51
|
Cui XL, Ananian C, Perez E, Strenger A, Beuve AV, Ferraris RP. Cyclic AMP stimulates fructose transport in neonatal rat small intestine. J Nutr 2004; 134:1697-703. [PMID: 15226456 DOI: 10.1093/jn/134.7.1697] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intestinal fructose transporter (GLUT5) expression normally increases significantly after completion of weaning in neonatal rats. Increases in GLUT5 mRNA, protein, and activity can be induced in early weaning pups by precocious consumption of dietary fructose or by perfusion of the small intestine with fructose solutions. Little is known about the signal transduction pathway of the dietary fructose-mediated increase in GLUT5 expression during early intestinal development. Recent microarray results indicate that key gluconeogenic enzymes modulated by cAMP are markedly upregulated by fructose perfusion; hence, we tested the hypothesis that cAMP plays an important role in regulating intestinal fructose absorption by simultaneously perfusing adenylyl cyclase, phosphodiesterase, or protein kinase A (PKA) inhibitors along with fructose. Intestinal fructose uptake rates increased by 100% in rat pups perfused with 8-bromo-cAMP. Simultaneous fructose and dideoxyadenosine (DDA; inhibitor of adenylyl cyclase) perfusion completely inhibited increases in fructose uptake rate induced by perfusion with fructose alone. Fructose perfusion increased intestinal mucosal cAMP concentrations by 27%, but simultaneous perfusion of fructose and DDA inhibited the fructose-induced increase in cAMP. However, GLUT5 and sodium-glucose cotransporter (SGLT1) mRNA abundance and glucose transport rates were each not significantly affected by 8-bromo-cAMP and DDA. Moreover, simultaneous perfusion of the small intestine with fructose and PKA inhibitor or N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamid. 2HCl, both inhibitors of PKA, did not prevent the fructose-induced increases in GLUT5 mRNA abundance and fructose uptake rate. Cyclic AMP appears to modulate fructose transport without affecting GLUT5 mRNA abundance, and without involving PKA.
Collapse
Affiliation(s)
- Xue-Lin Cui
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, NJ 07103-2714, USA
| | | | | | | | | | | |
Collapse
|
52
|
Barrenetxe J, Sainz N, Barber A, Lostao MP. Involvement of PKC and PKA in the inhibitory effect of leptin on intestinal galactose absorption. Biochem Biophys Res Commun 2004; 317:717-21. [PMID: 15081399 DOI: 10.1016/j.bbrc.2004.03.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Indexed: 10/26/2022]
Abstract
Studies from our laboratory have demonstrated that leptin inhibits galactose absorption in vitro by acting on the Na(+)/glucose cotransporter SGLT1. Since PKC and PKA are involved in the regulation of SGLT1 and leptin is able to activate these kinases, we have investigated the possible implication of PKC and PKA in the inhibition of sugar absorption by leptin in rat small intestinal rings. Inhibition of 1 mM galactose uptake by 0.2 nM leptin is blocked by 2 microM chelerythrine, a PKC inhibitor, which by itself does not affect galactose uptake. However, 1 microM H-89, a PKA inhibitor, inhibits galactose uptake and does not block leptin inhibition. Biochemical assays show that the inhibitory effect of leptin is accompanied by a approximately 2-fold increase in PKA and PKC activity. These findings indicate that the activation of PKC is more relevant than PKA activation in the inhibition of galactose absorption by leptin.
