51
|
Muronetz VI, Melnikova AK, Saso L, Schmalhausen EV. Influence of Oxidative Stress on Catalytic and Non-glycolytic Functions of Glyceraldehyde-3-phosphate Dehydrogenase. Curr Med Chem 2020; 27:2040-2058. [PMID: 29848267 DOI: 10.2174/0929867325666180530101057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) is a unique enzyme that, besides its main function in glycolysis (catalysis of glyceraldehyde-3-phosphate oxidation), possesses a number of non-glycolytic activities. The present review summarizes information on the role of oxidative stress in the regulation of the enzymatic activity as well as non-glycolytic functions of GAPDH. METHODS Based on the analysis of literature data and the results obtained in our research group, mechanisms of the regulation of GAPDH functions through the oxidation of the sulfhydryl groups in the active site of the enzyme have been suggested. RESULTS Mechanism of GAPDH oxidation includes consecutive oxidation of the catalytic Cysteine (Cys150) into sulfenic, sulfinic, and sulfonic acid derivatives, resulting in the complete inactivation of the enzyme. The cysteine sulfenic acid reacts with reduced glutathione (GSH) to form a mixed disulfide (S-glutathionylated GAPDH) that further reacts with Cys154 yielding the disulfide bond in the active site of the enzyme. In contrast to the sulfinic and sulfonic acids, the mixed disulfide and the intramolecular disulfide bond are reversible oxidation products that can be reduced in the presence of GSH or thioredoxin. CONCLUSION Oxidation of sulfhydryl groups in the active site of GAPDH is unavoidable due to the enhanced reactivity of Cys150. The irreversible oxidation of Cys150 is prevented by Sglutathionylation and disulfide bonding with Cys154. The oxidation/reduction of the sulfhydryl groups in the active site of GAPDH can be used for regulation of glycolysis and numerous side activities of this enzyme including the induction of apoptosis.
Collapse
Affiliation(s)
- Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Aleksandra K Melnikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer"Sapienza, University of Rome, Rome, Italy
| | - Elena V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
52
|
Arabiyat AS, Becerra-Bayona S, Kamaldinov T, Munoz-Pinto DJ, Hahn MS. Hydrogel Properties May Influence Mesenchymal Stem Cell Lineage Progression Through Modulating GAPDH Activity. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00164-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
53
|
Lin L, Zhang Y, Li Y, Fu H, Hu J, Zhou Y, Xu Y, Xia G, Sun X, Yang H, Shen Y. Identification of signature proteins of processed Bombyx batryticatus by comparative proteomic analysis. Int J Biol Macromol 2020; 153:289-296. [DOI: 10.1016/j.ijbiomac.2020.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
|
54
|
Tsai CW, Tsai CF, Lin KH, Chen WJ, Lin MS, Hsieh CC, Lin CC. An investigation of the correlation between the S-glutathionylated GAPDH levels in blood and Alzheimer's disease progression. PLoS One 2020; 15:e0233289. [PMID: 32469899 PMCID: PMC7259681 DOI: 10.1371/journal.pone.0233289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/03/2020] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by two aggregates, namely, amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) of hyperphosphorylated tau protein (tau-p), which are released into the blood in a very small amount and cannot be easily detected. An increasing number of recent studies have suggested that S-glutathionylated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is highly correlated with Aβ in patients with AD and that S-glutathionylated GAPDH plays a role as a proapoptotic factor in AD. We found that S-glutathionylated GAPDH is abundant in the blood of AD patients, which is unusual because S-glutathionylated GAPDH cannot exist in the blood under normal conditions. The aim of this study was to further explore the correlation between the S-glutathionylated GAPDH levels in blood plasma and AD progression. As controls, we recruited 191 people without AD, which included 111 healthy individuals and 37 patients with depression and insomnia, in the psychosomatic clinic. Moreover, 47 patients with AD (aged 40–89 years) were recruited at the neurology clinic. The blood S-glutathionylated GAPDH levels in the AD patients were significantly (p < 0.001) higher (752.7 ± 301.7 ng/dL) than those in the controls (59.92 ± 122.4 ng/dL), irrespective of gender and age. For AD diagnosis, the criterion blood S-glutathionylated GAPDH level > 251.62 ng/dL exhibited 95.74% sensitivity and 92.67% specificity. In fact, the individuals aged 70–89 years, namely, 37 patients from the psychosomatic clinic and 42 healthy individuals, showed significant blood S-glutathionylated GAPDH levels (230.5 ± 79.3 and 8.05 ± 20.51 ng/dL, respectively). This finding might indicate neurodegenerative AD progression in psychosomatic patients and suggests that the degree of neuronal apoptosis during AD progression might be sensitively evaluated based on the level of S-glutathionylated GAPDH in blood.
Collapse
Affiliation(s)
- Chen Wei Tsai
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan City, Taiwan
| | - Chia Fan Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuan Hung Lin
- Department of Neurology, Taiwan Adventist Hospital, Taipei, Taiwan
| | - Wei Jung Chen
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan City, Taiwan
| | - Muh Shi Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan City, Taiwan.,Department of Surgery, Kuang Tien General Hospital, Taichung, Taiwan.,Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan.,Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan
| | | | - Chai Ching Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan City, Taiwan
| |
Collapse
|
55
|
Leu SJ, Lee YC, Lee CH, Liao PY, Chiang CW, Yang CM, Su CH, Ou TY, Liu KJ, Lo HJ, Tsai BY, Yang YY. Generation and Characterization of Single Chain Variable Fragment against Alpha-Enolase of Candida albicans. Int J Mol Sci 2020; 21:ijms21082903. [PMID: 32326294 PMCID: PMC7215377 DOI: 10.3390/ijms21082903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
Candida albicans (C. albicans) is an opportunistic human pathogen responsible for approximately a half of clinical candidemia. The emerging Candida spp. with resistance to azoles is a major challenge in clinic, suggesting an urgent demand for new drugs and therapeutic strategies. Alpha–enolase (Eno1) is a multifunctional protein and represents an important marker for invasive candidiasis. Thus, C. albicans Eno1 (CaEno1) is believed to be an important target for the development of therapeutic agents and antibody drugs. Recombinant CaEno1 (rCaEno1) was first used to immunize chickens. Subsequently, we used phage display technology to construct two single chain variable fragment (scFv) antibody libraries. A novel biopanning procedure was carried out to screen anti-rCaEno1 scFv antibodies, whose specificities were further characterized. The polyclonal IgY antibodies showed binding to rCaEno1 and native CaEno1. A dominant scFv (CaS1) and its properties were further characterized. CaS1 attenuated the growth of C. albicans and inhibited the binding of CaEno1 to plasminogen. Animal studies showed that CaS1 prolonged the survival rate of mice and zebrafish with candidiasis. The fungal burden in kidney and spleen, as well as level of inflammatory cytokines were significantly reduced in CaS1-treated mice. These results suggest CaS1 has potential of being immunotherapeutic drug against C. albicans infections.
Collapse
Affiliation(s)
- Sy-Jye Leu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-J.-L.); (C.-H.S.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-Y.L.); (C.-W.C.); (C.-M.Y.)
- Center for Reproductive Medicine and Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.L.); (K.-J.L.)
| | - Po-Yen Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-Y.L.); (C.-W.C.); (C.-M.Y.)
| | - Chen-Wei Chiang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-Y.L.); (C.-W.C.); (C.-M.Y.)
| | - Chieh-Ming Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-Y.L.); (C.-W.C.); (C.-M.Y.)
| | - Ching-Hua Su
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-J.-L.); (C.-H.S.)
| | - Tsong-Yih Ou
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, College of Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
| | - Ko-Jiunn Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.L.); (K.-J.L.)
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70456, Taiwan;
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Bor-Yu Tsai
- Navi Bio-Therapeutics Inc., Taipei 10351, Taiwan;
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.L.); (K.-J.L.)
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 3325); Fax: +886-2-27324510
| |
Collapse
|
56
|
Genome association of carcass and palatability traits from Bos indicus-Bos taurus crossbred steers within electrical stimulation status and correspondence with steer temperament 2. Palatability. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
57
|
Zamani A, Powell KL, May A, Semple BD. Validation of reference genes for gene expression analysis following experimental traumatic brain injury in a pediatric mouse model. Brain Res Bull 2020; 156:43-49. [PMID: 31904409 DOI: 10.1016/j.brainresbull.2019.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 01/01/2023]
Abstract
Quantitative polymerase chain reaction (qPCR) is the gold standard method in targeted analysis of messenger RNA (mRNA) levels in a tissue. To minimize methodological errors, a reference gene (or a combination of reference genes) is routinely used for normalization to account for technical variables such as RNA quality and sample size. While presumed to have stable expression, reference genes in the brain can change during normal development, as well as in response to injury, such as traumatic brain injury (TBI). This study is the first to evaluate the stability of reference genes in a controlled cortical impact (CCI) model in the pediatric mouse brain, using two methods of qPCR normalization for optimal reference gene selection. Three week old mice were subjected to unilateral CCI at two severity of injuries (mild or severe), compared to sham controls. At 1 and 8 weeks post-injury, the ipsilateral hemisphere was analyzed to determine reference gene stability. Five commonly-used reference genes were compared: tyrosine 3 monooxygenase/tryptophan 5 monooxygenase activation protein zeta (Ywhaz), cyclophilin A (Ppia), hypoxanthine phosphoribosyl transferase (Hprt), glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and β-actin (Actb). Ppia and Hprt were chosen as the most stable combination of genes using GeNORM software analysis. These results highlight the instability of several commonly used reference genes after TBI, and provide a selection of validated genes for future gene expression analyses in the injured pediatric mouse brain.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia.
