51
|
Barbieri CM, Stock AM. Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using Phos-tag-based reagents. Anal Biochem 2008; 376:73-82. [PMID: 18328252 DOI: 10.1016/j.ab.2008.02.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/30/2008] [Accepted: 02/07/2008] [Indexed: 11/26/2022]
Abstract
Recent development of the phosphate chelator, Phos-tag, together with Phos-tag pendant reagents, has provided new methods for detection of phosphorylated serine, threonine, tyrosine, and histidine residues in phosphoproteins. We have investigated the use of Phos-tag for detection and quantification of phospho-aspartate in response regulator proteins that function within two-component signaling systems. Alternative methods are especially important, because the labile nature of the acylphosphate bond in response regulator proteins has restricted the application of many traditional methods of phosphoprotein analysis. We demonstrate that Phos-tag gel stain can be used to detect phospho-Asp in response regulators and that Phos-tag acrylamide gel electrophoresis can be used to separate phosphorylated and unphosphorylated forms of response regulator proteins. The latter method, coupled to Western blot analysis, enables detection of specific phosphorylated proteins in complex mixtures such as cell lysates. Standards of phosphorylated proteins can be used to correct for hydrolysis of the labile phospho-Asp bond that invariably occurs during analysis. We have employed Phos-tag methods to characterize the phosphorylation state of the Escherichia coli response regulator PhoB both in vitro, using purified protein, and in vivo, by analyzing lysates of cells grown under different conditions of induction of the PhoR/PhoB phosphate assimilation pathway.
Collapse
Affiliation(s)
- Christopher M Barbieri
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
52
|
PhoP-PhoP interaction at adjacent PhoP binding sites is influenced by protein phosphorylation. J Bacteriol 2007; 190:1317-28. [PMID: 18065544 DOI: 10.1128/jb.01074-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis PhoP regulates the expression of unknown virulence determinants and the biosynthesis of complex lipids. PhoP, like other members of the OmpR family, comprises a phosphorylation domain at the amino-terminal half and a DNA-binding domain at the carboxy-terminal half of the protein. To explore structural effect of protein phosphorylation and to examine effect of phosphorylation on DNA binding, purified PhoP was phosphorylated by acetyl phosphate in a reaction that was dependent on Mg2+ and Asp-71. Protein phosphorylation was not required for DNA binding; however, phosphorylation enhanced in vitro DNA binding through protein-protein interaction(s). Evidence is presented here that the protein-protein interface is different in the unphosphorylated and phosphorylated forms of PhoP and that specific DNA binding plays a critical role in changing the nature of the protein-protein interface. We show that phosphorylation switches the transactivation domain to a different conformation, which specifies additional protein-protein contacts between PhoP protomers bound to adjacent cognate sites. Together, our observations raise the possibility that PhoP, in the unphosphorylated and phosphorylated forms, may be capable of adopting different orientations as it binds to a vast array of genes to activate or repress transcription.
Collapse
|
53
|
King-Scott J, Nowak E, Mylonas E, Panjikar S, Roessle M, Svergun DI, Tucker PA. The Structure of a Full-length Response Regulator from Mycobacterium tuberculosis in a Stabilized Three-dimensional Domain-swapped, Activated State. J Biol Chem 2007; 282:37717-29. [DOI: 10.1074/jbc.m705081200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
54
|
Wang S, Engohang-Ndong J, Smith I. Structure of the DNA-binding domain of the response regulator PhoP from Mycobacterium tuberculosis. Biochemistry 2007; 46:14751-61. [PMID: 18052041 DOI: 10.1021/bi700970a] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The PhoP-PhoR two-component signaling system from Mycobacterium tuberculosis is essential for the virulence of the tubercle bacillus. The response regulator, PhoP, regulates expression of over 110 genes. In order to elucidate the regulatory mechanism of PhoP, we determined the crystal structure of its DNA-binding domain (PhoPC). PhoPC exhibits a typical fold of the winged helix-turn-helix subfamily of response regulators. The structure starts with a four-stranded antiparallel beta-sheet, followed by a three-helical bundle of alpha-helices, and then a C-terminal beta-hairpin, which together with a short beta-strand between the first and second helices forms a three-stranded antiparallel beta-sheet. Structural elements are packed through a hydrophobic core, with the first helix providing a scaffold for the rest of the domain to pack. The second and third helices and the long, flexible loop between them form the helix-turn-helix motif, with the third helix being the recognition helix. The C-terminal beta-hairpin turn forms the wing motif. The molecular surfaces around the recognition helix and the wing residues show strong positive electrostatic potential, consistent with their roles in DNA binding and nucleotide sequence recognition. The crystal packing of PhoPC gives a hexamer ring, with neighboring molecules interacting in a head-to-tail fashion. This packing interface suggests that PhoPC could bind DNA in a tandem association. However, this mode of DNA binding is likely to be nonspecific because the recognition helix is partially blocked and would be prevented from inserting into the major groove of DNA. Detailed structural analysis and implications with respect to DNA binding are discussed.
Collapse
Affiliation(s)
- Shuishu Wang
- Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
55
|
Malone JG, Williams R, Christen M, Jenal U, Spiers AJ, Rainey PB. The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain. MICROBIOLOGY-SGM 2007; 153:980-994. [PMID: 17379708 DOI: 10.1099/mic.0.2006/002824-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The GGDEF response regulator WspR couples the chemosensory Wsp pathway to the overproduction of acetylated cellulose and cell attachment in the Pseudomonas fluorescens SBW25 wrinkly spreader (WS) genotype. Here, it is shown that WspR is a diguanylate cyclase (DGC), and that DGC activity is elevated in the WS genotype compared to that in the ancestral smooth (SM) genotype. A structure-function analysis of 120 wspR mutant alleles was employed to gain insight into the regulation and activity of WspR. Firstly, 44 random and defined pentapeptide insertions were produced in WspR, and the effects determined using assays based on colony morphology, attachment to surfaces and cellulose production. The effects of mutations within WspR were interpreted using a homology model, based on the crystal structure of Caulobacter crescentus PleD. Mutational analyses indicated that WspR activation occurs as a result of disruption of the interdomain interface, leading to the release of effector-domain repression by the N-terminal receiver domain. Quantification of attachment and cellulose production raised significant questions concerning the mechanisms of WspR function. The conserved RYGGEEF motif of WspR was also subjected to mutational analysis, and 76 single amino acid residue substitutions were tested for their effects on WspR function. The RYGGEEF motif of WspR is functionally conserved, with almost every mutation abolishing function.
Collapse
Affiliation(s)
- J G Malone
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Division of Molecular Microbiology, Biozentrum, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - R Williams
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - M Christen
- Division of Molecular Microbiology, Biozentrum, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - U Jenal
- Division of Molecular Microbiology, Biozentrum, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - A J Spiers
- Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - P B Rainey
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
56
|
Fu W, Yang F, Kang X, Zhang X, Li Y, Xia B, Jin C. First structure of the polymyxin resistance proteins. Biochem Biophys Res Commun 2007; 361:1033-7. [PMID: 17686460 DOI: 10.1016/j.bbrc.2007.07.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 10/23/2022]
Abstract
PmrA/PmrB and PhoP/PhoQ are a pair of two-component systems (TCSs) that allow the Gram-negative bacteria to survive the cationic antimicrobial peptide polymyxin B. The two TCSs are linked by the polymyxin resistance protein, PmrD. The PhoP-activated PmrD protects the phosphorylated response regulator PmrA from dephosphorylation, and promotes the transcription of PmrA-activated genes responsible for polymyxin resistance. PmrD is the first protein identified to mediate the connectivity between two TCSs by protecting the phosphorylated response regulator of the downstream TCS. PmrD shows no homology to proteins with known structures. We present here the solution structure of PmrD from Escherichia coli, the first three-dimensional structure of the PmrD family. Our study provides the structural basis of the novel interacting mechanism of bacterial two-component signal-transduction systems.
