51
|
Swiontek Brzezinska M, Jankiewicz U, Burkowska A, Walczak M. Chitinolytic microorganisms and their possible application in environmental protection. Curr Microbiol 2013; 68:71-81. [PMID: 23989799 PMCID: PMC3889922 DOI: 10.1007/s00284-013-0440-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/05/2013] [Indexed: 11/29/2022]
Abstract
This paper provides a review of the latest research findings on the applications of microbial chitinases to biological control. Microorganisms producing these enzymes can inhibit the growth of many fungal diseases that pose a serious threat to global crop production. Currently, efforts are being made to discover producers of chitinolytic enzymes. The potential exists that natural biofungicides will replace chemical fungicides or will be used to supplement currently used fungicides, which would reduce the negative impact of chemicals on the environment and support the sustainable development of agriculture and forestry.
Collapse
Affiliation(s)
- Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland,
| | | | | | | |
Collapse
|
52
|
Wu L, Roe CL, Wen Z. The safety assessment of Pythium irregulare as a producer of biomass and eicosapentaenoic acid for use in dietary supplements and food ingredients. Appl Microbiol Biotechnol 2013; 97:7579-85. [PMID: 23900800 DOI: 10.1007/s00253-013-5114-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 11/26/2022]
Abstract
Polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6, n-3), eicosapentaenoic acid (EPA, 20:5, n-3), and arachidonic acid (ARA, 20:4 n-6), have multiple beneficial effects on human health and can be used as an important ingredient in dietary supplements, food, feed and pharmaceuticals. A variety of microorganisms has been used for commercial production of these fatty acids. The microorganisms in the Pythium family, particularly Pythium irregulare, are potential EPA producers. The aim of this work is to provide a safety assessment of P. irregulare so that the EPA derived from this species can be potentially used in various commercial applications. The genus Pythium has been widely recognized as a plant pathogen by infecting roots and colonizing the vascular tissues of various plants such as soybeans, corn and various vegetables. However, the majority of the Pythium species (including P. irregulare) have not been reported to infect mammals including humans. The only species among the Pythium family that infects mammals is P. insidiosum. There also have been no reports showing P. irregulare to contain mycotoxins or cause potentially allergenic responses in humans. Based on the safety assessment, we conclude that P. irregulare can be considered a safe source of biomass and EPA-containing oil for use as ingredients in dietary supplements, food, feed and pharmaceuticals.
Collapse
Affiliation(s)
- Lei Wu
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | | | | |
Collapse
|
53
|
Otto-Hanson LK, Grabau Z, Rosen C, Salomon CE, Kinkel LL. Pathogen variation and urea influence selection and success of Streptomyces mixtures in biological control. PHYTOPATHOLOGY 2013; 103:34-42. [PMID: 23035630 DOI: 10.1094/phyto-06-12-0129-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Success in biological control of plant diseases remains inconsistent in the field. A collection of well-characterized Streptomyces antagonists (n = 19 isolates) was tested for their capacities to inhibit pathogenic Streptomyces scabies (n = 15 isolates). There was significant variation among antagonists in ability to inhibit pathogen isolates and among pathogens in their susceptibility to inhibition. Only one antagonist could inhibit all pathogens, and antagonist-pathogen interactions were highly specific, highlighting the limitations of single-strain inoculum in biological control. However, the collection of pathogens could be inhibited by several combinations of antagonists, suggesting the potential for successful antagonist mixtures. Urea generally increased effectiveness of antagonists at inhibiting pathogens in vitro (increased mean inhibition zones) but its specific effects varied among antagonist-pathogen combinations. In greenhouse trials, urea enhanced the effectiveness of antagonist mixtures relative to individual antagonists in controlling potato scab. Although antagonist mixtures were frequently antagonistic in the absence of urea, all n= 2 and n = 3 antagonist-isolate combinations were synergistic in the presence of urea. This work provides insights into the efficacy of single- versus multiple-strain inocula in biological control and on the potential for nutrients to influence mixture success.
Collapse
Affiliation(s)
- L K Otto-Hanson
- Department of Plant Pathology, University of Minnesota, St. Paul 55108, USA.
| | | | | | | | | |
Collapse
|
54
|
Brodeur J. Host specificity in biological control: insights from opportunistic pathogens. Evol Appl 2012; 5:470-80. [PMID: 22949922 PMCID: PMC3407865 DOI: 10.1111/j.1752-4571.2012.00273.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 02/05/2023] Open
Abstract
Host/prey specificity is a significant concern in biological control. It influences the effectiveness of a natural enemy and the risks it might have on non-target organisms. Furthermore, narrow host specificity can be a limiting factor for the commercialization of natural enemies. Given the great diversity in taxonomy and mode of action of natural enemies, host specificity is a highly variable biological trait. This variability can be illustrated by opportunist fungi from the genus Lecanicillium, which have the capacity to exploit a wide range of hosts - from arthropod pests to fungi causing plant diseases - through different modes of action. Processes determining evolutionary trajectories in host specificity are closely linked to the modes of action of the natural enemy. This hypothesis is supported by advances in fungal genomics concerning the identity of genes and biological traits that are required for the evolution of life history strategies and host range. Despite the significance of specificity, we still need to develop a conceptual framework for better understanding of the relationship between specialization and successful biological control. The emergence of opportunistic pathogens and the development of 'omic' technologies offer new opportunities to investigate evolutionary principles and applications of the specificity of biocontrol agents.
