51
|
Wang Y, Niu XL, Guo XQ, Yang J, Li L, Qu Y, Xiu Hu C, Mao LQ, Wang D. IL6 induces TAM resistance via kinase-specific phosphorylation of ERα in OVCA cells. J Mol Endocrinol 2015; 54:351-61. [PMID: 25943392 DOI: 10.1530/jme-15-0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 01/16/2023]
Abstract
About 40-60% of ovarian cancer (OVCA) cases express ERα, but only a small proportion of patients respond clinically to anti-estrogen treatment with estrogen receptor (ER) antagonist tamoxifen (TAM). The mechanism of TAM resistance in the course of OVCA progression remains unclear. However, IL6 plays a critical role in the development and progression of OVCA. Our recent results indicated that IL6 secreted by OVCA cells may promote the resistance of these cells to TAM via ER isoforms and steroid hormone receptor coactivator-1. Here we demonstrate that both exogenous (a relatively short period of treatment with recombinant IL6) and endogenous IL6 (generated as a result of transfection with a plasmid encoding sense IL6) increases expression of pERα-Ser118 and pERα-Ser167 in non-IL6-expressing A2780 cells, while deleting endogenous IL6 expression in IL6-overexpressing CAOV-3 cells (by transfection with a plasmid encoding antisense IL6) reduces expression of pERα-Ser118 and pERα-Ser167, indicating that IL6-induced TAM resistance may also be associated with increased expression of pERα-Ser118 and pERα-Ser167 in OVCA cells. Results of further investigation indicate that IL6 phosphorylates ERα at Ser118 and Ser167 by triggering activation of MEK/ERK and phosphotidylinositol 3 kinase/Akt signaling, respectively, to activate the ER pathway and thereby induce OVCA cells resistance to TAM. These results indicate that IL6 secreted by OVCA cells may also contribute to the refractoriness of these cells to TAM via the crosstalk between ER and IL6-mediated intracellular signal transduction cascades. Overexpression of IL6 not only plays an important role in OVCA progression but also promotes TAM resistance. Our results indicate that TAM-IL6-targeted adjunctive therapy may lead to a more effective intervention than TAM alone.
Collapse
Affiliation(s)
- Yue Wang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Xiu Long Niu
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Xiao Qin Guo
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Jing Yang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Ling Li
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Ye Qu
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Cun Xiu Hu
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Li Qun Mao
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Dan Wang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| |
Collapse
|
52
|
Bao W, Wang Y, Fu Y, Jia X, Li J, Vangan N, Bao L, Hao H, Wang Z. mTORC1 Regulates Flagellin-Induced Inflammatory Response in Macrophages. PLoS One 2015; 10:e0125910. [PMID: 25942007 PMCID: PMC4420466 DOI: 10.1371/journal.pone.0125910] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/25/2015] [Indexed: 11/28/2022] Open
Abstract
Bacterial flagellin triggers inflammatory responses. Phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) regulate the production of pro- and anti-inflammatory cytokines that are induced by extrinsic antigens, but the function of mTORC1 in flagellin-induced inflammatory response is unknown. The purpose of this study was to examine the role and the mechanism of PI3K/Akt/mTOR pathway in flagellin-induced cytokine expression in mouse macrophages. We observed that flagellin upregulated TNF-α time- and dose-dependently. Flagellin stimulated rapid (<15 min) PI3K/Akt/mTOR phosphorylation that was mediated by TLR5. Inhibition of PI3K with LY294002 and wortmannin, and of mTORC1 with rapamycin decreased flagellin-induced TNF-α and IL-6 expression and cell proliferation. The activation of NF-κB p65 and STAT3 was regulated by mTORC1 via degradation of IκBα and phosphorylation of STAT3 in response to flagellin, respectively. Thus, the PI3K/Akt/mTORC1 pathway regulates the innate immune response to bacterial flagellin. Rapamycin is potential therapy that can regulate host defense against pathogenic infections.
