51
|
Atkinson GC. The evolutionary and functional diversity of classical and lesser-known cytoplasmic and organellar translational GTPases across the tree of life. BMC Genomics 2015; 16:78. [PMID: 25756599 PMCID: PMC4342817 DOI: 10.1186/s12864-015-1289-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The ribosome translates mRNA to protein with the aid of a number of accessory protein factors. Translational GTPases (trGTPases) are an integral part of the 'core set' of essential translational factors, and are some of the most conserved proteins across life. This study takes advantage of the wealth of available genomic data, along with novel functional information that has come to light for a number of trGTPases to address the full evolutionary and functional diversity of this superfamily across all domains of life. RESULTS Through sensitive sequence searching combined with phylogenetic analysis, 57 distinct subfamilies of trGTPases are identified: 14 bacterial, 7 archaeal and 35 eukaryotic (of which 21 are known or predicted to be organellar). The results uncover the functional evolution of trGTPases from before the last common ancestor of life on earth to the current day. CONCLUSIONS While some trGTPases are universal, others are limited to certain taxa, suggesting lineage-specific translational control mechanisms that exist on a base of core factors. These lineage-specific features may give organisms the ability to tune their translation machinery to respond to their environment. Only a fraction of the diversity of the trGTPase superfamily has been subjected to experimental analyses; this comprehensive classification brings to light novel and overlooked translation factors that are worthy of further investigation.
Collapse
|
52
|
Crepin T, Shalak VF, Yaremchuk AD, Vlasenko DO, McCarthy A, Negrutskii BS, Tukalo MA, El'skaya AV. Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes. Nucleic Acids Res 2014; 42:12939-48. [PMID: 25326326 PMCID: PMC4227793 DOI: 10.1093/nar/gku974] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon–anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome. The structures of both the ‘GTP’- and ‘GDP’-bound conformations of eEF1A are unknown. Thus, the eEF1A-related ribosomal mechanisms were anticipated only by analogy with the bacterial homolog EF-Tu. Here, we report the first crystal structure of the mammalian eEF1A2*GDP complex which indicates major differences in the organization of the nucleotide-binding domain and intramolecular movements of eEF1A compared to EF-Tu. Our results explain the nucleotide exchange mechanism in the mammalian eEF1A and suggest that the first step of eEF1A*GDP dissociation from the 80S ribosome is the rotation of the nucleotide-binding domain observed after GTP hydrolysis.
Collapse
Affiliation(s)
- Thibaut Crepin
- University of Grenoble Alpes, UVHCI, F-38000 Grenoble, France CNRS, UVHCI, F-38000 Grenoble, France Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - Vyacheslav F Shalak
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| | - Anna D Yaremchuk
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 France
| | - Dmytro O Vlasenko
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| | - Andrew McCarthy
- Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 France
| | - Boris S Negrutskii
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| | - Michail A Tukalo
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| | - Anna V El'skaya
- State Key laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo str., Kiev 03680, Ukraine
| |
Collapse
|
53
|
Kuhle B, Ficner R. Structural insight into the recognition of amino-acylated initiator tRNA by eIF5B in the 80S initiation complex. BMC STRUCTURAL BIOLOGY 2014; 14:20. [PMID: 25350701 PMCID: PMC4236685 DOI: 10.1186/s12900-014-0020-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/08/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND From bacteria to eukarya, the specific recognition of the amino-acylated initiator tRNA by the universally conserved translational GTPase eIF5B/IF2 is one of the most central interactions in the process of translation initiation. However, the molecular details, particularly also in the context of ribosomal initiation complexes, are only partially understood. RESULTS A reinterpretation of the 6.6 Å resolution cryo-electron microscopy (cryo-EM) structure of the eukaryal 80S initiation complex using the recently published crystal structure of eIF5B reveals that domain IV of eIF5B forms extensive interaction interfaces with the Met-tRNAi, which, in contrast to the previous model, directly involve the methionylated 3' CCA-end of the acceptor stem. These contacts are mediated by a conserved surface area, which is homologous to the surface areas mediating the interactions between IF2 and fMet-tRNAfMet as well as between domain II of EF-Tu and amino-acylated elongator tRNAs. CONCLUSIONS The reported observations provide novel direct structural insight into the specific recognition of the methionylated acceptor stem by eIF5B domain IV and demonstrate its universality among eIF5B/IF2 orthologs in the three domains of life.
Collapse
|
54
|
Structures and functions of Qβ replicase: translation factors beyond protein synthesis. Int J Mol Sci 2014; 15:15552-70. [PMID: 25184952 PMCID: PMC4200798 DOI: 10.3390/ijms150915552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022] Open
Abstract
Qβ replicase is a unique RNA polymerase complex, comprising Qβ virus-encoded RNA-dependent RNA polymerase (the catalytic β-subunit) and three host-derived factors: translational elongation factor (EF) -Tu, EF-Ts and ribosomal protein S1. For almost fifty years, since the isolation of Qβ replicase, there have been several unsolved, important questions about the mechanism of RNA polymerization by Qβ replicase. Especially, the detailed functions of the host factors, EF-Tu, EF-Ts, and S1, in Qβ replicase, which are all essential in the Escherichia coli (E. coli) host for protein synthesis, had remained enigmatic, due to the absence of structural information about Qβ replicase. In the last five years, the crystal structures of the core Qβ replicase, consisting of the β-subunit, EF-Tu and Ts, and those of the core Qβ replicase representing RNA polymerization, have been reported. Recently, the structure of Qβ replicase comprising the β-subunit, EF-Tu, EF-Ts and the N-terminal half of S1, which is capable of initiating Qβ RNA replication, has also been reported. In this review, based on the structures of Qβ replicase, we describe our current understanding of the alternative functions of the host translational elongation factors and ribosomal protein S1 in Qβ replicase as replication factors, beyond their established functions in protein synthesis.
Collapse
|
55
|
Yikilmaz E, Chapman SJ, Schrader JM, Uhlenbeck OC. The interface between Escherichia coli elongation factor Tu and aminoacyl-tRNA. Biochemistry 2014; 53:5710-20. [PMID: 25094027 PMCID: PMC4159200 DOI: 10.1021/bi500533x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Nineteen of the highly conserved
residues of Escherichia
coli (E. coli) Elongation factor Tu (EF-Tu)
that form the binding interface with aa-tRNA were mutated to alanine
to better understand how modifying the thermodynamic properties of
EF-Tu–tRNA interaction can affect the decoding properties of
the ribosome. Comparison of ΔΔGo values for binding EF-Tu to aa-tRNA show that the majority of the
interface residues stabilize the ternary complex and their thermodynamic
contribution can depend on the tRNA species that is used. Experiments
with a very tight binding mutation of tRNATyr indicate
that interface amino acids distant from the tRNA mutation can contribute
to the specificity. For nearly all of the mutations, the values of
ΔΔGo were identical to those
previously determined at the orthologous positions of Thermus
thermophilus (T. thermophilus) EF-Tu indicating
that the thermodynamic properties of the interface were conserved
between distantly related bacteria. Measurement of the rate of GTP
hydrolysis on programmed ribosomes revealed that nearly all of the
interface mutations were able to function in ribosomal decoding. The
only interface mutation with greatly impaired GTPase activity was
R223A which is the only one that also forms a direct contact with
the ribosome. Finally, the ability of the EF-Tu interface mutants
to destabilize the EF-Tu–aa-tRNA interaction on the ribosome
after GTP hydrolysis were evaluated by their ability to suppress the
hyperstable T1 tRNATyr variant where EF-Tu release is sufficiently
slow to limit the rate of peptide bond formation (kpep) . In general, interface mutations that destabilize
EF-Tu binding are also able to stimulate kpep of T1 tRNATyr, suggesting that the thermodynamic properties
of the EF-Tu–aa-tRNA interaction on the ribosome are quite
similar to those found in the free ternary complex.