Collapse
Affiliation(s)
- Jacques Brodeur
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
55
|
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA, De Coninck B. Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection. FRONTIERS IN PLANT SCIENCE 2012; 3:108. [PMID: 22661981 PMCID: PMC3362084 DOI: 10.3389/fpls.2012.00108] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/07/2012] [Indexed: 05/04/2023]
Abstract
In this study, the molecular basis of the induced systemic resistance (ISR) in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime) and after (ISR-boost) additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance toward secondary infections. Treatment with T. hamatum T382 primes the plant (ISR-prime), resulting in an accelerated activation of the defense response against B. cinerea during ISR-boost and a subsequent moderation of the B. cinerea induced defense response. Microarray results were validated for representative genes by qRT-PCR. The involvement of various defense-related pathways was confirmed by phenotypic analysis of mutants affected in these pathways, thereby proving the validity of our approach. Combined with additional anthocyanin analysis data these results all point to the involvement of the phenylpropanoid pathway in T. hamatum T382-induced ISR.
Collapse
Affiliation(s)
- Janick Mathys
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | | | - Bart Lievens
- Scientia Terrae Research InstituteSint-Katelijne-Waver, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology (CIMB), Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven AssociationSint-Katelijne-Waver, Belgium
| | - Mieke Vanhaecke
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| |
Collapse
|
56
|
Fernández NV, Mestre MC, Marchelli P, Fontenla SB. Yeast and yeast-like fungi associated with dry indehiscent fruits of Nothofagus nervosa in Patagonia, Argentina. FEMS Microbiol Ecol 2012; 80:179-92. [PMID: 22224476 DOI: 10.1111/j.1574-6941.2011.01287.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 11/08/2011] [Accepted: 12/15/2011] [Indexed: 11/29/2022] Open
Abstract
Nothofagus nervosa (Raulí) is a native tree species that yields valuable timber. It was overexploited in the past and is currently included in domestication and conservation programs. Several research programs have focused on the characterization of epiphytic microorganisms because it has been demonstrated that they can affect plant-pathogen interactions and/or promote plant growth. Although the microbial ecology of leaves has been well studied, less is known about microorganisms occurring on seeds and noncommercial fruits. In this work, we analyzed the yeast and yeast-like fungi present on N. nervosa fruits destined for the propagation of this species, as well as the effects of fruit preservation and seed dormancy-breaking processes on fungal diversity. Morphological and molecular methods were used, and differences between fungal communities were analyzed using a similarity index. A total of 171 isolates corresponding to 17 species were recovered, most of which belong to the phylum Ascomycota. The majority of the species develop mycelia, produce pigments and mycosporines, and these adaptation strategies are discussed. It was observed that the preservation process considerably reduced yeast and yeast-like fungal diversity. This is the first study concerning microbial communities associated with this ecologically and economically important species, and the information presented is relevant to domestication programs.
Collapse
Affiliation(s)
- Natalia V Fernández
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue-INIBIOMA, Río Negro, Argentina.
| | | | | | | |
Collapse
|
57
|
Xu XM, Jeffries P, Pautasso M, Jeger MJ. A numerical study of combined use of two biocontrol agents with different biocontrol mechanisms in controlling foliar pathogens. PHYTOPATHOLOGY 2011; 101:1032-1044. [PMID: 21385011 DOI: 10.1094/phyto-10-10-0267] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Effective use of biocontrol agents is an important component of sustainable agriculture. A previous numerical study of a generic model showed that biocontrol efficacy was greatest for a single biocontrol agent (BCA) combining competition with mycoparasitism or antibiosis. This study uses the same mathematical model to investigate whether the biocontrol efficacy of combined use of two BCAs with different biocontrol mechanisms is greater than that of a single BCA with either or both of the two mechanisms, assuming that two BCAs occupy the same host tissue as the pathogen. Within the parameter values considered, a BCA with two biocontrol mechanisms always outperformed the combined use of two BCAs with a single but different biocontrol mechanism. Similarly, combined use of two BCAs with a single but different biocontrol mechanism is shown to be far less effective than that of a single BCA with both mechanisms. Disease suppression from combined use of two BCAs was very similar to that achieved by the more efficacious one. As expected, a higher BCA introduction rate led to increased disease suppression. Incorporation of interactions between two BCAs did not greatly affect the disease dynamics except when a mycoparasitic and, to a lesser extent, an antibiotic-producing BCA was involved. Increasing the competitiveness of a mycoparasitic BCA over a BCA whose biocontrol mechanism is either competition or antibiosis may lead to improved biocontrol initially and reduced fluctuations in disease dynamics. The present study suggests that, under the model assumptions, combined use of two BCAs with different biocontrol mechanisms in most cases only results in control efficacies similar to using the more efficacious one alone. These predictions are consistent with published experimental results, suggesting that combined use of BCAs should not be recommended without clear understanding of their main biocontrol mechanisms and relative competitiveness, and experimental evaluation.
