51
|
Harris AJ, Goldman AD. The very early evolution of protein translocation across membranes. PLoS Comput Biol 2021; 17:e1008623. [PMID: 33684113 PMCID: PMC7987157 DOI: 10.1371/journal.pcbi.1008623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 03/23/2021] [Accepted: 12/10/2020] [Indexed: 11/18/2022] Open
Abstract
In this study, we used a computational approach to investigate the early evolutionary history of a system of proteins that, together, embed and translocate other proteins across cell membranes. Cell membranes comprise the basis for cellularity, which is an ancient, fundamental organizing principle shared by all organisms and a key innovation in the evolution of life on Earth. Two related requirements for cellularity are that organisms are able to both embed proteins into membranes and translocate proteins across membranes. One system that accomplishes these tasks is the signal recognition particle (SRP) system, in which the core protein components are the paralogs, FtsY and Ffh. Complementary to the SRP system is the Sec translocation channel, in which the primary channel-forming protein is SecY. We performed phylogenetic analyses that strongly supported prior inferences that FtsY, Ffh, and SecY were all present by the time of the last universal common ancestor of life, the LUCA, and that the ancestor of FtsY and Ffh existed before the LUCA. Further, we combined ancestral sequence reconstruction and protein structure and function prediction to show that the LUCA had an SRP system and Sec translocation channel that were similar to those of extant organisms. We also show that the ancestor of Ffh and FtsY that predated the LUCA was more similar to FtsY than Ffh but could still have comprised a rudimentary protein translocation system on its own. Duplication of the ancestor of FtsY and Ffh facilitated the specialization of FtsY as a membrane bound receptor and Ffh as a cytoplasmic protein that could bind nascent proteins with specific membrane-targeting signal sequences. Finally, we analyzed amino acid frequencies in our ancestral sequence reconstructions to infer that the ancestral Ffh/FtsY protein likely arose prior to or just after the completion of the canonical genetic code. Taken together, our results offer a window into the very early evolutionary history of cellularity.
Collapse
Affiliation(s)
- AJ Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, Oberlin, Ohio, United States of America
| | - Aaron David Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, Oberlin, Ohio, United States of America
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
| |
Collapse
|
52
|
Kubyshkin V, Davis R, Budisa N. Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement. Beilstein J Org Chem 2021; 17:439-460. [PMID: 33727970 PMCID: PMC7934785 DOI: 10.3762/bjoc.17.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the heterocyclic structure and distinct conformational profile, proline is unique in the repertoire of the 20 amino acids coded into proteins. Here, we summarize the biochemical work on the replacement of proline with (4R)- and (4S)-fluoroproline as well as 4,4-difluoroproline in proteins done mainly in the last two decades. We first recapitulate the complex position and biochemical fate of proline in the biochemistry of a cell, discuss the physicochemical properties of fluoroprolines, and overview the attempts to use these amino acids as proline replacements in studies of protein production and folding. Fluorinated proline replacements are able to elevate the protein expression speed and yields and improve the thermodynamic and kinetic folding profiles of individual proteins. In this context, fluoroprolines can be viewed as useful tools in the biotechnological toolbox. As a prospect, we envision that proteome-wide proline-to-fluoroproline substitutions could be possible. We suggest a hypothetical scenario for the use of laboratory evolutionary methods with fluoroprolines as a suitable vehicle to introduce fluorine into living cells. This approach may enable creation of synthetic cells endowed with artificial biodiversity, containing fluorine as a bioelement.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, R3T 2N2, Canada
| | - Rebecca Davis
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, R3T 2N2, Canada
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, 144 Dysart Rd., Winnipeg, R3T 2N2, Canada
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| |
Collapse
|
53
|
Thompson JD, Ripp R, Mayer C, Poch O, Michel CJ. Potential role of the X circular code in the regulation of gene expression. Biosystems 2021; 203:104368. [PMID: 33567309 DOI: 10.1016/j.biosystems.2021.104368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
The X circular code is a set of 20 trinucleotides (codons) that has been identified in the protein-coding genes of most organisms (bacteria, archaea, eukaryotes, plasmids, viruses). It has been shown previously that the X circular code has the important mathematical property of being an error-correcting code. Thus, motifs of the X circular code, i.e. a series of codons belonging to X and called X motifs, allow identification and maintenance of the reading frame in genes. X motifs are significantly enriched in protein-coding genes, but have also been identified in many transfer RNA (tRNA) genes and in important functional regions of the ribosomal RNA (rRNA), notably in the peptidyl transferase center and the decoding center. Here, we investigate the potential role of X motifs as functional elements of protein-coding genes. First, we identify the codons of the X circular code which are frequent or rare in each domain of life (archaea, bacteria, eukaryota) and show that, for the amino acids with the highest codon bias, the preferred codon is often an X codon. We also observe a correlation between the 20 X codons and the optimal codons/dicodons that have been shown to influence translation efficiency. Then, we examined recently published experimental results concerning gene expression levels in diverse organisms. The approach used is the analysis of X motifs according to their density ds(X), i.e. the number of X motifs per kilobase in a gene sequence s. Surprisingly, this simple parameter identifies several unexpected relations between the X circular code and gene expression. For example, the X motifs are significantly enriched in the minimal gene set belonging to the three domains of life, and in codon-optimized genes. Furthermore, the density of X motifs generally correlates with experimental measures of translation efficiency and mRNA stability. Taken together, these results lead us to propose that the X motifs may represent a genetic signal contributing to the maintenance of the correct reading frame and the optimization and regulation of gene expression.
Collapse
Affiliation(s)
- Julie D Thompson
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France.
| | - Raymond Ripp
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France.
| | - Claudine Mayer
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France; Unité de Microbiologie Structurale, Institut Pasteur, CNRS, 75724, Paris Cedex 15, France; Université Paris Diderot, Sorbonne Paris Cité, 75724, Paris Cedex 15, France.
| | - Olivier Poch
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France.
| | - Christian J Michel
- Department of Computer Science, ICube, CNRS, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
54
|
James JE, Willis SM, Nelson PG, Weibel C, Kosinski LJ, Masel J. Universal and taxon-specific trends in protein sequences as a function of age. eLife 2021; 10:e57347. [PMID: 33416492 PMCID: PMC7819706 DOI: 10.7554/elife.57347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 01/05/2021] [Indexed: 01/12/2023] Open
Abstract
Extant protein-coding sequences span a huge range of ages, from those that emerged only recently to those present in the last universal common ancestor. Because evolution has had less time to act on young sequences, there might be 'phylostratigraphy' trends in any properties that evolve slowly with age. A long-term reduction in hydrophobicity and hydrophobic clustering was found in previous, taxonomically restricted studies. Here we perform integrated phylostratigraphy across 435 fully sequenced species, using sensitive HMM methods to detect protein domain homology. We find that the reduction in hydrophobic clustering is universal across lineages. However, only young animal domains have a tendency to have higher structural disorder. Among ancient domains, trends in amino acid composition reflect the order of recruitment into the genetic code, suggesting that the composition of the contemporary descendants of ancient sequences reflects amino acid availability during the earliest stages of life, when these sequences first emerged.
Collapse
Affiliation(s)
- Jennifer E James
- Department of Ecology and Evolutionary Biology, University of ArizonaTucsonUnited States
| | - Sara M Willis
- Department of Ecology and Evolutionary Biology, University of ArizonaTucsonUnited States
| | - Paul G Nelson
- Department of Ecology and Evolutionary Biology, University of ArizonaTucsonUnited States
| | - Catherine Weibel
- Department of Physics, University of ArizonaTucsonUnited States
- Department of Mathematics, University of ArizonaTucsonUnited States
| | - Luke J Kosinski
- Department of Molecular and Cellular Biology, University of ArizonaTucsonUnited States
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of ArizonaTucsonUnited States
| |
Collapse
|
55
|
Nesterov-Mueller A, Popov R, Seligmann H. Combinatorial Fusion Rules to Describe Codon Assignment in the Standard Genetic Code. Life (Basel) 2020; 11:life11010004. [PMID: 33374866 PMCID: PMC7824455 DOI: 10.3390/life11010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
We propose combinatorial fusion rules that describe the codon assignment in the standard genetic code simply and uniformly for all canonical amino acids. These rules become obvious if the origin of the standard genetic code is considered as a result of a fusion of four protocodes: Two dominant AU and GC protocodes and two recessive AU and GC protocodes. The biochemical meaning of the fusion rules consists of retaining the complementarity between cognate codons of the small hydrophobic amino acids and large charged or polar amino acids within the protocodes. The proto tRNAs were assembled in form of two kissing hairpins with 9-base and 10-base loops in the case of dominant protocodes and two 9-base loops in the case of recessive protocodes. The fusion rules reveal the connection between the stop codons, the non-canonical amino acids, pyrrolysine and selenocysteine, and deviations in the translation of mitochondria. Using fusion rules, we predicted the existence of additional amino acids that are essential for the development of the standard genetic code. The validity of the proposed partition of the genetic code into dominant and recessive protocodes is considered referring to state-of-the-art hypotheses. The formation of two aminoacyl-tRNA synthetase classes is compatible with four-protocode partition.