Collapse
Affiliation(s)
- Emine Yikilmaz
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | |
Collapse
|
56
|
Haruna KI, Alkazemi MH, Liu Y, Söll D, Englert M. Engineering the elongation factor Tu for efficient selenoprotein synthesis. Nucleic Acids Res 2014; 42:9976-83. [PMID: 25064855 PMCID: PMC4150793 DOI: 10.1093/nar/gku691] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selenocysteine (Sec) is naturally co-translationally incorporated into proteins by recoding the UGA opal codon with a specialized elongation factor (SelB in bacteria) and an RNA structural signal (SECIS element). We have recently developed a SECIS-free selenoprotein synthesis system that site-specifically—using the UAG amber codon—inserts Sec depending on the elongation factor Tu (EF-Tu). Here, we describe the engineering of EF-Tu for improved selenoprotein synthesis. A Sec-specific selection system was established by expression of human protein O6-alkylguanine-DNA alkyltransferase (hAGT), in which the active site cysteine codon has been replaced by the UAG amber codon. The formed hAGT selenoprotein repairs the DNA damage caused by the methylating agent N-methyl-N′-nitro-N-nitrosoguanidine, and thereby enables Escherichia coli to grow in the presence of this mutagen. An EF-Tu library was created in which codons specifying the amino acid binding pocket were randomized. Selection was carried out for enhanced Sec incorporation into hAGT; the resulting EF-Tu variants contained highly conserved amino acid changes within members of the library. The improved UTu-system with EF-Sel1 raises the efficiency of UAG-specific Sec incorporation to >90%, and also doubles the yield of selenoprotein production.
Collapse
Affiliation(s)
- Ken-ichi Haruna
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Muhammad H Alkazemi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Yuchen Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
57
|
Wada M, Ito K. A genetic approach for analyzing the co-operative function of the tRNA mimicry complex, eRF1/eRF3, in translation termination on the ribosome. Nucleic Acids Res 2014; 42:7851-66. [PMID: 24914055 PMCID: PMC4081094 DOI: 10.1093/nar/gku493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During termination of translation in eukaryotes, a GTP-binding protein, eRF3, functions within a complex with the tRNA-mimicking protein, eRF1, to decode stop codons. It remains unclear how the tRNA-mimicking protein co-operates with the GTPase and with the functional sites on the ribosome. In order to elucidate the molecular characteristics of tRNA-mimicking proteins involved in stop codon decoding, we have devised a heterologous genetic system in Saccharomyces cerevisiae. We found that eRF3 from Pneumocystis carinii (Pc-eRF3) did not complement depletion of S. cerevisiae eRF3. The strength of Pc-eRF3 binding to Sc-eRF1 depends on the GTP-binding domain, suggesting that defects of the GTPase switch in the heterologous complex causes the observed lethality. We isolated mutants of Pc-eRF3 and Sc-eRF1 that restore cell growth in the presence of Pc-eRF3 as the sole source of eRF3. Mapping of these mutations onto the latest 3D-complex structure revealed that they were located in the binding-interface region between eRF1 and eRF3, as well as in the ribosomal functional sites. Intriguingly, a novel functional site was revealed adjacent to the decoding site of eRF1, on the tip domain that mimics the tRNA anticodon loop. This novel domain likely participates in codon recognition, coupled with the GTPase function.
Collapse
Affiliation(s)
- Miki Wada
- Technical office, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, 277-8562, Japan
| | - Koichi Ito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba, 277-8562, Japan
| |
Collapse
|
58
|
Peacock JR, Walvoord RR, Chang AY, Kozlowski MC, Gamper H, Hou YM. Amino acid-dependent stability of the acyl linkage in aminoacyl-tRNA. RNA (NEW YORK, N.Y.) 2014; 20:758-64. [PMID: 24751649 PMCID: PMC4024630 DOI: 10.1261/rna.044123.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Aminoacyl-tRNAs are the biologically active substrates for peptide bond formation in protein synthesis. The stability of the acyl linkage in each aminoacyl-tRNA, formed through an ester bond that connects the amino acid carboxyl group with the tRNA terminal 3'-OH group, is thus important. While the ester linkage is the same for all aminoacyl-tRNAs, the stability of each is not well characterized, thus limiting insight into the fundamental process of peptide bond formation. Here, we show, by analysis of the half-lives of 12 of the 22 natural aminoacyl-tRNAs used in peptide bond formation, that the stability of the acyl linkage is effectively determined only by the chemical nature of the amino acid side chain. Even the chirality of the side chain exhibits little influence. Proline confers the lowest stability to the linkage, while isoleucine and valine confer the highest, whereas the nucleotide sequence in the tRNA provides negligible contribution to the stability. We find that, among the variables tested, the protein translation factor EF-Tu is the only one that can protect a weak acyl linkage from hydrolysis. These results suggest that each amino acid plays an active role in determining its own stability in the acyl linkage to tRNA, but that EF-Tu overrides this individuality and protects the acyl linkage stability for protein synthesis on the ribosome.
Collapse
Affiliation(s)
- Jacob R. Peacock
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Ryan R. Walvoord
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Angela Y. Chang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Marisa C. Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
- Corresponding authorE-mail
| |
Collapse
|
59
|
Shimizu Y. Biochemical aspects of bacterial strategies for handling the incomplete translation processes. Front Microbiol 2014; 5:170. [PMID: 24782856 PMCID: PMC3989591 DOI: 10.3389/fmicb.2014.00170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/28/2014] [Indexed: 11/13/2022] Open
Abstract
During protein synthesis in cells, translating ribosomes may encounter abnormal situations that lead to retention of immature peptidyl-tRNA on the ribosome due to failure of suitable termination processes. Bacterial cells handle such situations by employing three systems that rescue the stalled translation machinery. The transfer messenger RNA/small protein B (tmRNA/SmpB) system, also called the trans-translation system, rescues stalled ribosomes by initiating template switching from the incomplete mRNA to the short open reading frame of tmRNA, leading to the production of a protein containing a C-terminal tag that renders it susceptible to proteolysis. The ArfA/RF2 and ArfB systems rescue stalled ribosomes directly by hydrolyzing the immature peptidyl-tRNA remaining on the ribosome. Here, the biochemical aspects of these systems, as clarified by recent studies, are reviewed.
Collapse
Affiliation(s)
- Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, Quantitative Biology Center - RIKEN Kobe, Hyogo, Japan
| |
Collapse
|
60
|
Siwiak M, Zielenkiewicz P. Transimulation - protein biosynthesis web service. PLoS One 2013; 8:e73943. [PMID: 24040122 PMCID: PMC3764131 DOI: 10.1371/journal.pone.0073943] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/25/2013] [Indexed: 11/17/2022] Open
Abstract
Although translation is the key step during gene expression, it remains poorly characterized at the level of individual genes. For this reason, we developed Transimulation – a web service measuring translational activity of genes in three model organisms: Escherichia coli, Saccharomyces cerevisiae and Homo sapiens. The calculations are based on our previous computational model of translation and experimental data sets. Transimulation quantifies mean translation initiation and elongation time (expressed in SI units), and the number of proteins produced per transcript. It also approximates the number of ribosomes that typically occupy a transcript during translation, and simulates their propagation. The simulation of ribosomes’ movement is interactive and allows modifying the coding sequence on the fly. It also enables uploading any coding sequence and simulating its translation in one of three model organisms. In such a case, ribosomes propagate according to mean codon elongation times of the host organism, which may prove useful for heterologous expression. Transimulation was used to examine evolutionary conservation of translational parameters of orthologous genes. Transimulation may be accessed at http://nexus.ibb.waw.pl/Transimulation (requires Java version 1.7 or higher). Its manual and source code, distributed under the GPL-2.0 license, is freely available at the website.
