51
|
Bernstein DA, Zittel MC, Keck JL. High-resolution structure of the E.coli RecQ helicase catalytic core. EMBO J 2003; 22:4910-21. [PMID: 14517231 PMCID: PMC204483 DOI: 10.1093/emboj/cdg500] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RecQ family helicases catalyze critical genome maintenance reactions in bacterial and eukaryotic cells, playing key roles in several DNA metabolic processes. Mutations in recQ genes are linked to genome instability and human disease. To define the physical basis of RecQ enzyme function, we have determined a 1.8 A resolution crystal structure of the catalytic core of Escherichia coli RecQ in its unbound form and a 2.5 A resolution structure of the core bound to the ATP analog ATPgammaS. The RecQ core comprises four conserved subdomains; two of these combine to form its helicase region, while the others form unexpected Zn(2+)-binding and winged-helix motifs. The structures reveal the molecular basis of missense mutations that cause Bloom's syndrome, a human RecQ-associated disease. Finally, based on findings from the structures, we propose a mechanism for RecQ activity that could explain its functional coordination with topoisomerase III.
Collapse
Affiliation(s)
- Douglas A Bernstein
- Department of Biomolecular Chemistry, 550 Medical Science Center, 1300 University Avenue, University of Wisconsin Medical School, Madison, WI 53706-1532, USA
| | | | | |
Collapse
|
52
|
Kato M, Ito T, Wagner G, Richardson CC, Ellenberger T. Modular architecture of the bacteriophage T7 primase couples RNA primer synthesis to DNA synthesis. Mol Cell 2003; 11:1349-60. [PMID: 12769857 DOI: 10.1016/s1097-2765(03)00195-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA primases are template-dependent RNA polymerases that synthesize oligoribonucleotide primers that can be extended by DNA polymerase. The bacterial primases consist of zinc binding and RNA polymerase domains that polymerize ribonucleotides at templating sequences of single-stranded DNA. We report a crystal structure of bacteriophage T7 primase that reveals its two domains and the presence of two Mg(2+) ions bound to the active site. NMR and biochemical data show that the two domains remain separated until the primase binds to DNA and nucleotide. The zinc binding domain alone can stimulate primer extension by T7 DNA polymerase. These findings suggest that the zinc binding domain couples primer synthesis with primer utilization by securing the DNA template in the primase active site and then delivering the primed DNA template to DNA polymerase. The modular architecture of the primase and a similar mechanism of priming DNA synthesis are likely to apply broadly to prokaryotic primases.
Collapse
Affiliation(s)
- Masato Kato
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
53
|
Abstract
DNA is a dynamic molecule that undergoes constant changes in the cell through interactions with numerous proteins. Several classes of enzyme are specialized in promoting DNA rearrangements, including site-specific recombinases, DNA helicases, transposases and DNA topoisomerases. Recent structures of protein-DNA reaction intermediates trapped in various states of DNA remodeling, complemented by biochemical and biophysical functional studies, have enhanced our understanding of their respective mechanistic pathways.
Collapse
Affiliation(s)
- Anita Changela
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2153 Sheridan Road, Evanston, IL 60208-3500, USA
| | | | | | | |
Collapse
|
54
|
Matoba K, Mayanagi K, Nakasu S, Kikuchi A, Morikawa K. Three-dimensional electron microscopy of the reverse gyrase from Sulfolobus tokodaii. Biochem Biophys Res Commun 2002; 297:749-55. [PMID: 12359215 DOI: 10.1016/s0006-291x(02)02255-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reverse gyrase is a type IA topoisomerase, found in various hyperthermophiles and promotes ATP-dependent positive supercoiling of DNA. Electron microscopy combined with single particle analyses revealed the three-dimensional structure of the DNA-free Sulfolobus tokodaii reverse gyrase and two-dimensional average images of both the protein alone and that complexed with double-stranded DNA. The 23A resolution map exhibited a parallelogrammatic morphology of 110 x 87 x 43A, which is in good agreement with the crystal structure of the Archaeoglobus fulgidus reverse gyrase. The average image of the complex revealed that the monomeric enzyme binds DNA duplex. Together with this average image of the complex, the three-dimensional map implies that, at the beginning of the supercoiling reaction, DNA is bound within a 10-20A wide cleft in the helicase-like domain. We also speculate that DNA may pass through a 20A wide hole at the end of the cleft.
