51
|
Igamberdiev AU, Bykova NV, Shah JK, Hill RD. Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. PHYSIOLOGIA PLANTARUM 2010; 138:393-404. [PMID: 19929898 DOI: 10.1111/j.1399-3054.2009.01314.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
At sufficiently low oxygen concentrations, hemeproteins are deoxygenated and become capable of reducing nitrite to nitric oxide (NO), in a reversal of the reaction in which NO is converted to nitrate or nitrite by oxygenated hemeproteins. The maximum rates of NO production depend on the oxygen avidity. The hemeproteins with the highest avidity, such as hexacoordinate hemoglobins, retain oxygen even under anoxic conditions resulting in their being extremely effective NO scavengers but essentially incapable of producing NO. Deoxyhemeprotein-related NO production can be observed in mitochondria (at the levels of cytochrome c oxidase, cytochrome c, complex III and possibly other sites), in plasma membrane, cytosol, endoplasmic reticulum and peroxisomes. In mitochondria, the use of nitrite as an alternative electron acceptor can contribute to a limited rate of ATP synthesis. Non-heme metal-containing proteins such as nitrate reductase and xanthine oxidase can also be involved in NO production. This will result in a strong anoxic redox flux of nitrogen through the hemoglobin-NO cycle involving nitrate reductase, nitrite: NO reductase, and NO dioxygenase. In normoxic conditions, NO is produced in very low quantities, mainly for signaling purposes and this nitrogen cycling is inoperative.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| | | | | | | |
Collapse
|
52
|
Kabashima Y, Ueda N, Sone N, Sakamoto J. Mutation analysis of the interaction of B-type cytochrome c oxidase with its natural substrate cytochrome c-551. J Biosci Bioeng 2009; 109:325-30. [PMID: 20226371 DOI: 10.1016/j.jbiosc.2009.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 10/20/2022]
Abstract
Heme-copper oxidases in the respiratory chain are classified into three subfamilies: A-, B- and C-types. Cytochrome bo(3)-type cytochrome c oxidase from thermophilic Bacillus is a B-type oxidase that is thought to interact with cytochrome c through hydrophobic interactions. This is in contrast to A-type oxidases, which bind cytochrome c molecules primarily through electrostatic forces between acidic residues in the oxidase subunit II and basic residues within cytochromes. In order to investigate the substrate-binding site in cytochrome bo(3), eight acidic residues in subunit II were mutated to corresponding neutral residues and enzymatic activity was measured using cytochrome c-551 from closely related Bacillus PS3. The mutation of E116, located at the interface to subunit I, decreased the k(cat) value most prominently without affecting the K(m) value, indicating that the residue is important for electron transfer. The mutation of D99, located close to the Cu(A) site, largely affected both values, suggesting that it is important for both electron transfer and substrate binding. The mutation of D49 and E84 did not affect enzyme kinetic parameters, but the mutation of E64, E66 and E68 lowered the affinity of cytochrome bo(3) for cytochrome c-551 without affecting the k(cat) value. These three residues are located at the front of the hydrophilic globular domain and distant from the Cu(A) site, suggesting that these amino acids compose an acidic patch for a second substrate-binding site. This is the first report on site-directed mutagenesis experiments of a B-type heme-copper oxidase.
Collapse
Affiliation(s)
- Yoshiki Kabashima
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | | | | | | |
Collapse
|
53
|
Gribaldo S, Talla E, Brochier-Armanet C. Evolution of the haem copper oxidases superfamily: a rooting tale. Trends Biochem Sci 2009; 34:375-81. [DOI: 10.1016/j.tibs.2009.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/11/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
|
54
|
Rauhamäki V, Bloch DA, Verkhovsky MI, Wikström M. Active site of cytochrome cbb3. J Biol Chem 2009; 284:11301-8. [PMID: 19252222 PMCID: PMC2670135 DOI: 10.1074/jbc.m808839200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/27/2009] [Indexed: 11/06/2022] Open
Abstract
Cytochrome cbb(3) is the most distant member of the heme-copper oxidase family still retaining the following major feature typical of these enzymes: reduction of molecular oxygen to water coupled to proton translocation across the membrane. The thermodynamic properties of the six redox centers, five hemes and a copper ion, in cytochrome cbb(3) from Rhodobacter sphaeroides were studied using optical and EPR spectroscopy. The low spin heme b in the catalytic subunit was shown to have the highest midpoint redox potential (E(m)(,7) +418 mV), whereas the three hemes c in the two other subunits titrated with apparent midpoint redox potentials of +351, +320, and +234 mV. The active site high spin heme b(3) has a very low potential (E(m)(,7) -59 mV) as opposed to the copper center (Cu(B)), which has a high potential (E(m)(,7) +330 mV). The EPR spectrum of the ferric heme b(3) has rhombic symmetry. To explain the origins of the rhombicity, the Glu-383 residue located on the proximal side of heme b(3) was mutated to aspartate and to glutamine. The latter mutation caused a 10 nm blue shift in the optical reduced minus oxidized heme b(3) spectrum, and a dramatic change of the EPR signal toward more axial symmetry, whereas mutation to aspartate had far less severe consequences. These results strongly suggest that Glu-383 is involved in hydrogen bonding to the proximal His-405 ligand of heme b(3), a unique interaction among heme-copper oxidases.
Collapse
Affiliation(s)
- Virve Rauhamäki
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P. O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
55
|
Blank CE. Phylogenomic dating--a method of constraining the age of microbial taxa that lack a conventional fossil record. ASTROBIOLOGY 2009; 9:173-191. [PMID: 19371160 DOI: 10.1089/ast.2008.0247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A phylogenomic dating approach was used to identify potential age constraints for multiple archaeal groups, many of which have no fossil, isotopic, or biomarker record. First, well-resolved phylogenetic trees were inferred with the use of multiple gene sequences obtained from whole genome sequences. Next, the ability to use oxygen as a terminal electron acceptor was coded into characters, and ancestral state reconstruction was used to identify clades with taxa that metabolize oxygen and likely had an aerobic ancestor. Next, the habitat of the ancestor was inferred. If the local presence of Cyanobacteria could be excluded from the putative ancestral habitat, then these clades would have originated after the rise in atmospheric oxygen 2.32 Ga. With this method, an upper age of 2.32 Ga (an "oxygen age constraint") is proposed for four major archaeal clades: the Sulfolobales, Thermoplasmatales, Thermoproteus neutrophilus/Pyrobaculum spp., and the Thermoproteales. It was also shown that the halophilic archaea likely had an aerobic common ancestor, yet the possibility of local oxygen oases before oxygenation of the atmosphere could not be formally rejected. Thus, an oxygen age constraint was not assessed for this group. This work suggests that many archaeal groups are not as ancient as many in the research community have previously assumed, and it provides a new method for establishing upper age constraints for major microbial groups that lack a conventional fossil record.
Collapse
Affiliation(s)
- Carrine E Blank
- Department of Geosciences, University of Montana, Missoula, Montana 59808-1296, USA.
| |
Collapse
|
56
|
Ducluzeau AL, van Lis R, Duval S, Schoepp-Cothenet B, Russell MJ, Nitschke W. Was nitric oxide the first deep electron sink? Trends Biochem Sci 2008; 34:9-15. [PMID: 19008107 DOI: 10.1016/j.tibs.2008.10.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 11/30/2022]
Abstract
Evolutionary histories of enzymes involved in chemiosmotic energy conversion indicate that a strongly oxidizing substrate was available to the last universal common ancestor before the divergence of Bacteria and Archaea. According to palaeogeochemical evidence, O(2) was not present beyond trace amounts on the early Earth. Based on recent phylogenetic, enzymatic and geochemical results, we propose that, in the earliest Archaean, nitric oxide (NO) and its derivatives nitrate and nitrite served as strongly oxidizing substrates driving the evolution of a bioenergetic pathway related to modern dissimilatory denitrification. Aerobic respiration emerged later from within this ancestral pathway via adaptation of the enzyme NO reductase to its new substrate, dioxygen.