Collapse
Affiliation(s)
- Wenyu Fu
- Beijing Nuclear Magnetic Resonance Center, Peking University, No. 5, Yi-He-Yuan, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
The group A streptococcus (GAS) causes a variety of human diseases, including toxic shock syndrome and necrotizing fasciitis, which are both associated with significant mortality. Even the superficial self-limiting diseases caused by GAS, such as pharyngitis, impose a significant economic burden on society. GAS can cause a wide spectrum of diseases because it elaborates virulence factors that enable it to spread and survive in different environmental niches within the human host. The production of many of these virulence factors is directly controlled by the activity of the CovR/S two-component regulatory system. CovS acts in one direction as a kinase primarily to activate the response regulator CovR and repress the expression of major virulence factors and in the other direction as a phosphatase to permit gene expression in response to environmental changes that mimic conditions found during human infection. This Janus-like behaviour of the CovR/S system is recapitulated in the binding of CovR to the promoters that it directly regulates. Interactions between different faces of the CovR DNA binding domain appear to depend upon DNA sequence, leading to the potential for differential regulation of virulence gene expression.
Collapse
Affiliation(s)
- Gordon Churchward
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
58
|
Bachhawat P, Stock AM. Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllofluoride. J Bacteriol 2007; 189:5987-95. [PMID: 17545283 PMCID: PMC1952025 DOI: 10.1128/jb.00049-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The response regulator PhoP is part of the PhoQ/PhoP two-component system involved in responses to depletion of extracellular Mg(2+). Here, we report the crystal structures of the receiver domain of Escherichia coli PhoP determined in the absence and presence of the phosphoryl analog beryllofluoride. In the presence of beryllofluoride, the active receiver domain forms a twofold symmetric dimer similar to that seen in structures of other regulatory domains from the OmpR/PhoB family, providing further evidence that members of this family utilize a common mode of dimerization in the active state. In the absence of activating agents, the PhoP receiver domain crystallizes with a similar structure, consistent with the previous observation that high concentrations can promote an active state of PhoP independent of phosphorylation.
Collapse
Affiliation(s)
- Priti Bachhawat
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854-5627, USA
| | | |
Collapse
|
59
|
Friedland N, Mack TR, Yu M, Hung LW, Terwilliger TC, Waldo GS, Stock AM. Domain orientation in the inactive response regulator Mycobacterium tuberculosis MtrA provides a barrier to activation. Biochemistry 2007; 46:6733-43. [PMID: 17511470 PMCID: PMC2528954 DOI: 10.1021/bi602546q] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structure of MtrA, an essential gene product for the human pathogen Mycobacterium tuberculosis, has been solved to a resolution of 2.1 A. MtrA is a member of the OmpR/PhoB family of response regulators and represents the fourth family member for which a structure of the protein in its inactive state has been determined. As is true for all OmpR/PhoB family members, MtrA possesses an N-terminal regulatory domain and a C-terminal winged helix-turn-helix DNA-binding domain, with phosphorylation of the regulatory domain modulating the activity of the protein. In the inactive form of MtrA, these two domains form an extensive interface that is composed of the alpha4-beta5-alpha5 face of the regulatory domain and the C-terminal end of the positioning helix, the trans-activation loop, and the recognition helix of the DNA-binding domain. This domain orientation suggests a mechanism of mutual inhibition by the two domains. Activation of MtrA would require a disruption of this interface to allow the alpha4-beta5-alpha5 face of the regulatory domain to form the intermolecule interactions that are associated with the active state and to allow the recognition helix to interact with DNA. Furthermore, the interface appears to stabilize the inactive conformation of MtrA, potentially reducing the rate of phosphorylation of the N-terminal domain. This combination of effects may form a switch, regulating the activity of MtrA. The domain orientation exhibited by MtrA also provides a rationale for the variation in linker length that is observed within the OmpR/PhoB family of response regulators.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ann M. Stock
- To whom correspondence should be addressed at Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854. Telephone: (732) 235−4844. Fax (732) 235−5289. E-mail:
| |
Collapse
|
60
|
Chloroplast His-to-Asp signal transduction: a potential mechanism for plastid gene regulation in Heterosigma akashiwo (Raphidophyceae). BMC Evol Biol 2007; 7:70. [PMID: 17477873 PMCID: PMC1885438 DOI: 10.1186/1471-2148-7-70] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 05/03/2007] [Indexed: 01/08/2023] Open
Abstract
Background Maintenance of homeostasis requires that an organism perceive selected physical and chemical signals within an informationally dense environment. Functionally, an organism uses a variety of signal transduction arrays to amplify and convert these perceived signals into appropriate gene transcriptional responses. These changes in gene expression serve to modify selective metabolic processes and thus optimize reproductive success. Here we analyze a chloroplast-encoded His-to-Asp signal transduction circuit in the stramenopile Heterosigma akashiwo (Hada) Hada ex Y. Hara et Chihara [syn. H. carterae (Hulburt) F.J.R. Taylor]. The presence, structure and putative function of this protein pair are discussed in the context of their evolutionary homologues. Results Bioinformatic analysis of the Heterosigma akashiwo chloroplast genome sequence revealed the presence of a single two-component His-to-Asp (designated Tsg1/Trg1) pair in this stramenopile (golden-brown alga). These data represent the first documentation of a His-to-Asp array in stramenopiles and counter previous reports suggesting that such regulatory proteins are lacking in this taxonomic cluster. Comparison of the 43 kDa H. akashiwo Tsg1 with bacterial sensor kinases showed that the algal protein exhibits a moderately maintained PAS motif in the sensor kinase domain as well as highly conserved H, N, G1 and F motifs within the histidine kinase ATP binding site. Molecular modelling of the 27 kDa H. akashiwo Trg1 regulator protein was consistent with a winged helix-turn-helix identity – a class of proteins that is known to impact gene expression at the level of transcription. The occurrence of Trg1 protein in actively growing H. akashiwo cells was verified by Western analysis. The presence of a PhoB-like RNA polymerase loop in Trg1 and its homologues in the red-algal lineage support the hypothesis that Trg1 and its homologues interact with a sigma 70 (σ70) subunit (encoded by rpoD) of a eubacterial type polymerase. Sequence analysis of H. akashiwo rpoD showed this nuclear-encoded gene has a well-defined 4.2 domain, a region that augments RNA polymerase interaction with transcriptional regulatory proteins and also serves in -35 promoter recognition. The presence/loss of the His-to-Asp pairs in primary and secondary chloroplast lineages is assessed. Conclusion His-to-Asp signal transduction components are found in most rhodophytic chloroplasts, as well as in their putative cyanobacterial progenitors. The evolutionary conservation of these proteins argues that they are important for the maintenance of chloroplast homeostasis. Our data suggest that chloroplast gene transcription may be impacted by the interaction of the His-to-Asp regulator protein (which is less frequently lost than the sensor protein) with the RNA polymerase σ70 subunit.