Collapse
Affiliation(s)
- Marlena Siwiak
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
61
|
Shah P, Ding Y, Niemczyk M, Kudla G, Plotkin J. Rate-limiting steps in yeast protein translation. Cell 2013; 153:1589-601. [PMID: 23791185 PMCID: PMC3694300 DOI: 10.1016/j.cell.2013.05.049] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 02/11/2013] [Accepted: 05/29/2013] [Indexed: 12/04/2022]
Abstract
Deep sequencing now provides detailed snapshots of ribosome occupancy on mRNAs. We leverage these data to parameterize a computational model of translation, keeping track of every ribosome, tRNA, and mRNA molecule in a yeast cell. We determine the parameter regimes in which fast initiation or high codon bias in a transgene increases protein yield and infer the initiation rates of endogenous Saccharomyces cerevisiae genes, which vary by several orders of magnitude and correlate with 5′ mRNA folding energies. Our model recapitulates the previously reported 5′-to-3′ ramp of decreasing ribosome densities, although our analysis shows that this ramp is caused by rapid initiation of short genes rather than slow codons at the start of transcripts. We conclude that protein production in healthy yeast cells is typically limited by the availability of free ribosomes, whereas protein production under periods of stress can sometimes be rescued by reducing initiation or elongation rates. Computational model of translation tracks all ribosomes, tRNAs, and mRNAs in a cell Translation is generally limited by initiation, not elongation Model allows inference of initiation rates for all yeast genes Ramp of 5′ ribosomes is caused by rapid initiation of short genes
Collapse
Affiliation(s)
- Premal Shah
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yang Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malwina Niemczyk
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH3 9LP, UK
| | - Grzegorz Kudla
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH3 9LP, UK
| | - Joshua B. Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
62
|
Safro M, Klipcan L. The mechanistic and evolutionary aspects of the 2'- and 3'-OH paradigm in biosynthetic machinery. Biol Direct 2013; 8:17. [PMID: 23835000 PMCID: PMC3716924 DOI: 10.1186/1745-6150-8-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/05/2013] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The translation machinery underlies a multitude of biological processes within the cell. The design and implementation of the modern translation apparatus on even the simplest course of action is extremely complex, and involves different RNA and protein factors. According to the "RNA world" idea, the critical link in the translation machinery may be assigned to an adaptor tRNA molecule. Its exceptional functional and structural characteristics are of primary importance in understanding the evolutionary relationships among all these macromolecular components. PRESENTATION OF THE HYPOTHESIS The 2'-3' hydroxyls of the tRNA A76 constitute chemical groups of critical functional importance, as they are implicated in almost all phases of protein biosynthesis. They contribute to: a) each step of the tRNA aminoacylation reaction catalyzed by aminoacyl-tRNA synthetases (aaRSs); b) the isomerase activity of EF-Tu, involving a mixture of the 2'(3')- aminoacyl tRNA isomers as substrates, thereby producing the required combination of amino acid and tRNA; and c) peptide bond formation at the peptidyl transferase center (PTC) of the ribosome. We hypothesize that specific functions assigned to the 2'-3' hydroxyls during peptide bond formation co-evolved, together with two modes of attack on the aminoacyl-adenylate carbonyl typical for two classes of aaRSs, and alongside the isomerase activity of EF-Tu. Protein components of the translational apparatus are universally recognized as being of ancient origin, possibly replacing RNA-based enzymes that may have existed before the last universal common ancestor (LUCA). We believe that a remnant of these processes is still imprinted on the organization of modern-day translation. TESTING AND IMPLICATIONS OF THE HYPOTHESIS Earlier publications indicate that it is possible to select ribozymes capable of attaching the aa-AMP moiety to RNA molecules. The scenario described herein would gain general acceptance, if a ribozyme able to activate the amino acid and transfer it onto the terminal ribose of the tRNA, would be found in any life form, or generated in vitro. Interestingly, recent studies have demonstrated the plausibility of using metals, likely abandoned under primordial conditions, as biomimetic catalysts of the aminoacylation reaction.
Collapse
Affiliation(s)
- Mark Safro
- Department of Structural Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel.
| | | |
Collapse
|
63
|
Witts RN, Hopson EC, Koballa DE, Van Boening TA, Hopkins NH, Patterson EV, Nagan MC. Backbone-base interactions critical to quantum stabilization of transfer RNA anticodon structure. J Phys Chem B 2013; 117:7489-97. [PMID: 23742318 DOI: 10.1021/jp400084p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transfer RNA (tRNA) anticodons adopt a highly ordered 3'-stack without significant base overlap. Density functional theory at the M06-2X/6-31+G(d,p) level in combination with natural bond orbital analysis was utilized to calculate the intramolecular interactions within the tRNA anticodon that are responsible for stabilizing the stair-stepped conformation. Ten tRNA X-ray crystal structures were obtained from the PDB databank and were trimmed to include only the anticodon bases. Hydrogenic positions were added and optimized for the structures in the stair-stepped conformation. The sugar-phosphate backbone has been retained for these calculations, revealing the role it plays in RNA structural stability. It was found that electrostatic interactions between the sugar-phosphate backbone and the base provide the most stability, rather than the traditionally studied interbase stacking. Base-stacking interactions, though present, were weak and inconsistent. Aqueous solvation was found to have little effect on the intramolecular interactions.
Collapse
Affiliation(s)
- Rachel N Witts
- Department of Chemistry, Truman State University, 100 East Normal, Kirksville, Missouri 63501, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Sivasakthi V, Anbarasu A, Ramaiah S. π–π Interactions in Structural Stability: Role in RNA Binding Proteins. Cell Biochem Biophys 2013; 67:853-63. [DOI: 10.1007/s12013-013-9573-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
65
|
Nozawa K, Ishitani R, Yoshihisa T, Sato M, Arisaka F, Kanamaru S, Dohmae N, Mangroo D, Senger B, Becker HD, Nureki O. Crystal structure of Cex1p reveals the mechanism of tRNA trafficking between nucleus and cytoplasm. Nucleic Acids Res 2013; 41:3901-14. [PMID: 23396276 PMCID: PMC3616705 DOI: 10.1093/nar/gkt010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In all eukaryotes, transcribed precursor tRNAs are maturated by processing and modification processes in nucleus and are transported to the cytoplasm. The cytoplasmic export protein (Cex1p) captures mature tRNAs from the nuclear export receptor (Los1p) on the cytoplasmic side of the nuclear pore complex, and it delivers them to eukaryotic elongation factor 1α. This conserved Cex1p function is essential for the quality control of mature tRNAs to ensure accurate translation. However, the structural basis of how Cex1p recognizes tRNAs and shuttles them to the translational apparatus remains unclear. Here, we solved the 2.2 Å resolution crystal structure of Saccharomyces cerevisiae Cex1p with C-terminal 197 disordered residues truncated. Cex1p adopts an elongated architecture, consisting of N-terminal kinase-like and a C-terminal α-helical HEAT repeat domains. Structure-based biochemical analyses suggested that Cex1p binds tRNAs on its inner side, using the positively charged HEAT repeat surface and the C-terminal disordered region. The N-terminal kinase-like domain acts as a scaffold to interact with the Ran-exportin (Los1p·Gsp1p) machinery. These results provide the structural basis of Los1p·Gsp1p·Cex1p·tRNA complex formation, thus clarifying the dynamic mechanism of tRNA shuttling from exportin to the translational apparatus.
Collapse
Affiliation(s)
- Kayo Nozawa
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-0032 Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Stolboushkina E, Nikonov S, Zelinskaya N, Arkhipova V, Nikulin A, Garber M, Nikonov O. Crystal structure of the archaeal translation initiation factor 2 in complex with a GTP analogue and Met-tRNAf(Met.). J Mol Biol 2013; 425:989-98. [PMID: 23291527 DOI: 10.1016/j.jmb.2012.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/24/2012] [Accepted: 12/26/2012] [Indexed: 11/29/2022]
Abstract
Heterotrimeric aIF2αβγ (archaeal homologue of the eukaryotic translation initiation factor 2) in its GTP-bound form delivers Met-tRNAi(Met) to the small ribosomal subunit. It is known that the heterodimer containing the GTP-bound γ subunit and domain 3 of the α subunit of aIF2 is required for the formation of a stable complex with Met-tRNAi. Here, the crystal structure of an incomplete ternary complex including aIF2αD3γ⋅GDPNP⋅Met-tRNAf(Met) has been solved at 3.2Å resolution. This structure is in good agreement with biochemical and hydroxyl radical probing data. The analysis of the complex shows that despite the structural similarity of aIF2γ and the bacterial translation elongation factor EF-Tu, their modes of tRNA binding are very different. Remarkably, the recently published 5.0-Å-resolution structure of almost the same ternary initiation complex differs dramatically from the structure presented. Reasons for this discrepancy are discussed.
Collapse
Affiliation(s)
- Elena Stolboushkina
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
67
|
Gobert A, Pinker F, Fuchsbauer O, Gutmann B, Boutin R, Roblin P, Sauter C, Giegé P. Structural insights into protein-only RNase P complexed with tRNA. Nat Commun 2013; 4:1353. [PMID: 23322041 PMCID: PMC3562450 DOI: 10.1038/ncomms2358] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/05/2012] [Indexed: 01/21/2023] Open
Abstract
RNase P is the essential activity removing 5'-leader sequences from transfer RNA precursors. RNase P was always associated with ribonucleoprotein complexes before the discovery of protein-only RNase P enzymes called PRORPs (PROteinaceous RNase P) in eukaryotes. Here we provide biophysical and functional data to understand the mode of action of PRORP enzymes. Activity assays and footprinting experiments show that the anticodon domain of transfer RNA is dispensable, whereas individual residues in D and TψC loops are essential for PRORP function. PRORP proteins are characterized in solution and a molecular envelope is derived from small-angle X-ray scattering. Conserved residues are shown to be involved in the binding of one zinc atom to PRORP. These results facilitate the elaboration of a model of the PRORP/transfer RNA interaction. The comparison with the ribonucleoprotein RNase P/transfer RNA complex suggests that transfer RNA recognition by PRORP proteins is similar to that by ribonucleoprotein RNase P.