Collapse
Affiliation(s)
- Alexander Nesterov-Mueller
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany; (R.P.); (H.S.)
- Correspondence:
| | - Roman Popov
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany; (R.P.); (H.S.)
| | - Hervé Seligmann
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany; (R.P.); (H.S.)
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Laboratory AGEIS EA 7407, Team Tools for e-GnosisMedical & LabcomCNRS/UGA/OrangeLabs Telecoms4Health, Faculty of Medicine, Université Grenoble Alpes, F-38700 La Tronche, France
| |
Collapse
|
56
|
Li Q, Li M, Li C, Li X, Lu C, Tu X, Zhang Z, Zhang X. Halophilic to mesophilic adaptation of ubiquitin-like proteins. FEBS Lett 2020; 595:521-531. [PMID: 33301612 DOI: 10.1002/1873-3468.14023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/15/2020] [Accepted: 12/06/2020] [Indexed: 11/11/2022]
Abstract
Elucidating how proteins adapt from halophilic to mesophilic environments will enable a better understanding of protein evolution and folding. In this study, by directed evolution and site-directed mutagenesis of the halophilic ubiquitin-like protein (ULP) Samp2, we find that substitution of the prebiotic amino acid Asp31 by Gly is uniquely effective in the mesophilic adaptation of ULP. Sequence analysis shows that substitution of Asp/Glu in halophilic ULPs by Gly in mesophilic ULPs has higher occurrence than other substitutions, supporting the unique role of the substitution in the mesophilic adaptation of ULP. Molecular dynamic simulations indicate that the mesophilic adaptation might result from the effect of the substitution on the conformational flexibility of ULP.
Collapse
Affiliation(s)
- Quan Li
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Mengqing Li
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Cong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xinxin Li
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Chenghui Lu
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Xiaoming Tu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhiyong Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| |
Collapse
|
57
|
Foden CS, Islam S, Fernández-García C, Maugeri L, Sheppard TD, Powner MW. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 2020; 370:865-869. [PMID: 33184216 DOI: 10.1126/science.abd5680] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/01/2020] [Indexed: 01/26/2023]
Abstract
Peptide biosynthesis is performed by ribosomes and several other classes of enzymes, but a simple chemical synthesis may have created the first peptides at the origins of life. α-Aminonitriles-prebiotic α-amino acid precursors-are generally produced by Strecker reactions. However, cysteine's aminothiol is incompatible with nitriles. Consequently, cysteine nitrile is not stable, and cysteine has been proposed to be a product of evolution, not prebiotic chemistry. We now report a high-yielding, prebiotic synthesis of cysteine peptides. Our biomimetic pathway converts serine to cysteine by nitrile-activated dehydroalanine synthesis. We also demonstrate that N-acylcysteines catalyze peptide ligation, directly coupling kinetically stable-but energy-rich-α-amidonitriles to proteinogenic amines. This rare example of selective and efficient organocatalysis in water implicates cysteine as both catalyst and precursor in prebiotic peptide synthesis.
Collapse
Affiliation(s)
- Callum S Foden
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Saidul Islam
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | | | - Leonardo Maugeri
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Tom D Sheppard
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Matthew W Powner
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
58
|
Nicholson DA, Sengupta A, Nesbitt DJ. Chirality-Dependent Amino Acid Modulation of RNA Folding. J Phys Chem B 2020; 124:11561-11572. [PMID: 33296203 DOI: 10.1021/acs.jpcb.0c07420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The preponderance of a specific d- or l-chirality in fats, sugars, amino acids, nucleic acids, and so on is ubiquitous in nature, yet the biological origin of such chiral dominance (i.e., with one enantiomer overwhelmingly present) remains an open question. One plausible proposal for the predominance of l-chirality in amino acids could be through evolutionary templating of chiral RNA-folding via chaperone activity. To help evaluate this possibility, single molecule fluorescence experiments have been performed that measure the chiral dependence of chaperone folding dynamics for the simple tetraloop-tetraloop receptor (TL-TLR) tertiary binding motif in the presence of a series of chiral amino acids. Specifically, d- vs l-arginine is found to accelerate the unfolding of this RNA motif in a chirally selective fashion, with temperature-dependent studies of the kinetics performed to extract free energy, enthalpy, and entropy landscapes for the underlying thermodynamics. Furthermore, all-atom molecular dynamics (MD) simulations are pursued to provide additional physical insight into this chiral sensitivity, which reveal enantiomer-specific sampling of nucleic acid surfaces by d- vs l-arginine and support a putative mechanism for chirally specific denaturation of RNA tertiary structure by arginine but not other amino acids.
Collapse
Affiliation(s)
- David A Nicholson
- JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, Colorado 80309 United States.,Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Abhigyan Sengupta
- Department of Physics, Technical University of Munich, Garching, Munich, Germany 85748
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and University of Colorado Boulder, Boulder, Colorado 80309 United States.,Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
59
|
Despotović D, Longo LM, Aharon E, Kahana A, Scherf T, Gruic-Sovulj I, Tawfik DS. Polyamines Mediate Folding of Primordial Hyperacidic Helical Proteins. Biochemistry 2020; 59:4456-4462. [PMID: 33175508 PMCID: PMC7735664 DOI: 10.1021/acs.biochem.0c00800] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Polyamines are known to mediate diverse biological processes, and specifically to bind and stabilize compact conformations of nucleic acids, acting as chemical chaperones that promote folding by offsetting the repulsive negative charges of the phosphodiester backbone. However, whether and how polyamines modulate the structure and function of proteins remain unclear. In particular, early proteins are thought to have been highly acidic, like nucleic acids, due to a scarcity of basic amino acids in the prebiotic context. Perhaps polyamines, the abiotic synthesis of which is simple, could have served as chemical chaperones for such primordial proteins? We replaced all lysines of an ancestral 60-residue helix-bundle protein with glutamate, resulting in a disordered protein with 21 glutamates in total. Polyamines efficiently induce folding of this hyperacidic protein at submillimolar concentrations, and their potency scaled with the number of amine groups. Compared to cations, polyamines were several orders of magnitude more potent than Na+, while Mg2+ and Ca2+ had an effect similar to that of a diamine, inducing folding at approximately seawater concentrations. We propose that (i) polyamines and dications may have had a role in promoting folding of early proteins devoid of basic residues and (ii) coil-helix transitions could be the basis of polyamine regulation in contemporary proteins.
Collapse
Affiliation(s)
- Dragana Despotović
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Liam M. Longo
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
- Earth-Life
Science Institute, Tokyo Institute of Technology, 152-8550 Tokyo, Japan
- Blue
Marble Space Institute of Science, Seattle, Washington 98154, United States
| | - Einav Aharon
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Amit Kahana
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
- Department
of Molecular Genetics, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Tali Scherf
- Department
of Chemical Research Support, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Ita Gruic-Sovulj
- Department
of Chemistry, Faculty of Science, University
of Zagreb, 10000 Zagreb, Croatia
| | - Dan S. Tawfik
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| |
Collapse
|
60
|
Energy mapping of the genetic code and genomic domains: implications for code evolution and molecular Darwinism. Q Rev Biophys 2020; 53:e11. [PMID: 33143792 DOI: 10.1017/s0033583520000098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
When the iconic DNA genetic code is expressed in terms of energy differentials, one observes that information embedded in chemical sequences, including some biological outcomes, correlate with distinctive free energy profiles. Specifically, we find correlations between codon usage and codon free energy, suggestive of a thermodynamic selection for codon usage. We also find correlations between what are considered ancient amino acids and high codon free energy values. Such correlations may be reflective of the sequence-based genetic code fundamentally mapping as an energy code. In such a perspective, one can envision the genetic code as composed of interlocking thermodynamic cycles that allow codons to 'evolve' from each other through a series of sequential transitions and transversions, which are influenced by an energy landscape modulated by both thermodynamic and kinetic factors. As such, early evolution of the genetic code may have been driven, in part, by differential energetics, as opposed exclusively by the functionality of any gene product. In such a scenario, evolutionary pressures can, in part, derive from the optimization of biophysical properties (e.g. relative stabilities and relative rates), in addition to the classic perspective of being driven by a phenotypical adaptive advantage (natural selection). Such differential energy mapping of the genetic code, as well as larger genomic domains, may reflect an energetically resolved and evolved genomic landscape, consistent with a type of differential, energy-driven 'molecular Darwinism'. It should not be surprising that evolution of the code was influenced by differential energetics, as thermodynamics is the most general and universal branch of science that operates over all time and length scales.
Collapse
|
61
|
Chu XY, Zhang HY. Cofactors as Molecular Fossils To Trace the Origin and Evolution of Proteins. Chembiochem 2020; 21:3161-3168. [PMID: 32515532 DOI: 10.1002/cbic.202000027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Due to their early origin and extreme conservation, cofactors are valuable molecular fossils for tracing the origin and evolution of proteins. First, as the order of protein folds binding with cofactors roughly coincides with protein-fold chronology, cofactors are considered to have facilitated the origin of primitive proteins by selecting them from pools of random amino acid sequences. Second, in the subsequent evolution of proteins, cofactors still played an important role. More interestingly, as metallic cofactors evolved with geochemical variations, some geochemical events left imprints in the chronology of protein architecture; this provides further evidence supporting the coevolution of biochemistry and geochemistry. In this paper, we attempt to review the molecular fossils used in tracing the origin and evolution of proteins, with a special focus on cofactors.