| | - Kim L Powell
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashleigh May
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
58
|
Fatsini E, Rey S, Ibarra-Zatarain Z, Boltaña S, Mackenzie S, Duncan NJ. Linking stress coping styles with brain mRNA abundance of selected transcripts for Senegalese sole (Solea senegalensis) juveniles. Physiol Behav 2020; 213:112724. [PMID: 31682888 DOI: 10.1016/j.physbeh.2019.112724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 11/24/2022]
Abstract
In fish, proactive and reactive individual stress copying styles (SCS) have been used to resolve variation in molecular expression data. Stress coping styles have been previously described in several stages of Solea senegalensis by validating for the species the use of standard behavioural screening tests. The present study aimed to link behavioural SCS tests with brain transcript abundance in early Senegalese sole juveniles in order to observe the natural variation in a molecular pathway in this species. A total of 50 juveniles were subjected to three individual behavioural (Restraining, New environment and Confinement) and one group (Risk-taking) screening tests. The fish were classified in SCS categories by applying a hierarchical cluster to the variable "Total activity" (the total activity time that the fish was moving in each individual test). Three categories were defined, proactive, intermediate and reactive sole. Six transcripts were chosen and tested, one related to basic metabolism (gapdh-2), three to feeding behaviour (per1, igf-Ia, pparß) and two to the stress response (crh-BP and hsp90aa) in 30 juveniles (10 individuals per SCS category) using rt-qPCR to observe differences in the abundance of those transcripts among SCS. Four transcripts were differentially expressed (DETs) among them. The transcript gapdh-2 showed up-regulation for proactive and intermediate SCS sole while reactive individuals showed down-regulation. Target mRNAs per1, igf-Ia and pparß, showed different levels of up-regulation for proactive and reactive fish while intermediates were highly down-regulated. Surprisingly no differences in stress related transcripts were observed. Correlations were found between variation in coping styles and variation in the abundance of mRNAs involved in important biological functions in Senegalese sole. These results are the first evidence of the relationship between the behavioural individual variation and the fluctuation in brain transcripts abundance in Senegalese sole.
Collapse
Affiliation(s)
- Elvira Fatsini
- IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona Spain; Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro Portugal.
| | - Sonia Rey
- Institute of Aquaculture, University of Stirling, FK9 4LU Stirling Scotland UK
| | - Zohar Ibarra-Zatarain
- Centro Nayarita de Innovación y Transferencia Tecnológica (CENIT(2)), 63173 Tepic Mexico
| | | | - Simon Mackenzie
- Institute of Aquaculture, University of Stirling, FK9 4LU Stirling Scotland UK
| | - Neil J Duncan
- IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona Spain
| |
Collapse
|
59
|
Randez-Gil F, Sánchez-Adriá IE, Estruch F, Prieto JA. The formation of hybrid complexes between isoenzymes of glyceraldehyde-3-phosphate dehydrogenase regulates its aggregation state, the glycolytic activity and sphingolipid status in Saccharomyces cerevisiae. Microb Biotechnol 2019; 13:562-571. [PMID: 31743950 PMCID: PMC7017825 DOI: 10.1111/1751-7915.13513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/14/2019] [Accepted: 11/02/2019] [Indexed: 11/29/2022] Open
Abstract
The glycolytic enzyme glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) has been traditionally considered a housekeeping protein involved in energy generation. However, evidence indicates that GAPDHs from different origins are tightly regulated and that this regulation may be on the basis of glycolysis‐related and glycolysis‐unrelated functions. In Saccharomyces cerevisiae, Tdh3 is the main GAPDH, although two other isoenzymes encoded by TDH1 and TDH2 have been identified. Like other GAPDHs, Tdh3 exists predominantly as a tetramer, although dimeric and monomeric forms have also been isolated. Mechanisms of Tdh3 regulation may thus imply changes in its oligomeric state or be based in its ability to interact with Tdh1 and/or Tdh2 to form hybrid complexes. However, no direct evidence of the existence of these interactions has been provided and the exact function of Tdh1,2 is unknown. Here, we show that Tdh1,2 immunopurified with a GFP‐tagged version of Tdh3 and that lack of this interaction stimulates the Tdh3’s aggregation. Furthermore, we found that the combined knockout of TDH1 and TDH2 promotes the loss of cell’s viability and increases the growing rate, glucose consumption and CO2 production, suggesting a higher glycolytic flux in the mutant cells. Consistent with this, the tdh3 strain, which displays impaired in vitro GAPDH activity, exhibited the opposite phenotypes. Quite remarkably, tdh1 tdh2 mutant cells show increased sensitivity to aureobasidin A, an inhibitor of the inositolphosphoryl ceramide synthase, while cells lacking Tdh3 showed improved tolerance. The results are in agreement with a link between glycolysis and sphingolipid (SLs) metabolism. Engineering Tdh activity could be thus exploited to alter the SLs status with consequences in different aspects of yeast biotechnology.
Collapse
Affiliation(s)
- Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7., Paterna, 46980, Valencia, Spain
| | - Isabel E Sánchez-Adriá
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7., Paterna, 46980, Valencia, Spain
| | - Francisco Estruch
- Departament of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, Burjassot, 46100, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7., Paterna, 46980, Valencia, Spain
| |
Collapse
|
60
|
Ma Y, Yu H, Liu W, Qin Y, Xing R, Li P. Integrated proteomics and metabolomics analysis reveals the antifungal mechanism of the C-coordinated O-carboxymethyl chitosan Cu(II) complex. Int J Biol Macromol 2019; 155:1491-1509. [PMID: 31751736 DOI: 10.1016/j.ijbiomac.2019.11.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
Abstract
With wide application in agriculture, copper fungicides have undergone three stages of development: inorganic copper, synthetic organic copper, and natural organic copper. Using chitin/chitosan (CS) as a substrate, the natural organic copper fungicide C-coordinated O-carboxymethyl chitosan Cu(II) complex (O-CSLn-Cu) was developed in the laboratory. Taking Phytophthora capsici Leonian as an example, we explored the antifungal mechanism of O-CSLn-Cu by combining tandem mass tag (TMT)-based proteomics with non-targeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. A total of 1172 differentially expressed proteins were identified by proteomics analysis. According to the metabolomics analysis, 93 differentially metabolites were identified. Acetyl-CoA-related and membrane localized proteins showed significant differences in the proteomics analysis. Most of the differential expressed metabolites were distributed in the cytoplasm, followed by mitochondria. The integrated analysis revealed that O-CSLn-Cu could induce the "Warburg effect", with increased glycolysis in the cytoplasm and decreased metabolism in the mitochondria. Therefore, P. capsici Leonian had to compensate for ATP loss in the TCA cycle by increasing the glycolysis rate. However, this metabolic shift could not prevent the death of P. capsici Leonian. To verify this hypothesis, a series of biological experiments, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and enzyme activity measurements were carried out. The results suggest that O-CSLn-Cu causes mitochondrial injury, which consequently leads to excessive ROS levels and insufficient ATP levels, thereby killing P. capsici Leonian.
Collapse
Affiliation(s)
- Yuzhen Ma
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| | - Weixiang Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
61
|
Windberger U, Auer R, Seltenhammer M, Mach G, Skidmore JA. Near-Newtonian Blood Behavior - Is It Good to Be a Camel? Front Physiol 2019; 10:906. [PMID: 31379608 PMCID: PMC6650724 DOI: 10.3389/fphys.2019.00906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
From a certain level of exercise-intensity onward, hematocrit increases in horses, which brings more oxygen carriers into the bloodstream. Camels, however, when used in competitive racing could be even in need of iron supplementation and blood transfusions due to a severe reduction of their available hematocrit compared to their resting hematocrit. Since the extrinsic and intrinsic mechanical properties of camel erythrocytes (RBC) are so different compared to RBCs of other mammals, the question arises whether this observation might be a response to endurance exercise aiming at keeping the RBC count low. Rheometry indicated dromedary camel blood to behave almost Newtonian, which is unique amongst mammals. Shear thinning did increase with the hematocrit, but remained marginal compared to horses. As a result, camel whole blood viscosity (WBV) exceeded horse WBV at high shear rates, an effect, which was significantly augmented when the packed cell volume (PCV) was increased. Therefore, in camels any infusion of RBCs into the bloodstream can increase the cardiac work and the energy input into the endothelium more effectively, which should generate vascular remodeling in the long term. Yielding, however, was completely absent in camel blood, confirming low cohesion between its components at quasi-static flow. Camel blood remained a viscous liquid without a threshold even at unphysiologically high PCVs. This can help to washout lactate when camels start to dehydrate and might contribute to the sustained working ability of these animals. The subtle pseudoplastic behavior and the high viscosity contrast across the RBC membrane point to weak coupling between blood flow and red cell behavior. We predict that RBCs flow as separate entities and can show various types of motion, which can lead to friction instead of being collectively aligned to the flow direction. In comparison to horses, this behavior will become relevant at higher RBC counts in front of flow obstacles and possibly cause vascular remodeling if the PCV rises during strenuous exercise, a matter that should be avoided.
Collapse
Affiliation(s)
- Ursula Windberger
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Roland Auer
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Georg Mach
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
62
|
Sirover MA. Pleiotropic effects of moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cancer progression, invasiveness, and metastases. Cancer Metastasis Rev 2019; 37:665-676. [PMID: 30209795 DOI: 10.1007/s10555-018-9764-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) may represent the quintessential example of a moonlighting protein. The latter are a new, intriguing class of cell proteins which exhibit multiple activities in different subcellular locales apart from their initially, well-characterized function. As such, apart from its classical role in energy production, membrane-bound GAPDH is required for membrane fusion, endocytosis and, intriguingly, for iron transport. Cytoplasmic GAPDH regulates mRNA stability and is required for ER to Golgi trafficking. Nuclear GAPDH is involved in apoptosis, transcriptional gene regulation, the maintenance of DNA integrity, as well as nuclear tRNA export. Paradoxically, the etiology of a number of human pathologies is dependent upon GAPDH structure and function. In particular, recent evidence indicates a significant role for moonlighting GAPDH in tumorigenesis. Specifically, these include its role in the survival of tumor cells, in tumor angiogenesis, as well as its control of tumor cell gene expression and posttranscriptional regulation of tumor cell mRNA. Each of these activities correlates with increased tumor progression and, unfortunately, a poor prognosis for the afflicted individual.