Collapse
Affiliation(s)
- X-M Xu
- College of Plant Protection, Northwest A & F University, Shaanxi, People's Republic of China.
| | | | | | | |
Collapse
|
58
|
Xu XM, Jeffries P, Pautasso M, Jeger MJ. Combined use of biocontrol agents to manage plant diseases in theory and practice. PHYTOPATHOLOGY 2011; 101:1024-1031. [PMID: 21554184 DOI: 10.1094/phyto-08-10-0216] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Effective use of biological control agents (BCAs) is a potentially important component of sustainable agriculture. Recently, there has been an increasing interest among researchers in using combinations of BCAs to exploit potential synergistic effects among them. The methodology for investigating such synergistic effects was reviewed first and published results were then assessed for available evidence for synergy. Correct formulation of hypotheses based on the theoretical definition of independence (Bliss independence or Loewe additivity) and the subsequent and statistical testing for the independence-synergistic-antagonistic interactions have rarely been carried out thus far in studies on biocontrol of plant diseases. Thus, caution must be taken when interpreting reported "synergistic" effects without assessing the original publications. Recent theoretical modeling work suggested that disease suppression from combined use of two BCAs was, in general, very similar to that achieved by the more efficacious one, indicating no synergistic but more likely antagonistic interactions. Only in 2% of the total 465 published treatments was there evidence for synergistic effects among BCAs. In the majority of the cases, antagonistic interactions among BCAs were indicated. Thus, both theoretical and experimental studies suggest that, in combined use of BCAs, antagonistic interactions among BCAs are more likely to occur than synergistic interactions. Several research strategies, including formulation of synergy hypotheses in relation to biocontrol mechanisms, are outlined to exploit microbial mixtures for uses in biocontrol of plant diseases.
Collapse
Affiliation(s)
- X-M Xu
- College of Plant Protection, Northwest A & F University, Shaanxi, People's Republic of China.
| | | | | | | |
Collapse
|
59
|
Mommaerts V, Put K, Smagghe G. Bombus terrestris as pollinator-and-vector to suppress Botrytis cinerea in greenhouse strawberry. PEST MANAGEMENT SCIENCE 2011; 67:1069-75. [PMID: 21394887 DOI: 10.1002/ps.2147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/16/2010] [Accepted: 11/27/2010] [Indexed: 05/11/2023]
Abstract
BACKGROUND Bombus terrestris L. bumblebees are widely used as commercial pollinators, but they might also be of help in the battle against economically important crop diseases. This alternative control strategy is referred to as pollinator-and-vector technology. The present study was designed to investigate the capacity of B. terrestris to fulfil this role in greenhouse strawberry flowers, which were manually inoculated with a major plant pathogen, the grey mould Botrytis cinerea Pers.: Fr. A model microbiological control agent (MCA) product Prestop-Mix was loaded in a newly developed two-way bumblebee dispenser, and, in addition, the use of the diluent Maizena-Plus (corn starch) was tested. RESULTS Importantly, loading of the MCA caused no adverse effects on bumblebee workers, with no loss of survival or impairment of flight activity of the workers during the 4 week flowering period. Secondly, vectoring of Prestop-Mix by bumblebees resulted in a higher crop production, as 71% of the flowers developed into healthy red strawberries at picking (preharvest yield) as compared with 54% in the controls. In addition, these strawberries were better protected, as 79% of the picked berries remained free of B. cinerea after a 2 day incubation (post-harvest yield), while this percentage was only 43% in the control. Overall, the total yield (preharvest × post-harvest) was 2-2.5 times higher than the total yield in the controls (24%) in plants exposed to bumblebees vectoring Prestop-Mix. Thirdly, the addition of the diluent Maizena-Plus to Prestop-Mix at 1:1 (w/w) resulted in a similar yield to that of Prestop-Mix used alone, and in no negative effects on the bumblebees, flowers and berries. CONCLUSIONS This greenhouse study provides strong evidence that B. terrestris bumblebees can vector a MCA to reduce B. cinerea incidence in greenhouse strawberries, resulting in higher yields. Similar yields obtained in the treatments with Prestop-Mix and Prestop-Mix + Maizena-Plus suggest an equally efficient dissemination of the biocontrol agent into the flowers with only half the initial concentration of Prestop-Mix, which illustrates the importance of the diluent.
Collapse
Affiliation(s)
- Veerle Mommaerts
- Department of Biology, Faculty of Sciences, Free University of Brussels, Brussels, Belgium.
| | | | | |
Collapse
|
60
|
Tagawa M, Tamaki H, Manome A, Koyama O, Kamagata Y. Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils. FEMS Microbiol Lett 2010; 305:136-42. [PMID: 20653777 DOI: 10.1111/j.1574-6968.2010.01928.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Potato scab is a serious plant disease caused by several Streptomyces sp., and effective control methods remain unavailable. Although antagonistic bacteria and phages against potato scab pathogens have been reported, to the best of our knowledge, there is no information about fungi that are antagonistic to the pathogens. The aim of this study was to isolate fungal antagonists, characterize their phylogenetic positions, determine their antagonistic activities against potato scab pathogens, and highlight their potential use as control agents under lower pH conditions. Fifteen fungal stains isolated from potato field soils were found to have antagonistic activity against three well-known potato scab pathogens: Streptomyces scabiei, Streptomyces acidiscabiei, and Streptomyces turgidiscabiei. These 15 fungal strains were phylogenetically classified into at least six orders and nine genera based on 18S rRNA gene sequencing analysis. These fungal isolates were related to members of the genera Penicillium, Eupenicillium, Chaetomium, Fusarium, Cladosporium, Mortierella, Kionochaeta, Pseudogymnoascus, and Lecythophora. The antagonistic activities of most of the fungal isolates were highly strengthened under the lower pH conditions, suggesting the advantage of combining their use with a traditional method such as soil acidification. This is the first report to demonstrate that phylogenetically diverse fungi show antagonistic activity against major potato scab pathogens. These fungal strains could be used as potential agents to control potato scab disease.