Collapse
Affiliation(s)
- Wenlei Bao
- College of Life Science, Inner Mongolia University, Hohhot, China
| | - Yanfeng Wang
- College of Life Science, Inner Mongolia University, Hohhot, China
| | - Yuting Fu
- College of Life Science, Inner Mongolia University, Hohhot, China
| | - Xiaoyang Jia
- College of Life Science, Inner Mongolia University, Hohhot, China
| | - Jiaxin Li
- College of Life Science, Inner Mongolia University, Hohhot, China
| | | | - Lili Bao
- College of Life Science, Inner Mongolia University, Hohhot, China
- College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Huifang Hao
- College of Life Science, Inner Mongolia University, Hohhot, China
| | - Zhigang Wang
- College of Life Science, Inner Mongolia University, Hohhot, China
- * E-mail:
| |
Collapse
|
53
|
Kato M, Muromoto R, Togi S, Iwakami M, Kitai Y, Kon S, Oritani K, Matsuda T. PML suppresses IL-6-induced STAT3 activation by interfering with STAT3 and HDAC3 interaction. Biochem Biophys Res Commun 2015; 461:366-71. [PMID: 25892518 DOI: 10.1016/j.bbrc.2015.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
The promyelocytic leukemia protein PML acts as a tumor suppressor by forming transcription-regulatory complexes with a variety of repressor proteins. In the present study, we found that endogenous PML suppresses interleukin (IL)-6-induced gene expression as well as phosphorylation and transcriptional activation of STAT3 in hepatoma cells. We also found that PML-mediated suppression of IL-6-induced STAT3 activation by disrupting interactions between STAT3 and HDAC3. These results indicate that PML modulates IL-6-induced STAT3 activation and hepatoma cell growth by interacting with HDAC3.
Collapse
Affiliation(s)
- Masaya Kato
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sumihito Togi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masashi Iwakami
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeyuki Kon
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
54
|
Xia W, Peng GY, Sheng JT, Zhu FF, Guo JF, Chen WQ. Neuroprotective effect of interleukin-6 regulation of voltage-gated Na(+) channels of cortical neurons is time- and dose-dependent. Neural Regen Res 2015; 10:610-7. [PMID: 26170823 PMCID: PMC4424755 DOI: 10.4103/1673-5374.155436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2015] [Indexed: 02/05/2023] Open
Abstract
Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorly understood. This study investigated the effects of 24 hour exposure of interleukin-6 on cortical neurons at various concentrations (0.1, 1, 5 and 10 ng/mL) and the effects of 10 ng/mL interleukin-6 exposure to cortical neurons for various durations (2, 4, 8, 24 and 48 hours) by studying voltage-gated Na(+) channels using a patch-clamp technique. Voltage-clamp recording results demonstrated that interleukin-6 suppressed Na(+) currents through its receptor in a time- and dose-dependent manner, but did not alter voltage-dependent activation and inactivation. Current-clamp recording results were consistent with voltage-clamp recording results. Interleukin-6 reduced the action potential amplitude of cortical neurons, but did not change the action potential threshold. The regulation of voltage-gated Na(+) channels in rat cortical neurons by interleukin-6 is time- and dose-dependent.
Collapse
Affiliation(s)
- Wei Xia
- Department of Interventional Radiology, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Guo-yi Peng
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jiang-tao Sheng
- Department of Pathogenic Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Fang-fang Zhu
- Department of Pathogenic Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jing-fang Guo
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wei-qiang Chen
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
- Correspondence to: Wei-qiang Chen,
| |
Collapse
|
55
|
Jinno T, Kawano S, Maruse Y, Matsubara R, Goto Y, Sakamoto T, Hashiguchi Y, Kaneko N, Tanaka H, Kitamura R, Toyoshima T, Jinno A, Moriyama M, Oobu K, Kiyoshima T, Nakamura S. Increased expression of interleukin-6 predicts poor response to chemoradiotherapy and unfavorable prognosis in oral squamous cell carcinoma. Oncol Rep 2015; 33:2161-8. [PMID: 25761055 PMCID: PMC4391588 DOI: 10.3892/or.2015.3838] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 12/26/2022] Open
Abstract
Recent studies have revealed that cancer cells are exacerbated by chronic inflammation. The present study examined the immunohistochemical expression for interleukin-6 (IL-6), a pleiotropic inflammatory cytokine, in oral squamous cell carcinoma (OSCC) to elucidate the association of IL-6 expression with tumor progression, chemoresistance and prognosis. Seventy-eight patients with primary OSCC were analyzed by immunohistochemical staining for IL-6. These labeling indexes (LIs) were calculated and evaluated in association with the clinicopathologic characteristics and prognosis in the OSCC patients. The patients were divided into three groups as follows: negative group = LI <5%; low IL-6 group = 5% ≤ LI <30%; high IL-6 group = LI ≥30%. The patient numbers of the negative, low and high expression groups were 24, 22 and 32, respectively. In the high IL-6 expression group, IL-6 receptor (IL-6R), phosphor-signal tranducer and activator of transcription 3 (p-STAT3) were also detected in almost all the cancer cells. The prevalence of the cervical lymph node or the distant metastasis in the high expression group was significantly higher than those in the negative and low expression groups. Furthermore, the high expression group had a significantly poorer tumor response to the preoperative chemoradiotherapy and a more unfavourable prognosis than the negative and the low expression groups. Interestingly, IL-6, IL-6R and p-STAT3 were expressed in the residual cancer cells of all the patients in the high expression group with poor response to chemoradiotherapy. These results suggested that IL-6 signaling possibly is involved in the progression and treatment-resistance of OSCC and IL-6 expression in cancer cells could be a useful predictive factor of poor response to chemoradiotherapy and unfavorable prognosis.