Collapse
MESH Headings
- Arabidopsis/metabolism
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/metabolism
- Models, Biological
- Models, Molecular
- Protein Binding
- RNA/chemistry
- RNA Precursors/chemistry
- RNA, Mitochondrial
- RNA, Plant/chemistry
- RNA, Plant/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Recombination, Genetic/genetics
- Regulatory Sequences, Ribonucleic Acid
- Ribonuclease P/chemistry
- Ribonuclease P/metabolism
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/metabolism
- Scattering, Small Angle
- Solutions
- Spectrophotometry, Atomic
- X-Ray Diffraction
- Zinc/metabolism
Collapse
Affiliation(s)
- Anthony Gobert
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
- These authors contributed equally to this work
| | - Franziska Pinker
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Architecture et Réactivité de l'ARN, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
- These authors contributed equally to this work
| | - Olivier Fuchsbauer
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Architecture et Réactivité de l'ARN, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Bernard Gutmann
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - René Boutin
- Laboratoire d’Hydrologie et de Géochimie du CNRS, 1, rue Blessig, 67084 Strasbourg, France
| | - Pierre Roblin
- Synchrotron SOLEIL, l'Orme des Merisiers Saint-Aubin, 91410 Gif-sur-Yvette, France
- URBIA-Nantes, INRA Centre de Nantes, 60 rue de la Géraudière, 44316 Nantes, France
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Architecture et Réactivité de l'ARN, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
68
|
Cvetesic N, Akmacic I, Gruic-Sovulj I. Lack of discrimination against non-proteinogenic amino acid norvaline by elongation factor Tu from Escherichia coli.. CROAT CHEM ACTA 2013; 86:73-82. [PMID: 23750044 DOI: 10.5562/cca2173] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The GTP-bound form of elongation factor Tu (EF-Tu) brings aminoacylated tRNAs (aa-tRNA) to the A-site of the ribosome. EF-Tu binds all cognate elongator aa-tRNAs with highly similar affinities, and its weaker or tighter binding of misacylated tRNAs may discourage their participation in translation. Norvaline (Nva) is a non-proteinogenic amino acid that is activated and transferred to tRNALeu by leucyl-tRNA synthetase (LeuRS). No notable accumulation of Nva-tRNALeu has been observed in vitro, because of the efficient post-transfer hydrolytic editing activity of LeuRS. However, incorporation of norvaline into proteins in place of leucine does occur under certain conditions in vivo. Here we show that EF-Tu binds Nva-tRNALeu and Leu-tRNALeu with similar affinities, and that Nva-tRNALeu and Leu-tRNALeu dissociate from EF-Tu at comparable rates. The inability of EF-Tu to discriminate against norvaline may have driven evolution of highly efficient LeuRS editing as the main quality control mechanism against misincorporation of norvaline into proteins.
Collapse
Affiliation(s)
- Nevena Cvetesic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
69
|
Chakravarty S, Sheng ZZ, Iverson B, Moore B. “η6”-Type anion-π in biomolecular recognition. FEBS Lett 2012; 586:4180-5. [DOI: 10.1016/j.febslet.2012.10.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/24/2012] [Accepted: 10/01/2012] [Indexed: 01/10/2023]
|
70
|
Caulfield T, Devkota B. Motion of transfer RNA from the A/T state into the A-site using docking and simulations. Proteins 2012; 80:2489-500. [PMID: 22730134 DOI: 10.1002/prot.24131] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/24/2012] [Accepted: 06/05/2012] [Indexed: 11/06/2022]
Abstract
The ribosome catalyzes peptidyl transfer reactions at the growing nascent polypeptide chain. Here, we present a structural mechanism for selecting cognate over near-cognate A/T transfer RNA (tRNA). In part, the structural basis for the fidelity of translation relies on accommodation to filter cognate from near-cognate tRNAs. To examine the assembly of tRNAs within the ribonucleic-riboprotein complex, we conducted a series of all-atom molecular dynamics (MD) simulations of the entire solvated 70S Escherichia coli ribosome, along with its associated cofactors, proteins, and messenger RNA (mRNA). We measured the motion of the A/T state of tRNA between initial binding and full accommodation. The mechanism of rejection was investigated. Using novel in-house algorithms, we determined trajectory pathways. Despite the large intersubunit cavity, the available space is limited by the presence of the tRNA, which is equally large. This article describes a "structural gate," formed between helices 71 and 92 on the ribosomal large subunit, which restricts tRNA motion. The gate and the interacting protein, L14, of the 50S ribosome act as steric filters in two consecutive substeps during accommodation, each requiring: (1) sufficient energy contained in the hybrid tRNA kink and (2) sufficient energy in the Watson-Crick base pairing of the codon-anticodon. We show that these barriers act to filter out near-cognate tRNA and promote proofreading of the codon-anticodon. Since proofreading is essential for understanding the fidelity of translation, our model for the dynamics of this process has substantial biomedical implications.
Collapse
Affiliation(s)
- Thomas Caulfield
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | |
Collapse
|
71
|
Chang AT, Nikonowicz EP. Solution nuclear magnetic resonance analyses of the anticodon arms of proteinogenic and nonproteinogenic tRNA(Gly). Biochemistry 2012; 51:3662-74. [PMID: 22468768 DOI: 10.1021/bi201900j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although the fate of most tRNA molecules in the cell is aminoacylation and delivery to the ribosome, some tRNAs are destined to fulfill other functional roles. In addition to their central role in translation, tRNA molecules participate in processes such as regulation of gene expression, bacterial cell wall biosynthesis, viral replication, antibiotic biosynthesis, and suppression of alternative splicing. In bacteria, glycyl-tRNA molecules with anticodon sequences GCC and UCC exhibit multiple extratranslational functions, including transcriptional regulation and cell wall biosynthesis. We have determined the high-resolution structures of three glycyl-tRNA anticodon arms with anticodon sequences GCC and UCC. Two of the tRNA molecules are proteinogenic (tRNA(Gly,GCC) and tRNA(Gly,UCC)), and the third is nonproteinogenic (np-tRNA(Gly,UCC)) and participates in cell wall biosynthesis. The UV-monitored thermal melting curves show that the anticodon arm of tRNA(Gly,UCC) with a loop-closing C-A(+) base pair melts at a temperature 10 °C lower than those of tRNA(Gly,GCC) and np-tRNA(Gly,UCC). U-A and C-G pairs close the loops of the latter two molecules and enhance stem stability. Mg(2+) stabilizes the tRNA(Gly,UCC) anticodon arm and reduces the T(m) differential. The structures of the three tRNA(Gly) anticodon arms exhibit small differences among one another, but none of them form the classical U-turn motif. The anticodon loop of tRNA(Gly,GCC) becomes more dynamic and disordered in the presence of multivalent cations, whereas metal ion coordination in the anticodon loops of tRNA(Gly,UCC) and np-tRNA(Gly,UCC) establishes conformational homogeneity. The conformational similarity of the molecules is greater than their functional differences might suggest. Because aminoacylation of full-length tRNA molecules is accomplished by one tRNA synthetase, the similar structural context of the loop may facilitate efficient recognition of each of the anticodon sequences.
Collapse
Affiliation(s)
- Andrew T Chang
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251-1892, United States
| | | |
Collapse
|
72
|
Kavaliauskas D, Nissen P, Knudsen CR. The busiest of all ribosomal assistants: elongation factor Tu. Biochemistry 2012; 51:2642-51. [PMID: 22409271 DOI: 10.1021/bi300077s] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During translation, the nucleic acid language employed by genes is translated into the amino acid language used by proteins. The translator is the ribosome, while the dictionary employed is known as the genetic code. The genetic information is presented to the ribosome in the form of a mRNA, and tRNAs connect the two languages. Translation takes place in three steps: initiation, elongation, and termination. After a protein has been synthesized, the components of the translation apparatus are recycled. During each phase of translation, the ribosome collaborates with specific translation factors, which secure a proper balance between speed and fidelity. Notably, initiation, termination, and ribosomal recycling occur only once per protein produced during normal translation, while the elongation step is repeated a large number of times, corresponding to the number of amino acids constituting the protein of interest. In bacteria, elongation factor Tu plays a central role during the selection of the correct amino acids throughout the elongation phase of translation. Elongation factor Tu is the main subject of this review.
