51
|
Nistal M, Paniagua R, González-Peramato P, Reyes-Múgica M. Perspectives in Pediatric Pathology, Chapter 6. Male Undermasculinization. Pediatr Dev Pathol 2015; 18:279-96. [PMID: 25105706 DOI: 10.2350/14-04-1465-pb.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Normal male development requires three conditions: (1) adequate differentiation of the fetal testis; (2) synthesis and secretion of testicular hormones; and (3) effective action of these hormones on target organs. This requires the combined action of the inhibitory anti-müllerian hormone (AMH, secreted by Sertoli cells) to block the development of the uterus and fallopian tubes from the müllerian duct, together with the trophic stimulus of testosterone (a Leydig cell product), which leads to virilization of the wolffian ducts. Additionally, the development of external genitalia depends on the conversion of testosterone to dihydrotestosterone by the enzyme 5-α-reductase. Failure of any of these mechanisms leads to deficient virilization or the so-called "male pseudohermaphroditism" syndromes.
Collapse
Affiliation(s)
- Manuel Nistal
- 1 Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo #2, Madrid 28029, Spain
| | - Ricardo Paniagua
- 2 Department of Cell Biology, Universidad de Alcala, Madrid, Spain
| | - Pilar González-Peramato
- 1 Pathology, Hospital La Paz, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo #2, Madrid 28029, Spain
| | - Miguel Reyes-Múgica
- 3 Department of Pathology, Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
52
|
Jamnadass ESL, Keelan JA, Hollier LP, Hickey M, Maybery MT, Whitehouse AJO. The perinatal androgen to estrogen ratio and autistic-like traits in the general population: a longitudinal pregnancy cohort study. J Neurodev Disord 2015; 7:17. [PMID: 26085846 PMCID: PMC4470005 DOI: 10.1186/s11689-015-9114-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prenatal androgen exposure has been hypothesized to be linked to autism spectrum disorder (ASD). While previous studies have found a link between testosterone levels in amniotic fluid and autistic-like traits, a similar relationship has not been found for testosterone in umbilical cord blood. However, it may be the net biological activity of multiple androgens and estrogens that influences postnatal effects of prenatal sex steroids. Accordingly, composite levels of androgens (A) and estrogens (E) were investigated, along with their ratio, in relation to autistic-like traits in young adulthood. METHODS Sex steroid data in umbilical cord blood were available from 860 individuals at delivery. Samples were analyzed for androgens (testosterone, androstenedione, and dehydroepiandrosterone) and estrogens (estrone, estradiol, estriol, and estetrol). Levels of bioavailable testosterone, estradiol, and estrone were measured and used to calculate A and E composites and the A to E ratio. Participants were approached in early adulthood to complete the autism-spectrum quotient (AQ) as a self-report measure of autistic-like traits, with 183 males (M = 20.10 years, SD = 0.65 years) and 189 females (M =19.92 years, SD = 0.68 years) providing data. RESULTS Males exhibited significantly higher androgen composites and A to E composite ratios than females. Males also scored significantly higher on the details/patterns subscale of the AQ. Subsequent categorical and continuous analyses, which accounted for covariates, revealed no substantial relationships between the A/E composites or the A to E ratio and the AQ total or subscale scores. CONCLUSIONS The current study found no link between the A/E composites or the A to E ratio in cord blood and autistic-like traits in the population as measured by the AQ. These outcomes do not exclude the possibility that these sex steroid variables may predict other neurodevelopmental traits in early development.
Collapse
Affiliation(s)
- Esha S. L. Jamnadass
- />School of Psychology, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 Australia
- />Telethon Kids Institute, Centre for Child Health Research, University of Western Australia, 100 Roberts Road, Subiaco, WA 6008 Australia
| | - Jeffrey A. Keelan
- />School of Women’s and Infant’s Health, University of Western Australia, Perth, Australia
| | - Lauren P. Hollier
- />Faculty of Health Sciences, Curtin University, Kent Street, Bentley, Western Australia 6102 Australia
| | - Martha Hickey
- />Department of Obstetrics and Gynaecology, University of Melbourne and the Royal Women’s Hospital, Victoria, Australia
| | - Murray T. Maybery
- />School of Psychology, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 Australia
| | - Andrew J. O. Whitehouse
- />Telethon Kids Institute, Centre for Child Health Research, University of Western Australia, 100 Roberts Road, Subiaco, WA 6008 Australia
| |
Collapse
|
53
|
Xia Y, Shen S, Zhang X, Deng Z, Xiang Z, Wang H, Yi L, Gao Q, Wang Y. Epigenetic pattern changes in prenatal female Sprague-Dawley rats following exposure to androgen. Reprod Fertil Dev 2015; 28:RD14292. [PMID: 25823942 DOI: 10.1071/rd14292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/28/2015] [Indexed: 12/31/2022] Open
Abstract
Androgen excess is generally considered to be one of the major characteristics of polycystic ovary syndrome (PCOS). Evidence from both clinical research and animal studies has revealed that this syndrome may have fetal origins, with epigenetics being proposed as the underlying mechanism. Our PCOS rat model induced by prenatal administration of 3mg testosterone from Embryonic Day (E) 16 to E19 showed polycystic ovaries, irregular oestrous cycles and endocrine disorders in adulthood. The methylation status of 16, 8 and 4 cytosine-phosphate-guanine (CpG) sites in the promoter regions of the androgen receptor (Ar), cytochrome P450 family 11, subfamily A, polypeptide 1 (Cyp11a1) and cytochrome P450, family 17, subfamily A, polypeptide 1 (Cyp17a1) genes, respectively, were measured by pyrosequencing. We identified three hypomethylated sites (CpG +58, +65 and +150) in Ar and one hypomethylated site (CpG +1016) in Cyp11a1 in peripheral blood cells of prenatally androgenised (PNA) rats. In ovarian tissue, five CpG sites of Ar (CpG +87, +91, +93, +98, +150) and one single CpG site in Cyp11a1 (CpG +953) were significantly hypomethylated in PNA rats, but the modified methylation of these two genes may not be sufficient to significantly alter levels of gene expression. Furthermore, tissue-specific methylation analysis revealed that both Ar and Cyp11a1 exhibited significant hypomethylation in testis in contrast with ovary and blood. PNA may lead to methylation pattern changes and the development of PCOS, but further studies are required to reveal causal relationships.
Collapse
|
54
|
Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 2015; 36:3-23. [PMID: 24909511 PMCID: PMC4571323 DOI: 10.1038/aps.2014.18] [Citation(s) in RCA: 594] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/05/2014] [Indexed: 12/15/2022]
Abstract
Androgens and androgen receptors (AR) play a pivotal role in expression of the male phenotype. Several diseases, such as androgen insensitivity syndrome (AIS) and prostate cancer, are associated with alterations in AR functions. Indeed, androgen blockade by drugs that prevent the production of androgens and/or block the action of the AR inhibits prostate cancer growth. However, resistance to these drugs often occurs after 2–3 years as the patients develop castration-resistant prostate cancer (CRPC). In CRPC, a functional AR remains a key regulator. Early studies focused on the functional domains of the AR and its crucial role in the pathology. The elucidation of the structures of the AR DNA binding domain (DBD) and ligand binding domain (LBD) provides a new framework for understanding the functions of this receptor and leads to the development of rational drug design for the treatment of prostate cancer. An overview of androgen receptor structure and activity, its actions in prostate cancer, and how structural information and high-throughput screening have been or can be used for drug discovery are provided herein.