Collapse
Affiliation(s)
- Anne-Lise Ducluzeau
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Centre National de la Recherche Scientifique UPR9036, IFR77, Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
57
|
Brochier-Armanet C, Talla E, Gribaldo S. The Multiple Evolutionary Histories of Dioxygen Reductases: Implications for the Origin and Evolution of Aerobic Respiration. Mol Biol Evol 2008; 26:285-97. [DOI: 10.1093/molbev/msn246] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
58
|
Ducluzeau AL, Ouchane S, Nitschke W. The cbb3 Oxidases Are an Ancient Innovation of the Domain Bacteria. Mol Biol Evol 2008; 25:1158-66. [DOI: 10.1093/molbev/msn062] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
59
|
Kalapos MP. The energetics of the reductive citric acid cycle in the pyrite-pulled surface metabolism in the early stage of evolution. J Theor Biol 2007; 248:251-8. [PMID: 17585946 DOI: 10.1016/j.jtbi.2007.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Revised: 04/05/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
The chemoautotrophic theory concerning the origin of life postulates that a central role is played in the prebiotic chemical machinery by a reductive citric acid cycle operating without enzymes. The crucial point in this scenario is the formation of pyrite from hydrogen sulfide and ferrous sulfide, a reaction suggested to be linked to endergonic reactions, making them exergonic. This mechanism is believed to provide the driving force for the cycle to operate as a carbon dioxide fixation network. The present paper criticizes the thermodynamic calculations and their presentation in the original version of the archaic reductive citric acid cycle [Wächtershäuser, 1990. Evolution of the first metabolic cycles. Proc. Natl Acad. Sci. USA 87, 200-204.]. The most significant differences between the Wächtershäuser hypothesis and the present proposal: Wächtershäuser did not consider individual reactions in his calculations. A particularly questionable feature is the involvement of seven molecules of pyrite which does not emerge as a direct consequence of the chemical reactions presented in the archaic reductive citric acid cycle. The involvement of a considerable number of sulfur-containing organic intermediates as building blocks is also disputed. In the new scheme of the cycle proposed here, less free energy is liberated than hypothesized by Wächtershäuser, but it has the advantages that the free energy changes for the individual reactions can be calculated, the number of pyrite molecules involved in the cycle is reduced, and fewer sulfur-containing intermediates are required for the cycle to operate. In combination with a plausible route for the anaplerotic reactions [Kalapos, 1997a. Possible evolutionary role of methylglyoxalase pathway: anaplerotic route for reductive citric acid cycle of surface metabolists. J. Theor. Biol. 188, 201-206.], this new presentation of the cycle assigns a special meaning to hydrogen sulfide formation in the early stage of biochemical evolution.
Collapse
|
60
|
Tomasiak TM, Cecchini G, Iverson TM. Succinate as Donor; Fumarate as Acceptor. EcoSal Plus 2007; 2. [PMID: 26443593 DOI: 10.1128/ecosal.3.2.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Indexed: 06/05/2023]
Abstract
Succinate and fumarate are four-carbon dicarboxylates that differ in the identity of their central bond (single or double). The oxidoreduction of these small molecules plays a central role in both aerobic and anaerobic respiration. During aerobic respiration, succinate is oxidized, donating two reducing equivalents, while in anaerobic respiration, fumarate is reduced, accepting two reducing equivalents. Two related integral membrane Complex II superfamily members catalyze these reactions, succinate:ubiquinone oxidoreductase (SQR) and fumarate:menaquinol oxidoreductase (QFR). The structure, function, and regulation of these integral-membrane enzymes are summarized here. The overall architecture of these Complex II enzymes has been found to consist of four subunits: two integral membrane subunits, and a soluble domain consisting of an iron-sulfur protein subunit, and a flavoprotein subunit. This architecture provides a scaffold that houses one active site in the membrane and another in the soluble milieu, making a linear electron transfer chain that facilities shuttling of reducing equivalents between the two active sites. A combination of kinetic measurements, mutagenesis, electron paramagnetic resonance spectroscopy, UV/Vis spectroscopy, and x-ray crystallography have suggested mechanisms for succinate:fumarate interconversion, electron transfer, and quinone:quinol interconversion. Of particular interest are the structural details that control directionality and make SQR and QFR primed for preferential catalysis each in different favored directions.
Collapse
|
61
|
Di Giulio M. The universal ancestor and the ancestors of Archaea and Bacteria were anaerobes whereas the ancestor of the Eukarya domain was an aerobe. J Evol Biol 2007; 20:543-8. [PMID: 17305820 DOI: 10.1111/j.1420-9101.2006.01259.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of an oxyphobic index (OI) based on the propensity of amino acids to enter more frequently the proteins of anaerobes makes it possible to make inferences on the environment in which the last universal common ancestor (LUCA) lived. The reconstruction of the ancestral sequences of proteins using a method based on maximum likelihood and their attribution by means of the OI to the set of aerobe or anaerobe sequences has led to the following conclusions: the LUCA was an anaerobic 'organism', as were the ancestors of Archaea and Bacteria, whereas the ancestor of Eukarya was an aerobe. These observations seem to falsify the hypothesis that the LUCA was an aerobe and help to identify better the environment in which the first organisms lived.
Collapse
Affiliation(s)
- M Di Giulio
- Laboratory of Molecular Evolution, Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Naples, Napoli, Italy.
| |
Collapse
|
62
|
Archetti M, Di Giulio M. The evolution of the genetic code took place in an anaerobic environment. J Theor Biol 2006; 245:169-74. [PMID: 17078972 DOI: 10.1016/j.jtbi.2006.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/21/2006] [Accepted: 09/22/2006] [Indexed: 12/17/2022]
Abstract
We have compared orthologous proteins from an aerobic organism, Cytophaga hutchinsonii, and from an obligate anaerobe, Bacteroides thetaiotaomicron. This comparison allows us to define the oxyphobic ranks of amino acids, i.e. a scale of the relative sensitivity to oxygen of the amino acid residues. The oxyphobic index (OI), which can be simply obtained from the amino acids' oxyphobic ranks, can be associated to any protein and therefore to the genetic code, if the number of synonymous codons attributed to the amino acids in the code is assumed to be the frequency with which the amino acids appeared in ancestral proteins. Sampling of the OI variable from the proteins of obligate anaerobes and aerobes has established that the OI value of the genetic code is not significantly different from the mean OI value of anaerobe proteins, while it is different from that of aerobe proteins. This observation would seem to suggest that the terminal phases of the evolution of genetic code organization took place in an anaerobic environment. This result is discussed in the framework of hypotheses suggested to explain the timing of the evolutionary appearance of the aerobic metabolism.
Collapse
Affiliation(s)
- Marco Archetti
- Department of Zoology, Oxford University, South Parks Road, OX1 3PS Oxford, UK
| | | |
Collapse
|
63
|
Ouzounis CA, Kunin V, Darzentas N, Goldovsky L. A minimal estimate for the gene content of the last universal common ancestor--exobiology from a terrestrial perspective. Res Microbiol 2005; 157:57-68. [PMID: 16431085 DOI: 10.1016/j.resmic.2005.06.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 06/15/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
Using an algorithm for ancestral state inference of gene content, given a large number of extant genome sequences and a phylogenetic tree, we aim to reconstruct the gene content of the last universal common ancestor (LUCA), a hypothetical life form that presumably was the progenitor of the three domains of life. The method allows for gene loss, previously found to be a major factor in shaping gene content, and thus the estimate of LUCA's gene content appears to be substantially higher than that proposed previously, with a typical number of over 1000 gene families, of which more than 90% are also functionally characterized. More precisely, when only prokaryotes are considered, the number varies between 1006 and 1189 gene families while when eukaryotes are also included, this number increases to between 1344 and 1529 families depending on the underlying phylogenetic tree. Therefore, the common belief that the hypothetical genome of LUCA should resemble those of the smallest extant genomes of obligate parasites is not supported by recent advances in computational genomics. Instead, a fairly complex genome similar to those of free-living prokaryotes, with a variety of functional capabilities including metabolic transformation, information processing, membrane/transport proteins and complex regulation, shared between the three domains of life, emerges as the most likely progenitor of life on Earth, with profound repercussions for planetary exploration and exobiology.
Collapse
Affiliation(s)
- Christos A Ouzounis
- Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, UK.
| | | | | | | |
Collapse
|
64
|
Muntyan MS, Popova IV, Bloch DA, Skripnikova EV, Ustiyan VS. Energetics of alkalophilic representatives of the genus Bacillus. BIOCHEMISTRY (MOSCOW) 2005; 70:137-42. [PMID: 15807650 DOI: 10.1007/s10541-005-0092-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cytochrome and lipid composition of membranes is considered as the attributes required for adaptation of the alkalophiles to alkaline conditions. Respiratory chains of alkalophilic representatives of the genus Bacillus are discussed. Special attention is paid to the features of the Na(+)-cycle of these bacteria and to the features determining halo- and alkalotolerant phenotype, which have been reported due to recent achievements in genomics.