Collapse
|
61
|
Gao R, Mack TR, Stock AM. Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci 2007; 32:225-34. [PMID: 17433693 PMCID: PMC3655528 DOI: 10.1016/j.tibs.2007.03.002] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 02/07/2007] [Accepted: 03/15/2007] [Indexed: 01/29/2023]
Abstract
Response regulators (RRs) comprise a major family of signaling proteins in prokaryotes. A modular architecture that consists of a conserved receiver domain and a variable effector domain enables RRs to function as phosphorylation-regulated switches that couple a wide variety of cellular behaviors to environmental cues. Recently, advances have been made in understanding RR functions both at genome-wide and molecular levels. Global techniques have been developed to analyze RR input and output, expanding the scope of characterization of these versatile components. Meanwhile, structural studies have revealed that, despite common structures and mechanisms of function within individual domains, a range of interactions between receiver and effector domains confer great diversity in regulatory strategies, optimizing individual RRs for the specific regulatory needs of different signaling systems.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Howard Hughes Medical Institute, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
62
|
Gao T, Zhang X, Ivleva NB, Golden SS, LiWang A. NMR structure of the pseudo-receiver domain of CikA. Protein Sci 2007; 16:465-75. [PMID: 17322531 PMCID: PMC2203319 DOI: 10.1110/ps.062532007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The circadian input kinase (CikA) is a major element of the pathway that provides environmental information to the circadian clock of the cyanobacterium Synechococcus elongatus. CikA is a polypeptide of 754 residues and has three recognizable domains: GAF, histidine protein kinase, and receiver-like. This latter domain of CikA lacks the conserved phospho-accepting aspartyl residue of bona fide receiver domains and is thus a pseudo-receiver (PsR). Recently, it was shown that the PsR domain (1) attenuates the autokinase activity of CikA, (2) is necessary to localize CikA to the cell pole, and (3) is necessary for the destabilization of CikA in the presence of the quinone analog 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). The solution structure of the PsR domain of CikA, CikAPsR, is presented here. A model of the interaction between the PsR domain and HPK portion of CikA provides a potential explanation for how the PsR domain attenuates the autokinase activity of CikA. Finally, a likely quinone-binding surface on CikAPsR is shown here.
Collapse
Affiliation(s)
- Tiyu Gao
- Center for Research on Biological Clocks, Texas A&M University College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
63
|
Arribas-Bosacoma R, Kim SK, Ferrer-Orta C, Blanco AG, Pereira PJ, Gomis-Rüth FX, Wanner BL, Coll M, Solà M. The X-ray crystal structures of two constitutively active mutants of the Escherichia coli PhoB receiver domain give insights into activation. J Mol Biol 2007; 366:626-41. [PMID: 17182055 PMCID: PMC1855202 DOI: 10.1016/j.jmb.2006.11.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 11/07/2006] [Accepted: 11/09/2006] [Indexed: 11/22/2022]
Abstract
The PhoR/PhoB two-component system is a key regulatory protein network enabling Escherichia coli to respond to inorganic phosphate (Pi) starvation conditions by turning on Pho regulon genes for more efficient Pi uptake and use of alternative phosphorus sources. Under environmental Pi depletion, the response regulator (RR) component, PhoB, is phosphorylated at the receiver domain (RD), a process that requires Mg(2+) bound at the active site. Phosphorylation of the RD relieves the inhibition of the PhoB effector domain (ED), a DNA-binding region that binds to Pho regulon promoters to activate transcription. The molecular details of the activation are proposed to involve dimerization of the RD and a conformational change in the RD detected by the ED. The structure of the PhoB RD shows a symmetrical interaction involving alpha1, loop beta5alpha5 and N terminus of alpha5 elements, also seen in the complex of PhoB RD with Mg(2+), in which helix alpha4 highly increases its flexibility. PhoB RD in complex with Mg(2+) and BeF(3) (an emulator of the phosphate moiety) undergoes a dramatic conformational change on helix alpha4 and shows another interaction involving alpha4, beta5 and alpha5 segments. We have selected a series of constitutively active PhoB mutants (PhoB(CA)) that are able to turn on the Pho regulon promoters in the absence phosphorylation and, as they cannot be inactivated, should therefore mimic the active RD state of PhoB and its functional oligomerisation. We have analysed the PhoB(CA) RD crystal structures of two such mutants, Asp53Ala/Tyr102Cys and Asp10Ala/Asp53Glu. Interestingly, both mutants reproduce the homodimeric arrangement through the symmetric interface encountered in the unbound and magnesium-bound wild-type PhoB RD structures. Besides, the mutant RD structures show a modified active site organization as well as changes at helix alpha4 that correlate with repositioning of surrounding residues, like the active-site events indicator Trp54, putatively redifining the interaction with the ED in the full-length protein.
Collapse
Affiliation(s)
- Raquel Arribas-Bosacoma
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Soo-Ki Kim
- Department of Biological Sciences; Purdue University; West Lafayette; Indiana 47907 USA
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Alexandre G. Blanco
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Pedro J.B. Pereira
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - F. Xavier Gomis-Rüth
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Barry L. Wanner
- Department of Biological Sciences; Purdue University; West Lafayette; Indiana 47907 USA
| | - Miquel Coll
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Maria Solà
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| |
Collapse
|
64
|
Trinh CH, Liu Y, Phillips SEV, Phillips-Jones MK. Structure of the response regulator VicR DNA-binding domain. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2007; 63:266-9. [PMID: 17242520 PMCID: PMC2483477 DOI: 10.1107/s0907444906043435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 10/18/2006] [Indexed: 11/20/2022]
Abstract
The response regulator VicR from the Gram-positive bacterium Enterococcus faecalis forms part of the two-component signal transduction system of the YycFG subfamily. The structure of the DNA-binding domain of VicR, VicR(c), has been solved and belongs to the winged helix-turn-helix family. It is very similar to the DNA-binding domains of Escherichia coli PhoB and OmpR, despite low sequence similarity, but differs in two important loops. The alpha-loop, which links the two helices of the helix-turn-helix motif, is similar to that of PhoB, where it has been implicated in contacting the sigma subunit of RNA polymerase, but differs from that of OmpR. Conversely, the loop following the helix-turn-helix motif is similar to that of OmpR and differs from that of PhoB. YycF/VicR, PhoB and Bacillus subtilis PhoP regulators all recognize almost identical DNA sequences and although there is currently no experimental evidence linking this loop with the DNA, the structure is consistent with possible involvement in selective DNA recognition or binding.
Collapse
Affiliation(s)
- Chi-Hung Trinh
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Yang Liu
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Simon E. V. Phillips
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Mary K. Phillips-Jones
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| |
Collapse
|
65
|
Tucker PA, Nowak E, Morth JP. Two-component systems of Mycobacterium tuberculosis: structure-based approaches. Methods Enzymol 2007; 423:479-501. [PMID: 17609147 DOI: 10.1016/s0076-6879(07)23023-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mycobacterium tuberculosis contains few two-component systems compared to many other bacteria, possibly because it has more serine/threonine signaling pathways. Even so, these two-component systems appear to play an important role in early intracellular survival of the pathogen as well as in aspects of virulence. In this chapter, we discuss what has been learned about the mycobacterial two-component systems, with particular emphasis on knowledge gained from structural genomics projects.