Collapse
Affiliation(s)
- Masahiro Tagawa
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
61
|
Xu XM, Salama N, Jeffries P, Jeger MJ. Numerical studies of biocontrol efficacies of foliar plant pathogens in relation to the characteristics of a biocontrol agent. PHYTOPATHOLOGY 2010; 100:814-21. [PMID: 20626285 DOI: 10.1094/phyto-100-8-0814] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A previously published generic mathematic model has been used in a numerical study to understand the dynamics of foliar pathogens in relation to mechanisms, and timing and coverage of biocontrol agent (BCA) applications. With the model parameter values used, it was demonstrated that a BCA possessing either competition or induced resistance as the main mechanism of biological control was more effective in reducing disease development than a BCA with either mycoparasitism or antibiosis as its mechanism. Application coverage, ranging from 50 to 90%, had little effect on biocontrol efficacy, particularly for a BCA with competition and induced resistance as the main mechanism of biocontrol. Conversely, delayed application of BCA had more profound effects on biocontrol efficacy for those with competition or induced resistance as their main mechanism than those with mycoparasitism and antibiosis. Biocontrol efficacy was greatest for a single BCA combining competition with mycoparasitism or antibiosis. The efficacy for a single BCA combining induced resistance with competition critically depended on application time; the efficacy was greatly reduced for delayed applications. The present study suggests that development of an effective strategy for BCA application is critically dependent upon our quantitative understanding of several key biocontrol processes and their interactions. Without reliable quantitative estimation of these processes, it is impossible to make quantitative predictions about biological control and hence to optimize BCA application strategies.
Collapse
Affiliation(s)
- X-M Xu
- Plant Pathology, East Malling Research, New Road, ME19 6BJ, UK.
| | | | | | | |
Collapse
|
62
|
Sempere Ferre F, Santamarina MP. Efficacy of Trichoderma harzianum in suppression of Fusarium culmorum. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0047-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
63
|
Inácio J, Ludwig W, Spencer-Martins I, Fonseca A. Assessment of phylloplane yeasts on selected Mediterranean plants by FISH with group- and species-specific oligonucleotide probes. FEMS Microbiol Ecol 2010; 71:61-72. [PMID: 19817863 DOI: 10.1111/j.1574-6941.2009.00784.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A previous culture-dependent survey of phylloplane yeasts from selected Mediterranean plants showed that a few species were present in high densities in almost all leaf samples, regardless of the plant type, location or sampling season. However, a few species appeared to be restricted to Cistus albidus leaves, namely Cryptococcus cistialbidi. Here, we describe a culture-independent FISH assay to detect and quantify whole yeast cells in leaf washings. After optimization, the technique was used to check the apparent association between C. albidus leaves and C. cistialbidi and the abundance and ubiquity of other basidiomycetous yeast species such as Erythrobasidium hasegawianum and Sporobolomyces spp. in leaf samples from this and other neighboring plants (Acer monspessulanum and Quercus faginea). No yeast cells were detected in Pistacia lentiscus leaf samples. We were also able to demonstrate that three phylloplane yeasts (C. cistialbidi, E. hasegawianum and Sporobolomyces spp.) appeared to be log-normally distributed among individual C. albidus leaves. The log-normal distribution has important implications for the quantification of phylloplane yeasts based on the washing and plating of bulk leaf samples, which will tend to overestimate the size of the respective populations and become an error source in yeast surveys or related biocontrol studies.
Collapse
Affiliation(s)
- João Inácio
- Centro de Recursos Microbiológicos (CREM), Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| | | | | | | |
Collapse
|
64
|
Stangarlin J, Schulz D, Franzener G, Assi L, Schwan-Estrada K, Kuhn O. INDUÇÃO DE FITOALEXINAS EM SOJA E SORGO POR PREPARAÇÕES DE SACCHAROMYCES BOULARDII. ARQUIVOS DO INSTITUTO BIOLÓGICO 2010. [DOI: 10.1590/1808-1657v77p0912010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O gênero Saccharomyces tem sido usado como indutor de resistência ou para controle biológico em muitos patossistemas. Neste trabalho objetivou-se a indução de fitoalexinas em mesocótilos de sorgo e cotilédones de soja pela levedura Saccharomyces boulardii na forma do produto comercial Floratil (Merck) (com 2 x 106 células/mg produto comercial - pc) e massa de células obtidas de meio líquido YEPG (primeiramente com 14 dias de cultivo e, posteriormente, com 7, 14, 21, 28 e 35 dias) ambos em concentrações de 0,005; 0,05; 0,5; 5; 15 e 25 mg/mL, além de filtrado desse meio nas concentrações de 0,01; 0,1; 1; 5; 10 e 20%. Como tratamentos controle utilizou-se água e S. cerevisiae (25 mg/mL de pc) para soja e água e acibenzolar-S-metil (ASM) (125 mg i.a./L) para sorgo. Em soja os três produtos apresentaram efeito dose-dependente, com ajustes de equações de 1° grau e R2 de 0,64; 0,94 e 0,98 não tendo efeito do tempo de cultivo da levedura na indução de fitoalexinas. Em sorgo apenas o filtrado e Floratil tiveram efeito dose-dependente com equação de 1° grau e R2 de 0,63 e 0,94 respectivamente e obteve-se nos diferentes dias de cultivo R2 de 0,62 com a massa de células somente. Portanto, pode-se evidenciar o potencial indutor de fitoalexinas dos produtos a base de S. boulardii para ensaios com indução de resistência em patossistemas envolvendo sorgo e soja.
