute to the widespread differences in mRNA isoforms. The change in poly(A) site profile was associated with an inhibition of cleavage and polyadenylation in cell extract and a decrease in the levels of several key subunits in the mRNA 3'-end processing complex. Sequence analysis identified differences in the cis-acting elements that flank putatively suppressed and enhanced poly(A) sites, suggesting a mechanism that could discriminate between variable and constitutive poly(A) sites. Our analysis indicates that variation in mRNA length is an important part of the regulatory response to DNA damage.
Collapse
|
72
|
Virtanen A, Henriksson N, Nilsson P, Nissbeck M. Poly(A)-specific ribonuclease (PARN): an allosterically regulated, processive and mRNA cap-interacting deadenylase. Crit Rev Biochem Mol Biol 2013; 48:192-209. [PMID: 23496118 DOI: 10.3109/10409238.2013.771132] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Deadenylation of eukaryotic mRNA is a mechanism critical for mRNA function by influencing mRNA turnover and efficiency of protein synthesis. Here, we review poly(A)-specific ribonuclease (PARN), which is one of the biochemically best characterized deadenylases. PARN is unique among the currently known eukaryotic poly(A) degrading nucleases, being the only deadenylase that has the capacity to directly interact during poly(A) hydrolysis with both the m(7)G-cap structure and the poly(A) tail of the mRNA. In short, PARN is a divalent metal-ion dependent poly(A)-specific, processive and cap-interacting 3'-5' exoribonuclease that efficiently degrades poly(A) tails of eukaryotic mRNAs. We discuss in detail the mechanisms of its substrate recognition, catalysis, allostery and processive mode of action. On the basis of biochemical and structural evidence, we present and discuss a working model for PARN action. Models of regulation of PARN activity by trans-acting factors are discussed as well as the physiological relevance of PARN.
Collapse
Affiliation(s)
- Anders Virtanen
- Department of Cell and Molecular Biology, Program of Chemical Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
73
|
Yu L, Volkert MR. UV damage regulates alternative polyadenylation of the RPB2 gene in yeast. Nucleic Acids Res 2013; 41:3104-14. [PMID: 23355614 PMCID: PMC3597686 DOI: 10.1093/nar/gkt020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative polyadenylation (APA) is conserved in all eukaryotic cells. Selective use of polyadenylation sites appears to be a highly regulated process and contributes to human pathogenesis. In this article we report that the yeast RPB2 gene is alternatively polyadenylated, producing two mRNAs with different lengths of 3′UTR. In normally growing wild-type cells, polyadenylation preferentially uses the promoter-proximal poly(A) site. After UV damage transcription of RPB2 is initially inhibited. As transcription recovers, the promoter-distal poly(A) site is preferentially used instead, producing more of a longer form of RPB2 mRNA. We show that the relative increase in the long RPB2 mRNA is not caused by increased mRNA stability, supporting the preferential usage of the distal poly(A) site during transcription recovery. We demonstrate that the 3′UTR of RPB2 is sufficient for this UV-induced regulation of APA. We present evidence that while transcription initiation rates do not seem to influence selection of the poly(A) sites of RPB2, the rate of transcription elongation is an important determinant.
Collapse
Affiliation(s)
- Lijian Yu
- Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | |
Collapse
|
74
|
Rehfeld A, Plass M, Krogh A, Friis-Hansen L. Alterations in polyadenylation and its implications for endocrine disease. Front Endocrinol (Lausanne) 2013; 4:53. [PMID: 23658553 PMCID: PMC3647115 DOI: 10.3389/fendo.2013.00053] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms with different 3' untranslated regions (3' UTRs) and in some cases different coding regions. Two thirds of all human genes undergo APA. The efficiency of the polyadenylation process regulates gene expression and APA plays an important part in post-transcriptional regulation, as the 3' UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for micro-RNAs and RNA-binding proteins. Implications of alterations in polyadenylation for endocrine disease: Alterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome, and many cancer diseases, including several types of endocrine tumor diseases. PERSPECTIVES Recent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A) site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. SUMMARY This review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field.