Collapse
|
55
|
Shojaei A, Behjati F, Ebrahimzadeh-Vesal R, Razzaghy-Azar M, Derakhshandeh-Peykar P, Izadi P, Kajbafzadeh AM, Dowlatih MA, Karami F, Tavakkoly-Bazzaz J. Mutation analysis of androgen receptor gene: Multiple uses for a single test. Gene 2014; 552:234-8. [DOI: 10.1016/j.gene.2014.09.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/13/2014] [Accepted: 09/16/2014] [Indexed: 11/27/2022]
|
56
|
Ozdemir O, Sari ME, Akmut E, Selimova V, Unal T, Atalay CR. Complete androgen insensitivity syndrome with a large gonadal serous papillary cystadenofibroma. J Hum Reprod Sci 2014; 7:148-50. [PMID: 25191030 PMCID: PMC4150143 DOI: 10.4103/0974-1208.138875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/21/2014] [Accepted: 05/26/2014] [Indexed: 11/21/2022] Open
Abstract
We present a patient with complete androgen insensitivity syndrome (CAIS) diagnosed with a serous papillary cystadenofibroma. A 41-year-old married female with a mass in the left inguinal region and a history of primary amenorrhea. A bulging mass of 13.7 cm × 8 cm × 12.4 cm in the left inguinal region extending from the hip joint to the level of labia majus, and a 3.2 cm × 2.8 cm mass in her right inguinal region were found by ultrasonography and magnetic resonance imaging. We performed bilateral gonadectomy. The pathology showed testicular tissue in the right inguinal mass and a serous papillary cystadenofibroma in the left one. CAIS is an infrequent clinical entity, occurrence of serous papillary cystadenofibroma is even rarer in this syndrome serous cystadenofibroma should come to mind in patients with a huge inguinal mass. Gonadectomy should be performed right after puberty to prevent the risk of malignancy development in the testes.
Collapse
Affiliation(s)
- Ozhan Ozdemir
- Department of Gynecology and Obstetrics, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Mustafa Erkan Sari
- Department of Gynecology and Obstetrics, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Evren Akmut
- Department of Gynecology and Obstetrics, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Vafa Selimova
- Department of Gynecology and Obstetrics, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Tugba Unal
- Department of Clinical Pathology, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Cemal Reşat Atalay
- Department of Gynecology and Obstetrics, Ankara Numune Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
57
|
Wang Z, Sa YL, Ye XX, Zhang J, Xu YM. Complete androgen insensitivity syndrome in juveniles and adults with female phenotypes. J Obstet Gynaecol Res 2014; 40:2044-50. [PMID: 25170741 DOI: 10.1111/jog.12455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/17/2014] [Indexed: 11/28/2022]
Abstract
AIM To report on six cases of the diagnosis and treatment of patients with complete androgen insensitivity syndrome (CAIS) and a review of the relevant published work. METHODS A retrospective analysis was performed on the clinical features, diagnosis and treatment of a total of six patients with CAIS who were admitted to our hospital between September 1985 and June 2012. All surgical patients were examined for sex chromosomes and sex hormone levels pre- and postoperatively, respectively, and underwent lower abdominal B ultrasounds and pathological examinations among other tests. RESULTS Five of the patients were treated with castration, one patient aged 5 years was treated conservatively Tissue from surgical resections showed normal testicular tissue that comprised Leydig cells and Sertoli cells, and pathological examinations showed no sign of testicular cancer. Following corrective operations, postoperative complications, such as female secondary sexual characteristics, stagnation and osteoporosis, have not developed. Sex hormone level ratio changed significantly after being treated with castration compared with preoperative levels; mainly testosterone and estrogen decreased significantly (P < 0.05), while luteinizing hormone and follicle-stimulating hormone significantly increased (P < 0.05). However, prolactin did not change significantly (P > 0.05). CONCLUSION The study show that removal of the testes in CAIS patients after puberty is safe and reliable. Meanwhile, it is essential to provide a hormone drug after being treated with castration. Further studies are needed to evaluate the safety and the quality of life for CAIS patients.
Collapse
Affiliation(s)
- Zhou Wang
- Department of Urology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
58
|
Nordenvall AS, Frisén L, Nordenström A, Lichtenstein P, Nordenskjöld A. Population Based Nationwide Study of Hypospadias in Sweden, 1973 to 2009: Incidence and Risk Factors. J Urol 2014; 191:783-9. [DOI: 10.1016/j.juro.2013.09.058] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Anna Skarin Nordenvall
- Department of Women's and Children's Health, Pediatric Surgery Unit and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Louise Frisén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Nordenström
- Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Pediatric Endocrinology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health, Pediatric Surgery Unit and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
59
|
Chen J, Weiss WA. Alternative splicing in cancer: implications for biology and therapy. Oncogene 2014; 34:1-14. [PMID: 24441040 DOI: 10.1038/onc.2013.570] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022]
Abstract
Alternative splicing has critical roles in normal development and can promote growth and survival in cancer. Aberrant splicing, the production of noncanonical and cancer-specific mRNA transcripts, can lead to loss-of-function in tumor suppressors or activation of oncogenes and cancer pathways. Emerging data suggest that aberrant splicing products and loss of canonically spliced variants correlate with stage and progression in malignancy. Here, we review the splicing landscape of TP53, BARD1 and AR to illuminate roles for alternative splicing in cancer. We also examine the intersection between alternative splicing pathways and novel therapeutic approaches.
Collapse
Affiliation(s)
- J Chen
- 1] Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA [2] Department of Neurology, University of California, San Francisco, CA, USA
| | - W A Weiss
- 1] Department of Neurology, University of California, San Francisco, CA, USA [2] Department of Neurological Surgery and Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
60
|
Androgens and the androgen receptor (AR). Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
61
|
Allieri F, Spigolon G, Melcangi R, Collado P, Guillamón A, Gotti S, Panzica G. Androgen receptor deficiency alters the arginine-vasopressin sexually dimorphic system in Tfm rats. Neuroscience 2013; 253:67-77. [DOI: 10.1016/j.neuroscience.2013.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 11/24/2022]
|
62
|
Marocchio LS, Giudice F, Corrêa L, Pinto Junior DDS, de Sousa SOM. Oestrogens and androgen receptors in oral squamous cell carcinoma. Acta Odontol Scand 2013; 71:1513-9. [PMID: 24066884 DOI: 10.3109/00016357.2013.775335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To investigate the gender-related expressions of androgen (AR), estrogen alpha (ERα) and beta (ERβ) receptors and aromatase enzyme in oral squamous cell carcinomas (OSCC). MATERIALS AND METHODS A total of 60 cases of OSCC (30 from males and 30 from females) were retrieved and submitted to immunohistochemistry. Also, steroid expression was studied in two OSCC cell lines using Western blotting and immunofluorescence. RESULTS Immunohistochemistry demonstrated that ERβ was expressed in almost 40% of the cases and AR in 26%. Aromatase enzyme and ERα were less commonly expressed. Only AR presented statistically significant differences between genders. Western blotting and immunofluorescence analysis demonstrated that ERβ was abundantly expressed in the nuclei of both cell lines and aromatase enzyme presented a cytoplasmic expression. CONCLUSION The detection of steroid hormones, especially ERβ, can indicate a role of these proteins in the process of carcinogenesis of some OSCC. Further studies of the mechanisms involved may provide important biological information regarding therapeutic approaches.