Collapse
Affiliation(s)
- Kyoko Matoba
- Department of Structural Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita-city, Osaka 565-0874, Japan
| | | | | | | | | |
Collapse
|
55
|
Wang Y, Lyu YL, Wang JC. Dual localization of human DNA topoisomerase IIIalpha to mitochondria and nucleus. Proc Natl Acad Sci U S A 2002; 99:12114-9. [PMID: 12209014 PMCID: PMC129407 DOI: 10.1073/pnas.192449499] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human TOP3alpha gene encoding DNA topoisomerase IIIalpha (hTop3alpha) has two potential start codons for the synthesis of proteins 1,001 and 976 aa residues in length. The sequence of the N-terminal region of the 1,001-residue form resembles signal peptide sequences for mitochondrial import, and fluorescence microscopy shows that the addition of as few as the first 34 aa of the 1,001-residue form of hTop3alpha to a green fluorescent protein can direct the chimeric protein to mitochondria. Biochemical analyses of subcellular fractions of HeLa cells further demonstrate that a distinctive fraction of hTop3alpha is present inside mitochondria, as evidenced by its resistance to proteinase K. This fraction constitutes several percent of the enzyme in the nuclear fraction, suggesting that the distribution of the mitochondrial and nuclear forms of hTop3alpha is roughly in proportion to the DNA contents of these cellular compartments. The presence of a type IA DNA topoisomerase in the mitochondria of other eukaryotes is supported by an examination of the amino acid sequences of mouse and Drosophila DNA topoisomerase IIIalpha and Schizosaccharomyces pombe DNA topoisomerase III. Given the presence of at least one type IA DNA topoisomerase in all forms of life examined to date, the finding of a type IA enzyme in mitochondria further supports the notion of a key role of such enzymes in DNA transactions.
Collapse
Affiliation(s)
- Yong Wang
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
56
|
Ahumada A, Tse-Dinh YC. The role of the Zn(II) binding domain in the mechanism of E. coli DNA topoisomerase I. BMC BIOCHEMISTRY 2002; 3:13. [PMID: 12052259 PMCID: PMC115839 DOI: 10.1186/1471-2091-3-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Accepted: 05/29/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND Escherichia coli DNA topoisomerase I binds three Zn(II) with three tetracysteine motifs which, together with the 14 kDa C-terminal region, form a 30 kDa DNA binding domain (ZD domain). The 67 kDa N-terminal domain (Top67) has the active site tyrosine for DNA cleavage but cannot relax negatively supercoiled DNA. We analyzed the role of the ZD domain in the enzyme mechanism. RESULTS Addition of purified ZD domain to Top67 partially restored the relaxation activity, demonstrating that covalent linkage between the two domains is not necessary for removal of negative supercoils from DNA. The two domains had similar affinities to ssDNA. However, only Top67 could bind dsDNA with high affinity. DNA cleavage assays showed that the Top67 had the same sequence and structure selectivity for DNA cleavage as the intact enzyme. DNA rejoining also did not require the presence of the ZD domain. CONCLUSIONS We propose that during relaxation of negatively supercoiled DNA, Top67 by itself can position the active site tyrosine near the junction of double-stranded and single-stranded DNA for cleavage. However, the interaction of the ZD domain with the passing single-strand of DNA, coupled with enzyme conformational change, is needed for removal of negative supercoils.
Collapse
Affiliation(s)
- Adriana Ahumada
- Department of Biochemistry and Molecular Biology, New York Medical College Valhalla, NY USA
| | - Yuk-Ching Tse-Dinh
- Department of Biochemistry and Molecular Biology, New York Medical College Valhalla, NY USA
| |
Collapse
|
57
|
Abstract
The first crystal structure of a type IA topoisomerase with bound DNA has been solved. The structure of Escherichia coli topoisomerase III provides key insights regarding the catalytic mechanism and the conformational changes that accompany DNA binding, and enhances our understanding of how topoisomerases control DNA topology in the cell.
Collapse
Affiliation(s)
- James J Champoux
- Dept of Microbiology, Box 357242, School of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
58
|
Noble CG, Maxwell A. The role of GyrB in the DNA cleavage-religation reaction of DNA gyrase: a proposed two metal-ion mechanism. J Mol Biol 2002; 318:361-71. [PMID: 12051843 DOI: 10.1016/s0022-2836(02)00049-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We have examined the role of the DNA gyrase B protein in cleavage and religation of DNA using site-directed mutagenesis. Three aspartate residues and a glutamate residue: E424, D498, D500 and D502, thought to co-ordinate a magnesium ion, were mutated to alanine; in addition, the glutamate residue and one aspartate residue were mutated to glutamine and asparagine, respectively. We have shown that these residues are important for the cleavage-religation reaction and are likely to be involved in magnesium ion co-ordination. On separate mutation of two of these aspartate residues to cysteine or histidine, the metal ion preference for the DNA relaxation activity of gyrase changed from magnesium to manganese (II). We present evidence to support the idea that cleavage of each DNA strand involves two or more metal ions, and suggest a scheme for the DNA cleavage chemistry of DNA gyrase involving two metal ions.