Collapse
Affiliation(s)
- Anders Rehfeld
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
| | - Mireya Plass
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Anders Krogh
- Department of Biology, The Bioinformatics Centre, University of CopenhagenCopenhagen, Denmark
| | - Lennart Friis-Hansen
- Genomic Medicine, Rigshospitalet, Copenhagen University HospitalCopenhagen, Denmark
- *Correspondence: Lennart Friis-Hansen, Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 4113, Blegdamsvej 9, DK2100 Copenhagen, Denmark. e-mail:
| |
Collapse
|
75
|
Di Giammartino DC, Shi Y, Manley JL. PARP1 represses PAP and inhibits polyadenylation during heat shock. Mol Cell 2012; 49:7-17. [PMID: 23219533 DOI: 10.1016/j.molcel.2012.11.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/21/2012] [Accepted: 11/01/2012] [Indexed: 11/16/2022]
Abstract
The 3' ends of most eukaryotic mRNAs are produced by an endonucleolytic cleavage followed by synthesis of a poly(A) tail. Poly(A) polymerase (PAP), the enzyme that catalyzes the formation of the tail, is subject to tight regulation involving several posttranslational modifications. Here we show that the enzyme poly(ADP-ribose) polymerase 1 (PARP1) modifies PAP and regulates its activity both in vitro and in vivo. PARP1 binds to and modifies PAP by poly(ADP-ribosyl)ation (PARylation) in vitro, which inhibits PAP activity. In vivo we show that PAP is PARylated during heat shock, leading to inhibition of polyadenylation in a PARP1-dependent manner. The observed inhibition reflects reduced RNA binding affinity of PARylated PAP in vitro and decreased PAP association with non-heat shock protein-encoding genes in vivo. Our results provide direct evidence that PARylation can control processing of mRNA precursors, and also identify PARP1 as a regulator of polyadenylation during thermal stress.
Collapse
|
76
|
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) is involved in several important cellular pathways, including DNA damage repair, chromatin remodeling and checkpoint activation. The BRCA1 tumor suppression function has been attributed to its role in homologous recombination damage repair. In this review, historical facts concerning BRCA1, together with recent research advances regarding our understanding of the BRCA1 interacting proteins that are involved in, homologous recombination (HR) double strand break (DBS) repair and how these interacting proteins maintain chromosomal integrity, are discussed. In addition, this review poses the questions as to what extent HR repair cannot be properly fulfilled when breast cancer related mutations in the BRCA1 gene occur and how the recent and excessive studied poly-ADP ribose polymerase (PARP) inhibiting therapy approach links with the proposed tumor suppression function of the different BRCA1 domains.
Collapse
Affiliation(s)
- Kevin W Caestecker
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | | |
Collapse
|
77
|
Alshatwi AA, Hasan TN, Syed NA, Shafi G, Grace BL. Identification of functional SNPs in BARD1 gene and in silico analysis of damaging SNPs: based on data procured from dbSNP database. PLoS One 2012; 7:e43939. [PMID: 23056176 PMCID: PMC3467277 DOI: 10.1371/journal.pone.0043939] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/27/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The BARD1 gene encodes for the BRCA1-associated RING domain (BARD1) protein. Germ line and somatic mutations in BARD1 are found in sporadic breast, ovarian and uterine cancers. There is a plethora of single nucleotide polymorphisms (SNPs) which may or may not be involved in the onset of female cancers. Hence, before planning a larger population study, it is advisable to sort out the possible functional SNPs. To accomplish this goal, data available in the dbSNP database and different computer programs can be used. To the best of our knowledge, until now there has been no such study on record for the BARD1 gene. Therefore, this study was undertaken to find the functional nsSNPs in BARD1. RESULT 2.85% of all SNPs in the dbSNP database were present in the coding regions. SIFT predicted 11 out of 50 nsSNPs as not tolerable and PolyPhen assessed 27 out of 50 nsSNPs as damaging. FastSNP revealed that the rs58253676 SNP in the 3' UTR may have splicing regulator and enhancer functions. In the 5' UTR, rs17489363 and rs17426219 may alter the transcriptional binding site. The intronic region SNP rs67822872 may have a medium-high risk level. The protein structures 1JM7, 3C5R and 2NTE were predicted by PDBSum and shared 100% similarity with the BARD1 amino acid sequence. Among the predicted nsSNPs, rs4986841, rs111367604, rs13389423 and rs139785364 were identified as deleterious and damaging by the SIFT and PolyPhen programs. Additionally, I-Mutant showed a decrease in stability for these nsSNPs upon mutation. Finally, the ExPASy-PROSIT program revealed that the predicted deleterious mutations are contained in the ankyrin ring and BRCT domains. CONCLUSION Using the available bioinformatics tools and the data present in the dbSNP database, the four nsSNPs, rs4986841, rs111367604, rs13389423 and rs139785364, were identified as deleterious, reducing the protein stability of BARD1. Hence, these SNPs can be used for the larger population-based studies of female cancers.
Collapse
Affiliation(s)
- Ali A Alshatwi
- Molecular Cancer Biology Research Laboratory, Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
78
|
Millevoi S, Moine H, Vagner S. G-quadruplexes in RNA biology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:495-507. [PMID: 22488917 DOI: 10.1002/wrna.1113] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
G-quadruplexes are noncanonical structures formed by G-rich DNA and RNA sequences that fold into a four-stranded conformation. Experimental studies and computational predictions show that RNA G-quadruplexes are present in transcripts associated with telomeres, in noncoding sequences of primary transcripts and within mature transcripts. RNA G-quadruplexes at these specific locations play important roles in key cellular functions, including telomere homeostasis and gene expression. Indeed, RNA G-quadruplexes appear as important regulators of pre-mRNA processing (splicing and polyadenylation), RNA turnover, mRNA targeting and translation. The regulatory mechanisms controlled by RNA G-quadruplexes involve the binding of protein factors that modulate G-quadruplex conformation and/or serve as a bridge to recruit additional protein regulators. In this review, we summarize the current knowledge on the role of G-quadruplexes in RNA biology with particular emphasis on the molecular mechanisms underlying their specific function in RNA metabolism occurring in physiological or pathological conditions.