Collapse
Affiliation(s)
- Michael A Sirover
- Department of Pharmacology, The Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19047, USA.
| |
Collapse
|
63
|
Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J. Protein Promiscuity in H 2O 2 Signaling. Antioxid Redox Signal 2019; 30:1285-1324. [PMID: 29635930 DOI: 10.1089/ars.2017.7013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Decrypting the cellular response to oxidative stress relies on a comprehensive understanding of the redox signaling pathways stimulated under oxidizing conditions. Redox signaling events can be divided into upstream sensing of oxidants, midstream redox signaling of protein function, and downstream transcriptional redox regulation. Recent Advances: A more and more accepted theory of hydrogen peroxide (H2O2) signaling is that of a thiol peroxidase redox relay, whereby protein thiols with low reactivity toward H2O2 are instead oxidized through an oxidative relay with thiol peroxidases. CRITICAL ISSUES These ultrareactive thiol peroxidases are the upstream redox sensors, which form the first cellular port of call for H2O2. Not all redox-regulated interactions between thiol peroxidases and cellular proteins involve a transfer of oxidative equivalents, and the nature of redox signaling is further complicated through promiscuous functions of redox-regulated "moonlighting" proteins, of which the precise cellular role under oxidative stress can frequently be obscured by "polygamous" interactions. An ultimate goal of redox signaling is to initiate a rapid response, and in contrast to prokaryotic oxidant-responsive transcription factors, mammalian systems have developed redox signaling pathways, which intersect both with kinase-dependent activation of transcription factors, as well as direct oxidative regulation of transcription factors through peroxiredoxin (Prx) redox relays. FUTURE DIRECTIONS We highlight that both transcriptional regulation and cell fate can be modulated either through oxidative regulation of kinase pathways, or through distinct redox-dependent associations involving either Prxs or redox-responsive moonlighting proteins with functional promiscuity. These protein associations form systems of crossregulatory networks with multiple nodes of potential oxidative regulation for H2O2-mediated signaling.
Collapse
Affiliation(s)
- David Young
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandan Pedre
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daria Ezeriņa
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Barbara De Smet
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Aleksandra Lewandowska
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria-Armineh Tossounian
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nandita Bodra
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jingjing Huang
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Leonardo Astolfi Rosado
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frank Van Breusegem
- 2 Brussels Center for Redox Biology, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Joris Messens
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
64
|
Das PP, Chua GM, Lin Q, Wong SM. iTRAQ-based analysis of leaf proteome identifies important proteins in secondary metabolite biosynthesis and defence pathways crucial to cross-protection against TMV. J Proteomics 2019; 196:42-56. [PMID: 30726703 DOI: 10.1016/j.jprot.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/23/2022]
Abstract
Cross-protection is a phenomenon in which infection with a mild virus strain protects host plants against subsequent infection with a closely related severe virus strain. This study showed that a mild strain mutant virus, Tobacco mosaic virus (TMV)-43A could cross protect Nicotiana benthamiana plants against wild-type TMV. Furthermore, we investigated the host responses at the proteome level to identify important host proteins involved in cross-protection. We used the isobaric tags for relative and absolute quantification (iTRAQ) technique to analyze the proteome profiles of TMV, TMV-43A and cross-protected plants at different time-points. Our results showed that TMV-43A can cross-protect N. benthamiana plants from TMV. In cross-protected plants, photosynthetic activities were augmented, as supported by the increased accumulation of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and geranylgeranyl diphosphate synthase (GGPS) enzymes, which are crucial for chlorophyll biosynthesis. The increased abundance of ROS scavenging enzymes like thioredoxins and L-ascorbate peroxidase would prevent oxidative damage in cross-protected plants. Interestingly, the abundance of defence-related proteins (14-3-3 and NbSGT1) decreased, along with a reduction in virus accumulation during cross-protection. In conclusion, we have identified several important host proteins that are crucial in cross-protection to counter TMV infection in N. benthamiana plants. BIOLOGICAL SIGNIFICANCE: TMV is the most studied model for host-virus interaction in plants. It can infect wide varieties of plant species, causing significant economic losses. Cross protection is one of the methods to combat virus infection. A few cross-protection mechanisms have been proposed, including replicase/coat protein-mediated resistance, RNA silencing, and exclusion/spatial separation between virus strains. However, knowledge on host responses at the proteome level during cross protection is limited. To address this knowledge gap, we have leveraged on a global proteomics analysis approach to study cross protection. We discovered that TMV-43A (protector) protects N. benthamiana plants from TMV (challenger) infection through multiple host pathways: secondary metabolite biosynthesis, photosynthesis, defence, carbon metabolism, protein translation and processing and amino acid biosynthesis. In the secondary metabolite biosynthesis pathway, enzymes 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and geranylgeranyl diphosphate synthase (GGPS) play crucial roles in chlorophyll biosynthesis during cross protection. In addition, accumulation of ROS scavenging enzymes was also found in cross-protected plants, providing rescues from excessive oxidative damage. Reduced abundance of plant defence proteins is correlated to reduced virus accumulation in host plants. These findings have increased our knowledge in host responses during cross-protection.
Collapse
Affiliation(s)
- Prem Prakash Das
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Gao Ming Chua
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
65
|
Li R, Liang C, Jiang L, Yuan C, Huang M. Structural determination of group A Streptococcal surface dehydrogenase and characterization of its interaction with urokinase-type plasminogen activator receptor. Biochem Biophys Res Commun 2019; 510:539-544. [PMID: 30737033 DOI: 10.1016/j.bbrc.2019.01.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) has caused a wide variety of human diseases. Its multifunctional surface dehydrogenase (SDH) is crucial for GAS life cycle. Furthermore, GAS infection into human pharyngeal cells has been previously shown to be mediated by the interaction between SDH and host urokinase-type plasminogen activator receptor (uPAR). However, the structural information of SDH remains to be elucidated and there are few detailed studies to characterize its interaction with uPAR. In-depth research on these issues will provide potential targets and strategies for combating GAS. Here, we prepared recombinant SDH tetramer in Escherichia coli BL21 (DE3) cells. After purification and crystallization, we determined its crystal structure at 1.74 Å. The unique characteristics might be potentially explored as drug targets or vaccine immunogen. We subsequently performed gel filtration chromatography, native-polyacrylamide gel electrophoresis (PAGE) and in vitro pull-down analyses. The results showed that their interaction was too weak to form stable complexes and the role of uPAR involved in GAS infection needs further demonstration. Altogether the current work provides the first view of SDH and deepens the knowledge of GAS infection.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Chenghui Liang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China.
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China.
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, China.
| |
Collapse
|
66
|
Das PP, Lin Q, Wong SM. Comparative proteomics of Tobacco mosaic virus-infected Nicotiana tabacum plants identified major host proteins involved in photosystems and plant defence. J Proteomics 2019; 194:191-199. [PMID: 30503828 DOI: 10.1016/j.jprot.2018.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/29/2018] [Accepted: 11/16/2018] [Indexed: 11/18/2022]
Abstract
Tobacco mosaic virus (TMV) is a positive single-stranded RNA virus. Its 5' end ORF codes for the replicase proteins, namely 126 kDa and 183 kDa, respectively. These proteins interact with many host proteins to form a virus replication complex (VRC). This study aims to dissect the proteome profile of TMV-infected Nicotiana tabacum in host cellular and molecular pathways. We used the isobaric tags for relative and absolute quantification (iTRAQ) technique to analyse the differential global proteomic profile of TMV infected and mock infected plants. Out of 1897 total proteins, we identified 407 differentially abundant proteins and grouped them into three functional categories, namely metabolism, cellular processes and signalling processing. Our results showed that photosynthesis, carbon metabolism, plant defence, protein synthesis, and protein processing in the endoplasmic reticulum were significantly altered. Carbon metabolism and photosynthesis were present in very low abundance, whereas accumulation of reactive oxygen species and misfolded proteins lead to the accumulation of thioredoxin H-type 1. In conclusion, we identified several key host proteins that are involved in TMV infection/replication in N. tabacum plants. SIGNIFICANCE OF THE STUDY: TMV is one of the most widely studied plant virus. It is used as a tool to study host-virus interaction. There are several host proteins reported that facilitate VRC formation and replication of TMV. However, there is limited knowledge in the expression regulation of these host proteins upon TMV infection. This study is the first report that investigates the response of host protein expression involved in TMV infection through a quantitative proteomics technique iTRAQ, combined with LC-MS/MS analysis. We used TMV-infected Nicotiana tabacum plants to investigate the effects of TMV infection on host proteins. Our results revealed differential abundance of proteins involving various pathways in protein translation, protein processing, photosynthesis and plant defence. There was a high abundance of thioredoxin H-type 1, a protein that counters oxidative stress and accelerated regulation of fatty acid synthesis to provide additional lipid molecules for VRC formation. There was a significant reduction in abundance of psaA and psbB proteins in the photosynthetic pathways. Our results identified key candidate host proteins involved in TMV-infected N. tabacum for functional studies in future.
Collapse
Affiliation(s)
- Prem Prakash Das
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
67
|
Silva EM, Conde JN, Allonso D, Ventura GT, Coelho DR, Carneiro PH, Silva ML, Paes MV, Rabelo K, Weissmuller G, Bisch PM, Mohana-Borges R. Dengue virus nonstructural 3 protein interacts directly with human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and reduces its glycolytic activity. Sci Rep 2019; 9:2651. [PMID: 30804377 PMCID: PMC6389977 DOI: 10.1038/s41598-019-39157-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Dengue is an important mosquito-borne disease and a global public health problem. The disease is caused by dengue virus (DENV), which is a member of the Flaviviridae family and contains a positive single-stranded RNA genome that encodes a single precursor polyprotein that is further cleaved into structural and non-structural proteins. Among these proteins, the non-structural 3 (NS3) protein is very important because it forms a non-covalent complex with the NS2B cofactor, thereby forming the functional viral protease. NS3 also contains a C-terminal ATPase/helicase domain that is essential for RNA replication. Here, we identified 47 NS3-interacting partners using the yeast two-hybrid system. Among those partners, we highlight several proteins involved in host energy metabolism, such as apolipoprotein H, aldolase B, cytochrome C oxidase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). GAPDH directly binds full-length NS3 and its isolated helicase and protease domains. Moreover, we observed an intense colocalization between the GAPDH and NS3 proteins in DENV2-infected Huh7.5.1 cells, in NS3-transfected BHK-21 cells and in hepatic tissue from a fatal dengue case. Taken together, these results suggest that the human GAPDH-DENV NS3 interaction is involved in hepatic metabolic alterations, which may contribute to the appearance of steatosis in dengue-infected patients. The interaction between GAPDH and full-length NS3 or its helicase domain in vitro as well as in NS3-transfected cells resulted in decreased GAPDH glycolytic activity. Reduced GAPDH glycolytic activity may lead to the accumulation of metabolic intermediates, shifting metabolism to alternative, non-glycolytic pathways. This report is the first to identify the interaction of the DENV2 NS3 protein with the GAPDH protein and to demonstrate that this interaction may play an important role in the molecular mechanism that triggers hepatic alterations.