Collapse
Affiliation(s)
- Xin-Yi Chu
- Hubei Key Laboratory of Agricultural Bioinformatics College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
62
|
Longo LM, Despotović D, Weil-Ktorza O, Walker MJ, Jabłońska J, Fridmann-Sirkis Y, Varani G, Metanis N, Tawfik DS. Primordial emergence of a nucleic acid-binding protein via phase separation and statistical ornithine-to-arginine conversion. Proc Natl Acad Sci U S A 2020; 117:15731-15739. [PMID: 32561643 PMCID: PMC7355028 DOI: 10.1073/pnas.2001989117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
De novo emergence demands a transition from disordered polypeptides into structured proteins with well-defined functions. However, can polypeptides confer functions of evolutionary relevance, and how might such polypeptides evolve into modern proteins? The earliest proteins present an even greater challenge, as they were likely based on abiotic, spontaneously synthesized amino acids. Here we asked whether a primordial function, such as nucleic acid binding, could emerge with ornithine, a basic amino acid that forms abiotically yet is absent in modern-day proteins. We combined ancestral sequence reconstruction and empiric deconstruction to unravel a gradual evolutionary trajectory leading from a polypeptide to a ubiquitous nucleic acid-binding protein. Intermediates along this trajectory comprise sequence-duplicated functional proteins built from 10 amino acid types, with ornithine as the only basic amino acid. Ornithine side chains were further modified into arginine by an abiotic chemical reaction, improving both structure and function. Along this trajectory, function evolved from phase separation with RNA (coacervates) to avid and specific double-stranded DNA binding. Our results suggest that phase-separating polypeptides may have been an evolutionary resource for the emergence of early proteins, and that ornithine, together with its postsynthesis modification to arginine, could have been the earliest basic amino acids.
Collapse
Affiliation(s)
- Liam M Longo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dragana Despotović
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orit Weil-Ktorza
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Matthew J Walker
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Jagoda Jabłońska
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Fridmann-Sirkis
- Life Sciences Core Facility, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Norman Metanis
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
63
|
Crean RM, Gardner JM, Kamerlin SCL. Harnessing Conformational Plasticity to Generate Designer Enzymes. J Am Chem Soc 2020; 142:11324-11342. [PMID: 32496764 PMCID: PMC7467679 DOI: 10.1021/jacs.0c04924] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 02/08/2023]
Abstract
Recent years have witnessed an explosion of interest in understanding the role of conformational dynamics both in the evolution of new enzymatic activities from existing enzymes and in facilitating the emergence of enzymatic activity de novo on scaffolds that were previously non-catalytic. There are also an increasing number of examples in the literature of targeted engineering of conformational dynamics being successfully used to alter enzyme selectivity and activity. Despite the obvious importance of conformational dynamics to both enzyme function and evolvability, many (although not all) computational design approaches still focus either on pure sequence-based approaches or on using structures with limited flexibility to guide the design. However, there exist a wide variety of computational approaches that can be (re)purposed to introduce conformational dynamics as a key consideration in the design process. Coupled with laboratory evolution and more conventional existing sequence- and structure-based approaches, these techniques provide powerful tools for greatly expanding the protein engineering toolkit. This Perspective provides an overview of evolutionary studies that have dissected the role of conformational dynamics in facilitating the emergence of novel enzymes, as well as advances in computational approaches that allow one to target conformational dynamics as part of enzyme design. Harnessing conformational dynamics in engineering studies is a powerful paradigm with which to engineer the next generation of designer biocatalysts.
Collapse
Affiliation(s)
- Rory M. Crean
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Jasmine M. Gardner
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Shina C. L. Kamerlin
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| |
Collapse
|
64
|
Dayhoff GW, Regenmortel MHV, Uversky VN. Intrinsic disorder in protein sense‐antisense recognition. J Mol Recognit 2020; 33:e2868. [DOI: 10.1002/jmr.2868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Guy W. Dayhoff
- Department of Chemistry, College of Art and SciencesUniversity of South Florida Tampa Florida USA
| | | | - Vladimir N. Uversky
- Laboratory of New Methods in BiologyInstitute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” Pushchino Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research InstituteMorsani College of Medicine, University of South Florida Tampa Florida USA
| |
Collapse
|
65
|
On the Importance of Asymmetry in the Phenotypic Expression of the Genetic Code upon the Molecular Evolution of Proteins. Symmetry (Basel) 2020. [DOI: 10.3390/sym12060997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The standard genetic code (SGC) is a mapping between the 64 possible arrangements of the four RNA nucleotides (C, A, U, G) into triplets or codons, where 61 codons are assigned to a specific amino acid and the other three are stop codons for terminating protein synthesis. Aminoacyl-tRNA synthetases (aaRSs) are responsible for implementing the SGC by specifically amino-acylating only its cognate transfer RNA (tRNA), thereby linking an amino acid with its corresponding anticodon triplets. tRNAs molecules bind each codon with its anticodon. To understand the meaning of symmetrical/asymmetrical properties of the SGC, we designed synthetic genetic codes with known symmetries and with the same degeneracy of the SGC. We determined their impact on the substitution rates for each amino acid under a neutral model of protein evolution. We prove that the phenotypic graphs of the SGC for codons and anticodons for all the possible arrangements of nucleotides are asymmetric and the amino acids do not form orbits. In the symmetrical synthetic codes, the amino acids are grouped according to their codonicity, this is the number of triplets encoding a given amino acid. Both the SGC and symmetrical synthetic codes exhibit a probability of occurrence of the amino acids proportional to their degeneracy. Unlike the SGC, the synthetic codes display a constant probability of occurrence of the amino acid according to their codonicity. The asymmetry of the phenotypic graphs of codons and anticodons of the SGC, has important implications on the evolutionary processes of proteins.
Collapse
|
66
|
Yan J, Cheng J, Kurgan L, Uversky VN. Structural and functional analysis of "non-smelly" proteins. Cell Mol Life Sci 2020; 77:2423-2440. [PMID: 31486849 PMCID: PMC11105052 DOI: 10.1007/s00018-019-03292-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023]
Abstract
Cysteine and aromatic residues are major structure-promoting residues. We assessed the abundance, structural coverage, and functional characteristics of the "non-smelly" proteins, i.e., proteins that do not contain cysteine residues (C-depleted) or cysteine and aromatic residues (CFYWH-depleted), across 817 proteomes from all domains of life. The analysis revealed that although these proteomes contained significant levels of the C-depleted proteins, with prokaryotes being significantly more enriched in such proteins than eukaryotes, the CFYWH-depleted proteins were relatively rare, accounting for about 0.05% of proteomes. Furthermore, CFYWH-depleted proteins were virtually never found in PDB. Depletion in cysteine and in aromatic residues was associated with the substantially increased intrinsic disorder levels across all domains of life. Archaeal and eukaryotic organisms with higher levels of the C-depleted proteins were shown to have higher levels of the intrinsic disorder and lower levels of structural coverage. We also showed that the "non-smelly" proteins typically did not independently fold into monomeric structures, and instead, they fold by interacting with nucleic acids as constituents of the ribosome and nucleosome complexes. They were shown to be involved in translation, transcription, nucleosome assembly, transmembrane transport, and protein folding functions, all of which are known to be associated with the intrinsic disorder. Our data suggested that, in general, structure of monomeric proteins is crucially dependent on the presence of cysteine and aromatic residues.
Collapse
Affiliation(s)
- Jing Yan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, VA, 23284, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612, USA.
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| |
Collapse
|
67
|
Takénaka A, Moras D. Correlation between equi-partition of aminoacyl-tRNA synthetases and amino-acid biosynthesis pathways. Nucleic Acids Res 2020; 48:3277-3285. [PMID: 31965182 PMCID: PMC7102985 DOI: 10.1093/nar/gkaa013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
The partition of aminoacyl-tRNA synthetases (aaRSs) into two classes of equal size and the correlated amino acid distribution is a puzzling still unexplained observation. We propose that the time scale of the amino-acid synthesis, assumed to be proportional to the number of reaction steps (NE) involved in the biosynthesis pathway, is one of the parameters that controlled the timescale of aaRSs appearance. Because all pathways are branched at fructose-6-phosphate on the metabolic pathway, this product is defined as the common origin for the NE comparison. For each amino-acid, the NE value, counted from the origin to the final product, provides a timescale for the pathways to be established. An archeological approach based on NE reveals that aaRSs of the two classes are generated in pair along this timescale. The results support the coevolution theory for the origin of the genetic code with an earlier appearance of class II aaRSs.