Collapse
Affiliation(s)
- Stefania Millevoi
- Inserm UMR 1037, University of Toulouse III, Cancer Research Center of Toulouse, Toulouse 31432, Cedex 4, France.
| | | | | |
Collapse
|
79
|
Brodie KM, Mok MTS, Henderson BR. Characterization of BARD1 targeting and dynamics at the centrosome: the role of CRM1, BRCA1 and the Q564H mutation. Cell Signal 2012; 24:451-459. [PMID: 21982881 DOI: 10.1016/j.cellsig.2011.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/23/2011] [Accepted: 09/24/2011] [Indexed: 01/25/2023]
Abstract
BARD1 heterodimerizes with BRCA1, forming an E3 ubiquitin ligase that functions at nuclear foci to repair DNA damage and the centrosome to regulate mitosis. We compared BARD1 recruitment at these structures using fluorescence recovery after photobleaching assays to measure YFP-BARD1 dynamics in live cells. In nuclei at ionizing radiation-induced foci, 20% of the BARD1 pool was immobile and 80% of slow mobility exhibiting a recovery time >500 s. In contrast, at centrosomes 83% of BARD1 was rapidly mobile with extremely fast turnover (recovery time ~20s). The ~25-fold faster exchange of BARD1 at centrosomes correlated with BRCA1-independent recruitment. We mapped key targeting sequences to a combination of the N and C-termini, and showed that mutation of the nuclear export signal reduced centrosome localization by 50%, revealing a role for CRM1. Deletion of the sequence 128-550 increased BARD1 turnover at the centrosome, consistent with a role in transient associations. Conversely, the cancer mutation Q564H reduced turnover by 25%. BARD1 is one of the most highly mobile proteins yet detected at the centrosome, and in contrast to its localization at DNA repair foci, which requires dimerization with BRCA1, targeting of BARD1 to the centrosome occurs prior to heterodimerization and its rapid turnover may provide a mechanism to regulate dimer formation.
Collapse
Affiliation(s)
- Kirsty M Brodie
- Westmead Institute for Cancer Research, The University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, NSW 2145, Australia
| | - Myth T S Mok
- Westmead Institute for Cancer Research, The University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, NSW 2145, Australia
| | - Beric R Henderson
- Westmead Institute for Cancer Research, The University of Sydney, Westmead Millennium Institute at Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
80
|
Yang Q, Doublié S. Structural biology of poly(A) site definition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:732-47. [PMID: 21823232 DOI: 10.1002/wrna.88] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
3' processing is an essential step in the maturation of all messenger RNAs (mRNAs) and is a tightly coupled two-step reaction: endonucleolytic cleavage at the poly(A) site is followed by the addition of a poly(A) tail, except for metazoan histone mRNAs, which are cleaved but not polyadenylated. The recognition of a poly(A) site is coordinated by the sequence elements in the mRNA 3' UTR and associated protein factors. In mammalian cells, three well-studied sequence elements, UGUA, AAUAAA, and GU-rich, are recognized by three multisubunit factors: cleavage factor I(m) (CFI(m) ), cleavage and polyadenylation specificity factor (CPSF), and cleavage stimulation factor (CstF), respectively. In the yeast Saccharomyces cerevisiae, UA repeats and A-rich sequence elements are recognized by Hrp1p and cleavage factor IA. Structural studies of protein-RNA complexes have helped decipher the mechanisms underlying sequence recognition and shed light on the role of protein factors in poly(A) site selection and 3' processing machinery assembly. In this review we focus on the interactions between the mRNA cis-elements and the protein factors (CFI(m) , CPSF, CstF, and homologous factors from yeast and other eukaryotes) that define the poly(A) site. WIREs RNA 2011 2 732-747 DOI: 10.1002/wrna.88 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Qin Yang
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, USA
| | | |
Collapse
|
81
|
Decorsière A, Cayrel A, Vagner S, Millevoi S. Essential role for the interaction between hnRNP H/F and a G quadruplex in maintaining p53 pre-mRNA 3'-end processing and function during DNA damage. Genes Dev 2011; 25:220-5. [PMID: 21289067 DOI: 10.1101/gad.607011] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Following DNA damage, mRNA 3'-end formation is inhibited, contributing to repression of mRNA synthesis. Here we investigated how DNA-damaged cells accomplish p53 mRNA 3'-end formation when normal mechanisms of pre-mRNA 3'-end processing regulation are inhibited. The underlying mechanism involves the interaction between a G-quadruplex structure located downstream from the p53 cleavage site and hnRNP H/F. Importantly, this interaction is critical for p53 expression and contributes to p53-mediated apoptosis. Our results uncover the existence of a specific rescue mechanism of 3'-end processing regulation allowing stress-induced p53 accumulation and function in apoptosis.