Collapse
Affiliation(s)
- Emiliana M Silva
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Jonas N Conde
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gustavo T Ventura
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Diego R Coelho
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Pedro Henrique Carneiro
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Manuela L Silva
- Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
| | - Marciano V Paes
- Laboratório Interdisciplinar de Pesquisa Médica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Kíssila Rabelo
- Laboratório de Ultraestrutura e Biologia Tecidual, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gilberto Weissmuller
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Paulo Mascarello Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.
| |
Collapse
|
68
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
69
|
Li S, Li F, Zou S, Zhang L, Bai Y. PTH1R signalling regulates the mechanotransduction process of cementoblasts under cyclic tensile stress. Eur J Orthod 2019; 40:537-543. [PMID: 29394342 DOI: 10.1093/ejo/cjx099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To investigate the regulatory role of type I parathyroid hormone receptor (PTH1R) signalling in the mechanotransduction process of cementoblasts under cyclic tensile stress (CTS). Materials and methods Immortalized cementoblast cell line OCCM-30 were employed and subjected to cyclic tensile strain applied by a four-point bending system. The expression of PTHrP and PTH1R, as well as cementoblastic transcription factor Runx-2, Osterix, and extracellular matrix protein COL-1 and OPN were assessed by quantitative real-time polymerase chain reaction and western blot analysis. PTH1R expression was knocked down by siPTH1R transfection, and the alteration of cementoblastic biomarkers expression was examined to evaluate the function of PTH1R. Furthermore, to investigate possible downstream molecules, expression of signal molecule ERK1/2 with or without siPTH1R transfection, and the effect of ERK inhibitor PD98059 on the expression of cementoblastic biomarkers was also examined. Results Cyclic tensile strain elevated the expression of PTHrP and PTH1R, as well as cementoblastic biomarkers Runx-2, Osterix, COL-1, and OPN in a time-dependent manner, which was inhibited by siPTH1R transfection. The expression of phosphorylated ERK1/2 was upregulated time-dependently under cyclic stretch, which was also inhibited by siPTH1R transfection, and pretreatment of p-ERK1/2 inhibitor PD98059 undermined the increase of Runx-2, Osterix, COL-1, and OPN prominently. Conclusion The findings of the present study indicate that PTH1R signalling plays a regulatory role in the CTS induced cementoblastic differentiation in mature cementoblasts, and ERK1/2 is essentially involved as a downstream intracellular signal molecule in this mechanotransduction process.
Collapse
Affiliation(s)
- Shengnan Li
- Institute of Dental Research and Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - Fan Li
- Institute of Dental Research and Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Li Zhang
- Institute of Dental Research and Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, P.R. China
| | - Yuxing Bai
- Institute of Dental Research and Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
70
|
GAPDH as a model non-canonical AU-rich RNA binding protein. Semin Cell Dev Biol 2019; 86:162-173. [DOI: 10.1016/j.semcdb.2018.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
|
71
|
Identification and characterization of glyceraldehyde 3-phosphate dehydrogenase from Fasciola gigantica. Parasitol Res 2019; 118:861-872. [DOI: 10.1007/s00436-019-06225-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
|
72
|
Schmalhausen EV, Shumkov MS, Muronetz VI, Švedas VK. Expression of glyceraldehyde-3-phosphate dehydrogenase from M. tuberculosis in E. coli. Purification and characteristics of the untagged recombinant enzyme. Protein Expr Purif 2019; 157:28-35. [PMID: 30710621 DOI: 10.1016/j.pep.2019.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 02/01/2023]
Abstract
The goal of the present work was to produce glyceraldehyde-3-phospate dehydrogenase from M. tuberculosis in E. coli cells in soluble and catalytically active form and to elaborate a method for the purification of the recombinant enzyme. The His-tagged recombinant enzyme (Mtb-GAPDH_His) was shown to be inactive and insoluble. The untagged enzyme (Mtb-GAPDH) was catalytically active and exhibited higher solubility. Mtb-GAPDH was purified from the cell extract using ammonium sulfate fractionation and ion-exchange chromatography. The presence of glycerol was necessary for isolation of Mtb-GAPDH, presumably, to facilitate folding of the recombinant enzyme. The yield of Mtb-GAPDH constituted 1.3 mg per 10 g of the cell biomass. The specific activity of the purified Mtb-GAPDH was 55 ± 5 μmol NADH/min per mg protein (pH 9.0, 22 °C) that exceeded the activity of the previously described preparation of His-tagged recombinant GAPDH from M. tuberculosis that was co-expressed with GroEL/ES chaperone by approximately 5-fold. The results suggest that the folding of the recombinant GAPDH is hindered by the His-tag, which may result in the production of insoluble protein or in isolation of the preparation with decreased specific activity.
Collapse
Affiliation(s)
- E V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Lenin's Hills 1 Bldg.40, Moscow, 119234, Russian Federation.
| | - M S Shumkov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow, 119071, Russian Federation
| | - V I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Lenin's Hills 1 Bldg.40, Moscow, 119234, Russian Federation
| | - V K Švedas
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Lenin's Hills 1 Bldg.40, Moscow, 119234, Russian Federation
| |
Collapse
|
73
|
Chauhan AS, Kumar M, Chaudhary S, Dhiman A, Patidar A, Jakhar P, Jaswal P, Sharma K, Sheokand N, Malhotra H, Raje CI, Raje M. Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways. FASEB J 2019; 33:5626-5640. [PMID: 30640524 DOI: 10.1096/fj.201802102r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During physiologic stresses, like micronutrient starvation, infection, and cancer, the cytosolic moonlighting protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is trafficked to the plasma membrane (PM) and extracellular milieu (ECM). Our work demonstrates that GAPDH mobilized to the PM, and the ECM does not utilize the classic endoplasmic reticulum-Golgi route of secretion; instead, it is first selectively translocated into early and late endosomes from the cytosol via microautophagy. GAPDH recruited to this common entry point is subsequently delivered into multivesicular bodies, leading to its membrane trafficking through secretion via exosomes and secretory lysosomes. We present evidence that both pathways of GAPDH membrane trafficking are up-regulated upon iron starvation, potentially by mobilization of intracellular calcium. These pathways also play a role in clearance of misfolded intracellular polypeptide aggregates. Our findings suggest that cells build in redundancy for vital cellular pathways to maintain micronutrient homeostasis and prevent buildup of toxic intracellular misfolded protein refuse.-Chauhan, A. S., Kumar, M., Chaudhary, S., Dhiman, A., Patidar, A., Jakhar, P., Jaswal, P., Sharma, K., Sheokand, N., Malhotra, H., Raje, C. I., Raje. M. Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways.
Collapse
Affiliation(s)
- Anoop Singh Chauhan
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Manoj Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Surbhi Chaudhary
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Asmita Dhiman
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Anil Patidar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Priyanka Jakhar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Pallavi Jaswal
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Kapil Sharma
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Navdeep Sheokand
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Himanshu Malhotra
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | | | - Manoj Raje
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
74
|
Nowak N, Kulma A, Gutowicz J. Up-regulation of Key Glycolysis Proteins in Cancer Development. Open Life Sci 2018; 13:569-581. [PMID: 33817128 PMCID: PMC7874691 DOI: 10.1515/biol-2018-0068] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023] Open
Abstract
In rapid proliferating cancer cells, there is a need for fast ATP and lactate production, therefore cancer cells turn off oxidative phosphorylation and turn on the so called "Warburg effect". This regulating the expression of genes involved in glycolysis. According to many studies, glucose transporter 1, which supplies glucose to the cell, is the most abundantly expressed transporter in cancer cells. Hexokinase 2, is one of four hexokinase isoenzymes, is also another highly expressed enzyme in cancer cells and it functions to enhance the glycolytic rate. The up-regulation of these two proteins has been established as an important factor in promoting development and metastasis in many types of cancer. Furthermore, other enzymes involved in glycolysis pathway such as phosphoglucose isomerase and glyceraldehyde 3-phosphate dehydrogenase, exhibit additional functions in promoting tumor growth in a non-glycolytic way. This review demonstrates the pivotal role of GLUT1, HK2, PGI and GAPDH in cancer development. In particular, we look at how the multifunctional proteins, PGI and GAPDH, affect cancer cell survival. We also present various clinical cancer cases in terms of the overexpression of selected proteins, which may be considered as a therapeutic target.