Collapse
Affiliation(s)
- Jaione Barrenetxe
- Department of Physiology and Nutrition, University of Navarra, Pamplona 31008, Spain
| | | | | | | |
Collapse
|
53
|
Pencek RR, Koyama Y, Lacy DB, James FD, Fueger PT, Jabbour K, Williams PE, Wasserman DH. Prior exercise enhances passive absorption of intraduodenal glucose. J Appl Physiol (1985) 2003; 95:1132-8. [PMID: 12740315 DOI: 10.1152/japplphysiol.01172.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to assess whether a prior bout of exercise enhances passive gut glucose absorption. Mongrel dogs had sampling catheters, infusion catheters, and a portal vein flow probe implanted 17 days before an experiment. Protocols consisted of either 150 min of exercise (n = 8) or rest (n = 7) followed by basal (-30 to 0 min) and a primed (150 mg/kg) intraduodenal glucose infusion [8.0 mg x kg-1x min-1, time (t) = 0-90 min] periods. 3-O-[3H]methylglucose (absorbed actively, facilitatively, and passively) and l-[14C]glucose (absorbed passively) were injected into the duodenum at t = 20 and 80 min. Phloridzin, an inhibitor of the active sodium glucose cotransporter-1 (SGLT-1), was infused (0.1 mg x kg-1 x min-1) into the duodenum from t = 60-90 min with a peripheral venous isoglycemic clamp. Duodenal, arterial, and portal vein samples were taken every 10 min during the glucose infusion, as well as every minute after each tracer bolus injection. Net gut glucose output in exercised dogs increased compared with that in the sedentary group (5.34 +/- 0.47 and 4.02 +/- 0.53 mg x kg-1x min-1). Passive gut glucose absorption increased approximately 100% after exercise (0.93 +/- 0.06 and 0.45 +/- 0.07 mg x kg-1 x min-1). Transport-mediated glucose absorption increased by approximately 20%, but the change was not significant. The infusion of phloridzin eliminated the appearance of both glucose tracers in sedentary and exercised dogs, suggesting that passive transport required SGLT-1-mediated glucose uptake. This study shows 1). that prior exercise enhances passive absorption of intraduodenal glucose into the portal vein and 2). that basal and the added passive gut glucose absorption after exercise is dependent on initial transport of glucose via SGLT-1.
Collapse
Affiliation(s)
- R Richard Pencek
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Helliwell PA, Kellett GL. The active and passive components of glucose absorption in rat jejunum under low and high perfusion stress. J Physiol 2002; 544:579-89. [PMID: 12381828 PMCID: PMC2290612 DOI: 10.1113/jphysiol.2002.028209] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In order to determine how perfusion design affects the relationship of the apparent "active" and "passive" components of glucose absorption, rat jejunum was perfused with 50 mM glucose under conditions of low and high mechanical stress. Phloretin or cytochalasin B was used to inhibit GLUT2 and phloridzin to inhibit SGLT1. In low stress perfusions, the ratios of the "passive" to the "active" components determined using phloretin and phloridzin were 2.2 and 0.43, respectively. This discrepancy was explained by the fact that phloridzin inhibits not only SGLT1 but also indirectly that part of the GLUT2-mediated component controlled by SGLT1 through the glucose-induced activation and recruitment of GLUT2 to the brush-border membrane. In high stress perfusions, the ratios of the "passive" to the "active" components determined using phloretin and phloridzin were 0.94 and 0.95, respectively; cytochalasin B gave 0.95. The identity of these results was explained by the observation that the passive component is not dependent on the active component, because glucose-induced activation and recruitment of GLUT2 does not occur in high stress perfusions. Simultaneous inhibition of SGLT1 and GLUT2 in high stress perfusions with phloridzin and cytochalasin B inhibited absorption by 92 +/- 7 %; non-carrier-mediated transport is therefore minimal. Our data provide support for the view that the term "facilitated" should be used to replace the term "passive" in describing the component now known to be mediated by GLUT2. The study of the mechanism and regulation of this facilitated component depends crucially on the design of the perfusion system.