Collapse
Affiliation(s)
- M S Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| | | | | | | | | |
Collapse
|
65
|
Paumann M, Regelsberger G, Obinger C, Peschek GA. The bioenergetic role of dioxygen and the terminal oxidase(s) in cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1707:231-53. [PMID: 15863101 DOI: 10.1016/j.bbabio.2004.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 12/15/2004] [Accepted: 12/16/2004] [Indexed: 01/21/2023]
Abstract
Owing to the release of 13 largely or totally sequenced cyanobacterial genomes (see and ), it is now possible to critically assess and compare the most neglected aspect of cyanobacterial physiology, i.e., cyanobacterial respiration, also on the grounds of pure molecular biology (gene sequences). While there is little doubt that cyanobacteria (blue-green algae) do form the largest, most diversified and in both evolutionary and ecological respects most significant group of (micro)organisms on our earth, and that what renders our blue planet earth to what it is, viz. the O(2)-containing atmosphere, dates back to the oxygenic photosynthetic activity of primordial cyanobacteria about 3.2x10(9) years ago, there is still an amazing lack of knowledge on the second half of bioenergetic oxygen metabolism in cyanobacteria, on (aerobic) respiration. Thus, the purpose of this review is threefold: (1) to point out the unprecedented role of the cyanobacteria for maintaining the delicate steady state of our terrestrial biosphere and atmosphere through a major contribution to the poising of oxygenic photosynthesis against aerobic respiration ("the global biological oxygen cycle"); (2) to briefly highlight the membrane-bound electron-transport assemblies of respiration and photosynthesis in the unique two-membrane system of cyanobacteria (comprising cytoplasmic membrane and intracytoplasmic or thylakoid membranes, without obvious anastomoses between them); and (3) to critically compare the (deduced) amino acid sequences of the multitude of hypothetical terminal oxidases in the nine fully sequenced cyanobacterial species plus four additional species where at least the terminal oxidases were sequenced. These will then be compared with sequences of other proton-pumping haem-copper oxidases, with special emphasis on possible mechanisms of electron and proton transfer.
Collapse
Affiliation(s)
- Martina Paumann
- Molecular Bioenergetics Group, Institute of Physical Chemistry, University of Vienna, Austria
| | | | | | | |
Collapse
|
66
|
Emelyanov VV. Common evolutionary origin of mitochondrial and rickettsial respiratory chains. Arch Biochem Biophys 2004; 420:130-41. [PMID: 14622983 DOI: 10.1016/j.abb.2003.09.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Comprehensive phylogenetic analysis of the subunits of respiratory chain was carried out using a variety of mitochondrial and bacterial sequences including those from all unfinished alpha-proteobacterial genomes known to date. Maximum likelihood, neighbor-joining, and maximum parsimony consensus trees, based on four proton-translocating complexes, placed mitochondria as a sister group to the order Rickettsiales of obligate endosymbiotic bacteria to the exclusion of free-living alpha-proteobacteria. Thus, phylogenetic relationship of most eukaryotic respiratory enzymes conforms to canonical pattern of mitochondrial ancestry, prior established in analyses of ribosomal RNAs, which are encoded by residual mitochondrial genomes. These data suggest that mitochondria may have derived from a reduced intracellular bacterium and that respiration may be the only evolutionary novelty brought into eukaryotes by mitochondrial endosymbiont.
Collapse
Affiliation(s)
- Victor V Emelyanov
- Department of General Microbiology, Gamaleya Institute of Epidemiology and Microbiology, Gamaleya Street 18, Moscow 123098, Russia.
| |
Collapse
|
67
|
Baughn AD, Malamy MH. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 2004; 427:441-4. [PMID: 14749831 DOI: 10.1038/nature02285] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 12/12/2003] [Indexed: 01/07/2023]
Abstract
Strict anaerobes cannot grow in the presence of greater than 5 micro M dissolved oxygen. Despite this growth inhibition, many strict anaerobes of the Bacteroides class of eubacteria can survive in oxygenated environments until the partial pressure of O2 (PO2) is sufficiently reduced. For example, the periodontal pathogens Porphyromonas gingivalis and Tannerella forsythensis colonize subgingival plaques of mammals, whereas several other Bacteroides species colonize the gastrointestinal tract of animals. It has been suggested that pre-colonization of these sites by facultative anaerobes is essential for reduction of the PO2 and subsequent colonization by strict anaerobes. However, this model is inconsistent with the observation that Bacteroides fragilis can colonize the colon in the absence of facultative anaerobes. Thus, this strict anaerobe may have a role in reduction of the environmental PO2. Although some strictly anaerobic bacteria can consume oxygen through an integral membrane electron transport system, the physiological role of this system has not been established in these organisms. Here we demonstrate that B. fragilis encodes a cytochrome bd oxidase that is essential for O2 consumption and is required, under some conditions, for the stimulation of growth in the presence of nanomolar concentrations of O2. Furthermore, our data suggest that this property is conserved in many other organisms that have been described as strict anaerobes.
Collapse
Affiliation(s)
- Anthony D Baughn
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
68
|
|
69
|
Emelyanov VV. Mitochondrial connection to the origin of the eukaryotic cell. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1599-618. [PMID: 12694174 DOI: 10.1046/j.1432-1033.2003.03499.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phylogenetic evidence is presented that primitively amitochondriate eukaryotes containing the nucleus, cytoskeleton, and endomembrane system may have never existed. Instead, the primary host for the mitochondrial progenitor may have been a chimeric prokaryote, created by fusion between an archaebacterium and a eubacterium, in which eubacterial energy metabolism (glycolysis and fermentation) was retained. A Rickettsia-like intracellular symbiont, suggested to be the last common ancestor of the family Rickettsiaceae and mitochondria, may have penetrated such a host (pro-eukaryote), surrounded by a single membrane, due to tightly membrane-associated phospholipase activity, as do present-day rickettsiae. The relatively rapid evolutionary conversion of the invader into an organelle may have occurred in a safe milieu via numerous, often dramatic, changes involving both partners, which resulted in successful coupling of the host glycolysis and the symbiont respiration. Establishment of a potent energy-generating organelle made it possible, through rapid dramatic changes, to develop genuine eukaryotic elements. Such sequential, or converging, global events could fill the gap between prokaryotes and eukaryotes known as major evolutionary discontinuity.
Collapse
|
70
|
Ishikawa R, Ishido Y, Tachikawa A, Kawasaki H, Matsuzawa H, Wakagi T. Aeropyrum pernix K1, a strictly aerobic and hyperthermophilic archaeon, has two terminal oxidases, cytochrome ba3 and cytochrome aa3. Arch Microbiol 2002; 179:42-9. [PMID: 12471503 DOI: 10.1007/s00203-002-0496-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2002] [Revised: 09/18/2002] [Accepted: 10/07/2002] [Indexed: 11/29/2022]
Abstract
Aeropyrum pernix K1 is a strictly aerobic and hyperthermophilic archaeon that thrives even at 100 degrees C. The archaeon is quite interesting with respect to the evolution of aerobic electron transport systems and the thermal stability of the respiratory components. An isolated membrane fraction was found to oxidize bovine cytochrome c. The activity was solubilized in the presence of detergents and separated into two fractions by successive chromatography. Two cytochrome oxidases, designated as CO-1 and CO-2, were further purified. CO-1 was a ba(3)-type cytochrome containing at least two subunits. Chemically digested fragments of CO-1 revealed a peptide with a sequence identical to a part of a putative cytochrome oxidase subunit I encoded by the gene ape1623. CO-2, an aa(3)-type cytochrome, was present in lower amounts than CO-1 and was immunologically identified as a product of aoxABC gene (DDBJ accession no. AB020482). Both cytochromes reacted with carbon monoxide. The apparent K(m) values of CO-1 and CO-2 for oxygen were 5.5 and 32 micro M, respectively, at 25 degrees C. The terminal oxidases CO-1 and CO-2 phylogenetically correspond to the SoxB and SoxM branches, respectively, of the heme-copper oxidase tree.
