51
|
Baird-Titus JM, Clark-Baldwin K, Dave V, Caperelli CA, Ma J, Rance M. The solution structure of the native K50 Bicoid homeodomain bound to the consensus TAATCC DNA-binding site. J Mol Biol 2005; 356:1137-51. [PMID: 16406070 DOI: 10.1016/j.jmb.2005.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Revised: 11/30/2005] [Accepted: 12/02/2005] [Indexed: 11/29/2022]
Abstract
The solution structure of the homeodomain of the Drosophila morphogenic protein Bicoid (Bcd) complexed with a TAATCC DNA site is described. Bicoid is the only known protein that uses a homeodomain to regulate translation, as well as transcription, by binding to both RNA and DNA during early Drosophila development; in addition, the Bcd homeodomain can recognize an array of different DNA sites. The dual functionality and broad recognition capabilities signify that the Bcd homeodomain may possess unique structural/dynamic properties. Bicoid is the founding member of the K50 class of homeodomain proteins, containing a lysine residue at the critical 50th position (K50) of the homeodomain sequence, a residue required for DNA and RNA recognition; Bcd also has an arginine residue at the 54th position (R54), which is essential for RNA recognition. Bcd is the only known homeodomain with the K50/R54 combination of residues. The Bcd structure indicates that this homeodomain conforms to the conserved topology of the homeodomain motif, but exhibits a significant variation from other homeodomain structures at the end of helix 1. A key result is the observation that the side-chains of the DNA-contacting residues K50, N51 and R54 all show strong signs of flexibility in the protein-DNA interface. This finding is supportive of the adaptive-recognition theory of protein-DNA interactions.
Collapse
Affiliation(s)
- Jamie M Baird-Titus
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Medical Sciences Building, Cincinnati, OH 45267-0524, USA
| | | | | | | | | | | |
Collapse
|
52
|
Crumet N, Carlson RL, Drutman SB, Shampay J. A truncated acidic domain in Xenopus TRF1. Gene 2005; 369:20-6. [PMID: 16309855 DOI: 10.1016/j.gene.2005.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 10/04/2005] [Accepted: 10/07/2005] [Indexed: 01/26/2023]
Abstract
Telomere function is mediated by a complex of proteins bound to double-stranded and single-stranded telomeric repeats. A key player in this complex is TRF1, which binds to duplex TTAGGG repeats and acts as a negative regulator of telomere length. This protein's domain structure, as defined by studies with mammalian orthologs, consists of an N-terminal acidic domain, a dimerization domain, and a C-terminal Myb DNA binding domain. TRF1 from Xenopus laevis was cloned and sequenced, and the encoded protein found to have a similar structure but with a very short acidic domain. This short acidic domain was confirmed in Xenopus tropicalis, a true diploid, by cloning of cDNA sequences by RACE and analysis of the genomic locus. The TRF1 transcript is expressed in developing and adult frogs. Compared to the mammalian orthologs, the Xenopus genes are the most distantly related vertebrate examples characterized to date. Since adult Xenopus ubiquitously express somatic telomerase activity, proteins that regulate telomerase access to the chromosome ends are important in regulating telomere length in normal somatic tissue. The structure of Xenopus TRF1 has implications for its regulation by tankyrase.