Collapse
Affiliation(s)
- Nicole Nowak
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | - Anna Kulma
- Department of Biotechnology, Wrocław University, 51-148 Wrocław, Poland
| | - Jan Gutowicz
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| |
Collapse
|
75
|
Olson CO, Pejhan S, Kroft D, Sheikholeslami K, Fuss D, Buist M, Ali Sher A, Del Bigio MR, Sztainberg Y, Siu VM, Ang LC, Sabourin-Felix M, Moss T, Rastegar M. MECP2 Mutation Interrupts Nucleolin-mTOR-P70S6K Signaling in Rett Syndrome Patients. Front Genet 2018; 9:635. [PMID: 30619462 PMCID: PMC6305968 DOI: 10.3389/fgene.2018.00635] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023] Open
Abstract
Rett syndrome (RTT) is a severe and rare neurological disorder that is caused by mutations in the X-linked MECP2 (methyl CpG-binding protein 2) gene. MeCP2 protein is an important epigenetic factor in the brain and in neurons. In Mecp2-deficient neurons, nucleoli structures are compromised. Nucleoli are sites of active ribosomal RNA (rRNA) transcription and maturation, a process mainly controlled by nucleolin and mechanistic target of rapamycin (mTOR)-P70S6K signaling. Currently, it is unclear how nucleolin-rRNA-mTOR-P70S6K signaling from RTT cellular model systems translates into human RTT brain. Here, we studied the components of nucleolin-rRNA-mTOR-P70S6K signaling in the brain of RTT patients with common T158M and R255X mutations. Immunohistochemical examination of T158M brain showed disturbed nucleolin subcellular localization, which was absent in Mecp2-deficient homozygous male or heterozygote female mice, compared to wild type (WT). We confirmed by Western blot analysis that nucleolin protein levels are altered in RTT brain, but not in Mecp2-deficient mice. Further, we studied the expression of rRNA transcripts in Mecp2-deficient mice and RTT patients, as downstream molecules that are controlled by nucleolin. By data mining of published ChIP-seq studies, we showed MeCP2-binding at the multi-copy rRNA genes in the mouse brain, suggesting that rRNA might be a direct MeCP2 target gene. Additionally, we observed compromised mTOR-P70S6K signaling in the human RTT brain, a molecular pathway that is upstream of rRNA-nucleolin molecular conduits. RTT patients showed significantly higher phosphorylation of active mTORC1 or mTORC2 complexes compared to age- and sex-matched controls. Correlational analysis of mTORC1/2-P70S6K signaling pathway identified multiple points of deviation from the control tissues that may result in abnormal ribosome biogenesis in RTT brain. To our knowledge, this is the first report of deregulated nucleolin-rRNA-mTOR-P70S6K signaling in the human RTT brain. Our results provide important insight toward understanding the molecular properties of human RTT brain.
Collapse
Affiliation(s)
- Carl O Olson
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shervin Pejhan
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Kroft
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kimia Sheikholeslami
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David Fuss
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marjorie Buist
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Annan Ali Sher
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marc R Del Bigio
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Yehezkel Sztainberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Victoria Mok Siu
- Division of Medical Genetics, Department of Paediatrics, Schulich School of Medicine, Western University, London, ON, Canada
| | - Lee Cyn Ang
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Marianne Sabourin-Felix
- Cancer Division of the Quebec University Hospital Research Centre, Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Tom Moss
- Cancer Division of the Quebec University Hospital Research Centre, Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, and Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
76
|
Jazvinšćak Jembrek M, Vlainić J, Čadež V, Šegota S. Atomic force microscopy reveals new biophysical markers for monitoring subcellular changes in oxidative injury: Neuroprotective effects of quercetin at the nanoscale. PLoS One 2018; 13:e0200119. [PMID: 30303965 PMCID: PMC6179194 DOI: 10.1371/journal.pone.0200119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/20/2018] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress has been recognised as an important pathological mechanism underlying the development of neurodegenerative diseases. The biomarkers for assessing the degree of oxidative stress have been attracting much interest because of their potential clinical relevance in understanding the cellular effects of free radicals and evaluation of the efficacy of drug treatment. Here, an interdisciplinary approach using atomic force microscopy (AFM) and cellular and biological molecular methods were used to investigate oxidative damage in P19 neurons and to reveal the underlying mechanism of protective action of quercetin. Biological methods demonstrated the oxidative damage of P19 neurons and showed that quercetin improved neuronal survival by preventing H2O2-induced p53 and Bcl-2 down-regulation and modulated Akt and ERK1/2 signalling pathways. For the first time, AFM was employed to evaluate morphologically (roughness, height, Feret dimension) and nanomechanical (elasticity) properties in H2O2-induced neuronal damage. The AFM analysis revealed that quercetin suppressed H2O2-provoked changes in cell membrane elasticity and morphological properties, thus confirming its neuroprotective activity. The obtained results indicate the potential of AFM-measured parameters as a biophysical markers of oxidative stress-induced neurodegeneration. In general, our study suggests that AFM can be used as a highly valuable tool in other biomedical applications aimed at screening and monitoring of drug-induced effects at cellular level.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Psychology, Croatian Catholic University, Zagreb, Croatia
- * E-mail: (MJJ); (SS)
| | - Josipa Vlainić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vida Čadež
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Suzana Šegota
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- * E-mail: (MJJ); (SS)
| |
Collapse
|
77
|
Exploration of variations in proteome and metabolome for predictive diagnostics and personalized treatment algorithms: Innovative approach and examples for potential clinical application. J Proteomics 2018; 188:30-40. [DOI: 10.1016/j.jprot.2017.08.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/06/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
|
78
|
Roth Z. Stress-induced alterations in oocyte transcripts are further expressed in the developing blastocyst. Mol Reprod Dev 2018; 85:821-835. [DOI: 10.1002/mrd.23045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Zvi Roth
- Department of Animal Sciences; Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem; Rehovot Israel
| |
Collapse
|
79
|
Ito N, Anam MB, Ahmad SAI, Ohta K. Transdifferentiation of human somatic cells by ribosome. Dev Growth Differ 2018; 60:241-247. [PMID: 29845598 DOI: 10.1111/dgd.12538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 01/19/2023]
Abstract
Ribosomes are intracellular organelles ubiquitous in all organisms, which translate information from mRNAs to synthesize proteins. They are complex macromolecules composed of dozens of proteins and ribosomal RNAs. Other than translation, some ribosomal proteins also have side-jobs called "Moonlighting" function. The majority of these moonlighting functions influence cancer progression, early development and differentiation. Recently, we discovered that ribosome is involved in the regulation of cellular transdifferentiation of human dermal fibroblasts (HDFs). In vitro incorporation of ribosomes into HDFs arrests cell proliferation and induces the formation of cell clusters, that differentiate into three germ layer derived cells upon induction by differentiation mediums. The discovery of ribosome induced transdifferentiation, that is not based on genetic modification, find new possibilities for the treatment of cancer and congenital diseases, as well as to understand early development and cellular lineage differentiation.
Collapse
Affiliation(s)
- Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan.,International Research Core for Stem Cell-based Developmental Medicine, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, Kumamoto, Japan
| | - Mohammad Badrul Anam
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan.,International Research Core for Stem Cell-based Developmental Medicine, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, Kumamoto, Japan
| | - Shah Adil Ishtiyaq Ahmad
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan.,International Research Core for Stem Cell-based Developmental Medicine, Kumamoto University, Kumamoto, Japan.,Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan.,International Research Core for Stem Cell-based Developmental Medicine, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, Kumamoto, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
80
|
|
81
|
Jain P, von Toerne C, Lindermayr C, Bhatla SC. S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings. PHYSIOLOGIA PLANTARUM 2018; 162:49-72. [PMID: 28902403 DOI: 10.1111/ppl.12641] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) and various reactive nitrogen species produced in cells in normal growth conditions, and their enhanced production under stress conditions are responsible for a variety of biochemical aberrations. The present findings demonstrate that sunflower seedling roots exhibit high sensitivity to salt stress in terms of nitrite accumulation. A significant reduction in S-nitrosoglutathione reductase (GSNOR) activity is evident in response to salt stress. Restoration of GSNOR activity with dithioerythritol shows that the enzyme is reversibly inhibited under conditions of 120 mM NaCl. Salt stress-mediated S-nitrosylation of cytosolic proteins was analyzed in roots and cotyledons using biotin-switch assay. LC-MS/MS analysis revealed opposite patterns of S-nitrosylation in seedling cotyledons and roots. Salt stress enhances S-nitrosylation of proteins in cotyledons, whereas roots exhibit denitrosylation of proteins. Highest number of proteins having undergone S-nitrosylation belonged to the category of carbohydrate metabolism followed by other metabolic proteins. Of the total 61 proteins observed to be regulated by S-nitrosylation, 17 are unique to cotyledons, 4 are unique to roots whereas 40 are common to both. Eighteen S-nitrosylated proteins are being reported for the first time in plant systems, including pectinesterase, phospholipase d-alpha and calmodulin. Further physiological analysis of glyceraldehyde-3-phosphate dehydrogenase and monodehydroascorbate reductase showed that salt stress leads to a reversible inhibition of both these enzymes in cotyledons. However, seedling roots exhibit enhanced enzyme activity under salinity stress. These observations implicate the role of S-nitrosylation and denitrosylation in NO signaling thereby regulating various enzyme activities under salinity stress in sunflower seedlings.
Collapse
Affiliation(s)
- Prachi Jain
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum Muenchen, D-80939, München, Germany
| | - Christian Lindermayr
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
82
|
Selection of internal references for qRT-PCR assays of human hepatocellular carcinoma cell lines. Biosci Rep 2017; 37:BSR20171281. [PMID: 29180379 PMCID: PMC5741833 DOI: 10.1042/bsr20171281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Selecting internal references is important for normalizing the loading quantity of samples in quantitative reverse-transcription PCR (qRT-PCR). In the present study, a systematic evaluation of reference genes among nine hepatocellular carcinoma (HCC) cell lines was conducted. After screening the microarray assay data of ten HCC cell lines, 19 candidate reference genes were preselected and then evaluated by qRT-PCR, together with ACTB, GAPDH, HPRT1 and TUBB The expression evenness of these candidate genes was evaluated using RefFinder. The stabilities of the reference genes were further evaluated under different experimental perturbations in Huh-7 and MHCC-97L, and the applicability of the reference genes was assessed by measuring the mRNA expression of CCND1, CCND3, CDK4 and CDK6 under sorafenib treatment in Huh-7. Results showed that TFG and SFRS4 are among the most reliable reference genes, and ACTB ranks third and acts quite well as a classical choice, whereas GAPDH, HPRT1 and TUBB are not proper reference genes in qRT-PCR assays among the HCC cell lines. SFRS4, YWHAB, SFRS4 and CNPY3 are the most stable reference genes of the MHCC-97L under the perturbations of chemotherapy, oxidative stress, starvation and hypoxia respectively, whereas YWHAB is the most stable one of Huh-7 under all perturbations. GAPDH is recommended as a reference gene under chemotherapy perturbations. YWHAB and UBE2B, TMED2 and TSFM, and GAPDH and TSFM are the two best reference genes under oxidative stress, starvation and hypoxia perturbations respectively. TSFM is stable in both cell lines across all the perturbations.