Collapse
Affiliation(s)
- Ryuhei Ishikawa
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
71
|
Xiong J, Bauer CE. A cytochrome b origin of photosynthetic reaction centers: an evolutionary link between respiration and photosynthesis. J Mol Biol 2002; 322:1025-37. [PMID: 12367526 DOI: 10.1016/s0022-2836(02)00822-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The evolutionary origin of photosynthetic reaction centers has long remained elusive. Here, we use sequence and structural analysis to demonstrate an evolutionary link between the cytochrome b subunit of the cytochrome bc(1) complex and the core polypeptides of the photosynthetic bacterial reaction center. In particular, we have identified an area of significant sequence similarity between a three contiguous membrane-spanning domain of cytochrome b, which contains binding sites for two hemes, and a three contiguous membrane-spanning domain in the photosynthetic reaction center core subunits, which contains binding sites for cofactors such as (bacterio)chlorophylls, (bacterio)pheophytin and a non-heme iron. Three of the four heme ligands in cytochrome b are found to be conserved with the cofactor ligands in the reaction center polypeptides. Since cytochrome b and reaction center polypeptides both bind tetrapyrroles and quinones for electron transfer, the observed sequence, functional and structural similarities can best be explained with the assumption of a common evolutionary origin. Statistical analysis further supports a distant but significant homologous relationship. On the basis of previous evolutionary analyses that established a scenario that respiration evolved prior to photosynthesis, we consider it likely that cytochrome b is the evolutionary precursor for type II reaction center apoproteins. With a structural analysis confirming a common evolutionary origin of both type I and type II reaction centers, we further propose a novel "reaction center apoprotein early" hypothesis to account for the development of photosynthetic reaction center holoproteins.
Collapse
Affiliation(s)
- Jin Xiong
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
72
|
Kalapos MP. A theoretical approach to the link between oxidoreductions and pyrite formation in the early stage of evolution. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:218-22. [PMID: 11997130 DOI: 10.1016/s0005-2728(01)00225-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There are two fundamental axioms of surface metabolism theory: (i) pyrite formation from H2S and FeS is proposed as a source of energy for life, and (ii) archaic reductive citric acid cycle is put into the center of a metabolic network. However, the concept fails to indicate how sulfide oxidation ought to be coupled to processes driven by free energy change occurring during pyrite production, and secondly, how reductive citric acid cycle ought to be supplied with row material(s). Recently, the non-enzymatic methylglyoxalase pathway has been recommended as the anaplerotic route for the reductive citric acid cycle. In this paper a mechanism is proposed by which the oxidation of lactate, the essential step of the anaplerotic path, becomes possible and a coupling system between sulfide oxidation and endergonic reaction(s) is also presented. Oxidoreduction for other redox pairs is discussed too. It is concluded that the S(o)/H2S system may have been the clue to energy production at the early stage of evolution, as hydrogen sulfide produced by the metabolic network may have functioned as a coupling molecule between endergonic and exergonic reactions.
Collapse
|
73
|
Abstract
The origin of photosynthesis is a fundamental biological question that has eluded researchers for decades. The complexity of the origin and evolution of photosynthesis is a result of multiple photosynthetic components having independent evolutionary pathways. Indeed, evolutionary scenarios have been established for only a few photosynthetic components. Phylogenetic analysis of Mg-tetrapyrrole biosynthesis genes indicates that most anoxygenic photosynthetic organisms are ancestral to oxygen-evolving cyanobacteria and that the purple bacterial lineage may contain the most ancestral form of this pigment biosynthesis pathway. The evolutionary path of type I and type II reaction center apoproteins is still unresolved owing to the fact that a unified evolutionary tree cannot be generated for these divergent reaction center subunits. However, evidence for a cytochrome b origin for the type II reaction center apoproteins is emerging. Based on the combined information for both photopigments and reaction centers, a unified theory for the evolution of reaction center holoproteins is provided. Further insight into the evolution of photosynthesis will have to rely on additional broader sampling of photosynthesis genes from divergent photosynthetic bacteria.
Collapse
Affiliation(s)
- Jin Xiong
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
74
|
Abstract
Bacterial and archaeal complete genome sequences have been obtained from a wide range of evolutionary lines, which allows some general conclusions about the phylogenetic distribution and evolution of bioenergetic pathways to be drawn. In particular, I searched in the complete genomes for key enzymes involved in aerobic and anaerobic respiratory pathways and in photosynthesis, and mapped them into an rRNA tree of sequenced species. The phylogenetic distribution of these enzymes is very irregular, and clearly shows the diverse strategies of energy conservation used by prokaryotes. In addition, a thorough phylogenetic analysis of other bioenergetic protein families of wide distribution reveals a complex evolutionary history for the respective genes. A parsimonious explanation for these complex phylogenetic patterns and for the irregular distribution of metabolic pathways is that the last common ancestor of Bacteria and Archaea contained several members of every gene family as a consequence of previous gene or genome duplications, while different patterns of gene loss occurred during the evolution of every gene family. This would imply that the last universal ancestor was a bioenergetically sophisticated organism. Finally, important steps that occurred during the evolution of energetic machineries, such as the early evolution of aerobic respiration and the acquisition of eukaryotic mitochondria from a proteobacterium ancestor, are supported by the analysis of the complete genome sequences.
Collapse
Affiliation(s)
- J Castresana
- European Molecular Biology Laboratory, Biocomputing Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
75
|
Sakamoto J, Shibata T, Mine T, Miyahara R, Torigoe T, Noguchi S, Matsushita K, Sone N. Cytochrome c oxidase contains an extra charged amino acid cluster in a new type of respiratory chain in the amino-acid-producing Gram-positive bacterium Corynebacterium glutamicum. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2865-2871. [PMID: 11577165 DOI: 10.1099/00221287-147-10-2865] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The membranes from Corynebacterium glutamicum cells contain a hydrophobic di-haem C protein as the cytochrome c subunit of the new type of cytochrome bc complex (complex III in the respiratory chain) encoded by the qcrCAB operon [Sone, N., Nagata, K., Kojima, H., Tajima, J., Kodera, Y., Kanamaru, T., Noguchi, S. & Sakamoto, J. (2001). Biochim Biophys Acta 1503, 279-290]. To characterize complex IV, cytochrome c oxidase and its structural genes were isolated. The oxidase is of the cytochrome aa(3) type, but mass spectrometry indicated that the haem is haem As, which contains a geranylgeranyl side-chain instead of a farnesyl group. The enzyme is a SoxM-type haem-copper oxidase composed of three subunits. Edman degradation and mass spectrometry suggested that the N-terminal signal sequence of subunit II is cleaved and that the new N-terminal cysteine residue is diacylglycerated, while neither subunit I nor subunit III is significantly modified. The genes for subunits II (ctaC) and III (ctaE) are located upstream of the qcrCAB operon, while that for subunit I (ctaD) is located separately. The oxidase showed low enzyme activity with extrinsic substrates such as cytochromes c from horse heart or yeast, and has the Cu(A)-binding motif in its subunit II. A prominent structural feature is the insertion of an extra charged amino acid cluster between the beta2 and beta4 strands in the substrate-binding domain of subunit II. The beta2-beta4 loop of this oxidase is about 30 residues longer than that of major cytochrome c oxidases from mitochondria and proteobacteria, and is rich in both acidic and basic residues. These findings suggest that the extra charged cluster may play a role in the interaction of the oxidase with the cytochrome c subunit of the new type of bc complex.
Collapse
Affiliation(s)
- Junshi Sakamoto
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan1
| | - Takatsugu Shibata
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan1
| | - Tadashi Mine
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan1
| | - Ryoko Miyahara
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan1
| | - Tomokimi Torigoe
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan1
| | - Shunsuke Noguchi
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan1
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Yamaguchi 753-0841, Japan2
| | - Nobuhito Sone
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan1
| |
Collapse
|
76
|
Yano T, Ohnishi T. The origin of cluster N2 of the energy-transducing NADH-quinone oxidoreductase: comparisons of phylogenetically related enzymes. J Bioenerg Biomembr 2001; 33:213-22. [PMID: 11695831 DOI: 10.1023/a:1010782903144] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NADH-quinone (Q) oxidoreductase is a large and complex redox proton pump, which utilizes the free energy derived from oxidation of NADH with lipophilic electron/proton carrier Q to translocate protons across the membrane to generate an electrochemical proton gradient. Although its molecular mechanism is largely unknown, recent biochemical, biophysical, and molecular biological studies have revealed that particular subunits and cofactors play an essential role in the energy-coupling reaction. Based on these latest experimental data, we exhaustively analyzed the sequence information available from evolutionarily related enzymes such as [NiFe] hydrogenases. We found significant and conserved sequence differences in the PSST/Nqo6/NuoB, 49kDa/Nqo4/NuoD, and ND1/Nqo8/NuoH subunit homologs between complex I/NDH-1 and [NiFe] hydrogenases. The alterations, especially in the postulated ligand motif for cluster N2 in the PSST/Nqo6/NuoB subunits, appear to be evolutionarily important in determining the physiological function of complex I/NDH-1. These observations led us to propose a hypothetical evolutionary scheme: during the course of evolution, drastic changes have occurred in the putative cluster N2 binding site in the PSST/Nqo6/NuoB subunit and the progenitors of complex I/NDH-1 have concurrently become to utilize a lipophilic electron/proton carrier such as Q as its physiological substrate. This scheme provides new insights into the structure and function relationship of complex I/NDH-1 and may help us understand its energy-coupling mechanism.