Collapse
Affiliation(s)
- Akio Takénaka
- Research Institute, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan.,Faculty of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Dino Moras
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) 1 rue Laurent Fries, Illkirch 67404, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
68
|
Polyansky AA, Kreuter M, Sutherland JD, Zagrovic B. Direct interplay between stereochemistry and conformational preferences in aminoacylated oligoribonucleotides. Nucleic Acids Res 2020; 47:11077-11089. [PMID: 31612955 PMCID: PMC6868383 DOI: 10.1093/nar/gkz902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 02/04/2023] Open
Abstract
To address the structural and dynamical consequences of amino-acid attachment at 2'- or 3'-hydroxyls of the terminal ribose in oligoribonucleotides, we have performed an extensive set of molecular dynamics simulations of model aminoacylated RNA trinucleotides. Our simulations suggest that 3'-modified trinucleotides exhibit higher solvent exposure of the aminoacylester bond and may be more susceptible to hydrolysis than their 2' counterparts. Moreover, we observe an invariant adoption of well-defined collapsed and extended conformations for both stereoisomers. We show that the average conformational preferences of aminoacylated trinucleotides are determined by their nucleotide composition and are fine-tuned by amino-acid attachment. Conversely, solvent exposure of the aminoacylester bond depends on the attachment site, the nature of attached amino acid and the strength of its interactions with the bases. Importantly, aminoacylated CCA trinucleotides display a systematically higher solvent exposure of the aminoacylester bond and a weaker dependence of such exposure on sidechain interactions than other trinucleotides. These features could facilitate hydrolytic release of the amino acid, especially for 3' attachment, and may have contributed to CCA becoming the universal acceptor triplet in tRNAs. Our results provide novel atomistic details about fundamental aspects of biological translation and furnish clues about its primordial origins.
Collapse
Affiliation(s)
- Anton A Polyansky
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, Vienna A-1030, Austria.,National Research University Higher School of Economics, Moscow 101000, Russia
| | - Mathias Kreuter
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, Vienna A-1030, Austria
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, Vienna A-1030, Austria
| |
Collapse
|
69
|
Demongeot J, Seligmann H. Comparisons between small ribosomal RNA and theoretical minimal RNA ring secondary structures confirm phylogenetic and structural accretion histories. Sci Rep 2020; 10:7693. [PMID: 32376895 PMCID: PMC7203183 DOI: 10.1038/s41598-020-64627-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/01/2020] [Indexed: 12/16/2022] Open
Abstract
Ribosomal RNAs are complex structures that presumably evolved by tRNA accretions. Statistical properties of tRNA secondary structures correlate with genetic code integration orders of their cognate amino acids. Ribosomal RNA secondary structures resemble those of tRNAs with recent cognates. Hence, rRNAs presumably evolved from ancestral tRNAs. Here, analyses compare secondary structure subcomponents of small ribosomal RNA subunits with secondary structures of theoretical minimal RNA rings, presumed proto-tRNAs. Two independent methods determined different accretion orders of rRNA structural subelements: (a) classical comparative homology and phylogenetic reconstruction, and (b) a structural hypothesis assuming an inverted onion ring growth where the three-dimensional ribosome's core is most ancient and peripheral elements most recent. Comparisons between (a) and (b) accretions orders with RNA ring secondary structure scales show that recent rRNA subelements are: 1. more like RNA rings with recent cognates, indicating ongoing coevolution between tRNA and rRNA secondary structures; 2. less similar to theoretical minimal RNA rings with ancient cognates. Our method fits (a) and (b) in all examined organisms, more with (a) than (b). Results stress the need to integrate independent methods. Theoretical minimal RNA rings are potential evolutionary references for any sequence-based evolutionary analyses, independent of the focal data from that study.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel
| |
Collapse
|
70
|
Seligmann H. First arrived, first served: competition between codons for codon-amino acid stereochemical interactions determined early genetic code assignments. Naturwissenschaften 2020; 107:20. [PMID: 32367155 DOI: 10.1007/s00114-020-01676-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/10/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Stereochemical nucleotide-amino acid interactions, in the form of noncovalent nucleotide-amino acid interactions, potentially produced the genetic code's codon-amino acid assignments. Empirical estimates of single nucleotide-amino acid affinities on surfaces and in solution are used to test whether trinucleotide-amino acid affinities determined genetic code assignments pending the principle "first arrived, first served": presumed early amino acids have greater codon-amino acid affinities than ulterior ones. Here, these single nucleotide affinities are used to approximate all 64 × 20 trinucleotide-amino acid affinities. Analyses show that (1) on surfaces, genetic code codon-amino acid assignments tend to match high affinities for the amino acids that integrated earliest the genetic code (according to Wong's metabolic coevolution hypothesis between nucleotides and amino acids) and (2) in solution, the same principle holds for the anticodon-amino acid assignments. Affinity analyses match best genetic code assignments when assuming that trinucleotides competed for amino acids, rather than amino acids for trinucleotides. Codon-amino acid affinities stick better to genetic code assignments than anticodon-amino acid affinities. Presumably, two independent coding systems, on surfaces and in solution, converged, and formed the current translation system. Proto-translation on surfaces by direct codon-amino acid interactions without tRNA-like adaptors coadapted with a system emerging in solution by proto-tRNA anticodon-amino acid interactions. These systems assigned identical or similar cognates to codons on surfaces and to anticodons in solution. Results indicate that a prebiotic metabolism predated genetic code self-organization.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel. .,Faculty of Medicine, Université Grenoble Alpes, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700, La Tronche, France.
| |
Collapse
|
71
|
Footprints of a Singular 22-Nucleotide RNA Ring at the Origin of Life. BIOLOGY 2020; 9:biology9050088. [PMID: 32344921 PMCID: PMC7285048 DOI: 10.3390/biology9050088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022]
Abstract
(1) Background: Previous experimental observations and theoretical hypotheses have been providing insight into a hypothetical world where an RNA hairpin or ring may have debuted as the primary informational and functional molecule. We propose a model revisiting the architecture of RNA-peptide interactions at the origin of life through the evolutionary dynamics of RNA populations. (2) Methods: By performing a step-by-step computation of the smallest possible hairpin/ring RNA sequences compatible with building up a variety of peptides of the primitive network, we inferred the sequence of a singular docosameric RNA molecule, we call the ALPHA sequence. Then, we searched for any relics of the peptides made from ALPHA in sequences deposited in the different public databases. (3) Results: Sequence matching between ALPHA and sequences from organisms among the earliest forms of life on Earth were found at high statistical relevance. We hypothesize that the frequency of appearance of relics from ALPHA sequence in present genomes has a functional necessity. (4) Conclusions: Given the fitness of ALPHA as a supportive sequence of the framework of all existing theories, and the evolution of Archaea and giant viruses, it is anticipated that the unique properties of this singular archetypal ALPHA sequence should prove useful as a model matrix for future applications, ranging from synthetic biology to DNA computing.
Collapse
|
72
|
Demongeot J, Seligmann H. Why Is AUG the Start Codon?: Theoretical Minimal RNA Rings: Maximizing Coded Information Biases 1st Codon for the Universal Initiation Codon AUG. Bioessays 2020; 42:e1900201. [PMID: 32227358 DOI: 10.1002/bies.201900201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/09/2020] [Indexed: 01/04/2023]
Abstract
The rational design of theoretical minimal RNA rings predetermines AUG as the universal start codon. This design maximizes coded amino acid diversity over minimal sequence length, defining in silico theoretical minimal RNA rings, candidate ancestral genes. RNA rings code for 21 amino acids and a stop codon after three consecutive translation rounds, and form a degradation-delaying stem-loop hairpin. Twenty-five RNA rings match these constraints, ten start with the universal initiation codon AUG. No first codon bias exists among remaining RNA rings. RNA ring design predetermines AUG as initiation codon. This is the only explanation yet for AUG as start codon. RNA ring design determines additional RNA ring gene- and tRNA-like properties described previously, because it presumably mimics constraints on life's primordial RNAs.
Collapse
Affiliation(s)
- Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, F-38700, France
| | - Hervé Seligmann
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, Université Grenoble Alpes, La Tronche, F-38700, France.,The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, 91404, Israel
| |
Collapse
|
73
|
Kimura M, Akanuma S. Reconstruction and Characterization of Thermally Stable and Catalytically Active Proteins Comprising an Alphabet of ~ 13 Amino Acids. J Mol Evol 2020; 88:372-381. [PMID: 32201904 DOI: 10.1007/s00239-020-09938-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
While extant organisms synthesize proteins using approximately 20 kinds of genetically coded amino acids, the earliest protein synthesis system is likely to have been much simpler, utilizing a reduced set of amino acids. However, which types of building blocks were involved in primordial protein synthesis remains unclear. Herein, we reconstructed three convergent sequences of an ancestral nucleoside diphosphate kinase, each comprising a 10 amino acid "alphabet," and found that two of these variants folded into soluble and stable tertiary structures. Therefore, an alphabet consisting of 10 amino acids contains sufficient information for creating stable proteins. Furthermore, re-incorporation of a few more amino acid types into the active site of the 10 amino acid variants improved the catalytic activity, although the specific activity was not as high as that of extant proteins. Collectively, our results provide experimental support for the idea that robust protein scaffolds can be built with a subset of the current 20 amino acids that might have existed abundantly in the prebiotic environment, while the other amino acids, especially those with functional sidechains, evolved to contribute to efficient enzyme catalysis.