Collapse
|
83
|
Hua Y, Yao W, Ji P, Wei Y. Integrated metabonomic-proteomic studies on blood enrichment effects of Angelica sinensis on a blood deficiency mice model. PHARMACEUTICAL BIOLOGY 2017; 55:853-863. [PMID: 28140733 PMCID: PMC6130503 DOI: 10.1080/13880209.2017.1281969] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 05/18/2023]
Abstract
CONTEXT Angelica sinensis (Oliv.) Diels (Umbelliferae) (AS) is a well-known Traditional Chinese Medicine (TCM) that enriches and regulates the blood. OBJECTIVE An integrated metabonomic and proteomic method was developed and applied to study the blood enrichment effects and mechanisms of AS on blood deficiency (BD) mouse model. MATERIALS AND METHODS Forty mice were randomly divided into the control, BD, High-dose of AS (ASH), Middle-dose of AS (ASM), and Low-dose of AS (ASL) groups. BD model mice were established by injecting N-acetylphenylhydrazine (APH) and cyclophosphamide (CTX) (ip). The aqueous extract of AS was administered at three dose of 20, 10, or 5 g/kg b. wt. orally for 7 consecutive days before/after APH and CTX administration. Gas chromatography-mass spectrometry (GC-MS) combined with pattern recognition method and 2D gel electrophoresis (2-DE) proteomics were performed in this study to discover the underlying hematopoietic regulation mechanisms of AS on BD mouse model. RESULTS Unlike in the control group, the HSP90 and arginase levels increased significantly (p < 0.05) in the BD group, but the levels of carbonic anhydrase, GAPDH, catalase, fibrinogen, GSTP, carboxylesterase and hem binding protein in the BD group decreased significantly (p < 0.05). Unlike the levels in the BD group, the levels of these biomarkers were regulated to a normal state near the control group in the ASM group. Unlike in the control group, l-alanine, arachidonic acid, l-valine, octadecanoic acid, glycine, hexadecanoic acid, l-threonine, butanoic acid, malic acid, l-proline and propanoic acid levels increased significantly (p < 0.05) in the BD group, the levels of d-fructose in the BD group decreased significantly (p < 0.05). The relative concentrations of 12 endogenous metabolites were also significantly affected by the ASL, ASM, and ASH treatments. Notably, most of the altered BD-related metabolites were restored to normal state after ASM administration. CONCLUSION AS can promote hematopoietic activities, inhibit production of reactive oxygen species, regulate energy metabolism, increase antiapoptosis, and potentially contribute to the blood enrichment effects of AS against APH- and CTX-induced BD mice.
Collapse
Affiliation(s)
- Yongli Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
| | - Wangling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, People’s Republic of China
- CONTACT Yanming WeiCollege of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province730070, People’s Republic of China
| |
Collapse
|
84
|
Liu T, Fang H, Liu J, Reid S, Hou J, Zhou T, Tian Z, Song B, Xie C. Cytosolic glyceraldehyde-3-phosphate dehydrogenases play crucial roles in controlling cold-induced sweetening and apical dominance of potato (Solanum tuberosum L.) tubers. PLANT, CELL & ENVIRONMENT 2017; 40:3043-3054. [PMID: 28940493 DOI: 10.1111/pce.13073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 05/17/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an important enzyme that functions in producing energy and supplying intermediates for cellular metabolism. Recent researches indicate that GAPDHs have multiple functions beside glycolysis. However, little information is available for functions of GAPDHs in potato. Here, we identified 4 putative cytosolic GAPDH genes in potato genome and demonstrated that the StGAPC1, StGAPC2, and StGAPC3, which are constitutively expressed in potato tissues and cold inducible in tubers, encode active cytosolic GAPDHs. Cosuppression of these 3 GAPC genes resulted in low tuber GAPDH activity, consequently the accumulation of reducing sugars in cold stored tubers by altering the tuber metabolite pool sizes favoring the sucrose pathway. Furthermore, GAPCs-silenced tubers exhibited a loss of apical dominance dependent on cell death of tuber apical bud meristem (TAB-meristem). It was also confirmed that StGAPC1, StGAPC2, and StGAPC3 interacted with the autophagy-related protein 3 (ATG3), implying that the occurrence of cell death in TAB-meristem could be induced by ATG3 associated events. Collectively, the present research evidences first that the GAPC genes play crucial roles in diverse physiological and developmental processes in potato tubers.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hui Fang
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan, 430070, People's Republic of China
| | - Jun Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan, 430070, People's Republic of China
| | - Stephen Reid
- Biochemistry Division, Department of Biology, Friedrich-Alexander-University Erlangen-Nuernberg, 91058, Erlangen, Germany
| | - Juan Hou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan, 430070, People's Republic of China
| | - Tingting Zhou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan, 430070, People's Republic of China
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- National Center for Vegetable Improvement (Central China), Wuhan, 430070, People's Republic of China
| |
Collapse
|
85
|
Li Y, Sun Y, Gu X, Xie Y, Lai W, Jing B, Peng X, Yang G. Prokaryotic Expression and Serodiagnostic Potential of Glyceraldehyde-3-Phosphate Dehydrogenase and Thioredoxin Peroxidase from Baylisascaris schroederi. Genes (Basel) 2017; 8:genes8110293. [PMID: 29068407 PMCID: PMC5704206 DOI: 10.3390/genes8110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 11/16/2022] Open
Abstract
Baylisascaris schroederi, a roundworm parasite of giant pandas, badly affects the health of its hosts. Diagnosis of this disease currently depends mainly on sedimentation floatation and Polymerase Chain Reaction (PCR) methods to detect the eggs. However, neither of these methods is suitable for diagnosis of early-stage panda baylisascariasis and no information on early diagnosis of this disease is available so far. Therefore, to develop an effective serologic diagnostic method, this study produced recombinant glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and thioredoxin peroxidase (Tpx) proteins from B. schroederi using a prokaryotic expression system. We determined the immunological characteristics of these proteins and their location in the parasite. Indirect enzyme-linked immunosorbent assays (ELISAs) were established to detect B. schroederi infection in giant pandas based on GAPDH and Tpx respectively. The open reading frame of the GAPDH gene (1083 bp) encoded a 39 kDa protein, while the predicted molecular weight of Tpx (588 bp) was 21.6 kDa. Western-blotting analysis revealed that both recombinant proteins could be recognized with positive serum of pandas infected with B. schroederi. Immunohistochemical staining showed that the endogenous GAPDH of B. schroederi was widely distributed in the worm while Tpx was mainly localized in the muscle, eggs, gut wall, uterus wall and hypodermis. Serological tests showed that the GAPDH-based indirect ELISA had a sensitivity of 95.83% and specificity of 100%, while the test using Tpx as the antigen had sensitivity of 75% and specificity of 91.7%. Thus, B. schroederi Tpx is unsuitable as a diagnostic antigen for baylisascariasis, but B. schroederi GAPDH is a good candidate diagnostic antigen for B. schroederi in pandas.
Collapse
Affiliation(s)
- Yu Li
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, No.211, Huimin Road, Chengdu 611130, China.
| | - Ying Sun
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, No.211, Huimin Road, Chengdu 611130, China.
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, No.211, Huimin Road, Chengdu 611130, China.
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, No.211, Huimin Road, Chengdu 611130, China.
| | - Weiming Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, No.211, Huimin Road, Chengdu 611130, China.
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, No.211, Huimin Road, Chengdu 611130, China.
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, No.211, Huimin Road, Chengdu 611130, China.
| |
Collapse
|
86
|
Bechtel TJ, Weerapana E. From structure to redox: The diverse functional roles of disulfides and implications in disease. Proteomics 2017; 17. [PMID: 28044432 DOI: 10.1002/pmic.201600391] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
Abstract
This review provides a comprehensive overview of the functional roles of disulfide bonds and their relevance to human disease. The critical roles of disulfide bonds in protein structure stabilization and redox regulation of protein activity are addressed. Disulfide bonds are essential to the structural stability of many proteins within the secretory pathway and can exist as intramolecular or inter-domain disulfides. The proper formation of these bonds often relies on folding chaperones and oxidases such as members of the protein disulfide isomerase (PDI) family. Many of the PDI family members catalyze disulfide-bond formation, reduction, and isomerization through redox-active disulfides and perturbed PDI activity is characteristic of carcinomas and neurodegenerative diseases. In addition to catalytic function in oxidoreductases, redox-active disulfides are also found on a diverse array of cellular proteins and act to regulate protein activity and localization in response to oxidative changes in the local environment. These redox-active disulfides are either dynamic intramolecular protein disulfides or mixed disulfides with small-molecule thiols generating glutathionylation and cysteinylation adducts. The oxidation and reduction of redox-active disulfides are mediated by cellular reactive oxygen species and activity of reductases, such as glutaredoxin and thioredoxin. Dysregulation of cellular redox conditions and resulting changes in mixed disulfide formation are directly linked to diseases such as cardiovascular disease and Parkinson's disease.
Collapse
Affiliation(s)
- Tyler J Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | |
Collapse
|
87
|
Long A, Klimova N, Kristian T. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics. Neurochem Int 2017; 109:193-201. [PMID: 28302504 DOI: 10.1016/j.neuint.2017.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 03/09/2017] [Indexed: 12/19/2022]
Abstract
NAD+ catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD+ catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD+ pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics.