Collapse
|
82
|
p53 inhibits mRNA 3′ processing through its interaction with the CstF/BARD1 complex. Oncogene 2011; 30:3073-83. [DOI: 10.1038/onc.2011.29] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
83
|
Dr. Jekyll and Mr. Hyde: The Two Faces of the FUS/EWS/TAF15 Protein Family. Sarcoma 2010; 2011:837474. [PMID: 21197473 PMCID: PMC3005952 DOI: 10.1155/2011/837474] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/20/2010] [Accepted: 11/01/2010] [Indexed: 12/13/2022] Open
Abstract
FUS, EWS, and TAF15 form the FET family of RNA-binding proteins whose genes are found rearranged with various transcription factor genes predominantly in sarcomas and in rare hematopoietic and epithelial cancers. The resulting fusion gene products have attracted considerable interest as diagnostic and promising therapeutic targets. So far, oncogenic FET fusion proteins have been regarded as strong transcription factors that aberrantly activate or repress target genes of their DNA-binding fusion partners. However, the role of the transactivating domain in the context of the normal FET proteins is poorly defined, and, therefore, our knowledge on how FET aberrations impact on tumor biology is incomplete. Since we believe that a full understanding of aberrant FET protein function can only arise from looking at both sides of the coin, the good and the evil, this paper summarizes evidence for the central function of FET proteins in bridging RNA transcription, processing, transport, and DNA repair.
Collapse
|
84
|
Ruepp MD, Schweingruber C, Kleinschmidt N, Schümperli D. Interactions of CstF-64, CstF-77, and symplekin: implications on localisation and function. Mol Biol Cell 2010; 22:91-104. [PMID: 21119002 PMCID: PMC3016980 DOI: 10.1091/mbc.e10-06-0543] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Important interactions controlling the function of CstF-64 in histone RNA processing and general mRNA cleavage/polyadenylation are identified, and an interesting coregulation of CstF-64 and its paralogue CstF-64Tau leads to a model for CstF regulation and its role in modulating poly(A) site choice. Cleavage/polyadenylation of mRNAs and 3′ processing of replication-dependent histone transcripts are both mediated by large complexes that share several protein components. Functional studies of these shared proteins are complicated by the cooperative binding of the individual subunits. For CstF-64, an additional difficulty is that symplekin and CstF-77 bind mutually exclusively to its hinge domain. Here we have identified CstF-64 and symplekin mutants that allowed us to distinguish between these interactions and to elucidate the role of CstF-64 in the two processing reactions. The interaction of CstF-64 with symplekin is limiting for histone RNA 3′ processing but relatively unimportant for cleavage/polyadenylation. In contrast, the nuclear accumulation of CstF-64 depends on its binding to CstF-77 and not to symplekin. Moreover, the CstF-64 paralogue CstF-64Tau can compensate for the loss of CstF-64. As CstF-64Tau has a lower affinity for CstF-77 than CstF-64 and is relatively unstable, it is the minor form. However, it may become up-regulated when the CstF-64 level decreases, which has biological implications for spermatogenesis and probably also for other regulatory events. Thus, the interactions between CstF-64/CstF-64Tau and CstF-77 are important for the maintenance of stoichiometric nuclear levels of the CstF complex components and for their intracellular localization, stability, and function.
Collapse
Affiliation(s)
- Marc-David Ruepp
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
85
|
Zhang X, Virtanen A, Kleiman FE. To polyadenylate or to deadenylate: that is the question. Cell Cycle 2010; 9:4437-49. [PMID: 21084869 DOI: 10.4161/cc.9.22.13887] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
mRNA polyadenylation and deadenylation are important processes that allow rapid regulation of gene expression in response to different cellular conditions. Almost all eukaryotic mRNA precursors undergo a co-transcriptional cleavage followed by polyadenylation at the 3' end. After the signals are selected, polyadenylation occurs to full extent, suggesting that this first round of polyadenylation is a default modification for most mRNAs. However, the length of these poly(A) tails changes by the activation of deadenylation, which might regulate gene expression by affecting mRNA stability, mRNA transport, or translation initiation. The mechanisms behind deadenylation activation are highly regulated and associated with cellular conditions such as development, mRNA surveillance, DNA damage response, cell differentiation and cancer. After deadenylation, depending on the cellular response, some mRNAs might undergo an extension of the poly(A) tail or degradation. The polyadenylation/deadenylation machinery itself, miRNAs, or RNA binding factors are involved in the regulation of polyadenylation/deadenylation. Here, we review the mechanistic connections between polyadenylation and deadenylation and how the two processes are regulated in different cellular conditions. It is our conviction that further studies of the interplay between polyadenylation and deadenylation will provide critical information required for a mechanistic understanding of several diseases, including cancer development.