Collapse
Affiliation(s)
- Teppei Jinno
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuyuki Maruse
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryota Matsubara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichi Goto
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Taiki Sakamoto
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuma Hashiguchi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoki Kaneko
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideaki Tanaka
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryoji Kitamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Toyoshima
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiko Jinno
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masafumi Moriyama
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazunari Oobu
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
56
|
Jasoni CL, Sanders TR, Kim DW. Do all roads lead to Rome? The role of neuro-immune interactions before birth in the programming of offspring obesity. Front Neurosci 2015; 8:455. [PMID: 25691854 PMCID: PMC4315034 DOI: 10.3389/fnins.2014.00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
The functions of the nervous system can be powerfully modulated by the immune system. Although traditionally considered to be quite separate, neuro-immune interactions are increasingly recognized as critical for both normal and pathological nervous system function in the adult. However, a growing body of information supports a critical role for neuro-immune interactions before birth, particularly in the prenatal programming of later-life neurobehavioral disease risk. This review will focus on maternal obesity, as it represents an environment of pathological immune system function during pregnancy that elevates offspring neurobehavioral disease risk. We will first delineate the normal role of the immune system during pregnancy, including the role of the placenta as both a barrier and relayer of inflammatory information between the maternal and fetal environments. This will be followed by the current exciting findings of how immuno-modulatory molecules may elevate offspring risk of neurobehavioral disease by altering brain development and, consequently, later life function. Finally, by drawing parallels with pregnancy complications other than obesity, we will suggest that aberrant immune activation, irrespective of its origin, may lead to neuro-immune interactions that otherwise would not exist in the developing brain. These interactions could conceivably derail normal brain development and/or later life function, and thereby elevate risk for obesity and other neurobehavioral disorders later in the offspring's life.
Collapse
Affiliation(s)
- Christine L Jasoni
- Department of Anatomy, Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, University of Otago Dunedin, New Zealand
| | - Tessa R Sanders
- Department of Anatomy, Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, University of Otago Dunedin, New Zealand
| | - Dong Won Kim
- Department of Anatomy, Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, University of Otago Dunedin, New Zealand
| |
Collapse
|
57
|
The multifaceted role of curcumin in cancer prevention and treatment. Molecules 2015; 20:2728-69. [PMID: 25665066 PMCID: PMC6272781 DOI: 10.3390/molecules20022728] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/30/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in treatment modalities over the last decade, neither the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and are also expensive. Thus identification of pharmacological agents that do not have these disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric (Curcumin longa), is one such agent that has been extensively studied over the last three to four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has been found to suppress initiation, progression, and metastasis of a variety of tumors. These anti-cancer effects are predominantly mediated through its negative regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at different phases of the cell cycle and/or by inducing their apoptosis. The current review focuses on the diverse molecular targets modulated by curcumin that contribute to its efficacy against various human cancers.