Collapse
Affiliation(s)
- Darius Kavaliauskas
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
73
|
Yaremchuk A, Shalak VF, Novosylna OV, Negrutskii BS, Crépin T, El'skaya AV, Tukalo M. Purification, crystallization and preliminary X-ray crystallographic analysis of mammalian translation elongation factor eEF1A2. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:295-7. [PMID: 22442226 DOI: 10.1107/s1744309112000243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/03/2012] [Indexed: 11/10/2022]
Abstract
Translation elongation factor eEF1A2 was purified to homogeneity from rabbit muscle by two consecutive ion-exchange column-chromatography steps and this mammalian eEF1A2 was successfully crystallized for the first time. Protein crystals obtained using ammonium sulfate as precipitant diffracted to 2.5 Å resolution and belonged to space group P6(1)22 or P6(3)22 (unit-cell parameters a = b = 135.4, c = 304.6 Å). A complete native data set was collected to 2.7 Å resolution.
Collapse
Affiliation(s)
- A Yaremchuk
- State Key Laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, 03680 Kyiv-143, Ukraine
| | | | | | | | | | | | | |
Collapse
|
74
|
Liu C, Sanders JM, Pascal JM, Hou YM. Adaptation to tRNA acceptor stem structure by flexible adjustment in the catalytic domain of class I tRNA synthetases. RNA (NEW YORK, N.Y.) 2012; 18:213-221. [PMID: 22184460 PMCID: PMC3264908 DOI: 10.1261/rna.029983.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/09/2011] [Indexed: 05/31/2023]
Abstract
Class I aminoacyl-tRNA synthetases (aaRSs) use a Rossmann-fold domain to catalyze the synthesis of aminoacyl-tRNAs required for decoding genetic information. While the Rossmann-fold domain is conserved in evolution, the acceptor stem near the aminoacylation site varies among tRNA substrates, raising the question of how the conserved protein fold adapts to RNA sequence variations. Of interest is the existence of an unpaired C-A mismatch at the 1-72 position unique to bacterial initiator tRNA(fMet) and absent from elongator tRNAs. Here we show that the class I methionyl-tRNA synthetase (MetRS) of Escherichia coli and its close structural homolog cysteinyl-tRNA synthetase (CysRS) display distinct patterns of recognition of the 1-72 base pair. While the structural homology of the two enzymes in the Rossmann-fold domain is manifested in a common burst feature of aminoacylation kinetics, CysRS discriminates against unpaired 1-72, whereas MetRS lacks such discrimination. A structure-based alignment of the Rossmann fold identifies the insertion of an α-helical motif, specific to CysRS but absent from MetRS, which docks on 1-72 and may discriminate against mismatches. Indeed, substitutions of the CysRS helical motif abolish the discrimination against unpaired 1-72. Additional structural alignments reveal that with the exception of MetRS, class I tRNA synthetases contain a structural motif that docks on 1-72. This work demonstrates that by flexible insertion of a structural motif to dock on 1-72, the catalytic domain of class I tRNA synthetases can acquire structural plasticity to adapt to changes at the end of the tRNA acceptor stem.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/chemistry
- Amino Acyl-tRNA Synthetases/genetics
- Amino Acyl-tRNA Synthetases/metabolism
- Base Pairing
- Base Sequence/genetics
- Binding Sites
- Catalytic Domain
- DNA Mutational Analysis/methods
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Methionine-tRNA Ligase/chemistry
- Methionine-tRNA Ligase/genetics
- Methionine-tRNA Ligase/metabolism
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nucleic Acid Conformation
- Protein Folding
- Protein Structure, Secondary
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment/methods
- Transfer RNA Aminoacylation/genetics
Collapse
Affiliation(s)
- Cuiping Liu
- Thomas Jefferson University Department of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107, USA
| | - Jeffrey M. Sanders
- Thomas Jefferson University Department of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107, USA
| | - John M. Pascal
- Thomas Jefferson University Department of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107, USA
| | - Ya-Ming Hou
- Thomas Jefferson University Department of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
75
|
Molecular basis for RNA polymerization by Qβ replicase. Nat Struct Mol Biol 2012; 19:229-37. [PMID: 22245970 DOI: 10.1038/nsmb.2204] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 11/15/2011] [Indexed: 12/17/2022]
Abstract
Core Qβ replicase comprises the Qβ virus-encoded RNA-dependent RNA polymerase (β-subunit) and the host Escherichia coli translational elongation factors EF-Tu and EF-Ts. The functions of the host proteins in the viral replicase are not clear. Structural analyses of RNA polymerization by core Qβ replicase reveal that at the initiation stage, the 3'-adenine of the template RNA provides a stable platform for de novo initiation. EF-Tu in Qβ replicase forms a template exit channel with the β-subunit. At the elongation stages, the C-terminal region of the β-subunit, assisted by EF-Tu, splits the temporarily double-stranded RNA between the template and nascent RNAs before translocation of the single-stranded template RNA into the exit channel. Therefore, EF-Tu in Qβ replicase modulates RNA elongation processes in a distinct manner from its established function in protein synthesis.
Collapse
|
76
|
Christian BE, Spremulli LL. Mechanism of protein biosynthesis in mammalian mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1035-54. [PMID: 22172991 DOI: 10.1016/j.bbagrm.2011.11.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 01/25/2023]
Abstract
Protein synthesis in mammalian mitochondria produces 13 proteins that are essential subunits of the oxidative phosphorylation complexes. This review provides a detailed outline of each phase of mitochondrial translation including initiation, elongation, termination, and ribosome recycling. The roles of essential proteins involved in each phase are described. All of the products of mitochondrial protein synthesis in mammals are inserted into the inner membrane. Several proteins that may help bind ribosomes to the membrane during translation are described, although much remains to be learned about this process. Mutations in mitochondrial or nuclear genes encoding components of the translation system often lead to severe deficiencies in oxidative phosphorylation, and a summary of these mutations is provided. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Brooke E Christian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
77
|
Abstract
Selection of correct start codons on messenger RNAs is a key step required for faithful translation of the genetic message. Such a selection occurs in a complex process, during which a translation-competent ribosome assembles, eventually having in its P site a specialized methionyl-tRNAMet base-paired with the start codon on the mRNA. This chapter summarizes recent advances describing at the molecular level the successive steps involved in the process. Special emphasis is put on the roles of the three initiation factors and of the initiator tRNA, which are crucial for the efficiency and the specificity of the process. In particular, structural analyses concerning complexes containing ribosomal subunits, as well as detailed kinetic studies, have shed new light on the sequence of events leading to faithful initiation of protein synthesis in Bacteria.
Collapse
|
78
|
Chapman SJ, Schrader JM, Uhlenbeck OC. Histidine 66 in Escherichia coli elongation factor tu selectively stabilizes aminoacyl-tRNAs. J Biol Chem 2011; 287:1229-34. [PMID: 22105070 DOI: 10.1074/jbc.m111.294850] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The universally conserved His-66 of elongation factor Tu (EF-Tu) stacks on the side chain of the esterified Phe of Phe-tRNA(Phe). The affinities of eight aminoacyl-tRNAs were differentially destabilized by the introduction of the H66A mutation into Escherichia coli EF-Tu, whereas Ala-tRNA(Ala) and Gly-tRNA(Gly) were unaffected. The H66F and H66W proteins each show a different pattern of binding of 10 different aminoacyl-tRNAs, clearly showing that this position is critical in establishing the specificity of EF-Tu for different esterified amino acids. However, the H66A mutation does not greatly affect the ability of the ternary complex to bind ribosomes, hydrolyze GTP, or form dipeptide, suggesting that this residue does not directly participate in ribosomal decoding. Selective mutation of His-66 may improve the ability of certain unnatural amino acids to be incorporated by the ribosome.
Collapse
Affiliation(s)
- Stephen J Chapman
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
79
|
Giegé R, Jühling F, Pütz J, Stadler P, Sauter C, Florentz C. Structure of transfer RNAs: similarity and variability. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:37-61. [DOI: 10.1002/wrna.103] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
80
|
Liu C, Gamper H, Liu H, Cooperman BS, Hou YM. Potential for interdependent development of tRNA determinants for aminoacylation and ribosome decoding. Nat Commun 2011; 2:329. [PMID: 21629262 PMCID: PMC3799875 DOI: 10.1038/ncomms1331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/04/2011] [Indexed: 12/28/2022] Open
Abstract
Although the nucleotides in tRNA required for aminoacylation are conserved in evolution, bacterial aminoacyl-tRNA synthetases (aaRSs) are unable to acylate eukaryotic tRNA. The cross-species barrier may be due to the absence of eukaryote-specific domains from bacterial aaRSs. Here we show that while E. coli CysRS cannot acylate human tRNACys, the fusion of a eukaryote-specific domain of human CysRS overcomes the cross-species barrier in human tRNACys. In addition to enabling recognition of the sequence differences in the tertiary core of tRNACys, the fused eukaryotic domain redirects the specificity of E. coli CysRS from the A37 present in bacterial tRNACys to the G37 in mammals. Further experiments show that the accuracy of codon recognition on the ribosome was also highly sensitive to the A37-to-G37 transition in tRNACys. These results raise the possibility of the development of tRNA nucleotide determinants for aminoacylation being interdependent with those for ribosome decoding.