Collapse
Affiliation(s)
- Xiaokan Zhang
- Chemistry Department, Hunter College, City University of New York, NY, USA
| | | | | |
Collapse
|
86
|
Chan S, Choi EA, Shi Y. Pre-mRNA 3'-end processing complex assembly and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:321-35. [PMID: 21957020 DOI: 10.1002/wrna.54] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The 3'-ends of almost all eukaryotic mRNAs are formed in a two-step process, an endonucleolytic cleavage followed by polyadenylation (the addition of a poly-adenosine or poly(A) tail). These reactions take place in the pre-mRNA 3' processing complex, a macromolecular machinery that consists of more than 20 proteins. A general framework for how the pre-mRNA 3' processing complex assembles and functions has emerged from extensive studies over the past several decades using biochemical, genetic, computational, and structural approaches. In this article, we review what we have learned about this important cellular machine and discuss the remaining questions and future challenges.
Collapse
Affiliation(s)
- Serena Chan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
87
|
Cevher MA, Kleiman FE. Connections between 3'-end processing and DNA damage response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:193-9. [PMID: 21956914 DOI: 10.1002/wrna.20] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cellular DNA damage response (DDR) involves changes in the functional and structural properties of a number of nuclear proteins, resulting in a coordinated control of gene expression and DNA repair. This response includes functional interactions of the DNA repair, transcription, and RNA processing machineries. Following DNA damage, cellular levels of polyadenylated transcripts are transiently decreased and normal recovery depends on transcription-coupled repair (TCR). In addition, DNA damage has gene-specific effects regulating the mRNA levels of factors involved in the DDR itself at different times after the damage. The 3'-end processing machinery, which is important in the regulation of mRNA stability, is involved in these general and gene-specific responses to DNA damage. The role of 3'-end processing in DDR supports the idea that the steady-state levels of different mRNAs change upon DNA-damaging conditions as a result of regulation of not only their biosynthesis but also their turnover. Here, we review the mechanistic connections between 3'-end processing and DDR, and discuss the implications of deregulation of this important step of mRNA maturation in the cellular recovery after DNA-damaging treatment. The relevance of these functional connections is illustrated by the increasing number of reports on this relatively unexplored field.
Collapse
Affiliation(s)
- Murat A Cevher
- Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | | |
Collapse
|
88
|
Nuclear deadenylation/polyadenylation factors regulate 3' processing in response to DNA damage. EMBO J 2010; 29:1674-87. [PMID: 20379136 DOI: 10.1038/emboj.2010.59] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 03/05/2010] [Indexed: 12/23/2022] Open
Abstract
We previously showed that mRNA 3' end cleavage reaction in cell extracts is strongly but transiently inhibited under DNA-damaging conditions. The cleavage stimulation factor-50 (CstF-50) has a role in this response, providing a link between transcription-coupled RNA processing and DNA repair. In this study, we show that CstF-50 interacts with nuclear poly(A)-specific ribonuclease (PARN) using in vitro and in extracts of UV-exposed cells. The CstF-50/PARN complex formation has a role in the inhibition of 3' cleavage and activation of deadenylation upon DNA damage. Extending these results, we found that the tumour suppressor BARD1, which is involved in the UV-induced inhibition of 3' cleavage, strongly activates deadenylation by PARN in the presence of CstF-50, and that CstF-50/BARD1 can revert the cap-binding protein-80 (CBP80)-mediated inhibition of PARN activity. We also provide evidence that PARN along with the CstF/BARD1 complex participates in the regulation of endogenous transcripts under DNA-damaging conditions. We speculate that the interplay between polyadenylation, deadenylation and tumour-suppressor factors might prevent the expression of prematurely terminated messengers, contributing to control of gene expression under different cellular conditions.
Collapse
|
89
|
A functional human Poly(A) site requires only a potent DSE and an A-rich upstream sequence. EMBO J 2010; 29:1523-36. [PMID: 20339349 PMCID: PMC2876958 DOI: 10.1038/emboj.2010.42] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 03/03/2010] [Indexed: 12/14/2022] Open
Abstract
We have analysed the sequences required for cleavage and polyadenylation in the intronless melanocortin 4 receptor (MC4R) pre-mRNA. Unlike other intronless genes, 3′end processing of the MC4R primary transcript is independent of any auxiliary sequence elements and only requires the core poly(A) sequences. Mutation of the AUUAAA hexamer had little effect on MC4R 3′end processing but small changes in the short DSE severely reduced cleavage efficiency. The MC4R poly(A) site requires only the DSE and an A-rich upstream sequence to direct efficient cleavage and polyadenylation. Our observation may be highly relevant for the understanding of how human noncanonical poly(A) sites are recognised. This is supported by a genome-wide analysis of over 10 000 poly(A) sites where we show that many human noncanonical poly(A) signals contain A-rich upstream sequences and tend to have a higher frequency of U and GU nucleotides in their DSE compared with canonical poly(A) signals. The importance of A-rich elements for noncanonical poly(A) site recognition was confirmed by mutational analysis of the human JUNB gene, which contains an A-rich noncanonical poly(A) signal.