Collapse
Affiliation(s)
- T Yano
- Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia 19104-6059, USA.
| | | |
Collapse
|
77
|
Pereira MM, Santana M, Teixeira M. A novel scenario for the evolution of haem-copper oxygen reductases. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1505:185-208. [PMID: 11334784 DOI: 10.1016/s0005-2728(01)00169-4] [Citation(s) in RCA: 344] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The increasing sequence information on oxygen reductases of the haem-copper superfamily, together with the available three-dimensional structures, allows a clear identification of their common, functionally important features. Taking into consideration both the overall amino acid sequences of the core subunits and key residues involved in proton transfer, a novel hypothesis for the molecular evolution of these enzymes is proposed. Three main families of oxygen reductases are identified on the basis of common features of the core subunits, constituting three lines of evolution: (i) type A (mitochondrial-like oxidases), (ii) type B (ba3-like oxidases) and (iii) type C (cbb3-type oxidases). The first group can be further divided into two subfamilies, according to the helix VI residues at the hydrophobic end of one of the proton pathways (the so-called D-channel): (i) type A1, comprising the enzymes with a glutamate residue in the motif -XGHPEV-, and (ii) type A2, enzymes having instead a tyrosine and a serine in the alternative motif -YSHPXV-. This second subfamily of oxidases is shown to be ancestor to the one containing the glutamate residue, which in the Bacteria domain is only present in oxidases from Gram-positive or purple bacteria. It is further proposed that the Archaea domain acquired terminal oxidases by gene transfer from the Gram-positive bacteria, implying that these enzymes were not present in the last common ancestor before the divergence between Archaea and Bacteria. In fact, most oxidases from archaea have a higher amino acid sequence identity and similarity with those from bacteria, mainly from the Gram-positive group, than with oxidases from other archaea. Finally, a possible relation between the dihaemic subunit (FixP) of the cbb3 oxidases and subunit II of caa3 oxidases is discussed. As the families of haem-copper oxidases can also be identified by their subunit II, a parallel evolution of subunits I and II is suggested.
Collapse
Affiliation(s)
- M M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| | | | | |
Collapse
|
78
|
Butland G, Spiro S, Watmough NJ, Richardson DJ. Two conserved glutamates in the bacterial nitric oxide reductase are essential for activity but not assembly of the enzyme. J Bacteriol 2001; 183:189-99. [PMID: 11114916 PMCID: PMC94865 DOI: 10.1128/jb.183.1.189-199.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial nitric oxide reductase (NOR) is a divergent member of the family of respiratory heme-copper oxidases. It differs from other family members in that it contains an Fe(B)-heme-Fe dinuclear catalytic center rather than a Cu(B)-heme-Fe center and in that it does not pump protons. Several glutamate residues are conserved in NORs but are absent in other heme-copper oxidases. To facilitate mutagenesis-based studies of these residues in Paracoccus denitrificans NOR, we developed two expression systems that enable inactive or poorly active NOR to be expressed, characterized in vivo, and purified. These are (i) a homologous system utilizing the cycA promoter to drive aerobic expression of NOR in P. denitrificans and (ii) a heterologous system which provides the first example of the expression of an integral-membrane cytochrome bc complex in Escherichia coli. Alanine substitutions for three of the conserved glutamate residues (E125, E198, and E202) were introduced into NOR, and the proteins were expressed in P. denitrificans and E. coli. Characterization in intact cells and membranes has demonstrated that two of the glutamates are essential for normal levels of NOR activity: E125, which is predicted to be on the periplasmic surface close to helix IV, and E198, which is predicted to lie in the middle of transmembrane helix VI. The subsequent purification and spectroscopic characterization of these enzymes established that they are stable and have a wild-type cofactor composition. Possible roles for these glutamates in proton uptake and the chemistry of NO reduction at the active site are discussed.
Collapse
Affiliation(s)
- G Butland
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
79
|
Trochu JN, Bouhour JB, Kaley G, Hintze TH. Role of endothelium-derived nitric oxide in the regulation of cardiac oxygen metabolism: implications in health and disease. Circ Res 2000; 87:1108-17. [PMID: 11110767 DOI: 10.1161/01.res.87.12.1108] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelium-derived NO is considered to be primarily an important determinant of vascular tone and platelet activity; however, the modulation of myocardial metabolism by NO may be one of its most important roles. This modulation may be critical for the regulation of tissue metabolism. Several physiological processes act in concert to make endothelial NO synthase-derived NO potentially important in the regulation of mitochondrial respiration in cardiac tissue, including (1) the nature of the capillary network in the myocardium, (2) the diffusion distance for NO, (3) the low toxicity of NO at physiological (nanomolar) concentrations, (4) the fact that low PO(2) in tissue facilitates the action of NO on cytochrome oxidase, and (5) the formation of oxygen free radicals. A decrease in NO production is involved in the pathophysiological modifications that occur in heart failure and diabetes, disease states associated with altered cardiac metabolism that contributes to the evolution of the disease process. In contrast, several drugs (eg, angiotensin-converting enzyme inhibitors, amlodipine, and statins) can restore or maintain endogenous production of NO by endothelial cells, and this mechanism may explain part of their therapeutic efficiency. Thus, the purpose of this review is to critically evaluate the role of NO in the control of mitochondrial respiration, with special emphasis on its effect on cardiac metabolism.
Collapse
Affiliation(s)
- J N Trochu
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
80
|
Myllykallio H, Liebl U. Dual role for cytochrome cbb3 oxidase in clinically relevant proteobacteria? Trends Microbiol 2000; 8:542-3. [PMID: 11201260 DOI: 10.1016/s0966-842x(00)91831-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
81
|
Abstract
The endosymbiotic theory for the origin of mitochondria requires substantial modification. The three identifiable ancestral sources to the proteome of mitochondria are proteins descended from the ancestral alpha-proteobacteria symbiont, proteins with no homology to bacterial orthologs, and diverse proteins with bacterial affinities not derived from alpha-proteobacteria. Random mutations in the form of deletions large and small seem to have eliminated nonessential genes from the endosymbiont-mitochondrial genome lineages. This process, together with the transfer of genes from the endosymbiont-mitochondrial genome to nuclei, has led to a marked reduction in the size of mitochondrial genomes. All proteins of bacterial descent that are encoded by nuclear genes were probably transferred by the same mechanism, involving the disintegration of mitochondria or bacteria by the intracellular membranous vacuoles of cells to release nucleic acid fragments that transform the nuclear genome. This ongoing process has intermittently introduced bacterial genes to nuclear genomes. The genomes of the last common ancestor of all organisms, in particular of mitochondria, encoded cytochrome oxidase homologues. There are no phylogenetic indications either in the mitochondrial proteome or in the nuclear genomes that the initial or subsequent function of the ancestor to the mitochondria was anaerobic. In contrast, there are indications that relatively advanced eukaryotes adapted to anaerobiosis by dismantling their mitochondria and refitting them as hydrogenosomes. Accordingly, a continuous history of aerobic respiration seems to have been the fate of most mitochondrial lineages. The initial phases of this history may have involved aerobic respiration by the symbiont functioning as a scavenger of toxic oxygen. The transition to mitochondria capable of active ATP export to the host cell seems to have required recruitment of eukaryotic ATP transport proteins from the nucleus. The identity of the ancestral host of the alpha-proteobacterial endosymbiont is unclear, but there is no indication that it was an autotroph. There are no indications of a specific alpha-proteobacterial origin to genes for glycolysis. In the absence of data to the contrary, it is assumed that the ancestral host cell was a heterotroph.