Collapse
Affiliation(s)
| | - D.G. Schulz
- Universidade Estadual do Oeste do Paraná, Brasil
| | - G. Franzener
- Universidade Estadual do Oeste do Paraná, Brasil
| | - L. Assi
- Universidade Estadual do Oeste do Paraná, Brasil
| | - K.R.F. Schwan-Estrada
- Universidade Estadual do Oeste do Paraná, Brasil; Universidade Estadual de Maringá, Brasil
| | - O.J. Kuhn
- Universidade Federal do Pampa, Brasil
| |
Collapse
|
65
|
Fialho MB, Toffano L, Pedroso MP, Augusto F, Pascholati SF. Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0255-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
66
|
Lelono RAA, Tachibana S, Itoh K. Isolation of antifungal compounds from Gardenia jasminoides. Pak J Biol Sci 2009; 12:949-56. [PMID: 19817121 DOI: 10.3923/pjbs.2009.949.956] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gardenia jasminoides E. (Rubiaceae) methanol extracts showed the highest level of antifungal activity against Pleurotus ostreatus, a wood-rotting fungus, compared to five other methanol plants extracts; [Thuja orientalis L. (Cupressaceae), Datura innoxia (Solanaceae), Ligustrum japonicum T. (Oleaceae), Juniperus chinensis var. procumbens (Cupressaceae) and Mallotus japonica M. (Euphorbiaceae)] and selected for further analysis. Two antifungal compounds were isolated from n-butanol and ethyl acetate solubles in the methanol extracts of Gardenia jasminoides leaves and stems by bioassay-guided fractionation, using Pleurotus ostreatus. The antifungal compounds found for the first time in Gardenia jasminoides against Pleurotus ostreatus were identified as genipin and geniposide based on instrumental analyses. Both also had potent inhibitory effects on two plant pathogenic fungi; Fusarium oxysporum and Corynespora cassiicola.
Collapse
Affiliation(s)
- R A A Lelono
- United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | | | | |
Collapse
|
67
|
Jeger MJ, Jeffries P, Elad Y, Xu XM. A generic theoretical model for biological control of foliar plant diseases. J Theor Biol 2008; 256:201-14. [PMID: 18983855 DOI: 10.1016/j.jtbi.2008.09.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 08/01/2008] [Accepted: 09/26/2008] [Indexed: 11/16/2022]
Abstract
We have developed a generic modelling framework to understand the dynamics of foliar pathogen and biocontrol agent (BCA) populations in order to predict the likelihood of successful biocontrol in relation to the mechanisms involved. The model considers biocontrol systems for foliar pathogens only and, although it is most applicable to fungal BCA systems, does not address a specific biocontrol system. Four biocontrol mechanisms (competition, antibiosis, mycoparasitism and induced resistance) were included within the model rubric. Because of the wide range of mechanisms involved we use Trichoderma/Botrytis as an exemplar system. Qualitative analysis of the model showed that the rates of a BCA colonising diseased and/or healthy plant tissues and the time that the BCA remains active are two of the more important factors in determining the final outcome of a biocontrol system. Further evaluation of the model indicated that the dynamic path to the steady-state population levels also depends critically on other parameters such as the host-pathogen infection rate. In principle, the model can be extended to include other potential mechanisms, including spatio-temporal heterogeneity, fungicide effects, non-fungal BCA and strategies for BCA application, although with a cost in model tractability and ease of interpretation.
Collapse
Affiliation(s)
- M J Jeger
- Division of Biology, Imperial College London, Ascot, UK.