Collapse
Affiliation(s)
- Madoka Kimura
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
74
|
Preiner M, Asche S, Becker S, Betts HC, Boniface A, Camprubi E, Chandru K, Erastova V, Garg SG, Khawaja N, Kostyrka G, Machné R, Moggioli G, Muchowska KB, Neukirchen S, Peter B, Pichlhöfer E, Radványi Á, Rossetto D, Salditt A, Schmelling NM, Sousa FL, Tria FDK, Vörös D, Xavier JC. The Future of Origin of Life Research: Bridging Decades-Old Divisions. Life (Basel) 2020; 10:E20. [PMID: 32110893 PMCID: PMC7151616 DOI: 10.3390/life10030020] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.
Collapse
Affiliation(s)
- Martina Preiner
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Silke Asche
- School of Chemistry, University of Glasgow, Glasgow G128QQ, UK;
| | - Sidney Becker
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK;
| | - Holly C. Betts
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK;
| | - Adrien Boniface
- Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 69130 Ecully, France;
| | - Eloi Camprubi
- Origins Center, Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands;
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, UKM Bangi 43600, Selangor, Malaysia;
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628 Prague 6–Dejvice, Czech Republic
| | - Valentina Erastova
- UK Centre for Astrobiology, School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK;
| | - Sriram G. Garg
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Nozair Khawaja
- Institut für Geologische Wissenschaften, Freie Universität Berlin, 12249 Berlin, Germany;
| | | | - Rainer Machné
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Quantitative and Theoretical Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Giacomo Moggioli
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4DQ, UK;
| | - Kamila B. Muchowska
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France;
| | - Sinje Neukirchen
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Benedikt Peter
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Edith Pichlhöfer
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Ádám Radványi
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Daniele Rossetto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Annalena Salditt
- Systems Biophysics, Physics Department, Ludwig-Maximilians-Universität München, 80799 Munich, Germany;
| | - Nicolas M. Schmelling
- Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany; (R.M.); (N.M.S.)
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Filipa L. Sousa
- Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria; (S.N.); (E.P.); (F.L.S.)
| | - Fernando D. K. Tria
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| | - Dániel Vörös
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary (D.V.)
- Institute of Evolution, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Joana C. Xavier
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany; (S.G.G.); (F.D.K.T.)
| |
Collapse
|
75
|
Short and simple sequences favored the emergence of N-helix phospho-ligand binding sites in the first enzymes. Proc Natl Acad Sci U S A 2020; 117:5310-5318. [PMID: 32079722 DOI: 10.1073/pnas.1911742117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ubiquity of phospho-ligands suggests that phosphate binding emerged at the earliest stage of protein evolution. To evaluate this hypothesis and unravel its details, we identified all phosphate-binding protein lineages in the Evolutionary Classification of Protein Domains database. We found at least 250 independent evolutionary lineages that bind small molecule cofactors and metabolites with phosphate moieties. For many lineages, phosphate binding emerged later as a niche functionality, but for the oldest protein lineages, phosphate binding was the founding function. Across some 4 billion y of protein evolution, side-chain binding, in which the phosphate moiety does not interact with the backbone at all, emerged most frequently. However, in the oldest lineages, and most characteristically in αβα sandwich enzyme domains, N-helix binding sites dominate, where the phosphate moiety sits atop the N terminus of an α-helix. This discrepancy is explained by the observation that N-helix binding is uniquely realized by short, contiguous sequences with reduced amino acid diversity, foremost Gly, Ser, and Thr. The latter two amino acids preferentially interact with both the backbone amide and the side-chain hydroxyl (bidentate interaction) to promote binding by short sequences. We conclude that the first αβα sandwich domains emerged from shorter and simpler polypeptides that bound phospho-ligands via N-helix sites.
Collapse
|
76
|
Demongeot J, Seligmann H. Deamination gradients within codons after 1<->2 position swap predict amino acid hydrophobicity and parallel β-sheet conformational preference. Biosystems 2020; 191-192:104116. [PMID: 32081715 DOI: 10.1016/j.biosystems.2020.104116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Deaminations C->T and A->G are frequent mutations producing nucleotide content gradients across genomes proportional to singlestrandedness during replication/transcription. Hence, within single codons, deamination risks increase from first to third codon positions, while second codon positions are functionally most crucial. Here genetic codes are analyzed assuming that after anticodons protected codons from deaminations, first and second codon positions swapped (N2N1N3->N1N2N3), with lowest deamination risks for N2 in presumed primitive N2N1N3 codons. N2N1N3, not standard N1N2N3, codon structure minimizes deaminations inversely proportionally to cognate amino acid hydrophobicity and parallel betasheet conformational preference. For N1N2N3, deamination minimization increases with genetic code integration order of cognate amino acids: during the presumed N2N1N3->N1N2N3 codon structure transition, protein synthesis combined direct codon-amino acid interactions for late amino acids and tRNA-based translation for early amino acids. Hence N2N1N3 codons would correspond to tRNA-free translation by spontaneous codon-amino acid affinities, and tRNA-mediated translation presumably caused N2N1N3->N1N2N3 swaps. Results show that rational, not arbitrary rules link codon and amino acid structures. Some analyses detect mitochondrial RNAs and peptides in public data corresponding to systematic position swaps, suggesting occasional swapping polymerase activity.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France; The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel.
| |
Collapse
|
77
|
RNA Rings Strengthen Hairpin Accretion Hypotheses for tRNA Evolution: A Reply to Commentaries by Z.F. Burton and M. Di Giulio. J Mol Evol 2020; 88:243-252. [PMID: 32025759 DOI: 10.1007/s00239-020-09929-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023]
Abstract
Theoretical minimal RNA ring design ensures coding over the shortest length once for each coding signal (start and stop codons, and each amino acid) and their hairpin configuration. These constraints define 25 RNA rings which surprisingly resemble ancestral tRNA loops, suggesting commonalities between RNA ring design and proto-tRNAs. RNA rings share several other properties with tRNAs, suggesting that primordial RNAs were multifunctional peptide coding sequences and structural RNAs. Two hypotheses, respectively, by M. Di Giulio and Z.F. Burton, derived from cloverleaf structural symmetries suggest that two and three, respectively, stem-loop hairpins agglutinated into tRNAs. Their authors commented that their respective structure-based hypotheses reflect better tRNA structure than RNA rings. Unlike these hypotheses, RNA ring design uses no tRNA-derived information, rendering model predictive power comparisons senseless. Some analyses of RNA ring primary and secondary structures stress RNA ring splicing in their predicted anticodon's midst, indicating ancestrality of split tRNAs, as the two-piece model predicts. Advancement of knowledge, rather than of specific hypotheses, gains foremost by examining independent hypotheses for commonalities, and only secondarily for discordances. RNA rings mimick ancestral biomolecules including tRNAs, and their evolution, and constitute an interesting synthetic system for early prebiotic evolution tests/simulations.
Collapse
|
78
|
Demongeot J, Seligmann H. Accretion history of large ribosomal subunits deduced from theoretical minimal RNA rings is congruent with histories derived from phylogenetic and structural methods. Gene 2020; 738:144436. [PMID: 32027954 DOI: 10.1016/j.gene.2020.144436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022]
Abstract
Accretions of tRNAs presumably formed the large complex ribosomal RNA structures. Similarities of tRNA secondary structures with rRNA secondary structures increase with the integration order of their cognate amino acid in the genetic code, indicating tRNA evolution towards rRNA-like structures. Here analyses rank secondary structure subelements of three large ribosomal RNAs (Prokaryota: Archaea: Thermus thermophilus; Bacteria: Escherichia coli; Eukaryota: Saccharomyces cerevisiae) in relation to their similarities with secondary structures formed by presumed proto-tRNAs, represented by 25 theoretical minimal RNA rings. These ranks are compared to those derived from two independent methods (ranks provide a relative evolutionary age to the rRNA substructure), (a) cladistic phylogenetic analyses and (b) 3D-crystallography where core subelements are presumed ancient and peripheral ones recent. Comparisons of rRNA secondary structure subelements with RNA ring secondary structures show congruence between ranks deduced by this method and both (a) and (b) (more with (a) than (b)), especially for RNA rings with predicted ancient cognate amino acid. Reconstruction of accretion histories of large rRNAs will gain from adequately integrating information from independent methods. Theoretical minimal RNA rings, sequences deterministically designed in silico according to specific coding constraints, might produce adequate scales for prebiotic and early life molecular evolution.