Collapse
|
90
|
The Arabidopsis ortholog of the 77 kDa subunit of the cleavage stimulatory factor (AtCstF-77) involved in mRNA polyadenylation is an RNA-binding protein. FEBS Lett 2010; 584:1449-54. [PMID: 20214900 DOI: 10.1016/j.febslet.2010.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/23/2010] [Accepted: 03/03/2010] [Indexed: 01/27/2023]
Abstract
The 77 kDa subunit of the polyadenylation cleavage stimulation factor (CstF77) is important in messenger RNA 3' end processing. Previously, we demonstrated that AtCstF77 interacts with AtCPSF30, the Arabidopsis ortholog of the 30 kDa subunit of the Cleavage and Polyadenylation Specificity Factor. In further dissecting this interaction, it was found that the C-terminus of AtCstF77 interacts with AtCPSF30. Remarkably, we also found that the C-terminal domain of AtCstF77 possesses RNA-binding ability. These studies therefore reveal AtCstF77 to be an RNA-binding protein, adding yet another RNA-binding activity to the plant polyadenylation complex. This raises interesting questions as to the means by which RNAs are recognized during mRNA 3' end formation in plants.
Collapse
|
91
|
Singh P, Alley TL, Wright SM, Kamdar S, Schott W, Wilpan RY, Mills KD, Graber JH. Global changes in processing of mRNA 3' untranslated regions characterize clinically distinct cancer subtypes. Cancer Res 2010; 69:9422-30. [PMID: 19934316 DOI: 10.1158/0008-5472.can-09-2236] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular cancer diagnostics are an important clinical advance in cancer management, but new methods are still needed. In this context, gene expression signatures obtained by microarray represent a useful molecular diagnostic. Here, we describe novel probe-level microarray analyses that reveal connections between mRNA processing and neoplasia in multiple tumor types, with diagnostic potential. We now show that characteristic differences in mRNA processing, primarily in the 3'-untranslated region, define molecular signatures that can distinguish similar tumor subtypes with different survival characteristics, with at least 74% accuracy. Using a mouse model of B-cell leukemia/lymphoma, we find that differences in transcript isoform abundance are likely due to both alternative polyadenylation (APA) and differential degradation. While truncation of the 3'-UTR is the most common observed pattern, genes with elongated transcripts were also observed, and distinct groups of affected genes are found in related but distinct tumor types. Genes with elongated transcripts are overrepresented in ontology categories related to cell-cell adhesion and morphology. Analysis of microarray data from human primary tumor samples revealed similar phenomena. Western blot analysis of selected proteins confirms that changes in the 3'-UTR can correlate with changes in protein expression. Our work suggests that alternative mRNA processing, particularly APA, can be a powerful molecular biomarker with prognostic potential. Finally, these findings provide insights into the molecular mechanisms of gene deregulation in tumorigenesis.
Collapse
Affiliation(s)
- Priyam Singh
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3' end processing regulation. Nucleic Acids Res 2009; 38:2757-74. [PMID: 20044349 PMCID: PMC2874999 DOI: 10.1093/nar/gkp1176] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA (mRNA) 3′ end formation is a nuclear process through which all eukaryotic primary transcripts are endonucleolytically cleaved and most of them acquire a poly(A) tail. This process, which consists in the recognition of defined poly(A) signals of the pre-mRNAs by a large cleavage/polyadenylation machinery, plays a critical role in gene expression. Indeed, the poly(A) tail of a mature mRNA is essential for its functions, including stability, translocation to the cytoplasm and translation. In addition, this process serves as a bridge in the network connecting the different transcription, capping, splicing and export machineries. It also participates in the quantitative and qualitative regulation of gene expression in a variety of biological processes through the selection of single or alternative poly(A) signals in transcription units. A large number of protein factors associates with this machinery to regulate the efficiency and specificity of this process and to mediate its interaction with other nuclear events. Here, we review the eukaryotic 3′ end processing machineries as well as the comprehensive set of regulatory factors and discuss the different molecular mechanisms of 3′ end processing regulation by proposing several overlapping models of regulation.