| | | | | | | |
Collapse
|
68
|
|
69
|
Biological control of one species belonging to the dominant mycobiota of rice of Valencia. ANN MICROBIOL 2008. [DOI: 10.1007/bf03179438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
70
|
Cavalcante RS, Lima HLS, Pinto GAS, Gava CAT, Rodrigues S. Effect of Moisture on Trichoderma Conidia Production on Corn and Wheat Bran by Solid State Fermentation. FOOD BIOPROCESS TECH 2007. [DOI: 10.1007/s11947-007-0034-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
71
|
Vujanovic V, Hamelin RC, Bernier L, Vujanovic G, St-Arnaud M. Fungal diversity, dominance, and community structure in the rhizosphere of clonal Picea mariana plants throughout nursery production chronosequences. MICROBIAL ECOLOGY 2007; 54:672-84. [PMID: 17347891 DOI: 10.1007/s00248-007-9226-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 01/29/2007] [Accepted: 02/04/2007] [Indexed: 05/14/2023]
Abstract
Fungal diversity in the rhizosphere of healthy and diseased clonal black spruce (Picea mariana) plants was analyzed with regard to nursery production chronosequences. The four key production stages were sampled: mother plants (MP), 8-week-old cuttings (B + 0), second-year cuttings (B + 1), and third-year cuttings (B + 2). A total of 45 fungal taxa were isolated and identified based on cultural, phenotypic, and molecular characters. Members of phylum Ascomycota dominated, followed by Basidiomycota and Zygomycota. Diagnosis characters and distance analysis of the internal transcribed spacer rDNA sequences allowed the identification of 39 ascomycetous taxa. Many belong to the order Hypocreales, families Hypocreaceae and Nectriaceae, which contain many clusters of potentially pathogenic taxa (Cylindrocladium, Fusarium, and Neonectria) and are also ecologically associated with antagonistic taxa (Chaetomium, Hypocrea, Microsphaeropsis, Penicillium, Paecilomyces, Verticillium, Trichoderma, and Sporothrix). This is also the first report of a Cylindrocladium canadense association with disease symptoms and relation with Pestalotiopsis, Fusarium, Exserochilum, Rhizoctonia, and Xenochalara fungal consortia. Both production chronosequence and plant health considerably influenced fungal taxa assemblages. Unweighted pair-group arithmetic average clustering showed that isolates from MP, B + 0, and B + 1 plant rhizospheres clustered together within healthy or diseased health classes, whereas isolates from healthy and diseased B + 2 plants clustered together. Canonical correspondence analysis revealed substantial alteration in community assemblages with regard to plant health and yielded a principal axis direction that regrouped taxa associated with diseased plant rhizosphere soil, whereas the opposite axis direction was associated with healthy plants. Two diversity indices were defined and applied to assess the fungal taxa contribution (Tc) and persistence (Pi) throughout the production.
Collapse
Affiliation(s)
- V Vujanovic
- Institut de recherche en biologie végétale, Université de Montréal & Jardin botanique de Montréal, 4101 Sherbrooke street east, Montreal, Quebec, H1X 2B2, Canada
| | | | | | | | | |
Collapse
|
72
|
Verma M, Brar SK, Tyagi R, Surampalli R, Valéro J. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2007.05.012] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
73
|
Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR. Starch industry wastewater as a substrate for antagonist, Trichoderma viride production. BIORESOURCE TECHNOLOGY 2007; 98:2154-62. [PMID: 17084079 DOI: 10.1016/j.biortech.2006.08.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 08/24/2006] [Accepted: 08/27/2006] [Indexed: 05/12/2023]
Abstract
Starch industry wastewater was investigated to assess and improve its potential as a raw material for the conidia production of biocontrol fungi, Trichoderma viride. The wastewater was tested with and without supplements of glucose, soluble starch, meat peptone and probable conidiation inducer chemicals in shake flask culture. Addition of complex carbon source (soluble starch, 1% and 2% w/v) produced maximum conidia ( approximately 3.02 and 4.2 x 10(10)CFU/mL, respectively). On the other hand, glucose addition as a simpler carbon source was either ineffective or, reduced conidia production (from 1.6 x 10(8) in control to 3.0 x 10(7)CFU/mL in 5% w/v glucose supplement). Supplement of nitrogen source showed a small increase of conidia concentration. Propionic, maleic and humic acids, EDTA, pyridine, glycerol and CaCO(3) were examined as probable conidiation inducers and showed effect only on initial rate of conidiation with no increase in final conidia concentration. Intra and extracellular ATP correlation with spore production showed dependence on growth media used and conidia concentration at the end of fermentation. Addition of carbon and nitrogen sources showed an increase in protease activity (from 0.4985 to 2.43 IU/mL) and entomotoxicity (from 10448 to 12335 spruce budworm unit (SBU)/microL). Entomotoxicity was improved by 11% in fermenter over shake flask when starch industry wastewater was supplemented with meat peptone.
Collapse
Affiliation(s)
- M Verma
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, Canada G1K 9A9
| | | | | | | | | |
Collapse
|
74
|
Navazio L, Baldan B, Moscatiello R, Zuppini A, Woo SL, Mariani P, Lorito M. Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride. BMC PLANT BIOLOGY 2007; 7:41. [PMID: 17663762 PMCID: PMC1950503 DOI: 10.1186/1471-2229-7-41] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 07/30/2007] [Indexed: 05/07/2023]
Abstract
BACKGROUND Calcium is commonly involved as intracellular messenger in the transduction by plants of a wide range of biotic stimuli, including signals from pathogenic and symbiotic fungi. Trichoderma spp. are largely used in the biological control of plant diseases caused by fungal phytopathogens and are able to colonize plant roots. Early molecular events underlying their association with plants are relatively unknown. RESULTS Here, we investigated the effects on plant cells of metabolite complexes secreted by Trichoderma atroviride wild type P1 and a deletion mutant of this strain on the level of cytosolic free Ca2+ and activation of defense responses. Trichoderma culture filtrates were obtained by growing the fungus alone or in direct antagonism with its fungal host, the necrotrophic pathogen Botrytis cinerea, and then separated in two fractions (>3 and <3 kDa). When applied to aequorin-expressing soybean (Glycine max L.) cell suspension cultures, Trichoderma and Botrytis metabolite mixtures were distinctively perceived and activated transient intracellular Ca2+ elevations with different kinetics, specific patterns of intracellular accumulation of reactive oxygen species and induction of cell death. Both Ca2+ signature and cellular effects were modified by the culture medium from the knock-out mutant of Trichoderma, defective for the production of the secreted 42 kDa endochitinase. CONCLUSION New insights are provided into the mechanism of interaction between Trichoderma and plants, indicating that secreted fungal molecules are sensed by plant cells through intracellular Ca2+ changes. Plant cells are able to discriminate signals originating in the single or two-fungal partner interaction and modulate defense responses.