Collapse
Affiliation(s)
- Cuiping Liu
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
81
|
Lerman YV, Kennedy SD, Shankar N, Parisien M, Major F, Turner DH. NMR structure of a 4 x 4 nucleotide RNA internal loop from an R2 retrotransposon: identification of a three purine-purine sheared pair motif and comparison to MC-SYM predictions. RNA (NEW YORK, N.Y.) 2011; 17:1664-77. [PMID: 21778280 PMCID: PMC3162332 DOI: 10.1261/rna.2641911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/08/2011] [Indexed: 05/31/2023]
Abstract
The NMR solution structure is reported of a duplex, 5'GUGAAGCCCGU/3'UCACAGGAGGC, containing a 4 × 4 nucleotide internal loop from an R2 retrotransposon RNA. The loop contains three sheared purine-purine pairs and reveals a structural element found in other RNAs, which we refer to as the 3RRs motif. Optical melting measurements of the thermodynamics of the duplex indicate that the internal loop is 1.6 kcal/mol more stable at 37°C than predicted. The results identify the 3RRs motif as a common structural element that can facilitate prediction of 3D structure. Known examples include internal loops having the pairings: 5'GAA/3'AGG, 5'GAG/3'AGG, 5'GAA/3'AAG, and 5'AAG/3'AGG. The structural information is compared with predictions made with the MC-Sym program.
Collapse
Affiliation(s)
- Yelena V. Lerman
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Scott D. Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Neelaabh Shankar
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Marc Parisien
- Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C CJ7, Canada
| | - Francois Major
- Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C CJ7, Canada
| | - Douglas H. Turner
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
82
|
Denmon AP, Wang J, Nikonowicz EP. Conformation effects of base modification on the anticodon stem-loop of Bacillus subtilis tRNA(Tyr). J Mol Biol 2011; 412:285-303. [PMID: 21782828 DOI: 10.1016/j.jmb.2011.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
Abstract
tRNA molecules contain 93 chemically unique nucleotide base modifications that expand the chemical and biophysical diversity of RNA and contribute to the overall fitness of the cell. Nucleotide modifications of tRNA confer fidelity and efficiency to translation and are important in tRNA-dependent RNA-mediated regulatory processes. The three-dimensional structure of the anticodon is crucial to tRNA-mRNA specificity, and the diverse modifications of nucleotide bases in the anticodon region modulate this specificity. We have determined the solution structures and thermodynamic properties of Bacillus subtilis tRNA(Tyr) anticodon arms containing the natural base modifications N(6)-dimethylallyl adenine (i(6)A(37)) and pseudouridine (ψ(39)). UV melting and differential scanning calorimetry indicate that the modifications stabilize the stem and may enhance base stacking in the loop. The i(6)A(37) modification disrupts the hydrogen bond network of the unmodified anticodon loop including a C(32)-A(38)(+) base pair and an A(37)-U(33) base-base interaction. Although the i(6)A(37) modification increases the dynamic nature of the loop nucleotides, metal ion coordination reestablishes conformational homogeneity. Interestingly, the i(6)A(37) modification and Mg(2+) are sufficient to promote the U-turn fold of the anticodon loop of Escherichia coli tRNA(Phe), but these elements do not result in this signature feature of the anticodon loop in tRNA(Tyr).
Collapse
Affiliation(s)
- Andria P Denmon
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | | | | |
Collapse
|
83
|
Jones JD, O'Connor CD. Protein acetylation in prokaryotes. Proteomics 2011; 11:3012-22. [PMID: 21674803 DOI: 10.1002/pmic.201000812] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/14/2011] [Accepted: 03/28/2011] [Indexed: 11/11/2022]
Abstract
Protein acetylation plays a critical regulatory role in eukaryotes but until recently its significance and function in bacteria and the archaea were obscure. It is now clear, however, that prokaryotes have the capacity to acetylate both the α-amino groups of N-terminal residues and the ε-amino groups of lysine side chains. In this review, we bring together information indicating that such acetylation is widespread and that it is likely to regulate fundamental cellular processes. We particularly focus on lysine acetylation, which recent studies show can occur in proteins involved in transcription, translation, pathways associated with central metabolism and stress responses. Intriguingly, specific acetylated lysine residues map to critical regions in the three-dimensional structures of key proteins, e.g. to active sites or to surfaces that dock with other major cellular components. Like phosphorylation, acetylation appears to be an ancient reversible modification that can be present at multiple sites in proteins, thereby potentially producing epigenetic combinatorial complexity. It may be particularly important in regulating central metabolism in prokaryotes due to the requirement for acetyl-CoA and NAD(+) for protein acetyltransferases and Sir2-type deacetylases, respectively.
Collapse
|
84
|
Saks ME, Sanderson LE, Choi DS, Crosby CM, Uhlenbeck OC. Functional consequences of T-stem mutations in E. coli tRNAThrUGU in vitro and in vivo. RNA (NEW YORK, N.Y.) 2011; 17:1038-1047. [PMID: 21527672 PMCID: PMC3096036 DOI: 10.1261/rna.2427311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/22/2011] [Indexed: 05/30/2023]
Abstract
The binding affinities between Escherichia coli EF-Tu and 34 single and double base-pair changes in the T stem of E. coli tRNA(Thr)(UGU) were compared with similar data obtained previously for several aa-tRNAs binding to Thermus thermophilus EF-Tu. With a single exception, the two proteins bound to mutations in three T-stem base pairs in a quantitatively identical manner. However, tRNA(Thr) differs from other tRNAs by also using its rare A52-C62 pair as a negative specificity determinant. Using a plasmid-based tRNA gene replacement strategy, we show that many of the tRNA(Thr)(UGU) T-stem changes are either unable to support growth of E. coli or are less effective than the wild-type sequence. Since the inviable T-stem sequences are often present in other E. coli tRNAs, it appears that T-stem sequences in each tRNA body have evolved to optimize function in a different way. Although mutations of tRNA(Thr) can substantially increase or decrease its affinity to EF-Tu, the observed affinities do not correlate with the growth phenotype of the mutations in any simple way. This may either reflect the different conditions used in the two assays or indicate that the T-stem mutants affect another step in the translation mechanism.
Collapse
Affiliation(s)
- Margaret E Saks
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | |
Collapse
|
85
|
Atkinson GC, Hauryliuk V, Tenson T. An ancient family of SelB elongation factor-like proteins with a broad but disjunct distribution across archaea. BMC Evol Biol 2011; 11:22. [PMID: 21255425 PMCID: PMC3037878 DOI: 10.1186/1471-2148-11-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/21/2011] [Indexed: 02/05/2023] Open
Abstract
Background SelB is the dedicated elongation factor for delivery of selenocysteinyl-tRNA to the ribosome. In archaea, only a subset of methanogens utilizes selenocysteine and encodes archaeal SelB (aSelB). A SelB-like (aSelBL) homolog has previously been identified in an archaeon that does not encode selenosysteine, and has been proposed to be a pyrrolysyl-tRNA-specific elongation factor (EF-Pyl). However, elongation factor EF-Tu is capable of binding archaeal Pyl-tRNA in bacteria, suggesting the archaeal ortholog EF1A may also be capable of delivering Pyl-tRNA to the ribosome without the need of a specialized factor. Results We have phylogenetically characterized the aSelB and aSelBL families in archaea. We find the distribution of aSelBL to be wider than both selenocysteine and pyrrolysine usage. The aSelBLs also lack the carboxy terminal domain usually involved in recognition of the selenocysteine insertion sequence in the target mRNA. While most aSelBL-encoding archaea are methanogenic Euryarchaea, we also find aSelBL representatives in Sulfolobales and Thermoproteales of Crenarchaea, and in the recently identified phylum Thaumarchaea, suggesting that aSelBL evolution has involved horizontal gene transfer and/or parallel loss. Severe disruption of the GTPase domain suggests that some family members may employ a hitherto unknown mechanism of nucleotide hydrolysis, or have lost their GTPase ability altogether. However, patterns of sequence conservation indicate that aSelBL is still capable of binding the ribosome and aminoacyl-tRNA. Conclusions Although it is closely related to SelB, aSelBL appears unlikely to either bind selenocysteinyl-tRNA or function as a classical GTP hydrolyzing elongation factor. We propose that following duplication of aSelB, the resultant aSelBL was recruited for binding another aminoacyl-tRNA. In bacteria, aminoacylation with selenocysteine is essential for efficient thermodynamic coupling of SelB binding to tRNA and GTP. Therefore, change in tRNA specificity of aSelBL could have disrupted its GTPase cycle, leading to relaxation of selective pressure on the GTPase domain and explaining its apparent degradation. While the specific role of aSelBL is yet to be experimentally tested, its broad phylogenetic distribution, surpassing that of aSelB, indicates its importance.