Collapse
Affiliation(s)
- Christian G Noble
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | |
Collapse
|
59
|
Perry K, Mondragón A. Biochemical characterization of an invariant histidine involved in Escherichia coli DNA topoisomerase I catalysis. J Biol Chem 2002; 277:13237-45. [PMID: 11809772 DOI: 10.1074/jbc.m112019200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An invariant histidine residue, His-365 in Escherichia coli DNA topoisomerase I, is located at the active site of type IA DNA topoisomerases and near the active site tyrosine. Its ability to participate in the multistep catalytic process of DNA relaxation was investigated. His-365 was mutated to alanine, arginine, asparagine, aspartate, glutamate, and glutamine to study its ability to participate in general acid/base catalysis and bind DNA. The mutants were examined for pH-dependent DNA relaxation and cleavage, salt-dependent DNA relaxation, and salt-dependent DNA binding affinity. The mutants relax DNA in a pH-dependent manner and at low salt concentrations. The pH dependence of all mutants is different from the wild type, suggesting that His-365 is responsible for the pH dependence of the enzyme. Additionally, whereas the wild type enzyme shows pH-dependent oligonucleotide cleavage, cleavage by both H365Q and H365A is pH-independent. H365Q cleaves DNA with rates similar to the wild type enzyme, whereas H365A has a slower rate of DNA cleavage than the wild type but can cleave more substrate overall. H365A also has a lower DNA binding affinity than the wild type enzyme. The binding affinity was determined at different salt concentrations, showing that the alanine mutant displaces half a charge less upon binding DNA than an inactive form of topoisomerase I. These observations indicate that His-365 participates in DNA binding and is responsible for optimal catalysis at physiological pH.
Collapse
Affiliation(s)
- Kay Perry
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2153 Sheridan Road, Evanston, IL 60208, USA
| | | |
Collapse
|
60
|
Abstract
DNA topoisomerases solve the topological problems associated with DNA replication, transcription, recombination, and chromatin remodeling by introducing temporary single- or double-strand breaks in the DNA. In addition, these enzymes fine-tune the steady-state level of DNA supercoiling both to facilitate protein interactions with the DNA and to prevent excessive supercoiling that is deleterious. In recent years, the crystal structures of a number of topoisomerase fragments, representing nearly all the known classes of enzymes, have been solved. These structures provide remarkable insights into the mechanisms of these enzymes and complement previous conclusions based on biochemical analyses. Surprisingly, despite little or no sequence homology, both type IA and type IIA topoisomerases from prokaryotes and the type IIA enzymes from eukaryotes share structural folds that appear to reflect functional motifs within critical regions of the enzymes. The type IB enzymes are structurally distinct from all other known topoisomerases but are similar to a class of enzymes referred to as tyrosine recombinases. The structural themes common to all topoisomerases include hinged clamps that open and close to bind DNA, the presence of DNA binding cavities for temporary storage of DNA segments, and the coupling of protein conformational changes to DNA rotation or DNA movement. For the type II topoisomerases, the binding and hydrolysis of ATP further modulate conformational changes in the enzymes to effect changes in DNA topology.
Collapse
Affiliation(s)
- J J Champoux
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195-7242, USA.
| |
Collapse
|
61
|
Wang Y, Lynch AS, Chen SJ, Wang JC. On the molecular basis of the thermal sensitivity of an Escherichia coli topA mutant. J Biol Chem 2002; 277:1203-9. [PMID: 11700321 DOI: 10.1074/jbc.m109436200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of two temperature-sensitive Escherichia coli topA strains AS17 and BR83, both of which were supposed to carry a topA amber mutation and a temperature-sensitive supD43,74 amber-suppressor, led to conflicting results regarding the essentiality of DNA topoisomerase I in cells grown in media of low osmolarity. We have therefore reexamined the molecular basis of the temperature sensitivity of strain AS17. We find that the supD allele in this strain had lost its temperature sensitivity. The temperature sensitivity of the strain, in media of all osmolarity, results from the synthesis of a mutant DNA topoisomerase I that is itself temperature-sensitive. Nucleotide sequencing of the AS17 topA allele and studies of its expected cellular product show that the mutant enzyme is not as active as its wild-type parent even at 30 degrees C, a permissive temperature for the strain, and its activity relative to the wild-type enzyme is further reduced at 42 degrees C, a nonpermissive temperature. Our results thus implicate an indispensable role of DNA topoisomerase I in E. coli cells grown in media of any osmolarity.