Collapse
Affiliation(s)
- Lorella Navazio
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Barbara Baldan
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Roberto Moscatiello
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Anna Zuppini
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Sheridan L Woo
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale, Università di Napoli "Federico II", Via Università 100, 80055 Portici (NA), Italy
| | - Paola Mariani
- Dipartimento di Biologia, Università di Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | - Matteo Lorito
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale, Università di Napoli "Federico II", Via Università 100, 80055 Portici (NA), Italy
| |
Collapse
|
75
|
Pereira JL, Noronha EF, Miller RNG, Franco OL. Novel insights in the use of hydrolytic enzymes secreted by fungi with biotechnological potential. Lett Appl Microbiol 2007; 44:573-81. [PMID: 17576216 DOI: 10.1111/j.1472-765x.2007.02151.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Entomopathogenic and mycoparasitic fungi synthesize hydrolytic enzymes such as chitinases, proteinases and beta-glucanases. These enzymes can act synergistically, helping fungi to control insect pests and pathogens that attack productive crops, and offer potential economic benefit to agribusiness. A number of hydrolytic enzymes have also been utilized in industrial applications. This review focuses on biochemical and structural analyses of fungal enzymes, together with current research information on secretion mechanisms.
Collapse
Affiliation(s)
- J L Pereira
- Centro de Análises Proteômicas e Bioquímica, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal - Brazil
| | | | | | | |
Collapse
|
76
|
Abstract
Since the introduction of DDT in the 1940s, arthropod pest control has relied heavily upon chemical insecticides. However, the development of insect resistance, an increased awareness of the real and perceived environmental and health impacts of these chemicals, and the need for systems with a smaller environmental footprint has stimulated the search for new insecticidal compounds, novel molecular targets, and alternative control methods. In recent decades a variety of biocontrol methods employing peptidic or proteinaceous insect-specific toxins derived from microbes, plants and animals have been examined in the laboratory and field with varying results. Among the many interdependent factors involved with the production of a cost-effective pesticide--production expense, kill efficiency, environmental persistence, pest-specificity, pest resistance-development, public perception and ease of delivery--sprayable biopesticides have not yet found equal competitive footing with chemical counterparts. However, while protein/peptide-based biopesticides continue to have limitations, advances in the technology, particularly of genetically modified organisms as biopesticidal delivery systems, has continually progressed. This review highlights the varieties of delivery methods currently practiced, examining the strengths and weaknesses of each method.
Collapse
|
77
|
Massart S, Jijakli HM. Use of molecular techniques to elucidate the mechanisms of action of fungal biocontrol agents: a review. J Microbiol Methods 2006; 69:229-41. [PMID: 17084929 DOI: 10.1016/j.mimet.2006.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 11/17/2022]
Abstract
Biological control of fungal plant pathogens appears as an attractive and realistic approach, and numerous microorganisms have been identified as biocontrol agents. There have been many efforts to understand the mechanisms of action of fungal biocontrol agents. Microbiological, microscopic, and biochemical techniques applied over many years have shed light on these mechanisms without fully demonstrating them. More recently, the development of molecular techniques has yielded innovative alternative tools for understanding and demonstrating the mechanisms underlying biocontrol properties. To date, more than 70 publications describe the use of molecular techniques for this purpose. They describe work exploiting targeted or non-targeted gene isolation, gene expression profiling, gene inactivation and/or overexpression, the study of regulatory factors. This work has shed considerable light on mechanisms underlying biocontrol properties. It has also fully demonstrated a number of targeted action mechanisms of some biocontrol agents. This review describes the techniques used in such studies, with their potential and limitations. It should provide a guide for researchers wanting to study the molecular basis of the biocontrol in diverse biocontrol agents.