Collapse
|
86
|
Activation of initiation factor 2 by ligands and mutations for rapid docking of ribosomal subunits. EMBO J 2010; 30:289-301. [PMID: 21151095 DOI: 10.1038/emboj.2010.328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/17/2010] [Indexed: 11/08/2022] Open
Abstract
We previously identified mutations in the GTPase initiation factor 2 (IF2), located outside its tRNA-binding domain, compensating strongly (A-type) or weakly (B-type) for initiator tRNA formylation deficiency. We show here that rapid docking of 30S with 50S subunits in initiation of translation depends on switching 30S subunit-bound IF2 from its inactive to active form. Activation of wild-type IF2 requires GTP and formylated initiator tRNA (fMet-tRNA(i)). In contrast, extensive activation of A-type IF2 occurs with only GTP or with GDP and fMet-tRNA(i), implying a passive role for initiator tRNA as activator of IF2 in subunit docking. The theory of conditional switching of GTPases quantitatively accounts for all our experimental data. We find that GTP, GDP, fMet-tRNA(i) and A-type mutations multiplicatively increase the equilibrium ratio, K, between active and inactive forms of IF2 from a value of 4 × 10(-4) for wild-type apo-IF2 by factors of 300, 8, 80 and 20, respectively. Functional characterization of the A-type mutations provides keys to structural interpretation of conditional switching of IF2 and other multidomain GTPases.
Collapse
|
87
|
Phosphorylation of eEF1A1 at Ser300 by TβR-I results in inhibition of mRNA translation. Curr Biol 2010; 20:1615-25. [PMID: 20832312 DOI: 10.1016/j.cub.2010.08.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 06/18/2010] [Accepted: 08/10/2010] [Indexed: 11/23/2022]
Abstract
BACKGROUND Transforming growth factor β (TGF-β) is a potent inhibitor of cell proliferation that regulates cell functions by activating specific serine/threonine kinase receptors on the cell surface. Type I TGF-β receptor (TβR-I) is essential for TGF-β signaling, and substrates of TβR-I provide insights into molecular mechanisms of TGF-β signaling. RESULTS Here we identify eukaryotic elongation factor 1A1 (eEF1A1) as a novel substrate of TβR-I. We show that TβR-I phosphorylates eEF1A1 at Ser300 in vitro and in vivo. Ser300 was found to be important for aminoacyl-tRNA (aa-tRNA) binding to eEF1A1. Ser300 phosphorylation or mutations of Ser300 correlate with inhibition of protein synthesis in vitro and in vivo. We show that mimicking eEF1A1 phosphorylation at Ser300 results in inhibition of cell proliferation, and that mutations of Ser300 affect TGF-β dependency in inhibition of protein synthesis and cell proliferation. Increased expression of eEF1A has been reported to enhance carcinogenesis. An analysis of human breast cancer cases revealed a decrease of eEF1A1 phosphorylation at Ser300 in malignant tumor cells as compared to epithelial cells in noncancerous tissues. CONCLUSIONS Phosphorylation of eEF1A1 by TβR-I is a novel regulatory mechanism that provides a direct link to regulation of protein synthesis by TGF-β, as an important component in the TGF-β-dependent regulation of protein synthesis and cell proliferation.
Collapse
|
88
|
Siwiak M, Zielenkiewicz P. A comprehensive, quantitative, and genome-wide model of translation. PLoS Comput Biol 2010; 6:e1000865. [PMID: 20686685 PMCID: PMC2912337 DOI: 10.1371/journal.pcbi.1000865] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 06/22/2010] [Indexed: 11/27/2022] Open
Abstract
Translation is still poorly characterised at the level of individual proteins and its role in regulation of gene expression has been constantly underestimated. To better understand the process of protein synthesis we developed a comprehensive and quantitative model of translation, characterising protein synthesis separately for individual genes. The main advantage of the model is that basing it on only a few datasets and general assumptions allows the calculation of many important translational parameters, which are extremely difficult to measure experimentally. In the model, each gene is attributed with a set of translational parameters, namely the absolute number of transcripts, ribosome density, mean codon translation time, total transcript translation time, total time required for translation initiation and elongation, translation initiation rate, mean mRNA lifetime, and absolute number of proteins produced by gene transcripts. Most parameters were calculated based on only one experimental dataset of genome-wide ribosome profiling. The model was implemented in Saccharomyces cerevisiae, and its results were compared with available data, yielding reasonably good correlations. The calculated coefficients were used to perform a global analysis of translation in yeast, revealing some interesting aspects of the process. We have shown that two commonly used measures of translation efficiency – ribosome density and number of protein molecules produced – are affected by two distinct factors. High values of both measures are caused, i.a., by very short times of translation initiation, however, the origins of initiation time reduction are completely different in both cases. The model is universal and can be applied to any organism, if the necessary input data are available. The model allows us to better integrate transcriptomic and proteomic data. A few other possibilities of the model utilisation are discussed concerning the example of the yeast system. Translation is the production of proteins by decoding mRNA produced in transcription, and is a part of the overall process of gene expression. Although the general theoretical background of translation is known, the process is still poorly characterised at the level of individual proteins. In particular, the quantitative parameters of translation, such as time required to complete it or the number of protein molecules produced from a transcript during its lifetime, are extremely difficult to measure experimentally. To overcome this problem, we developed a computational model that, on the basis of only few datasets and general assumptions, measures quantitatively the translational activity at the level of individual genes. We discussed it concerning the example of the yeast system; however, it can be applied to any organism of known genome. We used the obtained results to study the general characteristics of the yeast translational system, revealing the diversity of strategies of gene expression regulation. We exemplified and discussed other possible ways of model utilisation, as it may help in examining protein-protein interactions, metabolic pathways, gene annotation, ribosome queueing, protein folding, and translation initiation. It also may be crucial for better integration of cell-wide, high-throughput experiments.
Collapse
Affiliation(s)
- Marlena Siwiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Plant Molecular Biology, Faculty of Biology, Warsaw University, Warsaw, Poland
- * E-mail:
| |
Collapse
|
89
|
Yarham JW, Elson JL, Blakely EL, McFarland R, Taylor RW. Mitochondrial tRNA mutations and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:304-24. [DOI: 10.1002/wrna.27] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- John W. Yarham
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Joanna L. Elson
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma L. Blakely
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert W. Taylor
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
90
|
Giegé R, Sauter C. Biocrystallography: past, present, future. HFSP JOURNAL 2010; 4:109-21. [PMID: 21119764 PMCID: PMC2929629 DOI: 10.2976/1.3369281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/02/2010] [Indexed: 02/02/2023]
Abstract
The evolution of biocrystallography from the pioneers' time to the present era of global biology is presented in relation to the development of methodological and instrumental advances for molecular sample preparation and structure elucidation over the last 6 decades. The interdisciplinarity of the field that generated cross-fertilization between physics- and biology-focused themes is emphasized. In particular, strategies to circumvent the main bottlenecks of biocrystallography are discussed. They concern (i) the way macromolecular targets are selected, designed, and characterized, (ii) crystallogenesis and how to deal with physical and biological parameters that impact crystallization for growing and optimizing crystals, and (iii) the methods for crystal analysis and 3D structure determination. Milestones that have marked the history of biocrystallography illustrate the discussion. Finally, the future of the field is envisaged. Wide gaps of the structural space need to be filed and membrane proteins as well as intrinsically unstructured proteins still constitute challenging targets. Solving supramolecular assemblies of increasing complexity, developing a "4D biology" for decrypting the kinematic changes in macromolecular structures in action, integrating these structural data in the whole cell organization, and deciphering biomedical implications will represent the new frontiers.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France
| | - Claude Sauter
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
91
|
Berisio R, Ruggiero A, Vitagliano L. Elongation Factors EFIA and EF-Tu: Their Role in Translation and Beyond. Isr J Chem 2010. [DOI: 10.1002/ijch.201000005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
92
|
Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Q Rev Biophys 2010; 42:159-200. [PMID: 20025795 DOI: 10.1017/s0033583509990060] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ribosome is a complex macromolecular machine that translates the message encoded in the messenger RNA and synthesizes polypeptides by linking the individual amino acids carried by the cognate transfer RNAs (tRNAs). The protein elongation cycle, during which the tRNAs traverse the ribosome in a coordinated manner along a path of more than 100 A, is facilitated by large-scale rearrangements of the ribosome. These rearrangements go hand in hand with conformational changes of tRNA as well as elongation factors EF-Tu and EF-G - GTPases that catalyze tRNA delivery and translocation, respectively. This review focuses on the structural data related to the dynamics of the ribosomal machinery, which are the basis, in conjunction with existing biochemical, kinetic, and fluorescence resonance energy transfer data, of our knowledge of the decoding and translocation steps of protein elongation.