Collapse
Affiliation(s)
- N Crumet
- Kleinholz Biological Laboratories, Reed College, 3203 SE Woodstock Blvd. Portland, OR 97202, United States
| | | | | | | |
Collapse
|
53
|
Sue SC, Hsiao HH, Chung BCP, Cheng YH, Hsueh KL, Chen CM, Ho CH, Huang TH. Solution structure of the Arabidopsis thaliana telomeric repeat-binding protein DNA binding domain: a new fold with an additional C-terminal helix. J Mol Biol 2005; 356:72-85. [PMID: 16337232 DOI: 10.1016/j.jmb.2005.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 11/01/2005] [Accepted: 11/03/2005] [Indexed: 01/30/2023]
Abstract
The double-stranded telomeric repeat-binding protein (TRP) AtTRP1 is isolated from Arabidopsis thaliana. Using gel retardation assays, we defined the C-terminal 97 amino acid residues, Gln464 to Val560 (AtTRP1(464-560)), as the minimal structured telomeric repeat-binding domain. This region contains a typical Myb DNA-binding motif and a C-terminal extension of 40 amino acid residues. The monomeric AtTRP1(464-560) binds to a 13-mer DNA duplex containing a single repeat of an A.thaliana telomeric DNA sequence (GGTTTAG) in a 1:1 complex, with a K(D) approximately 10(-6)-10(-7) M. Nuclear magnetic resonance (NMR) examination revealed that the solution structure of AtTRP1(464-560) is a novel four-helix tetrahedron rather than the three-helix bundle structure found in typical Myb motifs and other TRPs. Binding of the 13-mer DNA duplex to AtTRP1(464-560) induced significant chemical shift perturbations of protein amide resonances, which suggests that helix 3 (H3) and the flexible loop connecting H3 and H4 are essential for telomeric DNA sequence recognition. Furthermore, similar to that in hTRF1, the N-terminal arm likely contributes to or stabilizes DNA binding. Sequence comparisons suggested that the four-helix structure and the involvement of the loop residues in DNA binding may be features unique to plant TRPs.
Collapse
Affiliation(s)
- Shih-Che Sue
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Court R, Chapman L, Fairall L, Rhodes D. How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures. EMBO Rep 2005; 6:39-45. [PMID: 15608617 PMCID: PMC1299224 DOI: 10.1038/sj.embor.7400314] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Revised: 11/04/2004] [Accepted: 11/10/2004] [Indexed: 12/13/2022] Open
Abstract
Human telomeres consist of tandem arrays of TTAGGG sequence repeats that are specifically bound by two proteins, TRF1 and TRF2. They bind to DNA as preformed homodimers and have the same architecture in which the DNA-binding domains (Dbds) form independent structural units. Despite these similarities, TRF1 and TRF2 have different functions at telomeres. The X-ray crystal structures of both TRF1- and TRF2-Dbds in complex with telomeric DNA (2.0 and 1.8 angstroms resolution, respectively) show that they recognize the same TAGGGTT binding site by means of homeodomains, as does the yeast telomeric protein Rap1p. Two of the three G-C base pairs that characterize telomeric repeats are recognized specifically and an unusually large number of water molecules mediate protein-DNA interactions. The binding of the TRF2-Dbd to the DNA double helix shows no distortions that would account for the promotion of t-loops in which TRF2 has been implicated.
Collapse
Affiliation(s)
- Robert Court
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | - Lynda Chapman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | - Louise Fairall
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | - Daniela Rhodes
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
- Tel: +44 1223 248011; Fax: +44 1223 213556; E-mail:
| |
Collapse
|
55
|
Hanaoka S, Nagadoi A, Nishimura Y. Comparison between TRF2 and TRF1 of their telomeric DNA-bound structures and DNA-binding activities. Protein Sci 2005; 14:119-30. [PMID: 15608118 PMCID: PMC2253311 DOI: 10.1110/ps.04983705] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mammalian telomeres consist of long tandem arrays of double-stranded telomeric TTAGGG repeats packaged by the telomeric DNA-binding proteins TRF1 and TRF2. Both contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In a DNA complex of TRF1, only the single Myb-like domain consisting of three helices can bind specifically to double-stranded telomeric DNA. TRF2 also binds to double-stranded telomeric DNA. Although the DNA binding mode of TRF2 is likely identical to that of TRF1, TRF2 plays an important role in the t-loop formation that protects the ends of telomeres. Here, to clarify the details of the double-stranded telomeric DNA-binding modes of TRF1 and TRF2, we determined the solution structure of the DNA-binding domain of human TRF2 bound to telomeric DNA; it consists of three helices, and like TRF1, the third helix recognizes TAGGG sequence in the major groove of DNA with the N-terminal arm locating in the minor groove. However, small but significant differences are observed; in contrast to the minor groove recognition of TRF1, in which an arginine residue recognizes the TT sequence, a lysine residue of TRF2 interacts with the TT part. We examined the telomeric DNA-binding activities of both DNA-binding domains of TRF1 and TRF2 and found that TRF1 binds more strongly than TRF2. Based on the structural differences of both domains, we created several mutants of the DNA-binding domain of TRF2 with stronger binding activities compared to the wild-type TRF2.