Collapse
|
58
|
Wang T, Yuan W, Liu Y, Zhang Y, Wang Z, Zhou X, Ning G, Zhang L, Yao L, Feng S, Kong X. The role of the JAK-STAT pathway in neural stem cells, neural progenitor cells and reactive astrocytes after spinal cord injury. Biomed Rep 2014; 3:141-146. [PMID: 25798237 DOI: 10.3892/br.2014.401] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/16/2014] [Indexed: 12/18/2022] Open
Abstract
Patients with spinal cord injuries can develop severe neurological damage and dysfunction, which is not only induced by primary but also by secondary injuries. As an evolutionarily conserved pathway of eukaryotes, the JAK-STAT pathway is associated with cell growth, survival, development and differentiation; activation of the JAK-STAT pathway has been previously reported in central nervous system injury. The JAK-STAT pathway is directly associated with neurogenesis and glia scar formation in the injury region. Following injury of the axon, the overexpression and activation of STAT3 is exhibited specifically in protecting neurons. To investigate the role of the JAK-STAT pathway in neuroprotection, we summarized the effect of JAK-STAT pathway in the following three sections: Firstly, the modulation of JAK-STAT pathway in proliferation and differentiation of neural stem cells and neural progenitor cells is discussed; secondly, the time-dependent effect of JAK-STAT pathway in reactive astrocytes to reveal their capability of neuroprotection is revealed and lastly, we focus on how the astrocyte-secretory polypeptides (astrocyte-derived cytokines and trophic factors) accomplish neuroprotection via the JAK-STAT pathway.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China ; Department of Orthopedics, The 266th Hospital of the Chinese People's Liberation Army, Chengde, Hebei 067000, P.R. China
| | - Wenqi Yuan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yong Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yanjun Zhang
- Department of Orthopedics, Capital Medical University Luhe Hospital, Beijing 100000, P.R. China
| | - Zhijie Wang
- Department of Paediatric Internal Medicine, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Xianhu Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Liwei Yao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiaohong Kong
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
59
|
Das A, Chai JC, Jung KH, Das ND, Kang SC, Lee YS, Seo H, Chai YG. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells. Exp Cell Res 2014; 328:361-78. [PMID: 25193078 DOI: 10.1016/j.yexcr.2014.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/21/2014] [Accepted: 08/19/2014] [Indexed: 01/05/2023]
Abstract
JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53(-/-) NE-4Cs). We determined the effect of LPS as a model of inflammation in p53(-/-) NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53(-/-) NE-4Cs and in LPS-stimulated JMJD2A-kd p53(-/-) NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed.
Collapse
Affiliation(s)
- Amitabh Das
- Department of Bionanotechnology, Hanyang University, Seoul 133-791, Republic of Korea.
| | - Jin Choul Chai
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Kyoung Hwa Jung
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Nando Dulal Das
- Clinical Research Centre, Inha University School of Medicine, Incheon 400-711, Republic of Korea.
| | - Sung Chul Kang
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Young Seek Lee
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Hyemyung Seo
- Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul 133-791, Republic of Korea; Department of Molecular & Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
60
|
Kim HY, Jhun JY, Cho ML, Choi JY, Byun JK, Kim EK, Yoon SK, Bae SH, Chung BH, Yang CW. Interleukin-6 upregulates Th17 response via mTOR/STAT3 pathway in acute-on-chronic hepatitis B liver failure. J Gastroenterol 2014; 49:1264-73. [PMID: 24366287 DOI: 10.1007/s00535-013-0891-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/18/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Interleukin (IL)-17-producing CD4(+) T cells (Th17) have been shown to play crucial roles in the pathogenesis of hepatitis B virus (HBV)-associated acute-on-chronic liver failure (ACLF). However, the mechanism underlying the enhanced Th17 responses in these patients remains elusive. In this study, the relevance of the IL-6/signal transducer and activator of transcription 3 (STAT3)/mammalian target of rapamycin (mTOR)/Th17 loop in HBV-associated ACLF was investigated. METHODS Eight patients with HBV-associated ACLF, eight asymptomatic chronic HBV carriers and eight healthy controls were enrolled in our study. The frequency of peripheral Th17 cells was determined by flow cytometry. IL-17 and IL-6 mRNA levels in peripheral blood mononuclear cells were quantified using quantitative real-time reverse polymerase chain reaction. The activation of STAT3 was seen upon stimulation with IL-6. Rapamycin, an mTOR inhibitor, was used for analysis of the suppressive effect on the Th17 response in vitro. RESULTS The percentage of peripheral Th17 cells significantly increased in ACLF patients. CD4(+) T cells from ACLF patients produced higher levels of IL-17 and IL-6 upon stimulation in vitro. Activation of STAT3 in response to IL-6 was elevated in ACLF patients. The IL-6-induced upregulation of IL-17 production by CD4(+) T cells could be reversed by an mTOR inhibitor through decreasing STAT3 activation. CONCLUSIONS STAT3 activation upon IL-6 stimulation contributed to the enhanced Th17 response in HBV-associated ACLF patients and mTOR regulated STAT3 phosphorylation. mTOR can be a novel target to suppress Th17-mediated liver injury in HBV-associated ACLF patients.