Collapse
Affiliation(s)
- Paul A Tucker
- Hamburg Outstation, European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | | | | |
Collapse
|
66
|
Laguri C, Stenzel RA, Donohue TJ, Phillips-Jones MK, Williamson MP. Activation of the global gene regulator PrrA (RegA) from Rhodobacter sphaeroides. Biochemistry 2006; 45:7872-81. [PMID: 16784239 PMCID: PMC2517121 DOI: 10.1021/bi060683g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PrrA is a global transcription regulator activated upon phosphorylation by its cognate kinase PrrB in response to low oxygen levels in Rhodobacter sphaeroides. Here we show by gel filtration, analytical ultracentrifugation, and NMR diffusion measurements that treatment of PrrA with a phosphate analogue, BeF(3)(-), results in dimerization of the protein, producing a protein that binds DNA. No dimeric species was observed in the absence of BeF(3)(-). Upon addition of BeF(3)(-), the inhibitory activity of the N-terminal domain on the C-terminal DNA-binding domain is relieved, after which PrrA becomes capable of binding DNA as a dimer. The interaction surface of the DNA-binding domain with the regulatory domain of PrrA is identified by NMR as being a well-conserved region centered on helix alpha6, which is on the face opposite from the DNA recognition helix. This suggests that there is no direct blockage of DNA binding in the inactive state but rather that PrrA dimerization promotes a correct arrangement of two adjacent DNA-binding domains that recognizes specific DNA binding sequences.
Collapse
Affiliation(s)
- Cédric Laguri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, UK
| | | | | | | | | |
Collapse
|
67
|
Yoshida T, Qin L, Egger LA, Inouye M. Transcription Regulation of ompF and ompC by a Single Transcription Factor, OmpR. J Biol Chem 2006; 281:17114-17123. [PMID: 16618701 DOI: 10.1074/jbc.m602112200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ompF and ompC genes of Escherichia coli are reciprocally regulated by a single transcription factor, phosphorylated OmpR (OmpR-P), depending upon medium osmolarity. This regulation involves activation of ompF and its repression with concomitant activation of ompC. This occurs through OmpR-P binding to four (F1, F2, F3, and F4) and three (C1, C2, and C3) sites located upstream of the ompF and ompC promoters, respectively, through a novel mechanism. Here we show that there is a distinct OmpR-P binding hierarchy within F1, F2, and F3 sites as well as within C1, C2, and C3 sites. Each of these sites contains two tandem 10-bp OmpR-P-binding subsites, a-site and b-site (from 5' to 3' direction). OmpR-P has higher affinity to the downstream b-site than to the upstream a-site in each case. Six OmpR-P molecules bind to F and C sites two-by-two in a discontinuous "galloping" manner. We propose that this tight hierarchical binding of a transcription factor, OmpR, allows distinct stepwise regulation of ompF and ompC transcription, which minimizes their overlapping expression upon changes in the medium osmolarity to achieve the reciprocal expression of ompF and ompC.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ling Qin
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Linda A Egger
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854.
| |
Collapse
|
68
|
Nowak E, Panjikar S, Konarev P, Svergun DI, Tucker PA. The Structural Basis of Signal Transduction for the Response Regulator PrrA from Mycobacterium tuberculosis. J Biol Chem 2006; 281:9659-66. [PMID: 16434396 DOI: 10.1074/jbc.m512004200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure of the two-domain response regulator PrrA from Mycobacterium tuberculosis shows a compact structure in the crystal with a well defined interdomain interface. The interface, which does not include the interdomain linker, makes the recognition helix and the trans-activation loop of the effector domain inaccessible for interaction with DNA. Part of the interface involves hydrogen-bonding interactions of a tyrosine residue in the receiver domain that is believed to be involved in signal transduction, which, if disrupted, would destabilize the interdomain interface, allowing a more extended conformation of the molecule, which would in turn allow access to the recognition helix. In solution, there is evidence for an equilibrium between compact and extended forms of the protein that is far toward the compact form when the protein is inactivated but moves toward a more extended form when activated by the cognate sensor kinase PrrB.
Collapse
Affiliation(s)
- Elzbieta Nowak
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | | | | | | |
Collapse
|
69
|
Perron-Savard P, De Crescenzo G, Moual HL. Dimerization and DNA binding of the Salmonella enterica PhoP response regulator are phosphorylation independent. MICROBIOLOGY-SGM 2006; 151:3979-3987. [PMID: 16339942 DOI: 10.1099/mic.0.28236-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Salmonella enterica, PhoP is the response regulator of the PhoP/PhoQ two-component regulatory system that controls the expression of various virulence factors in response to external Mg2+. Previous studies have shown that phosphorylation of a PhoP variant with a C-terminal His tag (PhoP(His)) enhances dimerization and binding to target DNA. Here, the effect of phosphorylation on the oligomerization and DNA binding properties of both wild-type PhoP (PhoP) and PhoP(His) are compared. Gel filtration chromatography showed that PhoP exists as a mixture of monomer and dimer regardless of its phosphorylation state. In contrast, unphosphorylated PhoP(His) was mostly monomeric, whereas PhoP(His) approximately P existed as a mixture of monomer and dimer. By monitoring the tryptophan fluorescence of the proteins and the fluorescence of the probe 1-anilinonaphthalene-8-sulfonic acid bound to them, it was found that PhoP and PhoP(His) exhibited different spectral properties. The interaction between PhoP or PhoP(His) and the PhoP box of the mgtA promoter was monitored by surface plasmon resonance. Binding of PhoP to the PhoP box was barely influenced by phosphorylation. In contrast, phosphorylation of PhoP(His) clearly increased the interaction of PhoP(His) with target DNA. Altogether, these data show that a His tag at the C-terminus of PhoP affects its biochemical properties, most likely by affecting its conformation and/or its oligomerization state. More importantly, these results show that wild-type PhoP dimerization and interaction with target DNA are independent of phosphorylation, which is in contrast to the previously proposed model.
Collapse
Affiliation(s)
- Philippe Perron-Savard
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada H3A 2B4
| | - Gregory De Crescenzo
- Protein-Protein Interaction Facility, Sheldon Biotechnology Centre, McGill University, Montréal, Québec, Canada H3A 2B4
| | - Hervé Le Moual
- Faculty of Dentistry, McGill University, Montréal, Québec, Canada H3A 2B4
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada H3A 2B4
| |
Collapse
|
70
|
Toro-Roman A, Wu T, Stock AM. A common dimerization interface in bacterial response regulators KdpE and TorR. Protein Sci 2006; 14:3077-88. [PMID: 16322582 PMCID: PMC2253231 DOI: 10.1110/ps.051722805] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Bacterial response regulators are key regulatory proteins that function as the final elements of so-called two-component signaling systems. The activities of response regulators in vivo are modulated by phosphorylation that results from interactions between the response regulator and its cognate histidine protein kinase. The level of response regulator phosphorylation, which is regulated by intra-or extracellular signals sensed by the histidine protein kinase, ultimately determines the output response that is initiated or carried out by the response regulator. We have recently hypothesized that in the OmpR/PhoB subfamily of response regulator transcription factors, this activation involves a common mechanism of dimerization using a set of highly conserved residues in the alpha4-beta5-alpha5 face. Here we report the X-ray crystal structures of the regulatory domains of response regulators TorR (1.8 A), Ca(2+)-bound KdpE (2.0 A), and Mg(2+)/BeF(3)(-)-bound KdpE (2.2 A), both members of the OmpR/ PhoB subfamily from Escherichia coli. Both regulatory domains form symmetric dimers in the asymmetric unit that involve the alpha4-beta5-alpha5 face. As observed previously in other OmpR/PhoB response regulators, the dimer interfaces are mediated by highly conserved residues within this subfamily. These results provide further evidence that most all response regulators of the OmpR/ PhoB subfamily share a common mechanism of activation by dimerization.