Collapse
Affiliation(s)
- Shingo Hanaoka
- Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | | | | |
Collapse
|
56
|
Opresko PL, Fan J, Danzy S, Wilson DM, Bohr VA. Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res 2005; 33:1230-9. [PMID: 15731343 PMCID: PMC549571 DOI: 10.1093/nar/gki273] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ends of linear chromosomes are capped by protein-DNA complexes termed telomeres. Telomere repeat binding factors 1 and 2 (TRF1 and TRF2) bind specifically to duplex telomeric DNA and are critical components of functional telomeres. Consequences of telomere dysfunction include genomic instability, cellular apoptosis or senescence and organismal aging. Mild oxidative stress induces increased erosion and loss of telomeric DNA in human fibroblasts. We performed binding assays to determine whether oxidative DNA damage in telomeric DNA alters the binding activity of TRF1 and TRF2 proteins. Here, we report that a single 8-oxo-guanine lesion in a defined telomeric substrate reduced the percentage of bound TRF1 and TRF2 proteins by at least 50%, compared with undamaged telomeric DNA. More dramatic effects on TRF1 and TRF2 binding were observed with multiple 8-oxo-guanine lesions in the tandem telomeric repeats. Binding was likewise disrupted when certain intermediates of base excision repair were present within the telomeric tract, namely abasic sites or single nucleotide gaps. These studies indicate that oxidative DNA damage may exert deleterious effects on telomeres by disrupting the association of telomere-maintenance proteins TRF1 and TRF2.
Collapse
Affiliation(s)
- Patricia L Opresko
- Laboratory of Molecular Gerontology, National Institute on Aging NIH, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
57
|
Hwang MG, Kim K, Lee WK, Cho MH. AtTBP2 and AtTRP2 in Arabidopsis encode proteins that bind plant telomeric DNA and induce DNA bending in vitro. Mol Genet Genomics 2005; 273:66-75. [PMID: 15688221 DOI: 10.1007/s00438-004-1096-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 11/16/2004] [Indexed: 10/25/2022]
Abstract
Telomeric DNA-binding proteins (TBPs) are crucial components that regulate the structure and function of eukaryotic telomeres and are evolutionarily conserved. We have identified two homologues of AtTBP1 (for Arabidopsis thaliana telomeric DNA binding protein 1), designated as AtTBP2 and AtTRP2, which encode proteins that specifically bind to the telomeric DNA of this plant. These proteins show extensive homology with other known plant TBPs. The isolated C-terminal segments of these proteins were capable of sequence-specific binding to duplex telomeric plant DNA in vitro. DNA bending assays using the Arabidopsis TBPs revealed that AtTBP1 and AtTBP2 have DNA-bending abilities comparable to that of the human homologue hTRF1, and higher than those of AtTRP1 and AtTRP2.
Collapse
Affiliation(s)
- Moo Gak Hwang
- Department of Biology, Yonsei University, Sinchon-Dong, Seodaemun-Ku, Seoul, 120-749 Republic of Korea
| | | | | | | |
Collapse
|
58
|
Marian CO, Bass HW. The Terminal acidic SANT 1 (Tacs1) gene of maize is expressed in tissues containing meristems and encodes an acidic SANT domain similar to some chromatin-remodeling complex proteins. ACTA ACUST UNITED AC 2005; 1727:81-6. [PMID: 15716051 DOI: 10.1016/j.bbaexp.2004.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 11/22/2004] [Accepted: 12/07/2004] [Indexed: 10/25/2022]
Abstract
While screening for plant homologs of telomeric-complex proteins, we isolated a cDNA for the Terminal acidic SANT 1 (Tacs1) gene of maize, encoding a 45-kDa protein with a C-terminal Myb/SANT-like domain. Gene expression and protein modeling data indicate that the TACS1 protein may function in chromatin remodeling within shoot primordia or other meristem-containing tissues.