Collapse
Affiliation(s)
- Stefania Millevoi
- Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France.
| | | |
Collapse
|
93
|
Muñoz MJ, Pérez Santangelo MS, Paronetto MP, de la Mata M, Pelisch F, Boireau S, Glover-Cutter K, Ben-Dov C, Blaustein M, Lozano JJ, Bird G, Bentley D, Bertrand E, Kornblihtt AR. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 2009; 137:708-20. [PMID: 19450518 DOI: 10.1016/j.cell.2009.03.010] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 01/22/2009] [Accepted: 03/02/2009] [Indexed: 10/20/2022]
Abstract
DNA damage induces apoptosis and many apoptotic genes are regulated via alternative splicing (AS), but little is known about the control mechanisms. Here we show that ultraviolet irradiation (UV) affects cotranscriptional AS in a p53-independent way, through the hyperphosphorylation of RNA polymerase II carboxy-terminal domain (CTD) and a subsequent inhibition of transcriptional elongation, estimated in vivo and in real time. Phosphomimetic CTD mutants not only display lower elongation but also duplicate the UV effect on AS. Consistently, nonphosphorylatable mutants prevent the UV effect. Apoptosis promoted by UV in cells lacking p53 is prevented when the change in AS of the apoptotic gene bcl-x is reverted, confirming the relevance of this mechanism. Splicing-sensitive microarrays revealed a significant overlap of the subsets of genes that have changed AS with UV and those that have reduced expression, suggesting that transcriptional coupling to AS is a key feature of the DNA-damage response.
Collapse
Affiliation(s)
- Manuel J Muñoz
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR, Frank J, Manley JL. Molecular architecture of the human pre-mRNA 3' processing complex. Mol Cell 2009; 33:365-76. [PMID: 19217410 PMCID: PMC2946185 DOI: 10.1016/j.molcel.2008.12.028] [Citation(s) in RCA: 446] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 10/24/2008] [Accepted: 12/12/2008] [Indexed: 01/17/2023]
Abstract
Pre-mRNA 3' end formation is an essential step in eukaryotic gene expression. Over half of human genes produce alternatively polyadenylated mRNAs, suggesting that regulated polyadenylation is an important mechanism for posttranscriptional gene control. Although a number of mammalian mRNA 3' processing factors have been identified, the full protein composition of the 3' processing machinery has not been determined, and its structure is unknown. Here we report the purification and subsequent proteomic and structural characterization of human mRNA 3' processing complexes. Remarkably, the purified 3' processing complex contains approximately 85 proteins, including known and new core 3' processing factors and over 50 proteins that may mediate crosstalk with other processes. Electron microscopic analyses show that the core 3' processing complex has a distinct "kidney" shape and is approximately 250 A in length. Together, our data has revealed the complexity and molecular architecture of the pre-mRNA 3' processing complex.
Collapse
Affiliation(s)
- Yongsheng Shi
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
The tumor suppressor Cdc73 functionally associates with CPSF and CstF 3' mRNA processing factors. Proc Natl Acad Sci U S A 2009; 106:755-60. [PMID: 19136632 DOI: 10.1073/pnas.0812023106] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CDC73 tumor suppressor gene is mutationally inactivated in hereditary and sporadic parathyroid tumors. Its product, the Cdc73 protein, is a component of the RNA polymerase II and chromatin-associated human Paf1 complex (Paf1C). Here, we show that Cdc73 physically associates with the cleavage and polyadenylation specificity factor (CPSF) and cleavage stimulation factor (CstF) complexes that are required for the maturation of mRNA 3' ends in the cell nucleus. Immunodepletion experiments indicate that the Cdc73-CPSF-CstF complex is necessary for 3' mRNA processing in vitro. Microarray analysis of CDC73 siRNA-treated cells revealed INTS6, a gene encoding a subunit of the Integrator complex, as an in vivo Cdc73 target. Cdc73 depletion by siRNA resulted in decreased INTS6 mRNA abundance, and decreased association of CPSF and CstF subunits with the INTS6 locus. Our results suggest that Cdc73 facilitates association of 3' mRNA processing factors with actively-transcribed chromatin and support the importance of links between tumor suppression and mRNA maturation.
Collapse
|
96
|
Koltovaya NA. Activation of repair and checkpoints by double-strand DNA breaks: Activational cascade of protein phosphorylation. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
97
|
Edwards RA, Lee MS, Tsutakawa SE, Williams RS, Tainer JA, Glover JNM. The BARD1 C-terminal domain structure and interactions with polyadenylation factor CstF-50. Biochemistry 2008; 47:11446-56. [PMID: 18842000 PMCID: PMC2654182 DOI: 10.1021/bi801115g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/20/2008] [Indexed: 12/19/2022]
Abstract
The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF-50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins. Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.