Collapse
Affiliation(s)
- Alejandro Toro-Roman
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
71
|
Bachhawat P, Swapna GVT, Stock AM. Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states. Structure 2005; 13:1353-63. [PMID: 16154092 PMCID: PMC3685586 DOI: 10.1016/j.str.2005.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 06/14/2005] [Accepted: 06/15/2005] [Indexed: 10/25/2022]
Abstract
Response regulators (RRs), which undergo phosphorylation/dephosphorylation at aspartate residues, are highly prevalent in bacterial signal transduction. RRs typically contain an N-terminal receiver domain that regulates the activities of a C-terminal DNA binding domain in a phosphorylation-dependent manner. We present crystallography and solution NMR data for the receiver domain of Escherichia coli PhoB which show distinct 2-fold symmetric dimers in the inactive and active states. These structures, together with the previously determined structure of the C-terminal domain of PhoB bound to DNA, define the conformation of the active transcription factor and provide a model for the mechanism of activation in the OmpR/PhoB subfamily, the largest group of RRs. In the active state, the receiver domains dimerize with 2-fold rotational symmetry using their alpha4-beta5-alpha5 faces, while the effector domains bind to DNA direct repeats with tandem symmetry, implying a loss of intramolecular interactions.
Collapse
Affiliation(s)
- Priti Bachhawat
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
| | - GVT Swapna
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
- Howard Hughes Medical Institute, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
- Correspondence: ()
| |
Collapse
|
72
|
Milani M, Leoni L, Rampioni G, Zennaro E, Ascenzi P, Bolognesi M. An Active-like Structure in the Unphosphorylated StyR Response Regulator Suggests a Phosphorylation- Dependent Allosteric Activation Mechanism. Structure 2005; 13:1289-97. [PMID: 16154086 DOI: 10.1016/j.str.2005.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/19/2005] [Accepted: 05/27/2005] [Indexed: 01/26/2023]
Abstract
StyR belongs to the FixJ subfamily of signal transduction response regulators; it controls transcription of the styABCD operon coding for styrene catabolism in Pseudomonas fluorescens ST. The crystal structure of unphosphorylated StyR is reported at 2.2 A resolution. StyR is composed of an N-terminal regulatory domain (StyR-N) and a C-terminal DNA binding domain (StyR-C). The two domains are separated by an elongated linker alpha helix (34 residues), a new feature in known response regulator structures. StyR-C is structured similarly to the DNA binding domain of the response regulator NarL. StyR-N shows structural reorganization of the phosphate receiving region involved in activation/homodimerization: specific residues adopt an "active-like" conformation, and the alpha4 helix, involved in dimerization of the homologous FixJ response regulator, is trimmed to just one helical turn. Overall, structural considerations suggest that phosphorylation may act as an allosteric switch, shifting a preexisting StyR equilibrium toward the active, dimeric, DNA binding form.
Collapse
Affiliation(s)
- Mario Milani
- Giannina Gaslini Institute and INFM, Largo G. Gaslini 5, I-16147 Genova, Italy
| | | | | | | | | | | |
Collapse
|
73
|
Toro-Roman A, Mack TR, Stock AM. Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the alpha4-beta5-alpha5 face. J Mol Biol 2005; 349:11-26. [PMID: 15876365 PMCID: PMC3690759 DOI: 10.1016/j.jmb.2005.03.059] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/20/2005] [Accepted: 03/22/2005] [Indexed: 12/24/2022]
Abstract
Escherichia coli react to changes from aerobic to anaerobic conditions of growth using the ArcA-ArcB two-component signal transduction system. This system, in conjunction with other proteins, regulates the respiratory metabolic pathways in the organism. ArcA is a member of the OmpR/PhoB subfamily of response regulator transcription factors that are known to regulate transcription by binding in tandem to target DNA direct repeats. It is still unclear in this subfamily how activation by phosphorylation of the regulatory domain of response regulators stimulates DNA binding by the effector domain and how dimerization and domain orientation, as well as intra- and intermolecular interactions, affect this process. In order to address these questions we have solved the crystal structures of the regulatory domain of ArcA in the presence and absence of the phosphoryl analog, BeF3-. In the crystal structures, the regulatory domain of ArcA forms a symmetric dimer mediated by the alpha4-beta5-alpha5 face of the protein and involving a number of residues that are highly conserved in the OmpR/PhoB subfamily. It is hypothesized that members of this subfamily use a common mechanism of regulation by dimerization. Additional biophysical studies were employed to probe the oligomerization state of ArcA, as well as its individual domains, in solution. The solution studies show the propensity of the individual domains to associate into oligomers larger than the dimer observed for the intact protein, and suggest that the C-terminal DNA-binding domain also plays a role in oligomerization.
Collapse
Affiliation(s)
- Alejandro Toro-Roman
- Department of Chemistry and Chemical Biology, Rutgers University
- Center for Advanced Biotechnology and Medicine
| | - Timothy R. Mack
- Center for Advanced Biotechnology and Medicine
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School
- Howard Hughes Medical Institute, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
- Corresponding author:
| |
Collapse
|
74
|
Xu Q, Schwarzenbacher R, McMullan D, von Delft F, Brinen LS, Canaves JM, Dai X, Deacon AM, Elsliger MA, Eshagi S, Floyd R, Godzik A, Grittini C, Grzechnik SK, Jaroszewski L, Karlak C, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, Lesley SA, Levin I, McPhillips TM, Miller MD, Morse A, Moy K, Ouyang J, Page R, Quijano K, Robb A, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, Wang X, West B, Wolf G, Hodgson KO, Wooley J, Wilson IA. Crystal structure of a ribose-5-phosphate isomerase RpiB (TM1080) from Thermotoga maritima at 1.90 A resolution. Proteins 2004; 56:171-5. [PMID: 15162497 DOI: 10.1002/prot.20129] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qingping Xu
- The Joint Center for Structural Genomics, Stanford University, Menlo Park, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Bent CJ, Isaacs NW, Mitchell TJ, Riboldi-Tunnicliffe A. Crystal structure of the response regulator 02 receiver domain, the essential YycF two-component system of Streptococcus pneumoniae in both complexed and native states. J Bacteriol 2004; 186:2872-9. [PMID: 15090529 PMCID: PMC387779 DOI: 10.1128/jb.186.9.2872-2879.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of bacterial cellular responses to environmental signals are mediated by two-component signal transduction systems comprising a membrane-associated histidine protein kinase and a cytoplasmic response regulator (RR), which interpret specific stimuli and produce a measured physiological response. In RR activation, transient phosphorylation of a highly conserved aspartic acid residue drives the conformation changes needed for full activation of the protein. Sequence homology reveals that RR02 from Streptococcus pneumoniae belongs to the OmpR subfamily of RRs. The structures of the receiver domains from four members of this family, DrrB and DrrD from Thermotoga maritima, PhoB from Escherichia coli, and PhoP from Bacillus subtilis, have been elucidated. These domains are globally very similar in that they are composed of a doubly wound alpha(5)beta(5); however, they differ remarkably in the fine detail of the beta4-alpha4 and alpha4 regions. The structures presented here reveal a further difference of the geometry in this region. RR02 is has been shown to be the essential RR in the gram-positive bacterium S. pneumoniae R. Lange, C. Wagner, A. de Saizieu, N. Flint, J. Molnos, M. Stieger, P. Caspers, M. Kamber, W. Keck, and K. E. Amrein, Gene 237:223-234, 1999; J. P. Throup, K. K. Koretke, A. P. Bryant, K. A. Ingraham, A. F. Chalker, Y. Ge, A. Marra, N. G. Wallis, J. R. Brown, D. J. Holmes, M. Rosenberg, and M. K. Burnham, Mol. Microbiol. 35:566-576, 2000). RR02 functions as part of a phosphotransfer system that ultimately controls the levels of competence within the bacteria. Here we report the native structure of the receiver domain of RR02 from serotype 4 S. pneumoniae (as well as acetate- and phosphate-bound forms) at different pH levels. Two native structures at 2.3 A, phased by single-wavelength anomalous diffraction (xenon SAD), and 1.85 A and a third structure at pH 5.9 revealed the presence of a phosphate ion outside the active site. The fourth structure revealed the presence of an acetate molecule in the active site.
