51
|
Schwartz EI, Intine RV, Maraia RJ. CK2 is responsible for phosphorylation of human La protein serine-366 and can modulate rpL37 5'-terminal oligopyrimidine mRNA metabolism. Mol Cell Biol 2004; 24:9580-91. [PMID: 15485924 PMCID: PMC522270 DOI: 10.1128/mcb.24.21.9580-9591.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 08/04/2004] [Accepted: 08/12/2004] [Indexed: 11/20/2022] Open
Abstract
La protein binds precursors to 5S rRNA, tRNAs, and other transcripts that contain 3' UUU-OH and also promotes their maturation in the nucleus. Separate from this function, human La has been shown to positively modulate the translation of mRNAs that contain complex 5' regulatory motifs that direct internal initiation of translation. Nonphosphorylated La (npLa) inhibits pre-tRNA processing, while phosphorylation of human La serine-366 (S(366)) promotes pre-tRNA processing. npLa was found specifically associated with a class of mRNAs that have unusually short 5' untranslated regions comprised of terminal oligopyrimidine (5'TOP) tracts and that encode ribosomal proteins and translation elongation factors. Although La S(366) represents a CK2 phosphorylation site, there was no evidence that CK2 phosphorylates it in vivo. We used the CK2-specific inhibitor, 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), and antisense-mediated knockdown to demonstrate that CK2 is responsible for La S(366) phosphorylation in vivo. Hypophosphorylation was not associated with significant change in total La levels or proteolytic cleavage. Quantitative reverse transcription-PCR revealed increased association of the 5'TOP-mRNA encoding ribosomal protein L37 (rpL37) with La after TBB treatment. Transfection revealed more rpL37 mRNA associated with nonphosphorylatable La A(366) than with La S(366), concomitant with La A(366)-specific shift of a fraction of L37 mRNA off polysomes. The data indicate that CK2 phosphorylates La S(366) in vivo, that this limits 5'TOP mRNA binding, and that increasing npLa leads to greater association with potentially negative effects on TOP mRNA translation. Consistent with data that indicate that phosphorylation reverses negative effects of npLa on tRNA production, the present data suggest that CK2 phosphorylation of La can affect production of the translational machinery.
Collapse
Affiliation(s)
- Elena I Schwartz
- Laboratory of Molecular Growth Regulation, NICHD, NIH, Bethesda, MD 20892-2753, USA
| | | | | |
Collapse
|
52
|
Horke S, Reumann K, Schweizer M, Will H, Heise T. Nuclear trafficking of La protein depends on a newly identified nucleolar localization signal and the ability to bind RNA. J Biol Chem 2004; 279:26563-70. [PMID: 15060081 DOI: 10.1074/jbc.m401017200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Here we provide evidence for an interaction-dependent subnuclear trafficking of the human La (hLa) protein, known as transient interaction partner of a variety of RNAs. Among these, precursor transcripts of certain RNAs are located in the nucleoplasm or nucleolus. Here we examined which functional domains of hLa are involved in its nuclear trafficking. By using green fluorescent-hLa fusion proteins, we discovered a nucleolar localization signal and demonstrated its functionality in a heterologous context. In addition, we revealed that the RRM2 motif of hLa is essential both for its RNA binding competence in vitro and in vivo and its exit from the nucleolus. Our data imply that hLa traffics between different subnuclear compartments, which depend decisively on a functional nucleolar localization signal as well as on RNA binding. Directed trafficking of hLa is fully consistent with its function in the maturation of precursor RNAs located in different subnuclear compartments.
Collapse
Affiliation(s)
- Sven Horke
- Heinrich-Pette-Institut fur Experimentelle Virologie und Immunologie an der Universitaat Hamburg, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | | | |
Collapse
|
53
|
Alfano C, Sanfelice D, Babon J, Kelly G, Jacks A, Curry S, Conte MR. Structural analysis of cooperative RNA binding by the La motif and central RRM domain of human La protein. Nat Struct Mol Biol 2004; 11:323-9. [PMID: 15004549 DOI: 10.1038/nsmb747] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 02/19/2004] [Indexed: 11/08/2022]
Abstract
The La protein is a conserved component of eukaryotic ribonucleoprotein complexes that binds the 3' poly(U)-rich elements of nascent RNA polymerase III (pol III) transcripts to assist folding and maturation. This specific recognition is mediated by the N-terminal domain (NTD) of La, which comprises a La motif and an RNA recognition motif (RRM). We have determined the solution structures of both domains and show that the La motif adopts an alpha/beta fold that comprises a winged-helix motif elaborated by the insertion of three helices. Chemical shift mapping experiments show that these insertions are involved in RNA interactions. They further delineate a distinct surface patch on each domain-containing both basic and aromatic residues-that interacts with RNA and accounts for the cooperative binding of short oligonucleotides exhibited by the La NTD.