Collapse
Affiliation(s)
- Philip A Helliwell
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK
| | | |
Collapse
|
55
|
Leira F, Louzao MC, Vieites JM, Botana LM, Vieytes MR. Fluorescent microplate cell assay to measure uptake and metabolism of glucose in normal human lung fibroblasts. Toxicol In Vitro 2002; 16:267-73. [PMID: 12020600 DOI: 10.1016/s0887-2333(02)00002-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This is the first report of a fluorimetric microplate assay to assess glucose uptake and metabolism in eukaryotic cells. The assay was carried out incubating normal human lung fibroblasts in the wells of microtiter trays with a fluorescent D-glucose derivative, 2-N-7-(nitrobenz-2-oxa-1,3-diazol-4-yl)amino-2-deoxy-D-glucose (2-NBDG). This dye could be incorporated by glucose transporting systems in living cells. Substrate uptake was determined by analysing the data obtained with a fluorescence microplate reader. Variables studied in the development of the assay included dye concentration and incubation period. We found that this cell assay is very sensitive, reproducible, provides fast results and graphical display of data. It requires small sample volumes and allows handling of a large number of samples simultaneously. Okadaic acid was used to assess this microplate assay in the field of cytotoxicity. This diarrhetic shellfish toxin is a tumour promoter and a specific inhibitor of protein phosphatases 1 and 2A. The exposition of cells to okadaic acid (0.1 nM-1 microM) at different time intervals causes a decrease in intracellular glucose (40-50% over controls). Results obtained with okadaic acid are the starting point to evaluate application of the method to routine toxicity probes.
Collapse
Affiliation(s)
- F Leira
- ANFACO-CECOPESCA, Campus Universitario de Vigo, 36310 Vigo (Pontevedra), Spain
| | | | | | | | | |
Collapse
|
56
|
Aschenbach JR, Borau T, Gäbel G. Glucose uptake via SGLT-1 is stimulated by beta(2)-adrenoceptors in the ruminal epithelium of sheep. J Nutr 2002; 132:1254-7. [PMID: 12042442 DOI: 10.1093/jn/132.6.1254] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glucose absorption via the sodium glucose-linked transporter (SGLT)-1, decreases the glucose concentration in the ruminant forestomach and may ameliorate or prevent ruminal lactic acidosis. Because acidotic ruminants show increased sympathetic activity, the possibility of adrenergic modulation of SGLT-1 was investigated. Glucose uptake into ovine ruminal epithelia was measured in Ussing chambers after the addition of 200 micromol/L (14)C-labeled glucose to the mucosal solution. Glucose uptake decreased (P < 0.05) by >50% in comparison with control after mucosal addition of the SGLT-1 inhibitor, phlorizin (100 micromol/L). Serosal preincubation with 100 micromol/L epinephrine increased (P < 0.05) the phlorizin-sensitive glucose uptake in the absence and presence of indomethacin (10 micromol/L). The effect of epinephrine was simulated by beta- (100 micromol/L isoproterenol) and beta(2)-receptor agonists (10 micromol/L terbutaline), as well as by direct stimulation of adenylyl cyclase (10 micromol/L forskolin). The serosal addition of methoxamine, clonidine, dobutamine or BRL 37344 had no effect. Inhibition of protein kinase A with 2 micromol/L H 89 completely abolished the stimulation of glucose uptake by epinephrine. We conclude that ruminal SGLT-1 can be stimulated via beta(2)-dependent generation of cyclic adenosine monophosphate.
Collapse
Affiliation(s)
- Jörg R Aschenbach
- Department of Veterinary Physiology, Leipzig University, D-04103 Leipzig, Germany.