Collapse
Affiliation(s)
- Colin J Bent
- Department of Chemistry, Division of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | |
Collapse
|
76
|
Geng H, Nakano S, Nakano MM. Transcriptional activation by Bacillus subtilis ResD: tandem binding to target elements and phosphorylation-dependent and -independent transcriptional activation. J Bacteriol 2004; 186:2028-37. [PMID: 15028686 PMCID: PMC374413 DOI: 10.1128/jb.186.7.2028-2037.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of genes involved in nitrate respiration in Bacillus subtilis is regulated by the ResD-ResE two-component signal transduction system. The membrane-bound ResE sensor kinase perceives a redox-related signal(s) and phosphorylates the cognate response regulator ResD, which enables interaction of ResD with ResD-dependent promoters to activate transcription. Hydroxyl radical footprinting analysis revealed that ResD tandemly binds to the -41 to -83 region of hmp and the -46 to -92 region of nasD. In vitro runoff transcription experiments showed that ResD is necessary and sufficient to activate transcription of the ResDE regulon. Although phosphorylation of ResD by ResE kinase greatly stimulated transcription, unphosphorylated ResD, as well as ResD with a phosphorylation site (Asp57) mutation, was able to activate transcription at a low level. The D57A mutant was shown to retain the activity in vivo to induce transcription of the ResDE regulon in response to oxygen limitation, suggesting that ResD itself, in addition to its activation through phosphorylation-mediated conformation change, senses oxygen limitation via an unknown mechanism leading to anaerobic gene activation.
Collapse
Affiliation(s)
- Hao Geng
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
77
|
Chen Y, Abdel-Fattah WR, Hulett FM. Residues required for Bacillus subtilis PhoP DNA binding or RNA polymerase interaction: alanine scanning of PhoP effector domain transactivation loop and alpha helix 3. J Bacteriol 2004; 186:1493-502. [PMID: 14973033 PMCID: PMC344424 DOI: 10.1128/jb.186.5.1493-1502.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis PhoP is a member of the OmpR family of response regulators that activates or represses genes of the Pho regulon upon phosphorylation by PhoR in response to phosphate deficiency. Because PhoP binds DNA and is a dimer in solution independent of its phosphorylation state, phosphorylation of PhoP may optimize DNA binding or the interaction with RNA polymerase. We describe alanine scanning mutagenesis of the PhoP alpha loop and alpha helix 3 region of PhoPC (Val190 to E214) and functional analysis of the mutated proteins. Eight residues important for DNA binding were clustered between Val202 and Arg210. Using in vivo and in vitro functional analyses, we identified three classes of mutated proteins. Class I proteins (PhoP(I206A), PhoP(R210A), PhoP(L209A), and PhoP(H208A)) were phosphorylation proficient and could dimerize but could not bind DNA or activate transcription in vivo or in vitro. Class II proteins (PhoP(H205A) and PhoP(V204A)) were phosphorylation proficient and could dimerize but could not bind DNA prior to phosphorylation. Members of this class had higher transcription activation in vitro than in vivo. The class III mutants, PhoP(V202A) and PhoP(D203A), had a reduced rate of phosphotransfer and could dimerize but could not bind DNA or activate transcription in vivo or in vitro. Seven alanine substitutions in PhoP (PhoP(V190A), PhoP(W191A), PhoP(Y193A), PhoP(F195A), PhoP(G197A,) PhoP(T199A), and PhoP(R200A)) that specifically affected transcription activation were broadly distributed throughout the transactivation loop extending from Val190 to as far toward the C terminus as Arg200. PhoP(W191A) and PhoP(R200A) could not activate transcription, while the other five mutant proteins showed decreased transcription activation in vivo or in vitro or both. The mutagenesis studies may indicate that PhoP has a long transactivation loop and a short alpha helix 3, more similar to OmpR than to PhoB of Escherichia coli.
Collapse
Affiliation(s)
- Yinghua Chen
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
78
|
Smith JG, Latiolais JA, Guanga GP, Pennington JD, Silversmith RE, Bourret RB. A search for amino acid substitutions that universally activate response regulators. Mol Microbiol 2003; 51:887-901. [PMID: 14731287 DOI: 10.1046/j.1365-2958.2003.03882.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two-component regulatory systems, typically composed of a sensor kinase to detect a stimulus and a response regulator to execute a response, are widely used by microorganisms for signal transduction. Response regulators exhibit a high degree of structural similarity and undergo analogous activating conformational changes upon phosphorylation. The activity of particular response regulators can be increased by specific amino acid substitutions, which either prolong the lifetime or mimic key features of the phosphorylated state. We probed the universality of response regulator activation by amino acid substitution. Thirty-six mutations that activate 11 different response regulators were identified from the literature. To determine whether the activated phenotypes would be retained in the context of a different response regulator, we recreated 51 analogous amino acid substitutions at corresponding positions of CheY. About 55% of the tested substitutions completely or partially inactivated CheY, approximately 30% were phenotypically silent, and approximately 15% activated CheY. Three previously uncharacterized activated CheY mutants were found. The 94NS (and presumably 94NT) substitutions resulted in resistance to CheZ-mediated dephosphorylation. The 113AP substitution led to enhanced autophosphorylation and may increase the fraction of non-phosphorylated CheY molecules that populate the activated conformation. The locations of activating substitutions on the response regulator three-dimensional structure are generally consistent with current understanding of the activation mechanism. The best candidates for potentially universal activating substitutions of response regulators identified in this study were 13DK and 113AP.