Collapse
Affiliation(s)
| | | | | | | | | | - J. N. Mark Glover
- Address correspondence to this author. Tel: (780) 492-2136. Fax: (780) 492-0886. E-mail:
| |
Collapse
|
98
|
Hunt AG, Xu R, Addepalli B, Rao S, Forbes KP, Meeks LR, Xing D, Mo M, Zhao H, Bandyopadhyay A, Dampanaboina L, Marion A, Von Lanken C, Li QQ. Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling. BMC Genomics 2008; 9:220. [PMID: 18479511 PMCID: PMC2391170 DOI: 10.1186/1471-2164-9-220] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 05/14/2008] [Indexed: 01/31/2023] Open
Abstract
Background The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A) tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and produce the poly(A) tail. Here we report a comprehensive pairwise protein-protein interaction mapping and gene expression profiling of the mRNA polyadenylation protein machinery in Arabidopsis. Results By protein sequence homology search using human and yeast polyadenylation factors, we identified 28 proteins that may be components of Arabidopsis polyadenylation machinery. To elucidate the protein network and their functions, we first tested their protein-protein interaction profiles. Out of 320 pair-wise protein-protein interaction assays done using the yeast two-hybrid system, 56 (~17%) showed positive interactions. 15 of these interactions were further tested, and all were confirmed by co-immunoprecipitation and/or in vitro co-purification. These interactions organize into three distinct hubs involving the Arabidopsis polyadenylation factors. These hubs are centered around AtCPSF100, AtCLPS, and AtFIPS. The first two are similar to complexes seen in mammals, while the third one stands out as unique to plants. When comparing the gene expression profiles extracted from publicly available microarray datasets, some of the polyadenylation related genes showed tissue-specific expression, suggestive of potential different polyadenylation complex configurations. Conclusion An extensive protein network was revealed for plant polyadenylation machinery, in which all predicted proteins were found to be connecting to the complex. The gene expression profiles are indicative that specialized sub-complexes may be formed to carry out targeted processing of mRNA in different developmental stages and tissue types. These results offer a roadmap for further functional characterizations of the protein factors, and for building models when testing the genetic contributions of these genes in plant growth and development.
Collapse
Affiliation(s)
- Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Fox D, Le Trong I, Rajagopal P, Brzovic PS, Stenkamp RE, Klevit RE. Crystal structure of the BARD1 ankyrin repeat domain and its functional consequences. J Biol Chem 2008; 283:21179-86. [PMID: 18480049 DOI: 10.1074/jbc.m802333200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BARD1 is the constitutive nuclear partner to the breast and ovarian cancer-specific tumor suppressor BRCA1. Together, they form a heterodimeric complex responsible for maintaining genomic stability through nuclear functions involving DNA damage signaling and repair, transcriptional regulation, and cell cycle control. We report the 2.0A structure of the BARD1 ankyrin repeat domain. The structure includes four ankyrin repeats with a non-canonical C-terminal capping ankyrin repeat and a well ordered extended loop preceding the first repeat. Conserved surface features show an acidic patch and an acidic pocket along the surface typically used by ankyrin repeat domains for binding cognate proteins. We also demonstrate that two reported mutations, N470S and V507M, in the ankyrin repeat domain do not result in observable structural defects. These results provide a structural basis for exploring the biological function of the ankyrin repeat domain and for modeling BARD1 isoforms.
Collapse
Affiliation(s)
- David Fox
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | | | |
Collapse
|
100
|
Vethantham V, Rao N, Manley JL. Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function. Genes Dev 2008; 22:499-511. [PMID: 18281463 DOI: 10.1101/gad.1628208] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The addition of the poly(A) tail to the ends of eukaryotic mRNAs is catalyzed by poly(A) polymerase (PAP). PAP activity is known to be highly regulated, for example, by alternative splicing and phosphorylation. In this study we show that the small ubiquitin-like modifier (SUMO) plays multiple roles in regulating PAP function. Our discovery of SUMO-conjugated PAP began with the observation of a striking pattern of abundant higher-molecular-weight forms of PAP in certain mouse tissues and cell lines. PAP constitutes an unusual SUMO substrate in that, despite the absence of any consensus sumoylation sites, PAP interacts very strongly with the SUMO E2 enzyme ubc9 and can be extensively sumoylated both in vitro and in vivo. Six sites of sumoylation in PAP were identified, with two overlapping one of two nuclear localization signals (NLS). Strikingly, mutation of the two lysines at the NLS to arginines, or coexpression of a SUMO protease with wild-type PAP, caused PAP to be localized to the cytoplasm, demonstrating that sumoylation is required to facilitate PAP nuclear localization. Sumoylation also contributes to PAP stability, as down-regulation of sumoylation led to decreases in PAP levels. Finally, the activity of purified PAP was shown to be inhibited by in vitro sumoylation. Our study thus shows that SUMO regulates PAP in numerous distinct ways and is integral to normal PAP function.
Collapse
Affiliation(s)
- Vasupradha Vethantham
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|