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700 La Tronche, France.
| | - Hervé Seligmann
- Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, F-38700 La Tronche, France; The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel.
| |
Collapse
|
79
|
Demongeot J, Seligmann H. The primordial tRNA acceptor stem code from theoretical minimal RNA ring clusters. BMC Genet 2020; 21:7. [PMID: 31973715 PMCID: PMC6979358 DOI: 10.1186/s12863-020-0812-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/13/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Theoretical minimal RNA rings code by design over the shortest length once for each of the 20 amino acids, a start and a stop codon, and form stem-loop hairpins. This defines at most 25 RNA rings of 22 nucleotides. As a group, RNA rings mimick numerous prebiotic and early life biomolecular properties: tRNAs, deamination gradients and replication origins, emergence of codon preferences for the natural circular code, and contents of early protein coding genes. These properties result from the RNA ring's in silico design, based mainly on coding nonredundancy among overlapping translation frames, as the genetic code's codon-amino acid assignments determine. RNA rings resemble ancestral tRNAs, defining RNA ring anticodons and corresponding cognate amino acids. Surprisingly, all examined RNA ring properties coevolve with genetic code integration ranks of RNA ring cognates, as if RNA rings mimick prebiotic and early life evolution. METHODS Distances between RNA rings were calculated using different evolutionary models. Associations between these distances and genetic code evolutionary hypotheses detect evolutionary models best describing RNA ring diversification. RESULTS Here pseudo-phylogenetic analyses of RNA rings produce clusters corresponding to the primordial code in tRNA acceptor stems, more so when substitution matrices from neutrally evolving pseudogenes are used rather than from functional protein coding genes reflecting selection for conserving amino acid properties. CONCLUSIONS Results indicate RNA rings with recent cognates evolved from those with early cognates. Hence RNA rings, as designed by the genetic code's structure, simulate tRNA stem evolution and prebiotic history along neutral chemistry-driven mutation regimes.
Collapse
Affiliation(s)
- Jacques Demongeot
- Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, Université Grenoble Alpes, F-38700 La Tronche, France
| | - Hervé Seligmann
- Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecoms4Health, Université Grenoble Alpes, F-38700 La Tronche, France
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel
| |
Collapse
|
80
|
Tawfik DS, Gruic-Sovulj I. How evolution shapes enzyme selectivity - lessons from aminoacyl-tRNA synthetases and other amino acid utilizing enzymes. FEBS J 2020; 287:1284-1305. [PMID: 31891445 DOI: 10.1111/febs.15199] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/08/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) charge tRNA with their cognate amino acids. Many other enzymes use amino acids as substrates, yet discrimination against noncognate amino acids that threaten the accuracy of protein translation is a hallmark of AARSs. Comparing AARSs to these other enzymes allowed us to recognize patterns in molecular recognition and strategies used by evolution for exercising selectivity. Overall, AARSs are 2-3 orders of magnitude more selective than most other amino acid utilizing enzymes. AARSs also reveal the physicochemical limits of molecular discrimination. For example, amino acids smaller by a single methyl moiety present a discrimination ceiling of ~200, while larger ones can be discriminated by up to 105 -fold. In contrast, substrates larger by a hydroxyl group challenge AARS selectivity, due to promiscuous H-bonding with polar active site groups. This 'hydroxyl paradox' is resolved by editing. Indeed, when the physicochemical discrimination limits are reached, post-transfer editing - hydrolysis of tRNAs charged with noncognate amino acids, evolved. The editing site often selectively recognizes the edited noncognate substrate using the very same feature that the synthetic site could not efficiently discriminate against. Finally, the comparison to other enzymes also reveals that the selectivity of AARSs is an explicitly evolved trait, showing some clear examples of how selection acted not only to optimize catalytic efficiency with the target substrate, but also to abolish activity with noncognate threat substrates ('negative selection').
Collapse
Affiliation(s)
- Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| |
Collapse
|
81
|
Pentamers with Non-redundant Frames: Bias for Natural Circular Code Codons. J Mol Evol 2020; 88:194-201. [DOI: 10.1007/s00239-019-09925-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
|
82
|
Seligmann H, Demongeot J. Codon Directional Asymmetry Suggests Swapped Prebiotic 1st and 2nd Codon Positions. Int J Mol Sci 2020; 21:E347. [PMID: 31948054 PMCID: PMC6981979 DOI: 10.3390/ijms21010347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 01/23/2023] Open
Abstract
Background: Codon directional asymmetry (CDA) classifies the 64 codons into palindromes (XYX, CDA = 0), and 5'- and 3'-dominant (YXX and XXY, CDA < 0 and CDA > 0, respectively). Previously, CDA was defined by the purine/pyrimidine divide (A,G/C,T), where X is either a purine or a pyrimidine. For the remaining codons with undefined CDA, CDA was defined by the 5' or 3' nucleotide complementary to Y. This CDA correlates with cognate amino acid tRNA synthetase classes, antiparallel beta sheet conformation index and the evolutionary order defined by the self-referential genetic code evolution model (CDA < 0: class I, high beta sheet index, late genetic code inclusion). Methods: We explore associations of CDAs defined by nucleotide classifications according to complementarity strengths (A:T, weak; C:G, strong) and keto-enol/amino-imino groupings (G,T/A,C), also after swapping 1st and 2nd codon positions with amino acid physicochemical and structural properties. Results: Here, analyses show that for the eight codons whose purine/pyrimidine-based CDA requires using the rule of complementarity with the midposition, using weak interactions to define CDA instead of complementarity increases associations with tRNA synthetase classes, antiparallel beta sheet index and genetic code evolutionary order. CDA defined by keto-enol/amino-imino groups, 1st and 2nd codon positions swapped, correlates with amino acid parallel beta sheet formation indices and Doolittle's hydropathicities. Conclusions: Results suggest (a) prebiotic swaps from N2N1N3 to N1N2N3 codon structures, (b) that tRNA-mediated translation replaced direct codon-amino acid interactions, and (c) links between codon structures and cognate amino acid properties.
Collapse
Affiliation(s)
- Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel
- Faculty of Medicine, Université Grenoble Alpes, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700 La Tronche, France;
| | - Jacques Demongeot
- Faculty of Medicine, Université Grenoble Alpes, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700 La Tronche, France;
| |
Collapse
|
83
|
Pollack JD, Gerard D, Makhatadze GI, Pearl DK. Evolutionary conservation and structural localizations suggest a physical trace of metabolism’s progressive geochronological emergence. J Biomol Struct Dyn 2019; 38:3700-3719. [DOI: 10.1080/07391102.2019.1679666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- J. Dennis Pollack
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - David Gerard
- Department of Mathematics and Statistics, American University, Washington, DC, USA
| | - George I. Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Dennis K. Pearl
- Department of Statistics, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
84
|
Buckle AM, Buckle M. Ribosome Evolution and Structural Capacitance. Front Mol Biosci 2019; 6:123. [PMID: 31803754 PMCID: PMC6872460 DOI: 10.3389/fmolb.2019.00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/24/2019] [Indexed: 11/13/2022] Open
Abstract
In addition to the canonical loss-of-function mutations, mutations in proteins may additionally result in gain-of-function through the binary activation of cryptic "structural capacitance elements." Our previous bioinformatic analysis allowed us to propose a new mechanism of protein evolution - structural capacitance - that arises via the generation of new elements of microstructure upon mutations that cause a disorder-to-order (D→O) transition in previously disordered regions of proteins. Here we propose that the D→O transition is a necessary follow-on from expected early codon-anticodon and tRNA acceptor stem-amino acid usage, via the accumulation of structural capacitance elements - reservoirs of disorder in proteins. We develop this argument further to posit that structural capacitance is an inherent consequence of the evolution of the genetic code.
Collapse
Affiliation(s)
- Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Malcolm Buckle
- LBPA, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Cachan, France
| |
Collapse
|
85
|
Ntountoumi C, Vlastaridis P, Mossialos D, Stathopoulos C, Iliopoulos I, Promponas V, Oliver SG, Amoutzias GD. Low complexity regions in the proteins of prokaryotes perform important functional roles and are highly conserved. Nucleic Acids Res 2019; 47:9998-10009. [PMID: 31504783 PMCID: PMC6821194 DOI: 10.1093/nar/gkz730] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/16/2019] [Accepted: 08/15/2019] [Indexed: 01/27/2023] Open
Abstract
We provide the first high-throughput analysis of the properties and functional role of Low Complexity Regions (LCRs) in more than 1500 prokaryotic and phage proteomes. We observe that, contrary to a widespread belief based on older and sparse data, LCRs actually have a significant, persistent and highly conserved presence and role in many and diverse prokaryotes. Their specific amino acid content is linked to proteins with certain molecular functions, such as the binding of RNA, DNA, metal-ions and polysaccharides. In addition, LCRs have been repeatedly identified in very ancient, and usually highly expressed proteins of the translation machinery. At last, based on the amino acid content enriched in certain categories, we have developed a neural network web server to identify LCRs and accurately predict whether they can bind nucleic acids, metal-ions or are involved in chaperone functions. An evaluation of the tool showed that it is highly accurate for eukaryotic proteins as well.