Collapse
Affiliation(s)
- C G Kurland
- Department of Molecular Evolution, Evolutionary Biology Centre, University of Uppsala, Uppsala SE 752 36, Lund University, Lund SE 223 62, Sweden.
| | | |
Collapse
|
82
|
Soulimane T, Than ME, Dewor M, Huber R, Buse G. Primary structure of a novel subunit in ba3-cytochrome oxidase from Thermus thermophilus. Protein Sci 2000; 9:2068-73. [PMID: 11152118 PMCID: PMC2144504 DOI: 10.1110/ps.9.11.2068] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The bax-type cytochrome c oxidase from Thermus thermophilus is known as a two subunit enzyme. Deduced from the crystal structure of this enzyme, we discovered the presence of an additional transmembrane helix "subunit IIa" spanning the membrane. The hydrophobic N-terminally blocked protein was isolated in high yield using high-performance liquid chromatography. Its complete amino acid sequence was determined by a combination of automated Edman degradation of both the deformylated and the cyanogen bromide cleaved protein and automated C-terminal sequencing of the native protein. The molecular mass of 3,794 Da as determined by MALDI-MS and by ESI requires the N-terminal methionine to be formylated and is in good agreement with the value calculated from the formylmethionine containing sequence (3,766.5 Da + 28 Da = 3,794.5 Da). This subunit consits of 34 residues forming one helix across the membrane (Lys5-Ala34), which corresponds in space to the first transmembrane helix of subunit II of the cytochrome c oxidases from Paracoccus denitrificans and bovine heart, however, with opposite polarity. It is 35% identical to subunit IV of the ba3-cytochrome oxidase from Natronobacterium pharaonis. The open reading frame encoding this new subunit IIa (cbaD) is located upstream of cbaB in the same operon as the genes for subunit I (cbaA) and subunit II (cbaB).
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cattle
- Chromatography, High Pressure Liquid
- Cyanogen Bromide/metabolism
- Cytochrome b Group/chemistry
- Electron Transport Complex IV/chemistry
- Electrophoresis, Polyacrylamide Gel
- Methionine/chemistry
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Myocardium/enzymology
- Open Reading Frames
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Thermus thermophilus/chemistry
Collapse
Affiliation(s)
- T Soulimane
- Rheinisch-Westfälische Technische Hochschule Aachen, Institut für Biochemie, Germany.
| | | | | | | | | |
Collapse
|
83
|
Abstract
Mitochondria are incompletely coupled, and during oxidative phosphorylation some of the redox energy in substrates is lost as heat. Incomplete coupling is mostly due to a natural leak of protons across the mitochondrial inner membrane. In rat hepatocytes the futile cycle of proton pumping and proton leak is responsible for 20-25% of respiration; in perfused rat muscle the value is 35-50%. Mitochondrial proton cycling is estimated to cause 20-25% of basal metabolic rate in rats. Proton cycling is equally prominent in hepatocytes from several different mammalian and ectotherm species, so it may be a general pathway of ecologically significant energy loss in all aerobes. Because it occurs in ectotherms, thermogenesis cannot be its primary function. Instead, an attractive candidate for the function of the universal and expensive energy-dissipating proton cycle is to decrease the production of superoxide and other reactive oxygen species (ROS). This could be important in helping to minimise oxidative damage to DNA and in slowing ageing. Mitochondria are the major source of cellular ROS, and increased mitochondrial proton conductance leads to oxidation of ubiquinone and decreased ROS production in isolated mitochondria. However, to date there is no direct evidence in cells or organisms that mitochondrial proton cycling lowers ROS production or oxidative damage or that it increases lifespan.
Collapse
Affiliation(s)
- M D Brand
- MRC Dunn Human Nutrition Unit, Hills Road, CB2 2XY, Cambridge, UK.
| |
Collapse
|
84
|
Hendriks J, Oubrie A, Castresana J, Urbani A, Gemeinhardt S, Saraste M. Nitric oxide reductases in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:266-73. [PMID: 11004439 DOI: 10.1016/s0005-2728(00)00161-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nitric oxide reductases (NORs) that are found in bacteria belong to the large enzyme family which includes cytochrome oxidases. Two types of bacterial NORs have been characterised. One is a cytochrome bc-type complex (cNOR) that receives electrons from soluble redox protein donors, whereas the other type (qNOR) lacks the cytochrome c component and uses quinol as the electron donor. The latter enzyme is present in several pathogens that are not denitrifiers. We summarise the current knowledge on bacterial NORs, and discuss the evolutionary relationship between them and cytochrome oxidases in this review.
Collapse
Affiliation(s)
- J Hendriks
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Postfach 102209, D-69012, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
85
|
Schütz M, Brugna M, Lebrun E, Baymann F, Huber R, Stetter KO, Hauska G, Toci R, Lemesle-Meunier D, Tron P, Schmidt C, Nitschke W. Early evolution of cytochrome bc complexes. J Mol Biol 2000; 300:663-75. [PMID: 10891261 DOI: 10.1006/jmbi.2000.3915] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary structures, functional characteristics and phylogenetic relationships of subunits of cytochrome bc complexes from phylogenetically diverse bacterial and archaeal species were analysed. A single case of lateral gene transfer, i.e. the import of an epsilon-proteobacterial cytochrome bc(1) complex into Aquificales, was identified. For the enzyme in the remainder of the species studied, the obtained phylogenies were globally in line with small subunit rRNA trees. The distribution of a few key phylogenetic markers, such as contiguousness of cytochrome b, nature of the c-type subunit or spacing between b-heme ligands, are discussed. A localised modification of previous tree topologies is proposed on the basis of the obtained data. The comparison of extant enzymes furthermore allowed us to define the minimal functional and evolutionary core of the enzyme. The data furthermore suggest that the ancestral enzyme was put together from subunits that previously had played a role in other electron transfer chains.
Collapse
Affiliation(s)
- M Schütz
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UPR 9036, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Soulimane T, Buse G, Bourenkov GP, Bartunik HD, Huber R, Than ME. Structure and mechanism of the aberrant ba(3)-cytochrome c oxidase from thermus thermophilus. EMBO J 2000; 19:1766-76. [PMID: 10775261 PMCID: PMC302014 DOI: 10.1093/emboj/19.8.1766] [Citation(s) in RCA: 383] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cytochrome c oxidase is a respiratory enzyme catalysing the energy-conserving reduction of molecular oxygen to water. The crystal structure of the ba(3)-cytochrome c oxidase from Thermus thermophilus has been determined to 2.4 A resolution using multiple anomalous dispersion (MAD) phasing and led to the discovery of a novel subunit IIa. A structure-based sequence alignment of this phylogenetically very distant oxidase with the other structurally known cytochrome oxidases leads to the identification of sequence motifs and residues that seem to be indispensable for the function of the haem copper oxidases, e.g. a new electron transfer pathway leading directly from Cu(A) to Cu(B). Specific features of the ba(3)-oxidase include an extended oxygen input channel, which leads directly to the active site, the presence of only one oxygen atom (O(2-), OH(-) or H(2)O) as bridging ligand at the active site and the mainly hydrophobic character of the interactions that stabilize the electron transfer complex between this oxidase and its substrate cytochrome c. New aspects of the proton pumping mechanism could be identified.
Collapse
Affiliation(s)
- T Soulimane
- Rheinisch-Westfälische Technische Hochschule Aachen, Institut für Biochemie, Pauwelsstrasse 30, D-52057 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
87
|
Richardson DJ. Bacterial respiration: a flexible process for a changing environment. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 3):551-571. [PMID: 10746759 DOI: 10.1099/00221287-146-3-551] [Citation(s) in RCA: 368] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK1
| |
Collapse
|
88
|
Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE. Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci U S A 2000; 97:1400-5. [PMID: 10677473 PMCID: PMC26445 DOI: 10.1073/pnas.97.4.1400] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1999] [Accepted: 11/08/1999] [Indexed: 11/18/2022] Open
Abstract
Geological, geophysical, and geochemical data support a theory that Earth experienced several intervals of intense, global glaciation ("snowball Earth" conditions) during Precambrian time. This snowball model predicts that postglacial, greenhouse-induced warming would lead to the deposition of banded iron formations and cap carbonates. Although global glaciation would have drastically curtailed biological productivity, melting of the oceanic ice would also have induced a cyanobacterial bloom, leading to an oxygen spike in the euphotic zone and to the oxidative precipitation of iron and manganese. A Paleoproterozoic snowball Earth at 2.4 Giga-annum before present (Ga) immediately precedes the Kalahari Manganese Field in southern Africa, suggesting that this rapid and massive change in global climate was responsible for its deposition. As large quantities of O(2) are needed to precipitate this Mn, photosystem II and oxygen radical protection mechanisms must have evolved before 2.4 Ga. This geochemical event may have triggered a compensatory evolutionary branching in the Fe/Mn superoxide dismutase enzyme, providing a Paleoproterozoic calibration point for studies of molecular evolution.