| | | | | |
Collapse
|
57
|
Kawano K, Ikari A, Nakano M, Suketa Y. Phosphatidylinositol 3-kinase mediates inhibitory effect of angiotensin II on sodium/glucose cotransporter in renal epithelial cells. Life Sci 2002; 71:1-13. [PMID: 12020744 DOI: 10.1016/s0024-3205(02)01573-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effects of angiotensin II (ANGII) on regulation of sodium/glucose cotransporter (SGLT1) activity were investigated in LLC-PK(1) cells, renal proximal epithelial cell line. ANGII inhibited alpha-[14C] methyl-D-glucopyranoside (AMG) uptake into LLC-PK(1) cells in a dose-dependent manner. This inhibition was based on a decrease in maximal transport rate (Vmax) of AMG from 2.20 nmol/mg protein/15 min to 1.19 nmol/mg protein/15 min, although apparent affinity constant (Km) did not alter. In western blot analysis, protein level of SGLT1 in brush border membrane (BBM) was decreased by ANGII, although total SGLT1 was not altered. In the aspect of intracellular signal transduction, ANGII blocked the formation of cAMP. Pertussis toxin, an inactivator of Gi protein that control intracellular cAMP level, completely prevented the decrease of AMG uptake caused by ANGII. 8-Br-cAMP, a cell membrane permeable cAMP analogue, increased AMG uptake and protein level of SGLT1 in BBM. Both wortmannin and LY294002 that are phosphatidylinositol (PI) 3-kinase inhibitors, inhibited the SGLT1 activity, and also attenuated the effect of 8-Br-cAMP on SGLT1 activity. Those inhibitors prevented the 8-Br-cAMP-induced expression of SGLT1 in plasma membrane. We conclude that ANGII plays an important role in post-translational regulation in SGLT1. Inhibition of SGLT1 translocation is suggested to be caused by inactivation of protein kinase A and decrease of PI 3-kinase activity.
Collapse
Affiliation(s)
- Kazuya Kawano
- Department of Environmental Biochemistry and Toxicology, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Shizuoka city, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
58
|
Korn T, Kühlkamp T, Track C, Schatz I, Baumgarten K, Gorboulev V, Koepsell H. The plasma membrane-associated protein RS1 decreases transcription of the transporter SGLT1 in confluent LLC-PK1 cells. J Biol Chem 2001; 276:45330-40. [PMID: 11562363 DOI: 10.1074/jbc.m105975200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we cloned RS1, a 67-kDa polypeptide that is associated with the intracellular side of the plasma membrane. Upon co-expression in Xenopus laevis oocytes, human RS1 decreased the concentration of the Na(+)-D-glucose co-transporter hSGLT1 in the plasma membrane (Valentin, M., Kühlkamp, T., Wagner, K., Krohne, G., Arndt, P., Baumgarten, K., Weber, W.-M., Segal, A., Veyhl, M., and Koepsell, H. (2000) Biochim. Biophys. Acta 1468, 367-380). Here, the porcine renal epithelial cell line LLC-PK1 was used to investigate whether porcine RS1 (pRS1) plays a role in transcriptional up-regulation of SGLT1 after confluence and in down-regulation of SGLT1 by high extracellular D-glucose concentrations. Western blots indicated a dramatic decrease of endogenous pRS1 protein at the plasma membrane after confluence but no significant effect of D-glucose. In confluent LLC-PK1 cells overexpressing pRS1, SGLT1 mRNA, protein, and methyl-alpha-D-glucopyranoside uptakes were drastically decreased; however, the reduction of methyl-alpha-D-glucopyranoside uptake after cultivation with 25 mm D-glucose remained. In confluent pRS1 antisense cells, the expression of SGLT1 mRNA and protein was strongly increased, whereas the reduction of SGLT1 expression during cultivation with high D-glucose was not influenced. Nuclear run-on assays showed that the transcription of SGLT1 was 10-fold increased in the pRS1 antisense cells. The data suggest that RS1 participates in transcriptional up-regulation of SGLT1 after confluence but not in down-regulation by D-glucose.