Collapse
Affiliation(s)
- Sébastien Massart
- Plant Pathology Unit, Faculté Universitaire des Sciences Agronomiques de Gembloux, Passage des déportés, 2-5030 Gembloux, Belgium
| | | |
Collapse
|
78
|
Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR. Dissolved oxygen as principal parameter for conidia production of biocontrol fungi Trichoderma viride in non-Newtonian wastewater. J Ind Microbiol Biotechnol 2006; 33:941-52. [PMID: 16909264 DOI: 10.1007/s10295-006-0164-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 07/23/2006] [Indexed: 10/24/2022]
Abstract
Dissolved oxygen (DO) concentration was selected as a principal parameter for translating results of shake flask fermentation of Trichoderma viride (biocontrol fungi) to a fermenter scale. All fermentations were carried out in a 7.5 l automated fermenter with a working volume of 4 l. Fermentation performance parameters such as volumetric oxygen transfer coefficient (k (L) a), oxygen uptake rate (OUR), rheology, conidia concentration, glucose consumption, soluble chemical oxygen demand, entomotoxicity and inhibition index were measured. The conidia concentration, entomotoxicity and inhibition index were either stable or improved at lower DO concentration (30%). Variation of OUR aided in assessing the oxygen supply capacity of the fermenter and biomass growth. Meanwhile, rheological profiles demonstrated the variability of wastewater during fermentation due to mycelial growth and conidiation. In order to estimate power consumption, the agitation and the aeration requirements were quantified in terms of area under the curves, agitation vs. time (rpm h), and aeration vs. time (lpm h). This simple and novel strategy of fermenter operation proved to be highly successful which can be adopted to other biocontrol fungi.
Collapse
Affiliation(s)
- M Verma
- INRS-ETE, Université du Québec, 490, de la Couronne, Quebéc, Canada G1K 9A9
| | | | | | | | | |
Collapse
|
79
|
Pereira JL, Franco OL, Noronha EF. Production and Biochemical Characterization of Insecticidal Enzymes from Aspergillus fumigatus Toward Callosobruchus maculatus. Curr Microbiol 2006; 52:430-4. [PMID: 16732450 DOI: 10.1007/s00284-005-0192-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 02/07/2006] [Indexed: 11/30/2022]
Abstract
In the present work, Aspergillus fumigatus is described as a higher producer of hydrolytic enzymes secreted in response to the presence of the Callosobruchus maculatus bruchid pest. This fungus was able to grow over cowpea weevil shells as a unique carbon source, secreting alkaline proteolytic and chitinolytic enzymes. Enzyme secretion in A. fumigatus was induced by both C. maculatus exoskeleton as well as commercial chitin, and alkaline proteolytic and chitinolytic activities were detected after 48 hours of growth. Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed the production of specific proteins. Among them, two extracellular alkaline proteinases from culture enriched with C. maculatus exoskeleton were purified after chromatographic procedures using ion exchange and affinity columns. These proteins, named AP15 and AP30, had apparent molecular masses of 15,500 and 30,000 Da, respectively, as estimated by SDS-PAGE electrophoresis and mass spectrometry. AP30 was classified as a serine proteinase because it was inhibited by 5 mM: phenylmethylsulfonyl fluoride (100%) and 50 microM leupeptin (67.94%).
Collapse
Affiliation(s)
- Jackeline L Pereira
- Centro de Análises Proteômicas e Bioquímicas. Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Campus II, 70790-160, Distrito Federal, Brazil
| | | | | |
Collapse
|
80
|
Bencheqroun SK, Bajji M, Massart S, Bentata F, Labhilili M, Achbani H, El Jaafari S, Jijakli MH. Biocontrol of blue mold on apple fruits by Aureobasidium pullulans (strain Ach 1-1): in vitro and in situ evidence for the possible involvement of competition for nutrients. COMMUNICATIONS IN AGRICULTURAL AND APPLIED BIOLOGICAL SCIENCES 2006; 71:1151-1157. [PMID: 17390872 DOI: 10.1016/j.postharvbio.2007.05.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Aureobasidium pullulans strain Ach1-1 was recently isolated for its biocontrol effectiveness against Penicillium expansum, the causal agent of blue mold on harvested apples. In the present study, strain Ach1-1 was found to be very effective in controlling P. expansum on apple wounds. For in vitro tests, strain Ach1-1 and P. expansum were cocultured in the presence of apple juice (0 - 5%) using a system preventing direct contact between both agents. The presence of the antagonist greatly reduced germination of conidia at low (0.1, 0.5 and 1%) but not at high (5%) juice concentrations. Germination of previously inhibited conidia at 0.5% apple juice was partially restored in the presence of the antagonist when fresh juice was added at a final concentration of 5%, and completely recovered at both 0.5 and 5% juice concentrations in the absence of the antagonist. These data show that P. expansum conidia are able to germinate when cocultered with strain Ach1-1 in conditions of sufficient rather than limited nutrient availability and that the antagonist does not affect the viability of these conidia, indicating that the inhibitory effect of strain Ach1-1 on conidia germination may be due to a competition for nutrients. Such observation was confirmed in situ since the application of high amounts of exogenous amino acids, vitamins or sugars on apple wounds significantly reduced the protective level of strain Ach1-1 against P. expansum, the most important effect was obtained with amino acids followed by vitamins and then by sugars. The present work provides both in vitro and in situ evidence that the biocontrol activity of strain Ach1-1 against P. expansum essentially relies on competition for apple fruit nutrients, especially amino acids.
Collapse
Affiliation(s)
- S Krimi Bencheqroun
- Unit: de Phytopathologie, Faculté Universitaire des Sciences Agronomiques de Gembloux, Passage des Déportés 2, BE-5030 Gembloux, Belgium
| | | | | | | | | | | | | | | |
Collapse
|