Collapse
Affiliation(s)
- Yong Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
62
|
Sikder D, Nagaraja V. A novel bipartite mode of binding of M. smegmatis topoisomerase I to its recognition sequence. J Mol Biol 2001; 312:347-57. [PMID: 11554791 DOI: 10.1006/jmbi.2001.4942] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated interaction of Mycobacterium smegmatis topoisomerase I at its specific recognition sequence. DNase I footprinting demonstrates a large region of protection on both the scissile and non-scissile strands of DNA. Methylation protection and interference analyses reveal base-specific contacts within the recognition sequence. Missing contact analyses reveal additional interactions with the residues in both single and double-stranded DNA, and hence underline the role for the functional groups associated with those bases. These interactions are supplemented by phosphate contacts in the scissile strand. Conformation specific probes reveal protein-induced structural distortion of the DNA helix at the T-A-T-A sequence 11 bp upstream to the recognition sequence. Based on these footprinting analyses that define parameters of topoisomerase I-DNA interactions, a model of topoisomerase I binding to its substrate is presented. Within the large protected region of 30 bp, the enzyme makes direct contact at two locations in the scissile strand, one around the cleavage site and the other 8-12 bases upstream. Thus the enzyme makes asymmetric recognition of DNA and could carry out DNA relaxation by either of the two proposed mechanisms: enzyme bridged and restricted rotation.
Collapse
Affiliation(s)
- D Sikder
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
63
|
Trakselis MA, Alley SC, Abel-Santos E, Benkovic SJ. Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 2001; 98:8368-75. [PMID: 11459977 PMCID: PMC37445 DOI: 10.1073/pnas.111006698] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The coordinated assembly of the DNA polymerase (gp43), the sliding clamp (gp45), and the clamp loader (gp44/62) to form the bacteriophage T4 DNA polymerase holoenzyme is a multistep process. A partially opened toroid-shaped gp45 is loaded around DNA by gp44/62 in an ATP-dependent manner. Gp43 binds to this complex to generate the holoenzyme in which gp45 acts to topologically link gp43 to DNA, effectively increasing the processivity of DNA replication. Stopped-flow fluorescence resonance energy transfer was used to investigate the opening and closing of the gp45 ring during holoenzyme assembly. By using two site-specific mutants of gp45 along with a previously characterized gp45 mutant, we tracked changes in distances across the gp45 subunit interface through seven conformational changes associated with holoenzyme assembly. Initially, gp45 is partially open within the plane of the ring at one of the three subunit interfaces. On addition of gp44/62 and ATP, this interface of gp45 opens further in-plane through the hydrolysis of ATP. Addition of DNA and hydrolysis of ATP close gp45 in an out-of-plane conformation. The final holoenzyme is formed by the addition of gp43, which causes gp45 to close further in plane, leaving the subunit interface open slightly. This open interface of gp45 in the final holoenzyme state is proposed to interact with the C-terminal tail of gp43, providing a point of contact between gp45 and gp43. This study further defines the dynamic process of bacteriophage T4 polymerase holoenzyme assembly.
Collapse
Affiliation(s)
- M A Trakselis
- Department of Chemistry, 414 Wartik Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
64
|
Changela A, DiGate RJ, Mondragón A. Crystal structure of a complex of a type IA DNA topoisomerase with a single-stranded DNA molecule. Nature 2001; 411:1077-81. [PMID: 11429611 DOI: 10.1038/35082615] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A variety of cellular processes, including DNA replication, transcription, and chromosome condensation, require enzymes that can regulate the ensuing topological changes occurring in DNA. Such enzymes-DNA topoisomerases-alter DNA topology by catalysing the cleavage of single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), the passage of DNA through the resulting break, and the rejoining of the broken phosphodiester backbone. DNA topoisomerase III from Escherichia coli belongs to the type IA family of DNA topoisomerases, which transiently cleave ssDNA via formation of a covalent 5' phosphotyrosine intermediate. Here we report the crystal structure, at 2.05 A resolution, of an inactive mutant of E. coli DNA topoisomerase III in a non-covalent complex with an 8-base ssDNA molecule. The enzyme undergoes a conformational change that allows the oligonucleotide to bind within a groove leading to the active site. We note that the ssDNA molecule adopts a conformation like that of B-DNA while bound to the enzyme. The position of the DNA within the realigned active site provides insight into the role of several highly conserved residues during catalysis. These findings confirm various aspects of the type IA topoisomerase mechanism while suggesting functional implications for other topoisomerases and proteins that perform DNA rearrangements.