Collapse
Affiliation(s)
- Aaron Long
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States
| | - Nina Klimova
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States; Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, United States; Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), United States.
| |
Collapse
|
88
|
Duan M, Wang J, Zhang X, Yang H, Wang H, Qiu Y, Song J, Guo Y, Li X. Identification of Optimal Reference Genes for Expression Analysis in Radish ( Raphanus sativus L.) and Its Relatives Based on Expression Stability. FRONTIERS IN PLANT SCIENCE 2017; 8:1605. [PMID: 28966627 PMCID: PMC5605625 DOI: 10.3389/fpls.2017.01605] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 08/31/2017] [Indexed: 05/19/2023]
Abstract
Radish (Raphanus sativus) is an important cruciferous root crop with a close relationship to Chinese cabbage (Brassica rapa). RT-qPCR is used extensively to evaluate the expression levels of target genes, and accurate measurement of target gene expression with this method is determined by the valid reference genes used for data nomalization in different experimental conditions. Screening for appropriate reference genes with stable expression based on RT-qPCR data is important for gene expression and functional analysis research in radish and its relatives. However, many researches have thought that almost no single reference gene is widely suitable for all experimental conditions, and few researchers have paid attention to the validation of reference genes in radish gene expression analysis. In the present study, 12 candidate reference genes were selected for analysis. Their expression in 28 samples, including 20 radish samples from different organs and conditions, four Chinese cabbage organs and four organs of their distant hybrid, was assessed by RT-qPCR and then five software tools-ΔCt, geNorm, NormFinder, BestKeeper and RefFinder-were used to compare their expression stability. The results showed that the most suitable reference genes were different in different organs and conditions. GAPDH, DSS1, and UP2 were optimal reference genes for gene expression analysis in all organs and conditions in radish. UPR, GSNOR1, and ACTIN2/7 were the most stable reference genes in different radish organs. UP2 and GAPDH were suitable reference genes for radish pistil development studies. RPII, UBC9, and GAPDH had the most stable expression in radish under various stresses. DSS1, UP2, and TEF2 were the optimal reference genes for Chinese cabbage organs, whereas TUA was optimal for the distant hybrid. UP2, and TEF2 were appropriate reference genes for all of the samples together. The optimal reference genes we identified, UP2, GAPDH, UPR, and GSNOR1 were verified by normalizing the expression patterns of YAB3, RPL, and FUL. These results will provide important information for selecting target reference genes in different research contexts and improve the accuracy and precision of gene expression analysis for radish, Chinese cabbage and their distant hybrid.
Collapse
Affiliation(s)
- Mengmeng Duan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- Department of Vegetable Sciences, College of Horticulture, China Agricultural UniversityBeijing, China
| | - Jinglei Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xiaohui Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Haohui Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Haiping Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yang Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jiangping Song
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yangdong Guo
- Department of Vegetable Sciences, College of Horticulture, China Agricultural UniversityBeijing, China
| | - Xixiang Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
89
|
Ryu DY, Rahman MS, Pang MG. Determination of Highly Sensitive Biological Cell Model Systems to Screen BPA-Related Health Hazards Using Pathway Studio. Int J Mol Sci 2017; 18:ijms18091909. [PMID: 28878155 PMCID: PMC5618558 DOI: 10.3390/ijms18091909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 02/01/2023] Open
Abstract
Bisphenol-A (BPA) is a ubiquitous endocrine-disrupting chemical. Recently, many issues have arisen surrounding the disease pathogenesis of BPA. Therefore, several studies have been conducted to investigate the proteomic biomarkers of BPA that are associated with disease processes. However, studies on identifying highly sensitive biological cell model systems in determining BPA health risk are lacking. Here, we determined suitable cell model systems and potential biomarkers for predicting BPA-mediated disease using the bioinformatics tool Pathway Studio. We compiled known BPA-mediated diseases in humans, which were categorized into five major types. Subsequently, we investigated the differentially expressed proteins following BPA exposure in several cell types, and analyzed the efficacy of altered proteins to investigate their associations with BPA-mediated diseases. Our results demonstrated that colon cancer cells (SW480), mammary gland, and Sertoli cells were highly sensitive biological model systems, because of the efficacy of predicting the majority of BPA-mediated diseases. We selected glucose-6-phosphate dehydrogenase (G6PD), cytochrome b-c1 complex subunit 1 (UQCRC1), and voltage-dependent anion-selective channel protein 2 (VDAC2) as highly sensitive biomarkers to predict BPA-mediated diseases. Furthermore, we summarized proteomic studies in spermatozoa following BPA exposure, which have recently been considered as another suitable cell type for predicting BPA-mediated diseases.
Collapse
Affiliation(s)
- Do-Yeal Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Korea.
| |
Collapse
|
90
|
Giorgi A, Tempera I, Napoletani G, Drovandi D, Potestà C, Martire S, Mandosi E, Filardi T, Eugenia Schininà M, Morano S, d'Erme M, Maras B. Poly(ADP-ribosylated) proteins in mononuclear cells from patients with type 2 diabetes identified by proteomic studies. Acta Diabetol 2017; 54:833-842. [PMID: 28608282 DOI: 10.1007/s00592-017-1013-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022]
Abstract
AIMS In diabetes, hyperglycemia increases reactive oxygen species that induce DNA damage and poly(ADP-ribose)polymerase activation. The aim of this study is to characterize the proteomic profile and the role of poly(ADP-ribosylation) in patients with type 2 diabetes. METHODS A proteomic platform based on 2DE and MALDI-ToF spectrometry was applied to peripheral blood mononuclear cells obtained from two different cohorts in which diabetic (n = 14) and normoglycemic patients (n = 11) were enrolled. RESULTS Proteomic maps identified WD repeat protein, 78-kDa glucose-regulated protein precursor and myosin regulatory light chain 2, as unique proteins in diabetic patients; vimentin, elongation factor 2, annexin A1, glutathione S-transferase P, moesin and cofilin-1 as unique in the normoglycemic; and calreticulin, rho GDP-dissociation inhibitor 2, protein disulfide isomerase and tropomyosin alpha-4-chain as differentially expressed between the two cohorts. An enrichment in PARylation in diabetic patients was observed in particular, affecting GAPDH and α-Enolase leading to a decrease in their enzymatic activity. CONCLUSIONS As the GAPDH and α-Enolase are involved in energy metabolism, protein synthesis and DNA repair, loss of their function or change in their activity can significantly contribute to the molecular mechanisms responsible for the development of type 2 diabetes. These data along with the proteomic profile associated with the disease may provide new insight into the pathophysiology of type 2 diabetes.
Collapse
Affiliation(s)
- Alessandra Giorgi
- Departments of Biochemical Sciences and of Experimental Medicine, Sapienza University of Roma, Rome, Italy
| | - Italo Tempera
- Department of Microbiology and Immunology, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Giorgia Napoletani
- Departments of Biochemical Sciences and of Experimental Medicine, Sapienza University of Roma, Rome, Italy
| | - Diego Drovandi
- Departments of Biochemical Sciences and of Experimental Medicine, Sapienza University of Roma, Rome, Italy
| | - Cinzia Potestà
- Departments of Biochemical Sciences and of Experimental Medicine, Sapienza University of Roma, Rome, Italy
| | - Sara Martire
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elisabetta Mandosi
- Departments of Biochemical Sciences and of Experimental Medicine, Sapienza University of Roma, Rome, Italy
| | - Tiziana Filardi
- Departments of Biochemical Sciences and of Experimental Medicine, Sapienza University of Roma, Rome, Italy
| | - M Eugenia Schininà
- Departments of Biochemical Sciences and of Experimental Medicine, Sapienza University of Roma, Rome, Italy
| | - Susanna Morano
- Departments of Biochemical Sciences and of Experimental Medicine, Sapienza University of Roma, Rome, Italy
| | - Maria d'Erme
- Departments of Biochemical Sciences and of Experimental Medicine, Sapienza University of Roma, Rome, Italy.
| | - Bruno Maras
- Departments of Biochemical Sciences and of Experimental Medicine, Sapienza University of Roma, Rome, Italy
| |
Collapse
|
91
|
Jaiswal RK, Kumar P, Sharma A, Mishra DK, Yadava PK. Proteomic identification of proteins differentially expressed following overexpression of hTERT (human telomerase reverse transcriptase) in cancer cells. PLoS One 2017; 12:e0181027. [PMID: 28704482 PMCID: PMC5509255 DOI: 10.1371/journal.pone.0181027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/25/2017] [Indexed: 12/26/2022] Open
Abstract
Reverse transcriptase activity of telomerase adds telomeric repeat sequences at extreme ends of the newly replicated chromosome in actively dividing cells. Telomerase expression is not detected in terminally differentiated cells but is noticeable in 90% of the cancer cells. hTERT (human telomerase reverse transcriptase) expression seems to promote invasiveness of cancer cells. We here present proteomic profiles of cells overexpressing or knocked down for hTERT. This study also attempts to find out the potential interacting partners of hTERT in cancer cell lines. Two-dimensional gel electrophoresis (2-DE) of two different cell lines U2OS (a naturally hTERT negative cell line) and HeLa revealed differential expression of proteins in hTERT over-expressing cells. In U2OS cell line 28 spots were picked among which 23 spots represented upregulated and 5 represented down regulated proteins. In HeLa cells 21 were upregulated and 2 were down regulated out of 23 selected spots under otherwise identical experimental conditions. Some heat shock proteins viz. Hsp60 and Hsp70 and GAPDH, which is a housekeeping gene, were found similarly upregulated in both the cell lines. The upregulation of these proteins were further confirmed at RNA and protein level by real-time PCR and western blotting respectively.
Collapse
Affiliation(s)
- Rishi Kumar Jaiswal
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pramod Kumar
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amod Sharma
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deepak Kumar Mishra
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
92
|
Kosova AA, Khodyreva SN, Lavrik OI. Role of Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) in DNA Repair. BIOCHEMISTRY (MOSCOW) 2017; 82:643-654. [PMID: 28601074 DOI: 10.1134/s0006297917060013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is widely known as a glycolytic enzyme. Nevertheless, various functions of GAPDH have been found that are unrelated to glycolysis. Some of these functions presume interaction of GAPDH with DNA, but the mechanism of its translocation to the nucleus is not fully understood. When in the nucleus, GAPDH participates in the initiation of apoptosis and transcription of genes involved in antiapoptotic pathways and cell proliferation and plays a role in the regulation of telomere length. Several authors have shown that GAPDH displays the uracil-DNA glycosylase activity and interacts with some types of DNA damages, such as apurinic/apyrimidinic sites, nucleotide analogs, and covalent DNA adducts with alkylating agents. Moreover, GAPDH can interact with proteins participating in DNA repair, such as APE1, PARP1, HMGB1, and HMGB2. In this review, the functions of GAPDH associated with DNA repair are discussed in detail.