Collapse
Affiliation(s)
- T Korn
- Institute of Anatomy of the Bayerische Julius-Maximilians-Universität, 97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
59
|
Ikari A, Tachihara Y, Kawano K, Suketa Y. Differential regulation of Na(+),K(+)-ATPase and the Na(+)-coupled glucose transporter in hypertensive rat kidney. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:118-24. [PMID: 11342152 DOI: 10.1016/s0005-2736(00)00340-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several Na(+) transporters are functionally abnormal in the hypertensive rat. Here, we examined the effects of a high-salt load on renal Na(+),K(+)-ATPase and the sodium-coupled glucose transporter (SGLT1) in Dahl salt-resistant (DR) and salt-sensitive (DS) rats. The protein levels of Na(+),K(+)-ATPase and SGLT1 in the DS rat were the same as those in the DR rat, and were not affected by the high-salt load. In the DS rat, a high-salt load decreased Na(+),K(+)-ATPase activity, and this decrease coincided with a decrease in the apparent Mechaelis constant (K(m)) for ATP, but not with a change of maximum velocity (V(max)). On the contrary, a high-salt load increased SGLT1 activity in the DS rat, which coincided with an increase in the V(max) for alpha-methyl glucopyranoside. The protein level of phosphorylated tyrosine residues in Na(+),K(+)-ATPase was decreased by the high-salt load in the DS rat. The amount of phosphorylated serine was not affected by the high-salt load in DR rats, and could not be detected in DS rats. On the other hand, the amount of phosphorylated serine residues in SGLT1 was increased by the high-salt load. However, the phosphorylated tyrosine was the same for all samples. Therefore, we concluded that the high-salt load changes the protein kinase levels in DS rats, and that the regulation of Na(+),K(+)-ATPase and SGLT1 activity occurs via protein phosphorylation.
Collapse
Affiliation(s)
- A Ikari
- Department of Environmental Biochemistry and Toxicology, University of Shizuoka School of Pharmaceutical Science, 52-1 Yada, Shizuoka 422-8526, Japan.
| | | | | | | |
Collapse
|
60
|
Vayro S, Silverman M. PKC regulates turnover rate of rabbit intestinal Na+-glucose transporter expressed in COS-7 cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C1053-60. [PMID: 10329952 DOI: 10.1152/ajpcell.1999.276.5.c1053] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used the recombinant NH2-terminal myc-tagged rabbit Na+-glucose transporter (SGLT1) to study the regulation of this carrier expressed in COS-7 cells. Treatment of cells with a protein kinase C (PKC) agonist, phorbol 12-myristate 13-acetate (PMA), caused a significant decrease (38.03 +/- 0.05%) in methyl alpha-D-glucopyranoside transport activity that could not be emulated by 4alpha-phorbol 12,13-didecanoate. The decrease in sugar uptake stimulated by PMA was reversed by the PKC inhibitor bisindolylmaleimide I. The maximal rate of Na+-glucose cotransport activity (Vmax) was decreased from 1.29 +/- 0.09 to 0.85 +/- 0.04 nmol. min-1. mg protein-1 after PMA exposure. However, measurement of high-affinity Na+-dependent phloridzin binding revealed that there was no difference in the number of cell surface transporters after PMA treatment; maximal binding capacities were 1.54 +/- 0.34 and 1.64 +/- 0.21 pmol/mg protein for untreated and treated cells, respectively. The apparent sugar binding affinity (Michaelis-Menten constant) and phloridzin binding affinity (dissociation constant) were not affected by PMA. Because PKC reduced Vmax without affecting the number of cell surface SGLT1 transporters, we conclude that PKC has a direct effect on the carrier, resulting in a lowering of the transporter turnover rate by a factor of two.
Collapse
Affiliation(s)
- S Vayro
- Membrane Biology Group, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
61
|
Garriga C, Moretó M, Planas JM. Hexose transport in the apical and basolateral membranes of enterocytes in chickens adapted to high and low NaCl intakes. J Physiol 1999; 514 ( Pt 1):189-99. [PMID: 9831726 PMCID: PMC2269042 DOI: 10.1111/j.1469-7793.1999.189af.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1998] [Accepted: 09/15/1998] [Indexed: 11/28/2022] Open
Abstract
1. The effect of a low-NaCl diet (LS diet) on the properties of hexose transport across the brush-border and basolateral membranes of enterocytes from jejunum, ileum and rectum of the chicken was investigated. 2. In the brush-border membrane, LS adaptation had no effect on Km for alpha-methyl-D-glucoside while Vmax values were significantly reduced in the ileum and in the rectum. All Scatchard plots of specific [3H]phlorizin binding give a straight line, consistent with a single population of binding sites. Phlorizin binding vs. alpha-methyl-D-glucoside maximal transport rates showed a linear correlation. 3. In the basolateral membrane, the LS diet did not modify the Km for D-glucose but reduced the Vmax in the ileum and in the rectum. Scatchard plots of [3H]cytochalasin B binding support the view that there is a single transport system in this membrane. There was a linear correlation between cytochalasin B binding and D-glucose Vmax values. 4. The response of the chicken intestine to LS intake consists of a dramatic reduction in the number of glucose transporters in both apical and basolateral membranes of the rectum, an intermediate response in the ileum and no significant effects in the jejunum.