Collapse
|
63
|
Rabbani SA, Arakelian A, Farookhi R. LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo. Cancer Med 2013; 2:625-35. [PMID: 24403228 PMCID: PMC3892794 DOI: 10.1002/cam4.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 06/26/2013] [Accepted: 07/08/2013] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is a common hormone-dependent malignancy associated with the development of skeletal metastases. This is due to the increased expression of a number of growth factors, cytokines, and proteases which collectively drive the metastatic cascade in general and increased propensity to develop skeletal metastasis in particular. While a number of signaling pathways have been implicated in PCa progression, the highly complex wnt/β-catenin pathway is unique due to its ability to regulate gene expression, cell invasion, migration, survival, proliferation, and differentiation to contribute in the initiation and progression of PCa. Members of the wnt family bind to the Frizzle proteins or lipoprotein-related receptor proteins 5, 6 (LRP5, -6) to activate this key pathway. In the current study, we have investigated the role of wnt/β-catenin pathway in PCa progression, skeletal metastasis, and gene expression using the dominant negative plasmid of LRP5 (DN-LRP5) and human PCa cells PC-3. Inactivation of LRP5 resulted in mesenchymal to epithelial shift, lack of translocation of β-catenin to cell surface, increased tumor cell proliferation, decreased colony formation, migration and invasion in vitro. These effects were attributed to decreased expression of pro-invasive and pro-metastatic genes. In in vivo studies, PC-3-DN-LRP5 cells developed significantly smaller tumors and a marked decrease in skeletal lesion area and number as determined by X-ray, micro (μ) CT and histological analysis. Collectively results from these studies demonstrate the dominant role of this key pathway in PCa growth and skeletal metastasis and its potential as a viable therapeutic target.
Collapse
Affiliation(s)
- Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
64
|
Beitel LK, Alvarado C, Mokhtar S, Paliouras M, Trifiro M. Mechanisms mediating spinal and bulbar muscular atrophy: investigations into polyglutamine-expanded androgen receptor function and dysfunction. Front Neurol 2013; 4:53. [PMID: 23720649 PMCID: PMC3654311 DOI: 10.3389/fneur.2013.00053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 04/26/2013] [Indexed: 11/13/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA, Kennedy’s disease), a late-onset neuromuscular disorder, is caused by expansion of the polymorphic polyglutamine tract in the androgen receptor (AR). The AR is a ligand-activated transcription factor, but plays roles in other cellular pathways. In SBMA, selective motor neuron degeneration occurs in the brainstem and spinal cord, thus the causes of neuronal dysfunction have been studied. However, pathogenic pathways in muscles may also be involved. Cultured cells, fly and mouse models are used to study the molecular mechanisms leading to SBMA. Both the structure of the polyglutamine-expanded AR (polyQ AR) and its interactions with other proteins are altered relative to the normal AR. The ligand-dependent translocation of the polyQ AR to the nucleus appears to be critical, as are interdomain interactions. The polyQ AR, or fragments thereof, can form nuclear inclusions, but their pathogenic or protective nature is unclear. Other data suggests soluble polyQ AR oligomers can be harmful. Post-translational modifications such as phosphorylation, acetylation, and ubiquitination influence AR function and modulate the deleterious effects of the polyQ AR. Transcriptional dysregulation is highly likely to be a factor in SBMA; deregulation of non-genomic AR signaling may also be involved. Studies on polyQ AR-protein degradation suggest inhibition of the ubiquitin proteasome system and changes to autophagic pathways may be relevant. Mitochondrial function and axonal transport may also be affected by the polyQ AR. Androgens, acting through the AR, can be neurotrophic and are important in muscle development; hence both loss of normal AR functions and gain of novel harmful functions by the polyQ AR can contribute to neurodegeneration and muscular atrophy. Thus investigations into polyQ AR function have shown that multiple complex mechanisms lead to the initiation and progression of SBMA.
Collapse
Affiliation(s)
- Lenore K Beitel
- Lady Davis Institute for Medical Research, Jewish General Hospital Montreal, QC, Canada ; Department of Medicine, McGill University Montreal, QC, Canada ; Department of Human Genetics, McGill University Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
65
|
Deshpande H, Chaudhari S, Sharma S. Complete androgen insensitivity syndrome. J Obstet Gynaecol India 2013; 62:75-7. [PMID: 24293884 DOI: 10.1007/s13224-013-0382-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 06/19/2012] [Indexed: 11/27/2022] Open
Affiliation(s)
- Hemant Deshpande
- Department of Obstetrics and Gynaecology, Dr. D.Y. Patil Medical College, Pune, India
| | | | | |
Collapse
|
66
|
Lonergan PE, Tindall DJ. Truncated Androgen Receptor Splice Variants in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
67
|
Morohashi K, Baba T, Tanaka M. Steroid Hormones and the Development of Reproductive Organs. Sex Dev 2013; 7:61-79. [DOI: 10.1159/000342272] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
68
|
Elfferich P, van Royen M, van de Wijngaart D, Trapman J, Drop S, van den Akker E, Lusher S, Bosch R, Bunch T, Hughes I, Houtsmuller A, Cools M, Faradz S, Bisschop P, Bunck M, Oostdijk W, Brüggenwirth H, Brinkmann A. Variable Loss of Functional Activities of Androgen Receptor Mutants in Patients with Androgen Insensitivity Syndrome. Sex Dev 2013; 7:223-34. [DOI: 10.1159/000351820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 01/05/2023] Open
|
69
|
Ebron JS, Weyman CM, Shukla GC. Targeting of Androgen Receptor Expression by Andro-miRs as Novel Adjunctive Therapeutics in Prostate Cancer. ACTA ACUST UNITED AC 2013; 4:47-58. [PMID: 26877888 PMCID: PMC4751888 DOI: 10.4236/jct.2013.44a006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prostate cancer begins as an androgen-responsive disease. However, subsequent accumulation of multiple sequential genetic and epigenetic alterations transforms the disease into an aggressive, castration-resistant prostate cancer (CRPC). The monoallelic Androgen Receptor (AR) is associated with the onset, growth and development of Prostate cancer. The AR is a ligand-dependent transcription factor, and the targeting of androgen- and AR-signaling axis remains the primary therapeutic option for Prostate cancer (PCa) treatment. A durable and functional disruption of AR signaling pathways combining both traditional and novel therapeutics is likely to provide better treatment options for CRPC. Recent work has indicated that expression of AR is modulated at the posttranscriptional level by regulatory miRNAs. Due to a relatively long 3’ untranslated region (UTR) of AR mRNA, the posttranscription expression is likely to be regulated by hundreds of miRNAs in normal as well as in disease state. The main objective of the article is to offer a thought-provoking concept of “andro-miRs” and their potential application in AR gene expression targeting. This new paradigm for targeting constitutively active AR and its tumor specific splicing isoforms using andro-miRs may pave the way for a novel adjunctive therapy and improved treatment of CRPC.
Collapse
Affiliation(s)
- Jey Sabith Ebron
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, USA
| | - Crystal M Weyman
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, USA; Department of Biological, Environmental Sciences, Cleveland State University, Cleveland, USA
| | - Girish C Shukla
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, USA; Department of Biological, Environmental Sciences, Cleveland State University, Cleveland, USA
| |
Collapse
|
70
|
Kumar S, Tyagi RK. Androgen receptor association with mitotic chromatin - analysis with introduced deletions and disease-inflicting mutations. FEBS J 2012; 279:4598-614. [DOI: 10.1111/febs.12046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/24/2012] [Accepted: 10/25/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Sanjay Kumar
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi; India
| | - Rakesh K. Tyagi
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi; India
| |
Collapse
|
71
|
Andrade FP, Cabrera PM, Cáceres F, Gil B, Rodríguez-Barbero JM, Angulo JC. Umbilical KeyPort bilateral laparoscopic orchiectomy in patient with complete androgen insensitivity syndrome. Int Braz J Urol 2012; 38:695-700. [PMID: 23131511 DOI: 10.1590/s1677-55382012000500016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2012] [Indexed: 11/22/2022] Open
Abstract
MAIN FINDINGS A 22-year-old woman with complete androgen insensitivity syndrome (CAIS) presenting with primary amenorrhea and normal female external genitalia was referred for laparoscopic gonadectomy. She had been diagnosed several years earlier but was reluctant to undergo surgery. Case HYPOTHESIS Diagnosis of this X-linked recessive inherited syndrome characterizes by disturbance of virilization in males with an AR mutation, XY karyotipe, female genitalia and severely undescended testis with risk of malignization. The optimal time to orchidectomy is not settled; neither the real risk of malignancy in these patients. Early surgery impacts development of a complete female phenotype, with enlargement of the breasts. Based on modern diagnostic imaging using DCE-MRI and surgical technology with single port laparoscopic access we hypothesize that the optimum time for gonadectomy is not at the time of diagnosis, but once feminization has completed. PROMISING FUTURE IMPLICATIONS An umbilical laparoendoscopic single-site access for bilateral gonadectomy appears to be the first choice approach as leaves no visible incision and diminishes the psychological impact of surgery in a patient with CAIS absolutely reassured as female. KeyPort, a single port access with duo-rotate instruments developed by Richard Wolf facilitates this surgery and allows excellent cosmetic results.