Collapse
Affiliation(s)
- Jenny G Smith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | | | | | | | | | |
Collapse
|
79
|
Harrod AC, Yang X, Junker M, Reitzer L. Evidence for a second interaction between the regulatory amino-terminal and central output domains of the response regulator NtrC (nitrogen regulator I) in Escherichia coli. J Biol Chem 2003; 279:2350-9. [PMID: 14563853 DOI: 10.1074/jbc.m306181200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrogen limitation in Escherichia coli activates about 100 genes. Their expression requires the response regulator NtrC (also called nitrogen regulator I or NR(I)). Phosphorylation of the amino-terminal domain (NTD) of NtrC activates the neighboring central domain and leads to transcriptional activation from promoters that require sigma(54)-containing RNA polymerase. The NTD has five beta strands alternating with five alpha helices. Phosphorylation of aspartate 54 has been shown to reposition alpha helix 3 to beta strand 5 (the "3445 face") within the NTD. To further study the interactions between the amino-terminal and central domains, we isolated strains with alterations in the NTD that were able to grow on a poor nitrogen source in the absence of phosphorylation by the cognate sensor kinase. We identified strains with alterations located in the 3445 face and alpha helix 5. Both types of alterations stimulated central domain activities. The alpha helix 5 alterations differed from those in the 3445 face. They did not cause a large scale conformational change in the NTD, which is not necessary for transcriptional activation in these mutants. Yeast two-hybrid analysis indicated that substitutions in both alpha helix 5 and the 3445 face diminish the interaction between the NTD and the central domain. Our results suggest that alpha helix 5 of the NTD, in addition to the 3445 face, interacts with the central domain. We present a model of interdomain signal transduction that proposes different functions for alpha helix 5 and the 3445 face.
Collapse
Affiliation(s)
- Albert Carson Harrod
- Molecular and Cell Biology Department, The University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | | | | | |
Collapse
|
80
|
Robinson VL, Wu T, Stock AM. Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. J Bacteriol 2003; 185:4186-94. [PMID: 12837793 PMCID: PMC164896 DOI: 10.1128/jb.185.14.4186-4194.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-terminal regulatory domains of bacterial response regulator proteins catalyze phosphoryl transfer and function as phosphorylation-dependent regulatory switches to control the output activities of C-terminal effector domains. Structures of numerous isolated regulatory and effector domains have been determined. However, a detailed understanding of regulatory interactions among these domains has been limited by the relative paucity of structural data for intact multidomain response regulator proteins. The first multidomain structures determined, those of transcription factor NarL and methylesterase CheB, both revealed extensive interdomain interfaces. The regulatory domains obstruct access to the functional sites of the effector domains, indicating a regulatory mechanism based on inhibition. In contrast, the recently determined structure of the OmpR/PhoB homologue DrrD revealed no significant interdomain interface, suggesting that the domains are tethered by a flexible linker and lack a fixed orientation relative to each other. To address the generality of this feature, we have determined the 1.8-A resolution crystal structure of Thermotoga maritima DrrB, providing a second structure of a multidomain response regulator of the OmpR/PhoB subfamily. The structure reveals an extensive domain interface of 751 A(2) and therefore differs greatly from that observed in DrrD. Residues that are crucial players in defining the activation state of the regulatory domain contribute to this interface, implying that conformational changes associated with phosphorylation will influence these intramolecular contacts. The DrrB and DrrD structures are suggestive of different signaling mechanisms, with intramolecular communication between N- and C-terminal domains making substantially different contributions to effector domain regulation in individual members of the OmpR/PhoB family.
Collapse
Affiliation(s)
- Victoria L Robinson
- Howard Hughes Medical Institute, Center for Advanced Biotechnology and Medicine, and Department of Biochemistry, Robert Wood Johnson Medical School, The University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
81
|
Saito K, Ito E, Hosono K, Nakamura K, Imai K, Iizuka T, Shiro Y, Nakamura H. The uncoupling of oxygen sensing, phosphorylation signalling and transcriptional activation in oxygen sensor FixL and FixJ mutants. Mol Microbiol 2003; 48:373-83. [PMID: 12675798 DOI: 10.1046/j.1365-2958.2003.03446.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rhizobial FixL/FixJ system, a member of the superfamily of bacterial two-component signal transducing systems, regulates the expression of nitrogen fixation-related genes by sensing environmental oxygen tension. Oxygen-free (deoxy) FixL is autophosphorylated at an invariant histidine residue with ATP, and the phosphoryl group is transferred to FixJ, leading to an enhancement in transcriptional activity at low oxygen tensions, but the histidine kinase activity of the oxygen-bound (oxy) form is inhibited. To investigate the mechanism of oxygen sensing, we established a FixL/FixJ-mediated PfixK-lacZ reporter system in Escherichia coli, and isolated FixL and FixJ mutations conferring an upregulation of lacZ gene expression on the reporter cells even under aerobic conditions. FixL mutant proteins, which contain single amino acid changes near the autophosphorylation site, showed elevated levels of autophosphorylation and a concomitant phosphoryl transfer to FixJ in the presence of oxygen, although their oxygen-binding affinities were unimpaired. These mutational analyses suggest that the autophosphorylation domain plays a crucial role in regulatory coupling between oxygen binding and kinase activity. FixJ mutants in helix alpha1 and strand beta5 of the N-terminal half exhibited the formation of a stable acyl phosphate bond. In contrast, those in helices alpha4 and alpha5 constitutively bound to the fixK promoter in a monomeric form, suggesting that the alpha4 and alpha5 helices may be involved in the post-phosphorylation/dimerization signal transfer to liberate the DNA-binding activity of the C-terminal domain, not only serving as a dimerization interface.
Collapse
Affiliation(s)
- Ken Saito
- RIKEN Harima Institute/SPring-8, Mikazuki, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
This report summarizes the Critical Assessment of Protein Structure Prediction (CASP5) target proteins, which included 67 experimental models submitted from various structural genomics efforts and independent research groups. Throughout this special issue, CASP5 targets are referred to with the identification numbers T0129-T0195. Several of these targets were excluded from the assessment for various reasons: T0164 and T0166 were cancelled by the organizers; T0131, T0144, T0158, T0163, T0171, T0175, and T0180 were not available in time; T0145 was "natively unfolded"; the T0139 structure became available before the target expired; and T0194 was solved for a different sequence than the one submitted. Table I outlines the sequence and structural information available for CASP5 proteins in the context of existing folds and evolutionary relationships. This information provided the basis for a domain-based classification of the target structures into three assessment categories: comparative modeling (CM), fold recognition (FR), and new fold (NF). The FR category was further subdivided into homologues [FR(H)] and analogs [FR(A)] based on evolutionary considerations, and the overlap between assessment categories was classified as CM/FR(H) and FR(A)/NF. CASP5 domains are illustrated in Figure 1. Examples of nontrivial links between CASP5 target domains and existing structures that support our classifications are provided.
Collapse
Affiliation(s)
- Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75390-9050, USA.
| | | | | | | |
Collapse
|
83
|
Birck C, Chen Y, Hulett FM, Samama JP. The crystal structure of the phosphorylation domain in PhoP reveals a functional tandem association mediated by an asymmetric interface. J Bacteriol 2003; 185:254-61. [PMID: 12486062 PMCID: PMC141828 DOI: 10.1128/jb.185.1.254-261.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PhoP from Bacillus subtilis belongs to the OmpR subfamily of response regulators. It regulates the transcription of several operons and participates in a signal transduction network that controls adaptation of the bacteria to phosphate deficiency. The receiver domains of two members of this subfamily, PhoB from Escherichia coli and DrrD from Thermotoga maritima, have been structurally characterized. These modules have similar overall folds but display remarkable differences in the conformation of the beta4-alpha4 and alpha4 regions. The crystal structure of the receiver domain of PhoP (PhoPN) described in this paper illustrates yet another geometry in this region. Another major issue of the structure determination is the dimeric state of the protein and the novel mode of association between receiver domains. The protein-protein interface is provided by two different surfaces from each protomer, and the tandem unit formed through this asymmetric interface leaves free interaction surfaces. This design is well suited for further association of PhoP dimers to form oligomeric structures. The interprotein interface buries 970 A(2) from solvent and mostly involves interactions between charged residues. As described in the accompanying paper, mutations of a single residue in one salt bridge shielded from solvent prevented dimerization of the unphosphorylated and phosphorylated response regulator and had drastic functional consequences. The three structurally documented members of the OmpR family (PhoB, DrrD, and PhoP) provide a framework to consider possible relationships between structural features and sequence signatures in critical regions of the receiver domains.