Collapse
Affiliation(s)
- J L Kirschvink
- Division of Geological Sciences, Jet Propulsion Laboratory, and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, Archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the molecular and mechanistic bases on which these organisms can cope with such adverse conditions. This review considers our cumulative knowledge on archaeal mechanisms of primary energy conservation, in relationship to those of bacteria and eucarya. Although the universal principle of chemiosmotic energy conservation also holds for Archaea, distinct features have been discovered with respect to novel ion-transducing, membrane-residing protein complexes and the use of novel cofactors in bioenergetics of methanogenesis. From aerobically respiring Archaea, unusual electron-transporting supercomplexes could be isolated and functionally resolved, and a proposal on the organization of archaeal electron transport chains has been presented. The unique functions of archaeal rhodopsins as sensory systems and as proton or chloride pumps have been elucidated on the basis of recent structural information on the atomic scale. Whereas components of methanogenesis and of phototrophic energy transduction in halobacteria appear to be unique to Archaea, respiratory complexes and the ATP synthase exhibit some chimeric features with respect to their evolutionary origin. Nevertheless, archaeal ATP synthases are to be considered distinct members of this family of secondary energy transducers. A major challenge to future investigations is the development of archaeal genetic transformation systems, in order to gain access to the regulation of bioenergetic systems and to overproducers of archaeal membrane proteins as a prerequisite for their crystallization.
Collapse
Affiliation(s)
- G Schäfer
- Institut für Biochemie, Medizinische Universität zu Lübeck, Lübeck, Germany.
| | | | | |
Collapse
|
90
|
Watmough NJ, Butland G, Cheesman MR, Moir JW, Richardson DJ, Spiro S. Nitric oxide in bacteria: synthesis and consumption. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:456-74. [PMID: 10320675 DOI: 10.1016/s0005-2728(99)00032-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- N J Watmough
- School of Biological Sciences, Centre for Metalloprotein Spectroscopy and Biology, University of East Anglia, Norwich NR4 7TJ, UK.
| | | | | | | | | | | |
Collapse
|
91
|
Osborne JP, Gennis RB. Sequence analysis of cytochrome bd oxidase suggests a revised topology for subunit I. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1410:32-50. [PMID: 10076013 DOI: 10.1016/s0005-2728(98)00171-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous sequences of the cytochrome bd quinol oxidase (cytochrome bd) have recently become available for analysis. The analysis has revealed a small number of conserved residues, a new topology for subunit I and a phylogenetic tree involving extensive horizontal gene transfer. There are 20 conserved residues in subunit I and two in subunit II. Algorithms utilizing multiple sequence alignments predicted a revised topology for cytochrome bd, adding two transmembrane helices to subunit I to the seven that were previously indicated by the analysis of the sequence of the oxidase from E. coli. This revised topology has the effect of relocating the N-terminus and C-terminus to the periplasmic and cytoplasmic sides of the membrane, respectively. The new topology repositions I-H19, the putative ligand for heme b595, close to the periplasmic edge of the membrane, which suggests that the heme b595/heme d active site of the oxidase is located near the outer (periplasmic) surface of the membrane. The most highly conserved region of the sequence of subunit I contains the sequence GRQPW and is located in a predicted periplasmic loop connecting the eighth and ninth transmembrane helices. The potential importance of this region of the protein was previously unsuspected, and it may participate in the binding of either quinol or heme d. There are two very highly conserved glutamates in subunit I, E99 and E107, within the third transmembrane helix (E. coli cytochrome bd-I numbering). It is speculated that these glutamates may be part of a proton channel leading from the cytoplasmic side of the membrane to the heme d oxygen-reactive site, now placed near the periplasmic surface. The revised topology and newly revealed conserved residues provide a clear basis for further experimental tests of these hypotheses. Phylogenetic analysis of the new sequences of cytochrome bd reveals considerable deviation from the 16sRNA tree, suggesting that a large amount of horizontal gene transfer has occurred in the evolution of cytochrome bd.
Collapse
Affiliation(s)
- J P Osborne
- School of Chemical Sciences, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
92
|
Schoepp B, Brugna M, Lebrun E, Nitschke W. Iron-Sulfur Centers Involved in Photosynthetic Light Reactions. ADVANCES IN INORGANIC CHEMISTRY 1999. [DOI: 10.1016/s0898-8838(08)60082-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
93
|
Nikaido K, Noguchi S, Sakamoto J, Sone N. The cbaAB genes for bo3-type cytochrome c oxidase in Bacillus stearothermophilus. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1397:262-7. [PMID: 9582433 DOI: 10.1016/s0167-4781(98)00043-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Structural genes were cloned for cytochrome bo3-type cytochrome c oxidase recently isolated from a Gram-positive thermophile Bacillus stearothermophilus. Sequencing and Northern blotting analyses indicated that the two genes cbaA and cbaB composed an operon encoding for subunits I and II, respectively, and that the oxidase was SoxB-type. They are the first genes for a SoxB-type cytochrome c oxidase whose natural substrate is known.
Collapse
Affiliation(s)
- K Nikaido
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | | | | | | |
Collapse
|
94
|
Abstract
The evolutionary developments that led to the ability of photosynthetic organisms to oxidize water to molecular oxygen are discussed. Two major changes from a more primitive non-oxygen-evolving reaction center are required: a charge-accumulating system and a reaction center pigment with a greater oxidizing potential. Intermediate stages are proposed in which hydrogen peroxide was oxidized by the reaction center, and an intermediate pigment, similar to chlorophyll d, was present.
Collapse
Affiliation(s)
- R E Blankenship
- Department of Chemistry and Biochemistry, Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe 85287-1604, USA
| | | |
Collapse
|
95
|
Hendriks J, Gohlke U, Saraste M. From NO to OO: nitric oxide and dioxygen in bacterial respiration. J Bioenerg Biomembr 1998; 30:15-24. [PMID: 9623801 DOI: 10.1023/a:1020547225398] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide reductase (NOR) is a key enzyme in denitrification, reforming the N-N bond (making N2O from two NO molecules) in the nitrogen cycle. It is a cytochrome bc complex which has apparently only two subunits, NorB and NorC. It contains two low-spin cytochromes (c and b), and a high-spin cytochrome b which forms a binuclear center with a non-heme iron. NorC contains the c-type heme and NorB can be predicted to bind the other metal centers. NorB is homologous to the major subunit of the heme/copper cytochrome oxidases, and NOR thus belongs to the superfamily, although it has an Fe/Fe active site rather than an Fe/Cu binuclear center and a different catalytic activity. Current evidence suggests that NOR is not a proton pump, and that the protons consumed in NO reduction are not taken from the cytoplasmic side of the membrane. Therefore, the comparison between structural and functional properties of NOR and cytochrome c- and quinol-oxidizing enzymes which function as proton pumps may help us to understand the mechanism of the latter. This review is a brief summary of the current knowledge on molecular biology, structure, and bioenergetics of NOR as a member of the oxidase superfamily.
Collapse
Affiliation(s)
- J Hendriks
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
96
|
Mattar S, Engelhard M. Cytochrome ba3 from Natronobacterium pharaonis--an archaeal four-subunit cytochrome-c-type oxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:332-41. [PMID: 9428682 DOI: 10.1111/j.1432-1033.1997.0332a.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytochrome ba3, a terminal oxidase was isolated from the haloalkaliphilic archaeon Natronobacterium pharaonis. NH2-terminal sequence information of two subunits with apparent molecular masses of 40 and 36 kDa was used to generate a DNA probe by polymerase chain reaction. Cloning and sequencing of two overlapping genomic fragments revealed four genes forming a transcriptional unit. The policystronic messenger RNA of this cbaDBAC gene locus was identified by RNA analysis. The genes cbaC and cbaD code for small hydrophobic peptides with 81 and 54 amino acids. The genes cbaB and cbaA code for cytochrome oxidase subunit II (calculated molecular mass = 18.6 kDa) and I (calculated molecular mass = 63.8 kDa) respectively. Five potential CuA ligands for subunit II and six His residues for subunit I located in conserved positions indicate cytochrome ba3 to be a c-type oxidase. Sequence comparison and phylogenetic analysis place the natronobacterial enzyme together with the archaeal quinol oxidase SoxABCD from Sulfolobus acidocaldarius and the eubacterial ba3-type oxidase from Thermus thermophilus into a distinct evolutionary group. All three members are missing residues which are functionally important for vectorial proton translocation. The four-subunit enzyme complex was also identified on the protein level using chromatographic buffers containing ethylene glycol for purification.