Collapse
Affiliation(s)
- C Garriga
- Departament de Fisiologia-Divisio IV, Facultat de Farmàcia, Universitat de Barcelona, E-08028, Barcelona,, Spain
| | | | | |
Collapse
|
62
|
Díez-Sampedro A, Pérez M, Cobo MT, Martínez JA, Barber A. Effect of different beta-adrenergic agonists on the intestinal absorption of galactose and phenylalanine. J Pharm Pharmacol 1998; 50:907-11. [PMID: 9751456 DOI: 10.1111/j.2042-7158.1998.tb04007.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Nutrient transport across the mammalian small intestine is regulated by several factors, including intrinsic and extrinsic neural pathways, paracrine modulators, circulating hormones and luminal agents. Because beta-adrenoceptors seem to regulate gastrointestinal functions such as bicarbonate and acid secretion, intestinal motility and gastrointestinal mucosal blood flow, we have investigated the effects of different beta-adrenergic agonists on nutrient absorption by the rat jejunum in-vitro. When intestinal everted sacs were used the beta2-agonist salbutamol had no effect either on galactose uptake by the tissue or mucosal-to-serosal flux whereas mixed beta1- and beta2-agonists (isoproterenol and orciprenaline) and beta3-agonists (BRL 35135, Trecadrine, ICI 198157 and ZD 7114) inhibited galactose uptake and transfer of D-galactose from the mucosal-to-serosal media across the intestinal wall (although the inhibiting effects of isoproterenol and Trecadrine were not statistically significant). In intestinal everted rings both Trecadrine and BRL 35135 clearly reduced galactose uptake, the effect being a result of inhibition of the phlorizin-sensitive component. Total uptake of phenylalanine by the intestinal rings was also reduced by those beta3-adrenergic agonists. These results suggest that beta1- and beta3-adrenergic receptors could be involved in the regulation of intestinal active transport of sugars and amino acids.
Collapse
Affiliation(s)
- A Díez-Sampedro
- Department of Physiology and Nutrition, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
63
|
Hirsh AJ, Cheeseman CI. Cholecystokinin decreases intestinal hexose absorption by a parallel reduction in SGLT1 abundance in the brush-border membrane. J Biol Chem 1998; 273:14545-9. [PMID: 9603969 DOI: 10.1074/jbc.273.23.14545] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dual lumenaly and vascularly perfused small intestine was used to determine the mechanism by which cholecystokinin octapeptide (CCK-8) decreases the rate of glucose absorption. With CCK-8 in the vascular perfusate the rate of 3-O-methyl-D-glucose absorption decreased, whereas the rate of D-fructose absorption was unaffected. The substrate pool size within the tissue during steady-state transport, in the presence and absence of CCK-8, was estimated by compartmental analysis of the 3-O-methyl-D-glucose washout into the vascular bed. When CCK-8 was included in the vascular perfusate, the absorptive cell pool size decreased when compared with untreated tissue. Both the steady-state hexose absorption data and the washout studies indicated that the locus of action of CCK-8 was the SGLT1 transporter located in the brush-border membrane. The SGLT1 protein abundance in isolated brush-border membranes, as quantified by Western blotting, showed a decrease that paralleled the decrease in the steady-state transport rate induced by CCK-8. These results indicate that CCK-8 diminishes the rate of intestinal hexose absorption by decreasing SGLT1 protein abundance in the brush-border membrane of the rat jejunum and therefore provides evidence for acute enteric hormonal regulation of the rate of glucose absorption across the small intestine.
Collapse
Affiliation(s)
- A J Hirsh
- Membrane Transport Group, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|