Collapse
Affiliation(s)
- A A Kosova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
93
|
Malhotra H, Patidar A, Boradia VM, Kumar R, Nimbalkar RD, Kumar A, Gani Z, Kaur R, Garg P, Raje M, Raje CI. Mycobacterium tuberculosis Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Functions as a Receptor for Human Lactoferrin. Front Cell Infect Microbiol 2017. [PMID: 28642848 PMCID: PMC5462994 DOI: 10.3389/fcimb.2017.00245] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Iron is crucial for the survival of living cells, particularly the human pathogen Mycobacterium tuberculosis (M.tb) which uses multiple strategies to acquire and store iron. M.tb synthesizes high affinity iron chelators (siderophores), these extract iron from host iron carrier proteins such as transferrin (Tf) and lactoferrin (Lf). Recent studies have revealed that M.tb may also relocate several housekeeping proteins to the cell surface for capture and internalization of host iron carrier protein transferrin. One of the identified receptors is the glycolytic enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This conserved multifunctional protein has been identified as a virulence factor in several other bacterial species. Considering the close structural and functional homology between the two major human iron carrier proteins (Tf and Lf) and the fact that Lf is abundantly present in lung fluid (unlike Tf which is present in plasma), we evaluated whether GAPDH also functions as a dual receptor for Lf. The current study demonstrates that human Lf is sequestered at the bacterial surface by GAPDH. The affinity of Lf-GAPDH (31.7 ± 1.68 nM) is higher as compared to Tf-GAPDH (160 ± 24 nM). Two GAPDH mutants were analyzed for their enzymatic activity and interaction with Lf. Lastly, the present computational studies offer the first significant insights for the 3D structure of monomers and assembled tetramer with the associated co-factor NAD+. Sequence analysis and structural modeling identified the surface exposed, evolutionarily conserved and functional residues and predicted the effect of mutagenesis on GAPDH.
Collapse
Affiliation(s)
- Himanshu Malhotra
- Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Anil Patidar
- Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Vishant M Boradia
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Rajender Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Rakesh D Nimbalkar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Ajay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Zahid Gani
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Rajbeer Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Manoj Raje
- Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Chaaya I Raje
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| |
Collapse
|
94
|
|
95
|
Prolyl oligopeptidase and its role in the organism: attention to the most promising and clinically relevant inhibitors. Future Med Chem 2017. [DOI: 10.4155/fmc-2017-0030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prolyl oligopeptidase (POP), also called prolyl endopeptidase, is a cytosolic enzyme investigated by several research groups. It has been proposed to play an important role in physiological processes such as modulation of the levels of several neuronal peptides and hormones containing a proline residue. Due to its proteolytic activity and physiological role in cell signaling pathways, inhibition of POP offers an emerging approach for the treatment of Alzheimer's and Parkinson's diseases as well as other diseases related to cognitive impairment. Furthermore, it may also represent an interesting target for treatment of neuropsychiatric disorders, and as an antiangiogenesis or antineoplastic agent. In this review paper, we summarized naturally occurring POP inhibitors together with peptide-like inhibitors and their biological effects. Some of them have shown promising results and interesting pharmacological profiles. However, to date, there is no POP inhibitor available on the market although several clinical trials have been undertaken.
Collapse
|
96
|
Varó I, Cardenete G, Hontoria F, Monroig Ó, Iglesias J, Otero JJ, Almansa E, Navarro JC. Dietary Effect on the Proteome of the Common Octopus ( Octopus vulgaris) Paralarvae. Front Physiol 2017; 8:309. [PMID: 28567020 PMCID: PMC5434110 DOI: 10.3389/fphys.2017.00309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/28/2017] [Indexed: 01/05/2023] Open
Abstract
Nowadays, the common octopus (Octopus vulgaris) culture is hampered by massive mortalities occurring during early life-cycle stages (paralarvae). Despite the causes of the high paralarvae mortality are not yet well-defined and understood, the nutritional stress caused by inadequate diets is pointed out as one of the main factors. In this study, the effects of diet on paralarvae is analyzed through a proteomic approach, to search for novel biomarkers of nutritional stress. A total of 43 proteins showing differential expression in the different conditions studied have been identified. The analysis highlights proteins related with the carbohydrate metabolism: glyceraldehyde-3-phosphate-dedydrogenase (GAPDH), triosephosphate isomerase; other ways of energetic metabolism: NADP+-specific isocitrate dehydrogenase, arginine kinase; detoxification: glutathione-S-transferase (GST); stress: heat shock proteins (HSP70); structural constituent of eye lens: S-crystallin 3; and cytoskeleton: actin, actin-beta/gamma1, beta actin. These results allow defining characteristic proteomes of paralarvae depending on the diet; as well as the use of several of these proteins as novel biomarkers to evaluate their welfare linked to nutritional stress. Notably, the changes of proteins like S-crystallin 3, arginine kinase and NAD+ specific isocitrate dehydrogenase, may be related to fed vs. starving paralarvae, particularly in the first 4 days of development.
Collapse
Affiliation(s)
- Inmaculada Varó
- Instituto de Acuicultura Torre de la Sal (CSIC), Ribera de CabanesCastellón, Spain
| | | | - Francisco Hontoria
- Instituto de Acuicultura Torre de la Sal (CSIC), Ribera de CabanesCastellón, Spain
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (CSIC), Ribera de CabanesCastellón, Spain.,Faculty of Natural Sciences, Institute of Aquaculture, University of StirlingStirling, Scotland
| | - José Iglesias
- Centro Oceanográfico de Vigo, Instituto Español de OceanografíaVigo, Spain
| | - Juan J Otero
- Centro Oceanográfico de Vigo, Instituto Español de OceanografíaVigo, Spain
| | - Eduardo Almansa
- Centro Oceanográfico de Canarias, Instituto Español de OceanografíaSanta Cruz de Tenerife, Spain
| | - Juan C Navarro
- Instituto de Acuicultura Torre de la Sal (CSIC), Ribera de CabanesCastellón, Spain
| |
Collapse
|
97
|
Adamus G. Impact of Autoantibodies against Glycolytic Enzymes on Pathogenicity of Autoimmune Retinopathy and Other Autoimmune Disorders. Front Immunol 2017; 8:505. [PMID: 28503176 PMCID: PMC5408022 DOI: 10.3389/fimmu.2017.00505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Autoantibodies (AAbs) against glycolytic enzymes: aldolase, α-enolase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase are prevalent in sera of patients with blinding retinal diseases, such as paraneoplastic [cancer-associated retinopathy (CAR)] and non-paraneoplastic autoimmune retinopathies, as well as in many other autoimmune diseases. CAR is a degenerative disease of the retina characterized by sudden vision loss in patients with cancer and serum anti-retinal AAbs. In this review, we discuss the widespread serum presence of anti-glycolytic enzyme AAbs and their significance in autoimmune diseases. There are multiple mechanisms responsible for antibody generation, including the innate anti-microbial response, anti-tumor response, or autoimmune response against released self-antigens from damaged, inflamed tissue. AAbs against enolase, GADPH, and aldolase exist in a single patient in elevated titers, suggesting their participation in pathogenicity. The lack of restriction of AAbs to one disease may be related to an increased expression of glycolytic enzymes in various metabolically active tissues that triggers an autoimmune response and generation of AAbs with the same specificity in several chronic and autoimmune conditions. In CAR, the importance of serum anti-glycolytic enzyme AAbs had been previously dismissed, but the retina may be without pathological consequence until a failure of the blood–retinal barrier function, which would then allow pathogenic AAbs access to their retinal targets, ultimately leading to damaging effects.
Collapse
Affiliation(s)
- Grazyna Adamus
- School of Medicine, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
98
|
Non-Canonical Roles of Dengue Virus Non-Structural Proteins. Viruses 2017; 9:v9030042. [PMID: 28335410 PMCID: PMC5371797 DOI: 10.3390/v9030042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae family comprises a number of human pathogens, which, although sharing structural and functional features, cause diseases with very different outcomes. This can be explained by the plurality of functions exerted by the few proteins coded by viral genomes, with some of these functions shared among members of a same family, but others being unique for each virus species. These non-canonical functions probably have evolved independently and may serve as the base to the development of specific therapies for each of those diseases. Here it is discussed what is currently known about the non-canonical roles of dengue virus (DENV) non-structural proteins (NSPs), which may account for some of the effects specifically observed in DENV infection, but not in other members of the Flaviviridae family. This review explores how DENV NSPs contributes to the physiopathology of dengue, evasion from host immunity, metabolic changes, and redistribution of cellular components during infection.
Collapse
|
99
|
Liu S, Guo C, Dang Z, Liang X. Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:256-264. [PMID: 27984820 DOI: 10.1016/j.ecoenv.2016.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/04/2016] [Accepted: 12/09/2016] [Indexed: 05/22/2023]
Abstract
Previous study concerning the effects of surfactants on phenanthrene biodegradation focused on observing the changes of cell characteristics of Sphingomonas sp. GY2B. However, the impact of surfactants on the expression of bacterial proteins, controlling phenanthrene transport and catabolism, remains obscure. To overcome the knowledge gap, comparative proteomic approaches were used to investigate protein expressions of Sphingomonas sp. GY2B during phenanthrene biodegradation in the presence and absence of a nonionic surfactant, Tween80. A total of 23 up-regulated and 19 down-regulated proteins were detected upon Tween80 treatment. Tween80 could regulate ion transport (e.g. H+) in cell membrane to provide driving force (ATP) for the transmembrane transport of phenanthrene thus increasing its uptake and biodegradation by GY2B. Moreover, Tween80 probably increased GY2B vitality and growth by inducing the expression of peptidylprolyl isomerase to stabilize cell membrane, increasing the abundances of proteins involved in intracellular metabolic pathways (e.g. TCA cycle), as well as decreasing the abundances of translation/transcription-related proteins and cysteine desulfurase, thereby facilitating phenanthrene biodegradation. This study may facilitate a better understanding of the mechanisms that regulate surfactants-enhanced biodegradation of PAHs at the proteomic level.
Collapse
Affiliation(s)
- Shasha Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| | - Xujun Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
100
|
Exploring potential biomarker responses to lithium in Daphnia magna from the perspectives of function and signaling networks. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|