Collapse
|
93
|
Black Pyrkosz A, Eargle J, Sethi A, Luthey-Schulten Z. Exit strategies for charged tRNA from GluRS. J Mol Biol 2010; 397:1350-71. [PMID: 20156451 DOI: 10.1016/j.jmb.2010.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/01/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
For several class I aminoacyl-tRNA synthetases (aaRSs), the rate-determining step in aminoacylation is the dissociation of charged tRNA from the enzyme. In this study, the following factors affecting the release of the charged tRNA from aaRSs are computationally explored: the protonation states of amino acids and substrates present in the active site, and the presence and the absence of AMP and elongation factor Tu. Through molecular modeling, internal pK(a) calculations, and molecular dynamics simulations, distinct, mechanistically relevant post-transfer states with charged tRNA bound to glutamyl-tRNA synthetase from Thermus thermophilus (Glu-tRNA(Glu)) are considered. The behavior of these nonequilibrium states is characterized as a function of time using dynamical network analysis, local energetics, and changes in free energies to estimate transitions that occur during the release of the tRNA. The hundreds of nanoseconds of simulation time reveal system characteristics that are consistent with recent experimental studies. Energetic and network results support the previously proposed mechanism in which the transfer of amino acid to tRNA is accompanied by the protonation of AMP to H-AMP. Subsequent migration of proton to water reduces the stability of the complex and loosens the interface both in the presence and in the absence of AMP. The subsequent undocking of AMP or tRNA then proceeds along thermodynamically competitive pathways. Release of the tRNA acceptor stem is further accelerated by the deprotonation of the alpha-ammonium group on the charging amino acid. The proposed general base is Glu41, a residue binding the alpha-ammonium group that is conserved in both structure and sequence across nearly all class I aaRSs. This universal handle is predicted through pK(a) calculations to be part of a proton relay system for destabilizing the bound charging amino acid following aminoacylation. Addition of elongation factor Tu to the aaRS.tRNA complex stimulates the dissociation of the tRNA core and the tRNA acceptor stem.
Collapse
Affiliation(s)
- Alexis Black Pyrkosz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
94
|
Guo J, Melançon CE, Lee HS, Groff D, Schultz PG. Evolution of amber suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino acids. Angew Chem Int Ed Engl 2010; 48:9148-51. [PMID: 19856359 DOI: 10.1002/anie.200904035] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiantao Guo
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
95
|
Watanabe K. Unique features of animal mitochondrial translation systems. The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:11-39. [PMID: 20075606 PMCID: PMC3417567 DOI: 10.2183/pjab.86.11] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/17/2009] [Indexed: 05/17/2023]
Abstract
In animal mitochondria, several codons are non-universal and their meanings differ depending on the species. In addition, the tRNA structures that decipher codons are sometimes unusually truncated. These features seem to be related to the shortening of mitochondrial (mt) genomes, which occurred during the evolution of mitochondria. These organelles probably originated from the endosymbiosis of an aerobic eubacterium into an ancestral eukaryote. It is plausible that these events brought about the various characteristic features of animal mt translation systems, such as genetic code variations, unusually truncated tRNA and rRNA structures, unilateral tRNA recognition mechanisms by aminoacyl-tRNA synthetases, elongation factors and ribosomes, and compensation for RNA deficits by enlarged proteins. In this article, we discuss molecular mechanisms for these phenomena. Finally, we describe human mt diseases that are caused by modification defects in mt tRNAs.
Collapse
Affiliation(s)
- Kimitsuna Watanabe
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, Japan.
| |
Collapse
|
96
|
Kolitz SE, Lorsch JR. Eukaryotic initiator tRNA: finely tuned and ready for action. FEBS Lett 2009; 584:396-404. [PMID: 19925799 DOI: 10.1016/j.febslet.2009.11.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 12/17/2022]
Abstract
The initiator tRNA must serve functions distinct from those of other tRNAs, evading binding to elongation factors and instead binding directly to the ribosomal P site with the aid of initiation factors. It plays a key role in decoding the start codon, setting the frame for translation of the mRNA. Sequence elements and modifications of the initiator tRNA distinguish it from the elongator methionyl tRNA and help it to perform its varied tasks. These identity elements appear to finely tune the structure of the initiator tRNA, and growing evidence suggests that the body of the tRNA is involved in transmitting the signal that the start codon has been found to the rest of the pre-initiation complex.
Collapse
Affiliation(s)
- Sarah E Kolitz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
97
|
Paleskava A, Konevega AL, Rodnina MV. Thermodynamic and kinetic framework of selenocysteyl-tRNASec recognition by elongation factor SelB. J Biol Chem 2009; 285:3014-20. [PMID: 19940162 DOI: 10.1074/jbc.m109.081380] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SelB is a specialized translation elongation factor that delivers selenocysteyl-tRNA(Sec) (Sec-tRNA(Sec)) to the ribosome. Here we show that Sec-tRNA(Sec) binds to SelB.GTP with an extraordinary high affinity (K(d) = 0.2 pm). The tight binding is driven enthalpically and involves the net formation of four ion pairs, three of which may involve the Sec residue. The dissociation of tRNA from the ternary complex SelB.GTP.Sec-tRNA(Sec) is very slow (0.3 h(-1)), and GTP hydrolysis accelerates the release of Sec-tRNA(Sec) by more than a million-fold (to 240 s(-1)). The affinities of Sec-tRNA(Sec) to SelB in the GDP or apoforms, or Ser-tRNA(Sec) and tRNA(Sec) to SelB in any form, are similar (K(d) = 0.5 microm). Thermodynamic coupling in binding of Sec-tRNA(Sec) and GTP to SelB ensures at the same time the specificity of Sec- versus Ser-tRNA(Sec) selection and rapid release of Sec-tRNA(Sec) from SelB after GTP cleavage on the ribosome. SelB provides an example for the evolution of a highly specialized protein-RNA complex toward recognition of unique set of identity elements. The mode of tRNA recognition by SelB is reminiscent of another specialized factor, eIF2, rather than of EF-Tu, the common delivery factor for all other aminoacyl-tRNAs, in line with a common evolutionary ancestry of SelB and eIF2.
Collapse
Affiliation(s)
- Alena Paleskava
- Department of Physical Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
98
|
Futernyk PV, Negrutskii BS, El'skaya AV. Interaction of different tRNAs with translation elongation factors 1A from lower and higher eukaryotes. ACTA ACUST UNITED AC 2009. [DOI: 10.7124/bc.0007f8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- P. V. Futernyk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - B. S. Negrutskii
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - A. V. El'skaya
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
99
|
Guo J, Melançon C, Lee HS, Groff D, Schultz P. Evolution of Amber Suppressor tRNAs for Efficient Bacterial Production of Proteins Containing Nonnatural Amino Acids. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
100
|
Sanderová H, Tiserová H, Barvík I, Sojka L, Jonák J, Krásný L. The N-terminal region is crucial for the thermostability of the G-domain of Bacillus stearothermophilus EF-Tu. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:147-55. [PMID: 19800034 DOI: 10.1016/j.bbapap.2009.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/17/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
Bacterial elongation factor Tu (EF-Tu) is a model monomeric G protein composed of three covalently linked domains. Previously, we evaluated the contributions of individual domains to the thermostability of EF-Tu from the thermophilic bacterium Bacillus stearothermophilus. We showed that domain 1 (G-domain) sets up the basal level of thermostability for the whole protein. Here we chose to locate the thermostability determinants distinguishing the thermophilic domain 1 from a mesophilic domain 1. By an approach of systematically swapping protein regions differing between G-domains from mesophilic Bacillus subtilis and thermophilic B. stearothermophilus, we demonstrate that a small portion of the protein, the N-terminal 12 amino acid residues, plays a key role in the thermostability of this domain. We suggest that the thermostabilizing effect of the N-terminal region could be mediated by stabilizing the functionally important effector region. Finally, we demonstrate that the effect of the N-terminal region is significant also for the thermostability of the full-length EF-Tu.
Collapse
Affiliation(s)
- Hana Sanderová
- Laboratory of Molecular Genetics of Bacteria, Institute of Microbiology Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | | | | | | | | | | |
Collapse
|