Collapse
Affiliation(s)
- Felipe P Andrade
- Servicios de Urologia, Genetica y Anatomia Patologica, Hospital Universitario de Getafe, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
72
|
Cai Z, Li ZS, Liu XY. A novel nonsense mutation in the N-terminal domain of the androgen receptor gene causes complete androgen insensitivity syndrome. J OBSTET GYNAECOL 2012; 32:707-8. [DOI: 10.3109/01443615.2012.698335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
73
|
Expression of aromatase P450(AROM) in the human fetal and early postnatal cerebral cortex. Brain Res 2012; 1475:11-8. [PMID: 22902617 DOI: 10.1016/j.brainres.2012.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/20/2012] [Accepted: 08/05/2012] [Indexed: 02/06/2023]
Abstract
Aromatase (P450(AROM)), the enzyme responsible for the conversion of testosterone (T) into 17-β estradiol (E(2)), plays a crucial role in the sexual differentiation of specific hypothalamic nuclei. Moreover, recent findings indicate that local E(2) synthesis has an impact on other brain areas including hippocampus, temporal cortex and cerebellum, and may thus influence also cognitive functions. Numerous studies have described the expression and the distribution of P450(AROM) throughout ontogenesis and postnatal development of the central nervous system in several mammals, but data referring to humans are scarce. In the adult human brain, P450(AROM) has been detected in the hypothalamus, limbic areas, and in the basal forebrain, and described in glial cells of the cerebral cortex and hippocampus. In this study we report the expression, distribution and cellular localization of P450(AROM) in the human fetal and early postnatal cerebral cortex. In our series of fetal brains of the second trimester, P450(AROM) expression appeared at gestational week (GW) 17 and resulted limited to groups of cells localized close to the growing neuroepithelium in the ventricular and subventricular zones. At GWs 20-24, scattered P450(AROM) immunoreactive (-ir) neural cells were identified in the intermediate plate and subplate, and in the parietal cortical plate. In perinatal and early postnatal individuals the quantity of P450(AROM)-ir elements increased, and revealed the morphology typical of glial cells. Double labeling immunostaining with anti-GFAP and anti-P450(AROM) antisera, and subsequent confocal analysis, confirmed this observation. Our data show that the expression of P450(AROM) in the fetal cortex starts approx at the end of the fourth gestational month, but increases steadily only in the last trimester or in the early postnatal period. This temporal trend may suggest that P450(AROM) could act as a differentiation-promoting factor, based on timing of the steroid actions.
Collapse
|
74
|
Ning Y, Zhang F, Zhu Y, Chen H, Lu J, Li Z. Novel Androgen Receptor Gene Mutation in Patient With Complete Androgen Insensitivity Syndrome. Urology 2012; 80:216-8. [DOI: 10.1016/j.urology.2012.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/04/2012] [Accepted: 03/23/2012] [Indexed: 11/27/2022]
|
75
|
Current status of treatment of spinal and bulbar muscular atrophy. Neural Plast 2012; 2012:369284. [PMID: 22720173 PMCID: PMC3376774 DOI: 10.1155/2012/369284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/18/2012] [Indexed: 11/17/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is the first member identified among polyglutamine diseases characterized by slowly progressive muscle weakness and atrophy of the bulbar, facial, and limb muscles pathologically associated with motor neuron loss in the spinal cord and brainstem. Androgen receptor (AR), a disease-causing protein of SBMA, is a well-characterized ligand-activated transcription factor, and androgen binding induces nuclear translocation, conformational change and recruitment of coregulators for transactivation of AR target genes. Some therapeutic strategies for SBMA are based on these native functions of AR. Since ligand-induced nuclear translocation of mutant AR has been shown to be a critical step in motor neuron degeneration in SBMA, androgen deprivation therapies using leuprorelin and dutasteride have been developed and translated into clinical trials. Although the results of these trials are inconclusive, renewed clinical trials with more sophisticated design might prove the effectiveness of hormonal intervention in the near future. Furthermore, based on the normal function of AR, therapies targeted for conformational changes of AR including amino-terminal (N) and carboxy-terminal (C) (N/C) interaction and transcriptional coregulators might be promising. Other treatments targeted for mitochondrial function, ubiquitin-proteasome system (UPS), and autophagy could be applicable for all types of polyglutamine diseases.
Collapse
|
76
|
The stress response mediator ATF3 represses androgen signaling by binding the androgen receptor. Mol Cell Biol 2012; 32:3190-202. [PMID: 22665497 DOI: 10.1128/mcb.00159-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activating transcription factor 3 (ATF3) is a common mediator of cellular stress response signaling and is often aberrantly expressed in prostate cancer. We report here that ATF3 can directly bind the androgen receptor (AR) and consequently repress AR-mediated gene expression. The ATF3-AR interaction requires the leucine zipper domain of ATF3 that independently binds the DNA-binding and ligand-binding domains of AR, and the interaction prevents AR from binding to cis-acting elements required for expression of androgen-dependent genes while inhibiting the AR N- and C-terminal interaction. The functional consequences of the loss of ATF3 expression include increased transcription of androgen-dependent genes in prostate cancer cells that correlates with increased ability to grow in low-androgen-containing medium and increased proliferative activity of the prostate epithelium in ATF3 knockout mice that is associated with prostatic hyperplasia. Our results thus demonstrate that ATF3 is a novel repressor of androgen signaling that can inhibit AR functions, allowing prostate cells to restore homeostasis and maintain integrity in the face of a broad spectrum of intrinsic and environmental insults.