Collapse
Affiliation(s)
- Chrysa Ntountoumi
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| | - Panayotis Vlastaridis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| | | | | | - Vasilios Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, New Campus, University of Cyprus, PO Box 20537, CY-1678 Nicosia, Cyprus
| | - Stephen G Oliver
- Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, CB2 1GA, UK
| | - Grigoris D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| |
Collapse
|
86
|
The Uroboros Theory of Life's Origin: 22-Nucleotide Theoretical Minimal RNA Rings Reflect Evolution of Genetic Code and tRNA-rRNA Translation Machineries. Acta Biotheor 2019; 67:273-297. [PMID: 31388859 DOI: 10.1007/s10441-019-09356-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023]
Abstract
Theoretical minimal RNA rings attempt to mimick life's primitive RNAs. At most 25 22-nucleotide-long RNA rings code once for each biotic amino acid, a start and a stop codon and form a stem-loop hairpin, resembling consensus tRNAs. We calculated, for each RNA ring's 22 potential splicing positions, similarities of predicted secondary structures with tRNA vs. rRNA secondary structures. Assuming rRNAs partly derived from tRNA accretions, we predict positive associations between relative secondary structure similarities with rRNAs over tRNAs and genetic code integration orders of RNA ring anticodon cognate amino acids. Analyses consider for each secondary structure all nucleotide triplets as potential anticodon. Anticodons for ancient, chemically inert cognate amino acids are most frequent in the 25 RNA rings. For RNA rings with primordial cognate amino acids according to tRNA-homology-derived anticodons, tRNA-homology and coding sequences coincide, these are separate for predicted cognate amino acids that presumably integrated late the genetic code. RNA ring secondary structure similarity with rRNA over tRNA secondary structures associates best with genetic code integration orders of anticodon cognate amino acids when assuming split anticodons (one and two nucleotides at the spliced RNA ring 5' and 3' extremities, respectively), and at predicted anticodon location in the spliced RNA ring's midst. Results confirm RNA ring homologies with tRNAs and CDs, ancestral status of tRNA half genes split at anticodons, the tRNA-rRNA axis of RNA evolution, and that single theoretical minimal RNA rings potentially produce near-complete proto-tRNA sets. Hence genetic code pre-existence determines 25 short circular gene- and tRNA-like RNAs. Accounting for each potential splicing position, each RNA ring potentially translates most amino acids, realistically mimicks evolution of the tRNA-rRNA translation machinery. These RNA rings 'of creation' remind the uroboros' (snake biting its tail) symbolism for creative regeneration.
Collapse
|
87
|
|
88
|
Kubyshkin V, Budisa N. The Alanine World Model for the Development of the Amino Acid Repertoire in Protein Biosynthesis. Int J Mol Sci 2019; 20:ijms20215507. [PMID: 31694194 PMCID: PMC6862034 DOI: 10.3390/ijms20215507] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 12/13/2022] Open
Abstract
A central question in the evolution of the modern translation machinery is the origin and chemical ethology of the amino acids prescribed by the genetic code. The RNA World hypothesis postulates that templated protein synthesis has emerged in the transition from RNA to the Protein World. The sequence of these events and principles behind the acquisition of amino acids to this process remain elusive. Here we describe a model for this process by following the scheme previously proposed by Hartman and Smith, which suggests gradual expansion of the coding space as GC–GCA–GCAU genetic code. We point out a correlation of this scheme with the hierarchy of the protein folding. The model follows the sequence of steps in the process of the amino acid recruitment and fits well with the co-evolution and coenzyme handle theories. While the starting set (GC-phase) was responsible for the nucleotide biosynthesis processes, in the second phase alanine-based amino acids (GCA-phase) were recruited from the core metabolism, thereby providing a standard secondary structure, the α-helix. In the final phase (GCAU-phase), the amino acids were appended to the already existing architecture, enabling tertiary fold and membrane interactions. The whole scheme indicates strongly that the choice for the alanine core was done at the GCA-phase, while glycine and proline remained rudiments from the GC-phase. We suggest that the Protein World should rather be considered the Alanine World, as it predominantly relies on the alanine as the core chemical scaffold.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (V.K.); or (N.B.); Tel.: +1-204-474-9321 or +49-30-314-28821 (N.B.)
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg, MB R3T 2N2, Canada
- Department of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, 10623 Berlin, Germany
- Correspondence: (V.K.); or (N.B.); Tel.: +1-204-474-9321 or +49-30-314-28821 (N.B.)
| |
Collapse
|
89
|
Kitadai N, Nishiuchi K. Thermodynamic Impact of Mineral Surfaces on Amino Acid Polymerization: Aspartate Dimerization on Goethite. ASTROBIOLOGY 2019; 19:1363-1376. [PMID: 31539273 DOI: 10.1089/ast.2018.1967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article presents a thermodynamic predictive scheme for amino acid polymerization in the presence of minerals as a function of various environmental parameters (pH, ionic strength, amino acid concentration, and the solid/water ratio) using l-aspartate (Asp) and goethite as a model combination. This prediction is enabled by the combination of the surface adsorption constants of amino acid and its polymer, determined from the extended triple layer model characterization of the corresponding experimental results, with the thermodynamic data of these organic compounds in water reported in the literature. Calculations for the Asp-goethite system showed that the goethite surface drastically shifts the Asp monomer-dipeptide equilibrium toward the dipeptide side; when the dimerization of 0.1 mM Asp was considered in the presence of 10 m2 L-1 of goethite, an Asp dipeptide concentration around 105 times larger was computed to be thermodynamically attainable compared with that in the absence of goethite at acidic pH (4-5) and low ionic strength (0.1 mM NaCl). Under this condition, the dipeptide-to-monomer molecular ratio in the adsorbed state reached 20%. In contrast, no significant enhancement by goethite was predicted at alkaline pH (>8), where the electrostatic interactions of the goethite surface with Asp and Asp dipeptide are weak. Thus, mineral surfaces should have had a significant impact on the thermodynamics of prebiotic peptide bond formation on the early Earth, although the influences likely depended largely on the environmental conditions. Future experimental studies for various amino acid-mineral interactions using our proposed methodology will provide a quantitative constraint on favorable geochemical settings for the chemical evolution on Earth. This approach can also offer important clues for future exploration of extraterrestrial life.
Collapse
Affiliation(s)
- Norio Kitadai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Kumiko Nishiuchi
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
90
|
Gonzalez DL, Giannerini S, Rosa R. On the origin of degeneracy in the genetic code. Interface Focus 2019; 9:20190038. [PMID: 31641429 PMCID: PMC6802134 DOI: 10.1098/rsfs.2019.0038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/05/2019] [Indexed: 01/11/2023] Open
Abstract
The degeneracy of amino acid coding is one of the most crucial and enigmatic aspects of the genetic code. Different theories about the origin of the genetic code have been developed. However, to date, there is no comprehensive hypothesis on the mechanism that might have generated the degeneracy as we observe it. Here, we provide a new theory that explains the origin of the degeneracy based only on symmetry principles. The approach allows one to describe exactly the degeneracy of the early code (progenitor of the genetic code of LUCA, the last universal common ancestor) which is hypothesized to have the same degeneracy as the present vertebrate mitochondrial genetic code. The theory is based upon the tessera code, that fits as the progenitor of the early code. Moreover, we describe in detail the possible evolutionary transitions implied by our theory. The approach is supported by a unified mathematical framework that accounts for the degeneracy properties of both nuclear and mitochondrial genetic codes. Our work provides a new perspective to the understanding of the origin of the genetic code and the roles of symmetry principles in the organization of genetic information.
Collapse
Affiliation(s)
- D L Gonzalez
- CNR-IMM, UOS di Bologna, Via Gobetti 101, 40129 Bologna, Italy.,Dipartimento di Scienze Statistiche, Università di Bologna, via delle Belle Arti 41, 40126 Bologna, Italy
| | - S Giannerini
- Dipartimento di Scienze Statistiche, Università di Bologna, via delle Belle Arti 41, 40126 Bologna, Italy
| | - R Rosa
- CNR-IMM, UOS di Bologna, Via Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
91
|
Carter CW, Wills PR. Experimental solutions to problems defining the origin of codon-directed protein synthesis. Biosystems 2019; 183:103979. [PMID: 31176803 PMCID: PMC6693952 DOI: 10.1016/j.biosystems.2019.103979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
How genetic coding differentiated biology from chemistry is a long-standing challenge in Biology, for which there have been few experimental approaches, despite a wide-ranging speculative literature. We summarize five coordinated areas-experimental characterization of functional approximations to the minimal peptides (protozymes and urzymes) necessary to activate amino acids and acylate tRNA; showing that specificities of these experimental models match those expected from the synthetase Class division; population of disjoint regions of amino acid sequence space via bidirectional coding ancestry of the two synthetase Classes; showing that the phase transfer equilibria of amino acid side chains that form a two-dimensional basis set for protein folding are embedded in patterns of bases in the tRNA acceptor stem and anticodon; and identification of molecular signatures of ancestral synthetases and tRNAs necessary to define the earliest cognate synthetase:tRNA pairs-that now compose an extensive experimentally testable paradigm for progress toward understanding the coordinated emergence of the codon table and viable mRNA coding sequences. We briefly discuss recent progress toward identifying the remaining outstanding questions-the nature of the earliest amino acid alphabets and the origin of binding discrimination via distinct amino acid sequence-independent protein secondary structures-and how these, too, might be addressed experimentally.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, United States
| | - Peter R Wills
- Department of Physics and Te Ao Marama Centre for Fundamental Inquiry, University of Auckland, PB 92019, Auckland 1142, New Zealand
| |
Collapse
|
92
|
Adaptive Properties of the Genetically Encoded Amino Acid Alphabet Are Inherited from Its Subsets. Sci Rep 2019; 9:12468. [PMID: 31462646 PMCID: PMC6713743 DOI: 10.1038/s41598-019-47574-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/08/2019] [Indexed: 01/11/2023] Open
Abstract
Life uses a common set of 20 coded amino acids (CAAs) to construct proteins. This set was likely canonicalized during early evolution; before this, smaller amino acid sets were gradually expanded as new synthetic, proofreading and coding mechanisms became biologically available. Many possible subsets of the modern CAAs or other presently uncoded amino acids could have comprised the earlier sets. We explore the hypothesis that the CAAs were selectively fixed due to their unique adaptive chemical properties, which facilitate folding, catalysis, and solubility of proteins, and gave adaptive value to organisms able to encode them. Specifically, we studied in silico hypothetical CAA sets of 3–19 amino acids comprised of 1913 structurally diverse α-amino acids, exploring the adaptive value of their combined physicochemical properties relative to those of the modern CAA set. We find that even hypothetical sets containing modern CAA members are especially adaptive; it is difficult to find sets even among a large choice of alternatives that cover the chemical property space more amply. These results suggest that each time a CAA was discovered and embedded during evolution, it provided an adaptive value unusual among many alternatives, and each selective step may have helped bootstrap the developing set to include still more CAAs.