Collapse
Affiliation(s)
- Calin O Marian
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | | |
Collapse
|
59
|
Yoshimura SH, Maruyama H, Ishikawa F, Ohki R, Takeyasu K. Molecular mechanisms of DNA end-loop formation by TRF2. Genes Cells 2004; 9:205-18. [PMID: 15005708 DOI: 10.1111/j.1356-9597.2004.00719.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In the telomere region of human chromosomes, the (TTAGGG)n sequence stretches over several kilobases and forms a distinct higher-order structure with various proteins. Telomere repeat binding factors (TRFs) bind specifically to this sequence and play critical roles in the maintenance of telomere structure and function. Here, we prepared a series of linear DNA carrying a stretch of telomeric sequence ((TTAGGG)n, approximately 1.8 (kb) with different end-structures and observed their higher-order complexes with TRFs by atomic force microscopy. TRF2 molecules exclusively bound to the telomeric DNA region at several different places simultaneously mainly as a dimer, and often mediated DNA loop formation by forming a tetramer at the root. These multiple-binding, multimerization and DNA loop formation by TRF2 were observed regardless of the DNA-end structure (blunt, 3'-overhanging, telomeric, non-telomeric). However, when the DNA end carried the telomeric-3'-overhanging region, the loop was frequently formed at the end of the DNA. Namely, the TRF2-mediated DNA loop formation is independent of the end-structure and the 3'-overhanging TTAGGG sequence is responsible for the stabilization of the loop. TRF1 also bound to the telomeric DNA as a dimer, but did not mediate DNA loop formation by itself. These results provide a new insight into the molecular mechanism of DNA end-loop formation by TRFs.
Collapse
Affiliation(s)
- Shige H Yoshimura
- Department of Responses to Environmental Signals and Stresses, Graduate School of Biostudies, Kyoto University, Kitashirawkawa-oiwake-cho Sakyo-ku Kyoto, 606-8502, Japan.
| | | | | | | | | |
Collapse
|
60
|
Ohki R, Ishikawa F. Telomere-bound TRF1 and TRF2 stall the replication fork at telomeric repeats. Nucleic Acids Res 2004; 32:1627-37. [PMID: 15007108 PMCID: PMC390322 DOI: 10.1093/nar/gkh309] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Vertebrate telomeres consist of tandem repeats of T2AG3 and associated proteins including the telomeric DNA-binding proteins, TRF1 and TRF2. It has been proposed that telomeres assume two interswitchable states, the open state that is accessible to various trans-acting factors and the closed state that excludes those factors. TRF1 and TRF2 are believed to promote the formation of the closed state. However, little is known about how those two states influence DNA replication. We analyzed the effects of TRF1 and TRF2 on telomeric replication both in vitro and in vivo. By exploiting the in vitro replication system of linear SV40 DNA, we found that telomeric repeats are a poor replication template. Moreover, the addition of recombinant TRF1 and TRF2 significantly stalled the replication fork progression at telomeric repeats. When TRF1 was overexpressed in HeLa cells, cells with 4N DNA content were accumulated. Furthermore, cytological analyses revealed that the replication focus overlapped with telomere signals at a significantly higher frequency in TRF1-overexpressing cells than in control cells. The results suggest that TRF1 and TRF2 exert inhibitory effects on replication fork progression.
Collapse
Affiliation(s)
- Rieko Ohki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | |
Collapse
|
61
|
Kim SH, Hwang SB, Chung IK, Lee J. Sequence-specific binding to telomeric DNA by CEH-37, a homeodomain protein in the nematode Caenorhabditis elegans. J Biol Chem 2003; 278:28038-44. [PMID: 12711598 DOI: 10.1074/jbc.m302192200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caenorhabditis elegans can serve as a model system to study telomere functions due to its similarity to higher organisms in telomere structures. We report here the identification of the nematode homeodomain protein CEH-37 as a telomere-binding protein using a yeast one-hybrid screen. The predicted three-dimensional model of the homeodomain of CEH-37, which has a typical helix-loop-helix structure, was similar to that of the Myb domain of known telomere-binding proteins, which is also a helix-loop-helix protein, despite little amino acid sequence similarity. We demonstrated the specific binding of CEH-37 to the nematode telomere sequences in vitro by competition assays. We determined that CEH-37 binding required at least 1.5 repeats of TTAGGC and that the core sequence for binding was GGCTTA. We found that CEH-37 had an ability to bend telomere sequence-containing DNA, which is the case for other known telomere-binding proteins such as TRF1 and RAP1, indicating that CEH-37 may be involved in establishing or maintaining a secondary structure of the telomeres in vivo. We also demonstrated that CEH-37 was primarily co-localized to the chromosome ends in vivo, indicating that CEH-37 may play roles in telomere functions. Consistent with this, a ceh-37 mutation resulting in a truncated protein caused a weak high incidence of male phenotype, which may have been caused by chromosome instability. The identification of CEH-37 as a telomere-binding protein may represent an evolutionary conservation of telomere-binding proteins in terms of tertiary protein structure rather than primary amino acid sequence.