Collapse
|
77
|
Grosdidier S, Carbó LR, Buzón V, Brooke G, Nguyen P, Baxter JD, Bevan C, Webb P, Estébanez-Perpiñá E, Fernández-Recio J. Allosteric conversation in the androgen receptor ligand-binding domain surfaces. Mol Endocrinol 2012; 26:1078-90. [PMID: 22653923 DOI: 10.1210/me.2011-1281] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Androgen receptor (AR) is a major therapeutic target that plays pivotal roles in prostate cancer (PCa) and androgen insensitivity syndromes. We previously proposed that compounds recruited to ligand-binding domain (LBD) surfaces could regulate AR activity in hormone-refractory PCa and discovered several surface modulators of AR function. Surprisingly, the most effective compounds bound preferentially to a surface of unknown function [binding function 3 (BF-3)] instead of the coactivator-binding site [activation function 2 (AF-2)]. Different BF-3 mutations have been identified in PCa or androgen insensitivity syndrome patients, and they can strongly affect AR activity. Further, comparison of AR x-ray structures with and without bound ligands at BF-3 and AF-2 showed structural coupling between both pockets. Here, we combine experimental evidence and molecular dynamic simulations to investigate whether BF-3 mutations affect AR LBD function and dynamics possibly via allosteric conversation between surface sites. Our data indicate that AF-2 conformation is indeed closely coupled to BF-3 and provide mechanistic proof of their structural interconnection. BF-3 mutations may function as allosteric elicitors, probably shifting the AR LBD conformational ensemble toward conformations that alter AF-2 propensity to reorganize into subpockets that accommodate N-terminal domain and coactivator peptides. The induced conformation may result in either increased or decreased AR activity. Activating BF-3 mutations also favor the formation of another pocket (BF-4) in the vicinity of AF-2 and BF-3, which we also previously identified as a hot spot for a small compound. We discuss the possibility that BF-3 may be a protein-docking site that binds to the N-terminal domain and corepressors. AR surface sites are attractive pharmacological targets to develop allosteric modulators that might be alternative lead compounds for drug design.
Collapse
Affiliation(s)
- Solène Grosdidier
- Joint BSC-IRB Research Programme in Computational Biology, Life Sciences Department, Barcelona Supercomputing Center, 08034 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Jääskeläinen J. Molecular biology of androgen insensitivity. Mol Cell Endocrinol 2012; 352:4-12. [PMID: 21871529 DOI: 10.1016/j.mce.2011.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 07/19/2011] [Accepted: 08/10/2011] [Indexed: 12/29/2022]
Abstract
Androgen insensitivity syndrome (AIS) is the most common specific cause of 46,XY disorder in sex development. The androgen signaling pathway is complex but so far, the only gene linked with AIS is the androgen receptor (AR). Mutations in the AR are found in most subjects with complete AIS but in partial AIS, the rate has varied 28-73%, depending on the case selection. More than 400 different mutations in AR leading to AIS have been reported. Most mutations are missense substitutions located in the ligand binding domain of the receptor. However, when systematically screened, a substantial amount of mutations can be detected also in the N-terminal domain encoded by exon 1. Within this exon lie two trinucleotide, CAG and GGN repeat regions which are polymorphic in length. Their role in androgen insensitivity is somewhat unclear. Recent advances in protein modeling have resulted in better understanding of the mechanism of known AR mutations.
Collapse
|
79
|
Ye Y, Cong P, Yu P, Qi M, Jin F. Preimplantation and prenatal genetic diagnosis for androgen insensitivity syndrome resulting from a novel deletion/insertion mutation. Clin Genet 2012; 82:295-6. [DOI: 10.1111/j.1399-0004.2012.01847.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
80
|
Buzón V, Carbó LR, Estruch SB, Fletterick RJ, Estébanez-Perpiñá E. A conserved surface on the ligand binding domain of nuclear receptors for allosteric control. Mol Cell Endocrinol 2012; 348:394-402. [PMID: 21878368 DOI: 10.1016/j.mce.2011.08.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/08/2011] [Accepted: 08/12/2011] [Indexed: 12/26/2022]
Abstract
Nuclear receptors (NRs) form a large superfamily of transcription factors that participate in virtually every key biological process. They control development, fertility, gametogenesis and are misregulated in many cancers. Their enormous functional plasticity as transcription factors relates in part to NR-mediated interactions with hundreds of coregulatory proteins upon ligand (e.g., hormone) binding to their ligand binding domains (LBD), or following covalent modification. Some coregulator association relates to the distinct residues that shape a coactivator binding pocket termed AF-2, a surface groove that primarily determines the preference and specificity of protein-protein interactions. However, the highly conserved AF-2 pocket in the NR superfamily appears to be insufficient to account for NR subtype specificity leading to fine transcriptional modulation in certain settings. Additional protein-protein interaction surfaces, most notably on their LBD, may contribute to modulating NR function. NR coregulators and chaperones, normally much larger than the NR itself, may also bind to such interfaces. In the case of the androgen receptor (AR) LBD surface, structural and functional data highlighted the presence of another site named BF-3, which lies at a distinct but topographically adjacent surface to AF-2. AR BF-3 is a hot spot for mutations involved in prostate cancer and androgen insensitivity syndromes, and some FDA-approved drugs bind at this site. Structural studies suggested an allosteric relationship between AF-2 and BF-3, as occupancy of the latter affected coactivator recruitment to AF-2. Physiological relevant partners of AR BF-3 have not been described as yet. The newly discovered site is highly conserved among the steroid receptors subclass, but is also present in other NRs. Several missense mutations in the BF-3 regions of these human NRs are implicated in pathology and affect their function in vitro. The fact that AR BF-3 pocket is a druggable site evidences its pharmacological potential. Compounds that may affect allosterically NR function by binding to BF-3 open promising avenues to develop type-specific NR modulators.
Collapse
Affiliation(s)
- Víctor Buzón
- Institut de Biomedicina, Universitat de Barcelona, Baldiri Reixac 15-21, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
81
|
Abstract
INTRODUCTION Androgens regulate a wide array of physiological processes, including male sexual development, bone and muscle growth, and behavior and cognition. Because androgens play a vital role in so many tissues, changes in androgen signaling are associated with a plethora of diseases. How such varied responses are achieved by a single stimulus is not well understood. Androgens act primarily through the androgen receptor (AR), a hormone nuclear receptor that is expressed in a select variety of tissues. METHODS In order to gain a better understanding of how the tissue-selective effects of androgens are achieved, we performed a comparison of microarray data, using previously published datasets and several of our own microarray datasets. These datasets were derived from clinically relevant, AR-expressing tissues dissected from rodents treated with the full androgen dihydrotestosterone (DHT). RESULTS We found that there is a diverse response to DHT, with very little overlap of androgen regulated genes in each tissue. Gene ontology analyses also indicated that, while several tissues regulate similar biological processes in response to DHT, most androgen regulated processes are specific to one or a few tissues. Thus, it appears that the disparate physiological effects mediated by androgens begin with widely varying effects on gene expression in different androgen-sensitive tissues. CONCLUSION The analysis completed in this study will lead to an improved understanding of how androgens mediate diverse, tissue-specific processes and better ways to assess the tissue-selective effects of AR modulators during drug development.
Collapse
Affiliation(s)
- Maya Otto-Duessel
- Department of Molecular Pharmacology, Beckman Research Institute, Duarte, CA 91010, USA
| | | | | |
Collapse
|
82
|
Dart DA, Brooke GN, Sita-Lumsden A, Waxman J, Bevan CL. Reducing prohibitin increases histone acetylation, and promotes androgen independence in prostate tumours by increasing androgen receptor activation by adrenal androgens. Oncogene 2011; 31:4588-98. [PMID: 22179832 PMCID: PMC3427022 DOI: 10.1038/onc.2011.591] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prostate cancers, initially responsive to anti-androgen therapies, often advance to a hormone-refractory “castrate resistant” stage (CRPC). However the androgen receptor (AR) pathway remains active and key for cell growth and gene expression within tumours, even in the apparent absence of hormone. Proposed mechanisms to explain progression, including AR amplification/mutation, are insufficient to completely explain CRPC and possible roles of AR cofactors such as prohibitin are poorly understood. We investigated whether prohibitin loss could sensitise prostate cancer cells and tumours to adrenal gland-derived androgens which persist even after androgen ablation, hence contribute to development of CRPC. Using a pair of prostate cancer cell lines, inducibly expressing ectopic cDNA or RNAi for PHB, responses to different androgens and hormone concentrations were studied both in vitro and in vivo. PHB was found at the promoters of several genes, both AR and non AR-regulated, and knockdown increased histone acetylation at these promoters. Further, PHB knockdown increased rate of AR ligand-induced chromatin binding, and binding rate and occupancy of AR upon the PSA promoter. This resulted in increased cell growth and AR activity in response to all androgens, including promoting a response to the weaker adrenal androgens previously absent at physiological concentrations. In vivo this had functional consequences such that PHB knockdown resulted in androstenedione being sufficient to promote tumour growth, under conditions mimicking those in patients undergoing androgen ablation therapy. We conclude that reduction in prohibitin levels is sufficient to lower the threshold of AR activity in vitro and in vivo; this may be via a general increase in histone acetylation that could potentially affect signalling by other transcription factors. Prohibitin loss may provide a mechanism for progression to CRPC by sensitizing prostate cancer cells to “castrate” conditions i.e. low levels of testicular androgens in the continued presence of weak adrenal and dietary androgens.