Collapse
|
93
|
Carter CW, Wills PR. Hierarchical groove discrimination by Class I and II aminoacyl-tRNA synthetases reveals a palimpsest of the operational RNA code in the tRNA acceptor-stem bases. Nucleic Acids Res 2019; 46:9667-9683. [PMID: 30016476 PMCID: PMC6182185 DOI: 10.1093/nar/gky600] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/12/2018] [Indexed: 01/01/2023] Open
Abstract
Class I and II aaRS recognition of opposite grooves was likely among the earliest determinants fixed in the tRNA acceptor stem bases. A new regression model identifies those determinants in bacterial tRNAs. Integral coefficients relate digital dependent to independent variables with perfect agreement between observed and calculated grooves for all twenty isoaccepting tRNAs. Recognition is mediated by the Discriminator base 73, the first base pair, and base 2 of the acceptor stem. Subsets of these coefficients also identically compute grooves recognized by smaller numbers of aaRS. Thus, the model is hierarchical, suggesting that new rules were added to pre-existing ones as new amino acids joined the coding alphabet. A thermodynamic rationale for the simplest model implies that Class-dependent aaRS secondary structures exploited differential tendencies of the acceptor stem to form the hairpin observed in Class I aaRS•tRNA complexes, enabling the earliest groove discrimination. Curiously, groove recognition also depends explicitly on the identity of base 2 in a manner consistent with the middle bases of the codon table, confirming a hidden ancestry of codon-anticodon pairing in the acceptor stem. That, and the lack of correlation with anticodon bases support prior productive coding interaction of tRNA minihelices with proto-mRNA.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA
| | - Peter R Wills
- Department of Physics, Centre for Computational Evolution, and Te Ao Marama Centre for Fundamental Enquiry, University of Auckland, PB 92109, Auckland 1142, New Zealand
| |
Collapse
|
94
|
Demongeot J, Seligmann H. Theoretical minimal RNA rings designed according to coding constraints mimic deamination gradients. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2019; 106:44. [DOI: 10.1007/s00114-019-1638-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 11/27/2022]
|
95
|
Demongeot J, Seligmann H. Spontaneous evolution of circular codes in theoretical minimal RNA rings. Gene 2019; 705:95-102. [DOI: 10.1016/j.gene.2019.03.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/08/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
|
96
|
Ikehara K. The Origin of tRNA Deduced from Pseudomonas aeruginosa 5' Anticodon-Stem Sequence : Anticodon-stem loop hypothesis. ORIGINS LIFE EVOL B 2019; 49:61-75. [PMID: 31077036 DOI: 10.1007/s11084-019-09573-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/28/2019] [Indexed: 10/26/2022]
Abstract
The riddle of the origin of life is unsolved as yet. One of the best ways to solve the riddle would be to find a vestige of the first life from databases of DNA and/or protein of modern organisms. It would be, especially, important to know the origin of tRNA, because it mediates between genetic information and the amino acid sequence of a protein. Here I attempt to find a vestige of the origin and evolution of tRNA from base sequences of Pseudomonas aeruginosa tRNA gene. It was first perceived that 5' anticodon (AntiC) stem sequences of P. aeruginosa tRNA for translation of G-start codon (GNN) are intimately and mutually related. Then, mutual relations among all of the forty-two 5' AntiC stem sequences of P. aeruginosa tRNA were examined. These relationships imply that P. aeruginosa tRNA originated from four anticodon stem-loops (AntiC-SL) translating GNC codons to the corresponding four amino acids, Gly, Ala, Asp and Val (where N is G, C, A, or T). In contrast to the case of AntiC-stem sequence, a mutual relation map could not be drawn with D-, T- and acceptor-stem sequences of P. aeruginosa tRNA. Thus I conclude that the four AntiC-SLs were the first primeval tRNAs.
Collapse
Affiliation(s)
- Kenji Ikehara
- G&L Kyosei Institute, Koharu Bld. 202, Hokkeji 153-4, Nara, 630-8001, Japan.
- The International Institute for Advanced Studies of Japan, Kizugawadai 9-3, Kizugawa, Kyoto, 619-0225, Japan.
- Professor Emeritus of Nara Women's University, Nara, Japan.
| |
Collapse
|
97
|
Demongeot J, Seligmann H. Theoretical minimal RNA rings recapitulate the order of the genetic code's codon-amino acid assignments. J Theor Biol 2019; 471:108-116. [DOI: 10.1016/j.jtbi.2019.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/19/2018] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
|
98
|
Demongeot J, Seligmann H. Bias for 3'-Dominant Codon Directional Asymmetry in Theoretical Minimal RNA Rings. J Comput Biol 2019; 26:1003-1012. [PMID: 31120344 DOI: 10.1089/cmb.2018.0256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aminoacyl tRNA synthetases ligate tRNAs specifically with their cognate amino acid. These synthetases are among life's earliest proteins, class II tRNA synthetases (cognates A, D, F, G, H, K, N, P, S, and T) presumably preceding class I tRNA synthetases (cognates C, E, I, L, M, Q, R, V, W, and Y). Classification of codons into palindromic (structure XYX), 5'-dominant (YXX), and 3'-dominant (XXY) (Codon Directional Asymmetry [CDA]) shows that class II tRNA synthetases aminoacylate amino acids associated with XXY. Our working hypothesis expects bias for XXY codons in primordial RNAs, such as theoretical minimal RNA rings, designed in silico to mimic life's earliest RNAs. Twenty-five RNA rings have been computed, which code over a minimal length (22 nucleotides) for a start codon, stop codon, and one and only one codon for each of the 20 amino acids, and form stem-loop hairpins preventing degradation; these 25 minimal RNAs are the only ones matching these constraints and they seem homologous to consensus tRNA sequences. This similarity defined candidate RNA ring anticodons and corresponding cognate amino acids. Here, analyses of RNA ring codon contents confirm bias for XXY codons in 13 among 14 RNA rings with unequal XXY and YXX codon numbers. This bias increases with the genetic code integration order of the RNA ring's cognate amino acid across and within tRNA synthetase classes, suggesting that evolutionary processes, and not physicochemical constraints, produced the association between CDA and tRNA synthetase classes. The self-referential hypothesis for genetic code origin, a very complete genetic code evolutionary hypothesis integrating many translational machinery components, predicts best among genetic code evolutionary hypotheses CDA biases in RNA rings. The RNA rings' simple design inadvertently reproduces CDAs predicted by the genetic code's structure, confirming theoretical minimal RNA rings as good proxies for life's earliest RNAs.
Collapse
Affiliation(s)
- Jacques Demongeot
- Laboratory AGEIS EA 7407, Faculty of Medicine, Team Tools for e-Gnosis Medical, Université Grenoble Alpes, La Tronche, France
| | - Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
99
|
Demongeot J, Seligmann H. More Pieces of Ancient than Recent Theoretical Minimal Proto-tRNA-Like RNA Rings in Genes Coding for tRNA Synthetases. J Mol Evol 2019; 87:152-174. [DOI: 10.1007/s00239-019-09892-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
|
100
|
Guyomar C, Gillet R. When transfer-messenger RNA scars reveal its ancient origins. Ann N Y Acad Sci 2019; 1447:80-87. [PMID: 30815901 DOI: 10.1111/nyas.14035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022]
Abstract
In bacteria, trans-translation is the primary quality control mechanism for rescuing ribosomes arrested during translation. This key process is universally conserved and plays a crucial role in the viability and virulence of all bacteria. It is performed by transfer-messenger RNA (tmRNA) and its protein partner small protein B (SmpB). Here, we show that tmRNA is a key molecule that could have given birth to modern protein synthesis. The traces of an ancient RNA world persist in the structure of modern tmRNA, suggesting its old origins. Therefore, since it has both tRNA and mRNA functions, tmRNA could be the missing link that allowed modern genetic code to be read by the ribosome.
Collapse
Affiliation(s)
- Charlotte Guyomar
- Université de Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Reynald Gillet
- Université de Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| |
Collapse
|