Collapse
Affiliation(s)
- Seung Hyun Kim
- National Research Laboratory and the Molecular Aging Research Center, Department of Biology, Yonsei University, 134 Shinchon, Seodaemun-ku, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
62
|
Abstract
The telomere is a nucleoprotein complex located at the ends of eukaryotic chromosomes. It is essential for maintaining the integrity of the genome. It is not a linear structure and, for much of the cell cycle, telomeric DNA is maintained in a loop structure, which serves to protect the vulnerable ends of chromosomes. Many of the key proteins in the telomere have been identified, although their interplay is still imperfectly understood and structural data are only available on a few. Telomeric DNA itself comprises simple guanine-rich repeats for most of its length, culminating in a short overhang of single-stranded sequence at the extreme 3' ends. This can, at least in vitro, fold into a wide variety of four-stranded quadruplex structures, many of whose arrangements are being revealed by crystallographic and NMR studies.
Collapse
Affiliation(s)
- Stephen Neidle
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, WC1N 1AX, London, UK.
| | | |
Collapse
|
63
|
Mohrmann L, Kal AJ, Verrijzer CP. Characterization of the extended Myb-like DNA-binding domain of trithorax group protein Zeste. J Biol Chem 2002; 277:47385-92. [PMID: 12354778 DOI: 10.1074/jbc.m202341200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zeste is a Drosophila sequence-specific DNA-binding protein that performs a variety of functions during chromatin-directed gene regulation. Its DNA-binding domain (DBD) was previously identified, but no similarities to established DNA-binding structures are known. Here we present sequence comparisons suggesting that the Zeste-DBD is a novel variant of the tri-helical Myb-DBD. Using band shift assays, we mapped the Zeste-DBD to 76 residues, corresponding to a single Myb repeat of only 50 residues. All residues involved in formation of the hydrophobic core of the Myb domain are conserved in Zeste, suggesting it forms an extended Myb domain. Mutagenesis studies determined (T/C/g)GAGTG(A/G/c) as the consensus Zeste recognition sequence. Reconstituted transcription experiments established that deviations from this optimal consensus compromise transcriptional activation by Zeste. In addition, flanking DNA is critical because Zeste-DBD binding requires a DNA sequence of minimally 16 base pairs, which is much longer than the consensus site. The DNA flanking the consensus is contacted by Zeste through sequence-independent backbone contacts. Interestingly, hydroxyl radical footprinting revealed that the Zeste-DNA backbone contacts all map to one face of the DNA. We compare the DNA-binding properties of Zeste with those of classical tri-helical DBDs harboring a helix-turn-helix motif and suggest a model for Zeste-DNA recognition.
Collapse
Affiliation(s)
- Lisette Mohrmann
- Department of Molecular and Cell Biology, Center for Biomedical Genetics, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
64
|
Abstract
Telomeres are protein-DNA complexes that cap chromosome ends and protect them from being recognized and processed as DNA breaks. Loss of capping function results in genetic instability and loss of cellular viability. The emerging view is that maintenance of an appropriate telomere structure is essential for function. Structural information on telomeric proteins that bind to double and single-stranded telomeric DNA shows that, despite a lack of extensive amino-acid sequence conservation, telomeric DNA recognition occurs via conserved DNA-binding domains. Furthermore, telomeric proteins have multidomain structures and hence are conformationally flexible. A possibility is that telomeric proteins take up different conformations when bound to different partners, providing a simple mechanism for modulating telomere architecture.
Collapse
Affiliation(s)
- Daniela Rhodes
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | | | |
Collapse
|