Collapse
Affiliation(s)
- A Changela
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
65
|
Belova GI, Prasad R, Kozyavkin SA, Lake JA, Wilson SH, Slesarev AI. A type IB topoisomerase with DNA repair activities. Proc Natl Acad Sci U S A 2001; 98:6015-20. [PMID: 11353838 PMCID: PMC33414 DOI: 10.1073/pnas.111040498] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previously we have characterized type IB DNA topoisomerase V (topo V) in the hyperthermophile Methanopyrus kandleri. The enzyme has a powerful topoisomerase activity and is abundant in M. kandleri. Here we report two characterizations of topo V. First, we found that its N-terminal domain has sequence homology with both eukaryotic type IB topoisomerases and the integrase family of tyrosine recombinases. The C-terminal part of the sequence includes 12 repeats, each repeat consisting of two similar but distinct helix-hairpin-helix motifs; the same arrangement is seen in recombination protein RuvA and mammalian DNA polymerase beta. Second, on the basis of sequence homology between topo V and polymerase beta, we predict and demonstrate that topo V possesses apurinic/apyrimidinic (AP) site-processing activities that are important in base excision DNA repair: (i) it incises the phosphodiester backbone at the AP site, and (ii) at the AP endonuclease cleaved AP site, it removes the 5' 2-deoxyribose 5-phosphate moiety so that a single-nucleotide gap with a 3'-hydroxyl and 5'-phosphate can be filled by a DNA polymerase. Topo V is thus the prototype for a new subfamily of type IB topoisomerases and is the first example of a topoisomerase with associated DNA repair activities.
Collapse
Affiliation(s)
- G I Belova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871, Russia
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Type IA DNA topoisomerases possess several domains forming a toroidal molecule with a central hole large enough to accommodate single- or double-stranded DNA. The sign inversion model predicts several protein-DNA intermediates, including those in which DNA is trapped within the hole. Opposing cysteine residues were incorporated into two independent domains surrounding the putative DNA binding cavity of E. coli topoisomerase III, creating a molecule that can be covalently closed or opened by oxidizing or reducing the disulfide bond. The formation of the disulfide bond allowed the trapping of single- and double-stranded DNA within the cavity of the enzyme and the identification of other intermediates proposed by the sign inversion model.
Collapse
Affiliation(s)
- Z Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
67
|
Abstract
Advances in recent years have led to exciting new ideas about the initiation, regulation and coordination of DNA replication. Structural studies have yielded fascinating glimpses of replisome action. In addition, the involvement of replication proteins in other cellular processes has blurred the lines between replication, repair and recombination.
Collapse
Affiliation(s)
- M J Davey
- Howard Hughes Medical Institute, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
68
|
Abstract
A strikingly large number of the proteins involved in DNA metabolism adopt a toroidal -- or ring-shaped -- quaternary structure, even though they have completely unrelated functions. Given that these proteins all use DNA as a substrate, their convergence to one shape is probably not a coincidence. Ring-forming proteins may have been selected during evolution for advantages conferred by the toroidal shape on their interactions with DNA.
Collapse
Affiliation(s)
- M M Hingorani
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|
69
|
Li Z, Mondragón A, Hiasa H, Marians KJ, DiGate RJ. Identification of a unique domain essential for Escherichia coli DNA topoisomerase III-catalysed decatenation of replication intermediates. Mol Microbiol 2000; 35:888-95. [PMID: 10692165 DOI: 10.1046/j.1365-2958.2000.01763.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 17-amino-acid residue domain has been identified in Escherichia coli DNA topoisomerase III (Topo III) that is essential for Topo III-mediated resolution of DNA replication intermediates in vitro. Deletion of this domain reduced Topo III-catalysed resolution of DNA replication intermediates and decatenation of multiply linked plasmid DNA dimers by four orders of magnitude, whereas reducing Topo III-catalysed relaxation of negatively supercoiled DNA substrates only 20-fold. The presence of this domain has been detected in multiple plasmid-encoded topoisomerases, raising the possibility that these enzymes may also be decatenases.
Collapse
Affiliation(s)
- Z Li
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore School of Pharmacy, 20 North Pine Street, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|