Collapse
Affiliation(s)
- S Mattar
- Max-Planck-Institut für molekulare Physiologie, Dortmund, Germany
| | | |
Collapse
|
97
|
Pierre Y, Breyton C, Lemoine Y, Robert B, Vernotte C, Popot JL. On the presence and role of a molecule of chlorophyll a in the cytochrome b6 f complex. J Biol Chem 1997; 272:21901-8. [PMID: 9268323 DOI: 10.1074/jbc.272.35.21901] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Highly purified preparations of cytochrome b6 f complex from the unicellar freshwater alga Chlamydomonas reinhardtii contain about 1 molecule of chlorophyll a/cytochrome f. Several lines of evidence indicate that the chlorophyll is an authentic component of the complex rather than a contaminant. In particular, (i) the stoichiometry is constant; (ii) the chlorophyll is associated with the complex at a specific binding site, as evidenced by resonance Raman spectroscopy; (iii) it does not originate from free chlorophyll released from thylakoid membranes upon solubilization; and (iv) its rate of exchange with free, radioactive chlorophyll a is extremely slow (weeks). Some of the putative functional roles for a chlorophyll in the b6f complex are experimentally ruled out, and its possible evolutionary origin is briefly discussed.
Collapse
Affiliation(s)
- Y Pierre
- Institut de Biologie Physico-Chimique and Paris-7 University, CNRS UPR 9052, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | | | | | |
Collapse
|
98
|
Karlin S, Mrázek J, Campbell AM. Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 1997; 179:3899-913. [PMID: 9190805 PMCID: PMC179198 DOI: 10.1128/jb.179.12.3899-3913.1997] [Citation(s) in RCA: 329] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We compare and contrast genome-wide compositional biases and distributions of short oligonucleotides across 15 diverse prokaryotes that have substantial genomic sequence collections. These include seven complete genomes (Escherichia coli, Haemophilus influenzae, Mycoplasma genitalium, Mycoplasma pneumoniae, Synechocystis sp. strain PCC6803, Methanococcus jannaschii, and Pyrobaculum aerophilum). A key observation concerns the constancy of the dinucleotide relative abundance profiles over multiple 50-kb disjoint contigs within the same genome. (The profile is rhoXY* = fXY*/fX*fY* for all XY, where fX* denotes the frequency of the nucleotide X and fY* denotes the frequency of the dinucleotide XY, both computed from the sequence concatenated with its inverted complementary sequence.) On the basis of this constancy, we refer to the collection [rhoXY*] as the genome signature. We establish that the differences between [rhoXY*] vectors of 50-kb sample contigs of different genomes virtually always exceed the differences between those of the same genomes. Various di- and tetranucleotide biases are identified. In particular, we find that the dinucleotide CpG=CG is underrepresented in many thermophiles (e.g., M. jannaschii, Sulfolobus sp., and M. thermoautotrophicum) but overrepresented in halobacteria. TA is broadly underrepresented in prokaryotes and eukaryotes, but normal counts appear in Sulfolobus and P. aerophilum sequences. More than for any other bacterial genome, palindromic tetranucleotides are underrepresented in H. influenzae. The M. jannaschii sequence is unprecedented in its extreme underrepresentation of CTAG tetranucleotides and in the anomalous distribution of CTAG sites around the genome. Comparative analysis of numbers of long tetranucleotide microsatellites distinguishes H. influenzae. Dinucleotide relative abundance differences between bacterial sequences are compared. For example, in these assessments of differences, the cyanobacteria Synechocystis, Synechococcus, and Anabaena do not form a coherent group and are as far from each other as general gram-negative sequences are from general gram-positive sequences. The difference of M. jannaschii from low-G+C gram-positive proteobacteria is one-half of the difference from gram-negative proteobacteria. Interpretations and hypotheses center on the role of the genome signature in highlighting similarities and dissimilarities across different classes of prokaryotic species, possible mechanisms underlying the genome signature, the form and level of genome compositional flux, the use of the genome signature as a chronometer of molecular phylogeny, and implications with respect to the three putative eubacterial, archaeal, and eukaryote domains of life and to the origin and early evolution of eukaryotes.
Collapse
Affiliation(s)
- S Karlin
- Department of Mathematics, Stanford University, California 94305-2125, USA
| | | | | |
Collapse
|
99
|
Gohlke U, Warne A, Saraste M. Projection structure of the cytochrome bo ubiquinol oxidase from Escherichia coli at 6 A resolution. EMBO J 1997; 16:1181-8. [PMID: 9135135 PMCID: PMC1169717 DOI: 10.1093/emboj/16.6.1181] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The haem-copper cytochrome oxidases are terminal catalysts of the respiratory chains in aerobic organisms. These integral membrane protein complexes catalyse the reduction of molecular oxygen to water and utilize the free energy of this reaction to generate a transmembrane proton gradient. Quinol oxidase complexes such as the Escherichia coli cytochrome bo belong to this superfamily. To elucidate the similarities as well as differences between ubiquinol and cytochrome c oxidases, we have analysed two-dimensional crystals of cytochrome bo by cryo-electron microscopy. The crystals diffract beyond 5 A. A projection map was calculated to a resolution of 6 A. All four subunits can be identified and single alpha-helices are resolved within the density for the protein complex. The comparison with the three-dimensional structure of cytochrome c oxidase shows the clear structural similarity within the common functional core surrounding the metal-binding sites in subunit I. It also indicates subtle differences which are due to the distinct subunit composition. This study can be extended to a three-dimensional structure analysis of the quinol oxidase complex by electron image processing of tilted crystals.
Collapse
Affiliation(s)
- U Gohlke
- European Molecular Biology Laboratory, Biological Structures Programme, Germany
| | | | | |
Collapse
|
100
|
Purschke WG, Schmidt CL, Petersen A, Schäfer G. The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J Bacteriol 1997; 179:1344-53. [PMID: 9023221 PMCID: PMC178835 DOI: 10.1128/jb.179.4.1344-1353.1997] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A terminal quinol oxidase has been isolated from the plasma membrane of the crenarchaeon Acidianus ambivalens (DSM 3772) (formerly Desulfurolobus ambivalens), cloned, and sequenced. The detergent-solubilized complex oxidizes caldariella quinol at high rates and is completely inhibited by cyanide and by quinolone analogs, potent inhibitors of quinol oxidases. It is composed of at least five different subunits of 64.9, 38, 20.4, 18.8, and 7.2 kDa; their genes are located in two different operons. doxB, the gene for subunit I, is located together with doxC and two additional small open reading frames (doxE and doxF) in an operon with a complex transcription pattern. Two other genes of the oxidase complex (doxD and doxA) are located in a different operon and are cotranscribed into a common 1.2-kb mRNA. Both operons exist in duplicate on the genome of A. ambivalens. Only subunit I exhibits clear homology to other members of the superfamily of respiratory heme-copper oxidases; however, it reveals 14 transmembrane helices. In contrast, the composition of the accessory proteins is highly unusual; none is homologous to any known accessory protein of cytochrome oxidases, nor do homologs exist in the databases. DoxA is classified as a subunit II equivalent only by analogy of molecular size and hydrophobicity pattern to corresponding polypeptides of other oxidases. Multiple alignments and phylogenetic analysis of the heme-bearing subunit I (DoxB) locate this oxidase at the bottom of the phylogenetic tree, in the branch of heme-copper oxidases recently suggested to be incapable of superstoichiometric proton pumping. This finding is corroborated by lack of the essential amino acid residues delineating the putative H+-pumping channel. It is therefore concluded that A. ambivalens copes with its strongly acidic environment simply by an extreme turnover of its terminal oxidase, generating a proton gradient only by chemical charge separation.
Collapse
Affiliation(s)
- W G Purschke
- Institute of Biochemistry, Medical University of Lübeck, Germany.
| | | | | | | |
Collapse
|