Collapse
Affiliation(s)
- Caterina Alfano
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, St. Michael's Building, Portsmouth PO1 2DT, UK
| | | | | | | | | | | | | |
Collapse
|
54
|
|
55
|
Tanabe K, Ito N, Wakuri T, Ozoe F, Umeda M, Katayama S, Tanaka K, Matsuda H, Kawamukai M. Sla1, a Schizosaccharomyces pombe homolog of the human La protein, induces ectopic meiosis when its C terminus is truncated. EUKARYOTIC CELL 2003; 2:1274-87. [PMID: 14665462 PMCID: PMC326650 DOI: 10.1128/ec.2.6.1274-1287.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Accepted: 08/18/2003] [Indexed: 11/20/2022]
Abstract
Sla1 is a Schizosaccharomyces pombe homolog of the human La protein. La proteins are known to be RNA-binding proteins that bear conserved RNA recognition motifs (La and RRMs), but their biological functions still have not been fully resolved. In this study, we show that the S. pombe La homolog (Sla1) is involved in regulating sexual development. Sla1 truncated in the C terminus (Sla1DeltaC) induced ectopic sporulation in the ras1Delta strain and several other sporulation-deficient mutants. The C terminus contains a nuclear localization signal. While full-length Sla1 localizes in the nucleus, Sla1DeltaC is found throughout the cell, suggesting the cytoplasmic localization of Sla1DeltaC is involved in its sporulation-inducing activity. Further deletion analysis of Sla1 indicated that a small region (35 amino acids) that includes a portion of RRM2 is sufficient to induce sporulation. The La motif (RRM1) is not involved in this activity. Strikingly, Sla1DeltaC induced haploid meiosis in a heterothallic strain, similar to the pat1-114 or mei2-SATA mutation. Sla1DeltaC induced sporulation in a mei3 disruptant but not in a mei2 disruptant, indicating that Sla1DeltaC requires Mei2 to induce haploid meiosis. Deletion of the chromosomal sla1 gene lowered the temperature sensitivity of the pat1-114 mutant. Two-hybrid analysis indicated that Pat1 interacts with Sla1DeltaC but not full-length Sla1. Thus, Sla1DeltaC may block Pat1 activity. This block would remove the inhibition on Mei2, which would then drive the cell into haploid meiosis. Finally, Sla1 was degraded prior to the start of meiosis when we monitored Sla1 in cells in which meiosis was synchronously induced. The ability of truncated Sla1 to induce ectopic meiosis represents a very novel function that has hitherto not been suspected for the La family of proteins.
Collapse
Affiliation(s)
- Kaori Tanabe
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Intine RV, Tenenbaum SA, Sakulich AL, Keene JD, Maraia RJ. Differential phosphorylation and subcellular localization of La RNPs associated with precursor tRNAs and translation-related mRNAs. Mol Cell 2003; 12:1301-7. [PMID: 14636586 DOI: 10.1016/s1097-2765(03)00429-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The La protein facilitates the production of tRNAs in the nucleus and the translation of specific mRNAs in the cytoplasm. We report that human La that is phosphorylated on serine 366 (pLa) is nucleoplasmic and associated with precursor tRNAs and other nascent RNA polymerase III transcripts while nonphosphorylated (np)La is cytoplasmic and associated with a subset of mRNAs that contain 5'-terminal oligopyrimidine (5'TOP) motifs known to control protein synthesis. Thus, La ribonucleoproteins (RNP) exist in distinct states that differ in subcellular localization, serine 366 phosphorylation, and associated RNAs. These results are consistent with a model in which the relative concentrations of the La S366 isoforms in different subcellular compartments in conjunction with the relative concentrations of specific RNA ligands in these compartments determine the differential association of npLa and pLa with their respective classes of associated RNAs.