Collapse
Affiliation(s)
- D A Dart
- Androgen Signalling Laboratory, Department of Surgery and Cancer, Imperial College London, London, UK
| | | | | | | | | |
Collapse
|
83
|
Suzuki N, Imai A. Evidence that lack of ligand-binding domain correlates with nuclear distribution of unliganded human androgen receptor and loss of transactivation activity. Gynecol Endocrinol 2011; 27:940-3. [PMID: 21501000 DOI: 10.3109/09513590.2011.569599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Androgen receptor (AR) is one of the large superfamily of nuclear hormone receptors. AR consists of distinct domains including an N-terminal DNA-binding domain and a C-terminal ligand-binding domain (LBD). Regulation of AR nuclear import and subsequent transactivation activity represent essential steps in androgen action. Mutations in the AR gene are known to cause different degrees of androgen insensitivity syndrome (AIS). This study aimed to identify the possible contribution of LBD of AR to cellular distribution, ligand binding, and transactivation activities using mutant AR clone lacking the entire LBD that we previously observed in an AIS patient. Subcellular distribution was assessed by green fluorescence protein-tagged vector and transcriptional activity was analyzed by luciferase assay. Wild-type AR had ligand-dependent transcriptional activation and nuclear import activities. On the other hand, mutant AR had no transcriptional activity regardless of the presence of ligand, 5-α-dihydroxytestosterone (DHT). These mutants were presented predominantly in the nucleus even without DHT. The observation of no transactivation in the mutant receptor must be due to the loss of complex formation between androgen and AR protein. The C-terminal domain has the critical role in the cellular localization and transactivation as well as on the ligand binding.
Collapse
Affiliation(s)
- Noriko Suzuki
- Department of Obstetrics and Gynecology, Gifu University School of Medicine, Gifu, 501-1194, Japan.
| | | |
Collapse
|
84
|
Abstract
Alternative splicing is an important mechanism for increasing functional diversity from a limited set of genes. Deregulation of this process is common in diverse pathologic conditions. The androgen receptor (AR) is a steroid receptor transcription factor with functions critical for normal male development as well as the growth and survival of normal and cancerous prostate tissue. Studies of AR function in androgen insensitivity syndrome (AIS) and prostate cancer (PCa) have demonstrated loss-of-function AR alterations in AIS and gain-of-function AR alterations in PCa. Over the past two decades, AR gene alterations have been identified in various individuals with AIS, which disrupt normal AR splicing patterns and yield dysfunctional AR protein variants. Recently, altered AR splicing patterns have been identified as a mechanism of PCa progression and resistance to androgen depletion therapy. Several studies have described the synthesis of alternatively spliced transcripts encoding truncated AR isoforms that lack the ligand-binding domain, which is the ultimate target of androgen depletion. Many of these truncated AR isoforms function as constitutively active, ligand-independent transcription factors that can support androgen-independent expression of AR target genes, as well as the androgen-independent growth of PCa cells. In this review, we will summarize the various alternatively spliced AR variants that have been discovered, with a focus on their role and origin in the pathologic conditions of AIS and PCa.
Collapse
Affiliation(s)
- Scott M Dehm
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
85
|
Petroli RJ, Maciel-Guerra AT, Soardi FC, de Calais FL, Guerra-Junior G, de Mello MP. Severe forms of partial androgen insensitivity syndrome due to p.L830F novel mutation in androgen receptor gene in a Brazilian family. BMC Res Notes 2011; 4:173. [PMID: 21645389 PMCID: PMC3121623 DOI: 10.1186/1756-0500-4-173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 06/06/2011] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The androgen insensitivity syndrome may cause developmental failure of normal male external genitalia in individuals with 46,XY karyotype. It results from the diminished or absent biological action of androgens, which is mediated by the androgen receptor in both embryo and secondary sex development. Mutations in the androgen receptor gene, located on the X chromosome, are responsible for the disease. Almost 70% of 46,XY affected individuals inherited mutations from their carrier mothers. FINDINGS Molecular abnormalities in the androgen receptor gene in individuals of a Brazilian family with clinical features of severe forms of partial androgen insensitivity syndrome were evaluated. Seven members (five 46,XY females and two healthy mothers) of the family were included in the investigation. The coding exons and exon-intron junctions of androgen receptor gene were sequenced. Five 46,XY members of the family have been found to be hemizygous for the c.3015C>T nucleotide change in exon 7 of the androgen receptor gene, whereas the two 46,XX mothers were heterozygote carriers. This nucleotide substitution leads to the p.L830F mutation in the androgen receptor. CONCLUSIONS The novel p.L830F mutation is responsible for grades 5 and 6 of partial androgen insensitivity syndrome in two generations of a Brazilian family.
Collapse
Affiliation(s)
- Reginaldo J Petroli
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP), Avenida Cândido Rondon 400, Campinas, 13083-875, SP, Brasil.
| | | | | | | | | | | |
Collapse
|
86
|
Davis-Dao CA, Siegmund KD, Vandenberg DJ, Skinner EC, Coetzee GA, Thomas DC, Pike MC, Cortessis VK. Heterogenous effect of androgen receptor CAG tract length on testicular germ cell tumor risk: shorter repeats associated with seminoma but not other histologic types. Carcinogenesis 2011; 32:1238-43. [PMID: 21642359 DOI: 10.1093/carcin/bgr104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Increasing rates of testicular germ cells tumors (TGCTs) overtime suggest that environmental factors are involved in disease etiology, but familial risk and genome-wide association studies implicate genetic factors as well. We investigated whether variation in the functional CAG(n) polymorphism in the androgen receptor (AR) gene is associated with TGCT risk, using data from a population-based family study. We estimated odds ratios (OR) and 95% confidence intervals (CI) for the association of CAG repeat length and TGCT risk using matched pairs logistic regression. Analyses of 273 TGCT case-mother pairs revealed no association between AR CAG repeat length and overall TGCT risk. However, risk of seminoma was significantly associated with shorter CAG repeat length [CAG 20-21 versus CAG ≤ 19: OR = 0.82 (95% CI: 0.43-1.58), CAG 22-23 versus CAG ≤ 19: OR = 0.39 (95% CI: 0.19-0.83) and CAG ≥ 24 versus CAG ≤ 19: OR = 0.42 (95% CI: 0.20-0.86)], with a highly significant trend over these four categories of decreasing CAG repeat length (P(trend) = 0.0030). This is the first report of a statistically significant association between AR CAG repeat length and seminoma risk, suggesting that increased AR transactivation may be involved in development of seminoma and/or progression of carcinoma in situ/intratubular germ cell neoplasia unclassified to seminoma. This result provides a rationale whereby androgenic environmental compounds could contribute to increases in TGCT incidence, and identifies for the first time a potential biological pathway influencing whether TGCTs achieve seminomatous versus nonseminomatous histology, a clinically and biologically important distinction.