Collapse
Affiliation(s)
- Catherine Birck
- Groupe de Cristallographie Biologique, IPBS-CNRS, 31077 Toulouse, France
| | | | | | | |
Collapse
|
84
|
McGowan S, Lucet IS, Cheung JK, Awad MM, Whisstock JC, Rood JI. The FxRxHrS motif: a conserved region essential for DNA binding of the VirR response regulator from Clostridium perfringens. J Mol Biol 2002; 322:997-1011. [PMID: 12367524 DOI: 10.1016/s0022-2836(02)00850-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The VirSR two-component signal transduction pathway regulates virulence and toxin production in Clostridium perfringens, the causative agent of gas gangrene. The response regulator, VirR, binds to repeat sequences located upstream of the promoter and is directly responsible for the transcriptional activation of pfoA, the structural gene for the cholesterol-dependent cytolysin, perfringolysin O. Comparative sequence analysis of the 236 amino acid residue VirR protein revealed a two-domain structure: a typical N-terminal response regulator domain and an uncharacterised C-terminal domain. Database searching revealed that over 40 other proteins, many of which appeared to be response regulators or transcriptional activators, had homology with the VirR C-terminal domain (VirRc). Multiple sequence alignment of this VirRc family revealed a highly conserved region that was designated the FxRxHrS motif. By deletion analysis this motif was shown to be essential for the functional integrity of the VirR protein. Alanine scanning mutagenesis and subsequent phenotypic analysis indicated that conserved residues located within the motif were required for activity. These residues extended from L179 to N194. More detailed site-directed mutagenesis showed that amino acid residues R186, H188 and S190 were essential for activity since even conservative substitutions in these positions resulted in non-functional proteins. Three of the mutant proteins, R186K, S190A and S190C, were purified and shown by in vitro gel shift analysis to be unable to bind to the specific target DNA with the same efficiency as the wild-type protein. These data reveal for the first time that VirRc functions as a DNA binding domain in which the highly conserved FxRxHrS motif has a functional role. These studies have important implications for this new family of transcriptional factors since they imply that the conserved FxRxHrS motif may be involved in DNA binding in all of these proteins, irrespective of their biological role.
Collapse
Affiliation(s)
- Sheena McGowan
- Bacterial Pathogenesis Research Group, Department of Microbiology, Monash University, 3800 Australia
| | | | | | | | | | | |
Collapse
|
85
|
Mattison K, Oropeza R, Kenney LJ. The linker region plays an important role in the interdomain communication of the response regulator OmpR. J Biol Chem 2002; 277:32714-21. [PMID: 12077136 DOI: 10.1074/jbc.m204122200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OmpR is the response regulator of a two-component regulatory system that controls the expression of the porin genes ompF and ompC in Escherichia coli. This regulator consists of two domains joined by a flexible linker region. The amino-terminal domain is phosphorylated by the sensor kinase EnvZ, and the carboxyl-terminal domain binds DNA via a winged helix-turn-helix motif. In vitro studies have shown that amino-terminal phosphorylation enhances the DNA binding affinity of OmpR and, conversely, that DNA binding by the carboxyl terminus increases OmpR phosphorylation. In the present work, we demonstrate that the linker region contributes to this communication between the two domains of OmpR. Changing the specific amino acid composition of the linker alters OmpR function, as does increasing or decreasing its length. Three linker mutants give rise to an OmpF(+) OmpC(-) phenotype, but the defects are not due to a shared molecular mechanism. Currently, functional homology between response regulators is predicted based on similarities in the amino and carboxyl-terminal domains. The results presented here indicate that linker length and composition should also be considered. Furthermore, classification of response regulators in the same subfamily does not necessarily imply that they share a common response mechanism.
Collapse
Affiliation(s)
- Kirsten Mattison
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
86
|
Birck C, Malfois M, Svergun D, Samama J. Insights into signal transduction revealed by the low resolution structure of the FixJ response regulator. J Mol Biol 2002; 321:447-57. [PMID: 12162958 DOI: 10.1016/s0022-2836(02)00651-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two-component regulatory systems mediate most of the bacterial cells responses to a variety of signals. In Sinorhizobium meliloti, the FixL-FixJ couple controls the expression of the nitrogen fixation genes through the binding of the two-domains response regulator FixJ to the fixK and nifA promoters. Phosphorylation of the N-terminal regulatory domain activates the protein and releases the inhibition of the C-terminal DNA-binding domain that occurs in the unphosphorylated protein. Insights into the transition from the inactive to the active form are provided by the architecture of the unphosphorylated response regulator reported in this study. The relative position and orientation of the N and C-terminal domains were defined from the molecular envelope restored from small-angle X-ray scattering (SAXS) data. The involvement of the alpha4-beta5-alpha5 surface of the regulatory domain, the linker region and the C-terminal helix of the DNA-binding domain in the interdomain interface of unphosphorylated FixJ was supported by biochemical investigations. These results, together with the previously reported studies on the phosphorylated regulatory domain of FixJ, emphasize the role of the alpha4-beta5-alpha5 surface in mediating a flow of information in this response regulator. This first study by SAXS of proteins from two-component systems suggests that the method could be successfully applied to other members of this family and could be suitable for the study of multidomain proteins and protein-protein complexes regulated through molecular interfaces in the low micromolar range.
Collapse
Affiliation(s)
- Catherine Birck
- Groupe de Cristallographie Biologique, CNRS-IPBS, 205 route de Narbonne, 31077- Cedex, Toulouse, France
| | | | | | | |
Collapse
|
87
|
Blanco AG, Sola M, Gomis-Rüth FX, Coll M. Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator. Structure 2002; 10:701-13. [PMID: 12015152 DOI: 10.1016/s0969-2126(02)00761-x] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PhoB is a signal transduction response regulator that activates nearly 40 genes in phosphate depletion conditions in E. coli and closely related bacteria. The structure of the PhoB effector domain in complex with its target DNA sequence, or pho box, reveals a novel tandem arrangement in which several monomers bind head to tail to successive 11-base pair direct-repeat sequences, coating one face of a smoothly bent double helix. The protein has a winged helix fold in which the DNA recognition elements comprise helix alpha 3, penetrating the major groove, and a beta hairpin wing interacting with a compressed minor groove via Arg219, tightly sandwiched between the DNA sugar backbones. The transactivation loops protrude laterally in an appropriate orientation to interact with the RNA polymerase sigma(70) subunit, which triggers transcription initiation.
Collapse
Affiliation(s)
- Alexandre G Blanco
- Institut de Biologia Molecular de Barcelona, CSIC, Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | | | | | | |
Collapse
|
88
|
Abstract
In this issue of Structure, Blanco et al. describe the first structure of a two-component response regulator effector domain bound to its target DNA, showing novel tandem binding to successive direct repeat sequences of pho boxes from the phoA operon promotor.
Collapse
|