Collapse
Affiliation(s)
- Robert V Intine
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Development, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
57
|
Yoshihisa T, Yunoki-Esaki K, Ohshima C, Tanaka N, Endo T. Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria. Mol Biol Cell 2003; 14:3266-79. [PMID: 12925762 PMCID: PMC181566 DOI: 10.1091/mbc.e02-11-0757] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Revised: 04/04/2003] [Accepted: 04/04/2003] [Indexed: 11/11/2022] Open
Abstract
Pre-tRNA splicing has been believed to occur in the nucleus. In yeast, the tRNA splicing endonuclease that cleaves the exon-intron junctions of pre-tRNAs consists of Sen54p, Sen2p, Sen34p, and Sen15p and was thought to be an integral membrane protein of the inner nuclear envelope. Here we show that the majority of Sen2p, Sen54p, and the endonuclease activity are not localized in the nucleus, but on the mitochondrial surface. The endonuclease is peripherally associated with the cytosolic surface of the outer mitochondrial membrane. A Sen54p derivative artificially fixed on the mitochondria as an integral membrane protein can functionally replace the authentic Sen54p, whereas mutant proteins defective in mitochondrial localization are not fully active. sen2 mutant cells accumulate unspliced pre-tRNAs in the cytosol under the restrictive conditions, and this export of the pre-tRNAs partly depends on Los1p, yeast exportin-t. It is difficult to explain these results from the view of tRNA splicing in the nucleus. We rather propose a new possibility that tRNA splicing occurs on the mitochondrial surface in yeast.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- Research Center for Materials Science, Nagoya University, Nagoya, 464-8602, Japan
| | | | | | | | | |
Collapse
|
58
|
Jacks A, Babon J, Kelly G, Manolaridis I, Cary PD, Curry S, Conte MR. Structure of the C-terminal domain of human La protein reveals a novel RNA recognition motif coupled to a helical nuclear retention element. Structure 2003; 11:833-43. [PMID: 12842046 DOI: 10.1016/s0969-2126(03)00121-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The La protein is an important component of ribonucleoprotein complexes that acts mainly as an RNA chaperone to facilitate correct processing and maturation of RNA polymerase III transcripts, but can also stimulate translation initiation. We report here the structure of the C-terminal domain of human La, which comprises an atypical RNA recognition motif (La225-334) and a long unstructured C-terminal tail. The central beta sheet of La225-334 reveals novel features: the putative RNA binding surface is formed by a five-stranded beta sheet and, strikingly, is largely obscured by a long C-terminal alpha helix that encompasses a recently identified nuclear retention element. Contrary to previous observations, we find that the La protein does not contain a dimerization domain.
Collapse
Affiliation(s)
- Amanda Jacks
- Biophysics Laboratories, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, St Michael's Building, PO1 2DT, Portsmouth, United
| | | | | | | | | | | | | |
Collapse
|
59
|
Trotta R, Vignudelli T, Candini O, Intine RV, Pecorari L, Guerzoni C, Santilli G, Byrom MW, Goldoni S, Ford LP, Caligiuri MA, Maraia RJ, Perrotti D, Calabretta B. BCR/ABL activates mdm2 mRNA translation via the La antigen. Cancer Cell 2003; 3:145-60. [PMID: 12620409 DOI: 10.1016/s1535-6108(03)00020-5] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In a BCR/ABL-expressing myeloid precursor cell line, p53 levels were markedly downmodulated. Expression of MDM2, the negative regulator of p53, was upregulated in a tyrosine kinase-dependent manner in growth factor-independent BCR/ABL-expressing cells, and in accelerated phase and blast crisis CML samples. Increased MDM2 expression was associated with enhanced mdm2 mRNA translation, which required the interaction of the La antigen with mdm2 5' UTR. Expression of MDM2 correlated with that of La and was suppressed by La siRNAs and by a dominant negative La mutant, which also enhanced the susceptibility to drug-induced apoptosis of BCR/ABL-transformed cells. By contrast, La overexpression led to increased MDM2 levels and enhanced resistance to apoptosis. Thus, La-dependent activation of mdm2 translation might represent an important molecular mechanism involved in BCR/ABL leukemogenesis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Autoantigens
- Blotting, Northern
- Blotting, Western
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/physiology
- GRB2 Adaptor Protein
- Growth Substances/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mice
- Nuclear Proteins
- Protein Biosynthesis
- Protein-Tyrosine Kinases/metabolism
- Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-mdm2
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- RNA-Binding Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Protein p53/metabolism
- Up-Regulation
- SS-B Antigen
Collapse
Affiliation(s)
- Rossana Trotta
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
MESH Headings
- Active Transport, Cell Nucleus
- Endoribonucleases/metabolism
- Genes, Fungal
- Mitochondria/metabolism
- Models, Biological
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA Editing
- RNA Processing, Post-Transcriptional
- RNA Splicing
- RNA, Catalytic/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribonuclease P
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|