Collapse
Affiliation(s)
- Carol A Davis-Dao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Li BK, Ding Q, Wan XD, Wang X. Clinical and genetic characterization of complete androgen insensitivity syndrome in a Chinese family. GENETICS AND MOLECULAR RESEARCH 2011; 10:1022-31. [PMID: 21710452 DOI: 10.4238/vol10-2gmr1130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We studied a family with two cousins who were diagnosed with complete androgen insensitivity syndrome, an X-linked disorder caused by mutations in the androgen receptor gene. A pedigree analysis and a molecular study using PCR and DNA sequencing clarified each female family member's androgen receptor status and revealed a mutation consisting of the deletion of exon 2 and surrounding introns of the androgen receptor gene. Based on the relative nucleotide positions, we concluded that the deletion mutation in exon 2 and its surrounding introns was approximately 6000 to 7000 bp. This mutation, never previously fully characterized using DNA sequencing, was responsible for complete androgen insensitivity syndrome in this family. Pedigree analysis with a molecular study of the androgen receptor gene in affected families facilitates genetic counseling provided to family members.
Collapse
Affiliation(s)
- B K Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
88
|
Knop E, Knop N, Millar T, Obata H, Sullivan DA. The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci 2011; 52:1938-78. [PMID: 21450915 PMCID: PMC3072159 DOI: 10.1167/iovs.10-6997c] [Citation(s) in RCA: 747] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/23/2011] [Indexed: 12/15/2022] Open
Affiliation(s)
- Erich Knop
- Ocular Surface Center Berlin, Department for Cell and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
89
|
Kral M, Rosinska V, Student V, Grepl M, Hrabec M, Bouchal J. GENETIC DETERMINANTS OF PROSTATE CANCER: A REVIEW. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011; 155:3-9. [DOI: 10.5507/bp.155.2011.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
90
|
Vrzalová Z, Hrubá Z, Hrabincová ES, Vrábelová S, Votava F, Koloušková S, Fajkusová L. Chimeric CYP21A1P/CYP21A2 genes identified in Czech patients with congenital adrenal hyperplasia. Eur J Med Genet 2010; 54:112-7. [PMID: 20970527 DOI: 10.1016/j.ejmg.2010.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 10/13/2010] [Indexed: 11/30/2022]
Abstract
Congenital adrenal hyperplasia (CAH) comprises a group of autosomal recessive disorders caused by an enzymatic deficiency which impairs the biosynthesis of cortisol and, in the majority of severe cases, also the biosynthesis of aldosterone. Approximately 95% of all CAH cases are caused by mutations in the steroid 21-hydroxylase gene (CYP21A2). The CYP21A2 gene and its inactive pseudogene (CYP21A1P) are located within the HLA class III region of the major histocompatibility complex (MHC) locus on chromosome 6p21.3. In this study, we describe chimeric CYP21A1P/CYP21A2 genes detected in our patients with 21-hydroxylase deficiency (21OHD). Chimeric CYP21A1P/CYP21A2 genes were present in 171 out of 508 mutated CYP21A2 alleles (33.8%). We detected four types of chimeric CYP21A1P/CYP21A2 genes: three of them have been described previously as CH-1, CH-3, CH-4, and one type is novel. The novel chimeric gene, termed CH-7, was detected in 21.4% of the mutant alleles. Possible causes of CYP21A1P/CYP21A2 formation are associated with 1) high recombination rate in the MHC locus, 2) high recombination rate between highly homologous genes and pseudogenes in the CYP21 gene area, and 3) the existence of chi-like sequences and repetitive minisatellite consensus sequences in CYP21A2 and CYP21A1P which play a role in promoting genetic recombination.
Collapse
Affiliation(s)
- Zuzana Vrzalová
- University Hospital Brno, Centre of Molecular Biology and Gene Therapy, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
91
|
Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci U S A 2010; 107:16759-65. [PMID: 20823238 DOI: 10.1073/pnas.1012443107] [Citation(s) in RCA: 501] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Androgen receptor (AR) splice variants lacking the ligand binding domain (ARVs), originally isolated from prostate cancer cell lines derived from a single patient, are detected in normal and malignant human prostate tissue, with the highest levels observed in late stage, castration-resistant prostate cancer. The most studied variant (called AR-V7 or AR3) activates AR reporter genes in the absence of ligand and therefore, could play a role in castration resistance. To explore the range of potential ARVs, we screened additional human and murine prostate cancer models using conventional and next generation sequencing technologies and detected several structurally diverse AR isoforms. Some, like AR-V7/AR3, display gain of function, whereas others have dominant interfering activity. We also find that ARV expression increases acutely in response to androgen withdrawal, is suppressed by testosterone, and in some models, is coupled to full-length AR (AR-FL) mRNA production. As expected, constitutively active, ligand-independent ARVs such as AR-V7/AR3 are sufficient to confer anchorage-independent (in vitro) and castration-resistant (in vivo) growth. Surprisingly, this growth is blocked by ligand binding domain-targeted antiandrogens, such as MDV3100, or by selective siRNA silencing of AR-FL, indicating that the growth-promoting effects of ARVs are mediated through AR-FL. These data indicate that the increase in ARV expression in castrate-resistant prostate cancer is an acute response to castration rather than clonal expansion of castration or antiandrogen-resistant cells expressing gain of function ARVs, and furthermore, they provide a strategy to overcome ARV function in the clinic.
Collapse
|
92
|
Martinez-Arguelles DB, Papadopoulos V. Epigenetic regulation of the expression of genes involved in steroid hormone biosynthesis and action. Steroids 2010; 75:467-76. [PMID: 20156469 PMCID: PMC2860648 DOI: 10.1016/j.steroids.2010.02.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/16/2010] [Accepted: 02/08/2010] [Indexed: 11/26/2022]
Abstract
Steroid hormones participate in organ development, reproduction, body homeostasis, and stress responses. The steroid machinery is expressed in a development- and tissue-specific manner, with the expression of these factors being tightly regulated by an array of transcription factors (TFs). Epigenetics provides an additional layer of gene regulation through DNA methylation and histone tail modifications. Evidence of epigenetic regulation of key steroidogenic enzymes is increasing, though this does not seem to be a predominant regulatory pathway. Steroid hormones exert their action in target tissues through steroid nuclear receptors belonging to the NR3A and NR3C families. Nuclear receptor expression levels and post-translational modifications regulate their function and dictate their sensitivity to steroid ligands. Nuclear receptors and TFs are more likely to be epigenetically regulated than proteins involved in steroidogenesis and have secondary impact on the expression of these steroidogenic enzymes. Here we review evidence for epigenetic regulation of enzymes, transcription factors, and nuclear receptors related to steroid biogenesis and action.
Collapse
Affiliation(s)
- Daniel B. Martinez-Arguelles
- Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, United States
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Vassilios Papadopoulos
- Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, United States
- The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Departments of Medicine, Pharmacology & Therapeutics, and Biochemistry, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Corresponding author at: The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Room C10-148, Montreal, Quebec H3G 1A4, Canada. Tel: 514-934-1934 ext. 44580. Fax: 514-934-8439.
| |
Collapse
|
93
|
Welsh M, Moffat L, Jack L, McNeilly A, Brownstein D, Saunders PTK, Sharpe RM, Smith LB. Deletion of androgen receptor in the smooth muscle of the seminal vesicles impairs secretory function and alters its responsiveness to exogenous testosterone and estradiol. Endocrinology 2010; 151:3374-85. [PMID: 20444943 PMCID: PMC3033689 DOI: 10.1210/en.2009-1339] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The seminal vesicles (SVs), like much of the male reproductive tract, depend on androgen-driven stromal-epithelial interactions for normal development, structure, and function. The primary function of the SVs is to synthesize proteins that contribute to the seminal plasma and this is androgen dependent. However, the cell-specific role for androgen action in adult SVs remains unclear. This study analyzed the SV in mice with targeted ablation of androgen receptors specifically in smooth muscle cells (PTM-ARKO) to determine in vivo whether it is androgen action in a subset of the SV stroma, the smooth muscle cells, that drives epithelial function and identity. These mice have significantly smaller SVs in adulthood with less smooth muscle and reduced epithelial cell height. Less epithelial cell proliferation was observed in adult PTM-ARKO SVs, compared with controls, and production of seminal proteins was reduced, indicating global impairment of epithelial cell function in PTM-ARKO SVs. None of these changes could be explained by altered serum testosterone or estradiol concentrations. We also demonstrate altered SV responsiveness to exogenous testosterone and estradiol in PTM-ARKO mice, indicating that smooth muscle androgen receptors may limit the SV epithelial proliferative response to exogenous estrogens. These results therefore demonstrate that the smooth muscle cells play a vital role in androgen-driven stromal-epithelial interactions in the SV, determining epithelial cell structure and function as well as limiting the SV epithelial proliferative response to exogenous estrogens.
Collapse
Affiliation(s)
- Michelle Welsh
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Philibert P, Audran F, Pienkowski C, Morange I, Kohler B, Flori E, Heinrich C, Dacou-Voutetakis C, Joseph MG, Guedj AM, Journel H, Hecart-Bruna AC, Khotchali I, Ten S, Bouchard P, Paris F, Sultan C. Complete androgen insensitivity syndrome is frequently due to premature stop codons in exon 1 of the androgen receptor gene: an international collaborative report of 13 new mutations. Fertil Steril 2010; 94:472-6. [DOI: 10.1016/j.fertnstert.2009.03.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 02/09/2009] [Accepted: 03/14/2009] [Indexed: 10/20/2022]
|
95
|
Mutational analysis of androgen receptor gene in four Chinese patients with male pseudohermaphroditism. Fertil Steril 2010; 93:2076.e1-4. [DOI: 10.1016/j.fertnstert.2009.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/22/2022]
|
96
|
Rong HL, Suzuki N, Imai A. A double nucleotide insertion-induced frame-shift mutation of the androgen receptor gene in a familial complete androgen insensitivity syndrome. Eur J Obstet Gynecol Reprod Biol 2010; 148:53-5. [DOI: 10.1016/j.ejogrb.2009.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 08/21/2009] [Accepted: 09/14/2009] [Indexed: 11/26/2022]
|
97
|
van de Wijngaart DJ, Molier M, Lusher SJ, Hersmus R, Jenster G, Trapman J, Dubbink HJ. Systematic structure-function analysis of androgen receptor Leu701 mutants explains the properties of the prostate cancer mutant L701H. J Biol Chem 2009; 285:5097-105. [PMID: 20007693 DOI: 10.1074/jbc.m109.039958] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One mechanism of prostate tumors for escape from androgen ablation therapies is mutation of the androgen receptor (AR). We investigated the unique properties of the AR L701H mutant, which is strongly stimulated by cortisol, by a systematic structure-function analysis. Most amino acid substitutions at position 701 did not affect AR activation by 5alpha-dihydrotestosterone. Further analysis of the AR Leu(701) variants showed that AR L701M and AR L701Q, like AR L701H, had changed ligand responsiveness. AR L701M was strongly activated by progesterone but not by cortisol, whereas the opposite was observed for AR L701Q and AR L701H. Next, we analyzed a panel of structurally related steroids to study which of the OH groups at positions 11beta, 17alpha, and 21, which discriminate cortisol from progesterone, underlie the differential responses to both hormones. The results showed that the 17alpha-OH group was essential for activation of AR L701H and AR L701Q, whereas its absence was important for activation of AR L701M. Modeling indicated a conserved H-bonding network involving the steroidal 17alpha-OH group, His(701) or Gln(701), and the backbone of Ser(778). This network is absent in Leu(701) and in other mutants. A hydrophobic leucine or methionine at position 701 is unfavorable for the 17alpha-OH group. Our results indicate that the specific amino acid residue at position 701, its interaction with the backbone of Ser(778), and the steroidal 17alpha-hydroxyl group of the ligand are all important for the distinct transcriptional responses to progesterone and cortisol of AR mutants, including the prostate cancer mutant L701H.
Collapse
Affiliation(s)
- Dennis J van de Wijngaart
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
98
|
Nagaraja MR, Rastogi A, Raman R, Gupta DK, Singh SK. Mutational analysis of the androgen receptor gene in two Indian families with partial androgen insensitivity syndrome. J Pediatr Endocrinol Metab 2009; 22:1169-73. [PMID: 20333878 DOI: 10.1515/jpem.2009.22.12.1169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mutation in the androgen receptor gene (AR) is known to cause androgen insensitivity syndrome (AIS). In an X-linked recessive manner, an AR mutation gets transmitted to the offspring through carrier mothers in 70% of cases, the other 30% arising de novo. However, reports on AR mutations amongst Indian patients with AIS are scarce in the literature. This study reports mutations in AR from two Indian families, each having a proband with partial androgen insensitivity syndrome (PAIS) phenotype. Clinical, endocrine and cytogenetic evaluation of these affected children was performed. Mutational analysis was carried out by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) analysis followed by sequencing. The two point mutations were in exon 5: p.M742I, familial in patient 1 and p.V746M de novo in patient 2. These are hitherto unrecognized mutations in our population. Similar mutational studies are suggested in patients with AIS, in order to identify their frequency and clinical severity in our population.
Collapse
Affiliation(s)
- M R Nagaraja
- Department of Endocrinology & Metabolism, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | | | | | | |
Collapse
|
99
|
Kennedy BA, Gao W, Huang THM, Jin VX. HRTBLDb: an informative data resource for hormone receptors target binding loci. Nucleic Acids Res 2009; 38:D676-81. [PMID: 19773424 PMCID: PMC2808888 DOI: 10.1093/nar/gkp734] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Three hormone receptors, the estrogen receptor (ER), the androgen receptor (AR) and glucocorticoid receptor (GR) play an important role in regulating the cellular differentiation tissue development of skin, bone, the brain and the endocrine system; therefore, there is a strong scientific need to identify and characterize hormone receptor transcriptional regulation. Given that the vast amount of regulatory data for hormone being produced by ChIP-based high-throughput experiments is widely scattered in disparate, poorly cross-indexed data stores, a flexible platform for organizing and relating these data would provide significant value. We created a data management system called the Hormone Receptor Target Binding Loci, HRTBLDb (http://motif.bmi.ohio-state.edu/hrtbldb), to address this problem. This database contains hormone receptor binding regions (binding loci) from in vivo ChIP-based high-throughput experiments as well as in silico, computationally predicted, binding motifs and cis-regulatory modules for the co-occurring transcription factor binding motifs, which are within a binding locus. It also contains individual binding sites whose regulatory action has been verified by in vitro experiments. The current version contains 44,673 binding elements with 114 hormone response elements which are verified by in vitro experiments; 75 binding motifs which occur with a hormone response element and whose co-regulatory action is verified by in vitro experiments; 18,472 binding loci from in vivo experiments; and 26,012 computationally predicted binding motifs.
Collapse
Affiliation(s)
- Brian A Kennedy
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
100
|
Jones JO. Improving selective androgen receptor modulator discovery and preclinical evaluation. Expert Opin Drug Discov 2009; 4:981-93. [DOI: 10.1517/17460440903206957] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|