Collapse
Affiliation(s)
- Hee Yeon Kim
- Division of Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, #505 Banpo-Dong, Seocho-Gu, Seoul, 137-040, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Sun L, Sui L, Cong X, Ma K, Ma X, Huang Y, Fan C, Fu X, Ma K. Low incidence of IL6ST (gp130) mutations in exon 6 in lung cancer of a Chinese cohort. Cancer Genet 2014; 207:291-8. [PMID: 25242236 DOI: 10.1016/j.cancergen.2014.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 01/26/2023]
Abstract
Lung cancer is an inflammation-associated epithelial carcinoma. A highly active interleukin 6 (IL-6)/glycoprotein 130 (gp130)/signal transducer and activator of transcription 3 (STAT3) pathway has been identified in a subset of primary lung cancer and closely correlated with tumor progression and poor prognosis. In a previous study, the frequent occurrence of somatic gain-of-function mutations was observed in the gp130-encoding IL6ST gene in exon 6 in 60% of inflammatory hepatocellular adenomas. Prompted by this finding, we assessed 110 Chinese lung carcinomas using PCR and direct DNA sequencing but found no somatic mutation of IL6ST in exon 6. However, one new potential germline missense mutation c.599C>G was identified in one adenocarcinoma that harbors wild-type epidermal growth factor receptor and KRAS. Protein modeling analysis showed that this mutation might not affect the gp130 protein conformation. Moreover, activated STAT3 was observed in most of the lung tumor tissues at a higher level than that in matched normal lung tissues. In conclusion, the c.599C>G mutation may be a new single nucleotide polymorphism of IL6ST, but mutations in exon 6 of this gene are not apparently common genetic variations occurring and leading to constitutive activation of STAT3 in lung cancer.
Collapse
Affiliation(s)
- Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Liyan Sui
- College of Life Science, Jilin University, Changchun, China
| | - Xianling Cong
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Kejuan Ma
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Xiaobo Ma
- Department of Pathology, The First Hospital, Jilin University, Changchun, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Cong Fan
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xueqi Fu
- College of Life Science, Jilin University, Changchun, China
| | - Kewei Ma
- Cancer Center, The First Hospital, Jilin University, Changchun, China.
| |
Collapse
|
62
|
Vyas D, Laput G, Vyas AK. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. Onco Targets Ther 2014; 7:1015-1023. [PMID: 24959088 PMCID: PMC4061164 DOI: 10.2147/ott.s60114] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The lack of therapy and the failure of existing therapy has been a challenge for clinicians in treating various cancers. Doxorubicin, 5-fluorouracil, cisplatin, and paclitaxel are the first-line therapy in various cancers; however, toxicity, resistance, and treatment failure limit their clinical use. Their status leads us to discover and investigate more targeted therapy with more efficacy. In this article, we dissect literature from the patient perspective, the tumor biology perspective, therapy-induced metastasis, and cell data generated in the laboratory.
Collapse
Affiliation(s)
- Dinesh Vyas
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Gieric Laput
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
63
|
Perígolo-Vicente R, Ritt K, Gonçalves-de-Albuquerque CF, Castro-Faria-Neto HC, Paes-de-Carvalho R, Giestal-de-Araujo E. IL-6, A1 and A2aR: a crosstalk that modulates BDNF and induces neuroprotection. Biochem Biophys Res Commun 2014; 449:477-82. [PMID: 24845382 DOI: 10.1016/j.bbrc.2014.05.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/08/2014] [Indexed: 11/15/2022]
Abstract
Several diseases are related to retinal ganglion cell death, such as glaucoma, diabetes and other retinopathies. Many studies have attempted to identify factors that could increase neuroprotection after axotomy of these cells. Interleukin-6 has been shown to be able to increase the survival and regeneration of retinal ganglion cells (RGC) in mixed culture as well as in vivo. In this work we show that the trophic effect of IL-6 is mediated by adenosine receptor (A2aR) activation and also by the presence of extracellular BDNF. We also show that there is a complex cross-talk between IL-6, BDNF, the Adenosine A1 and A2a receptors that results in neuroprotection of retinal ganglion cells.
Collapse
Affiliation(s)
- Rafael Perígolo-Vicente
- Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio de Janeiro CEP: 24020-140, Brazil; Blizard Institute - Queen Mary, University of London, 4 Newark St, London, City of London, Greater London E1 2AT, United Kingdom.
| | - Karen Ritt
- Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio de Janeiro CEP: 24020-140, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Departamento de Fisiologia e Farmacodinâmica, Av. Brasil, n° 4365, Manguinhos, CEP: 21045-900 Rio de Janeiro, RJ, Brazil
| | - Hugo Caire Castro-Faria-Neto
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Departamento de Fisiologia e Farmacodinâmica, Av. Brasil, n° 4365, Manguinhos, CEP: 21045-900 Rio de Janeiro, RJ, Brazil
| | - Roberto Paes-de-Carvalho
- Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio de Janeiro CEP: 24020-140, Brazil
| | - Elizabeth Giestal-de-Araujo
- Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Niterói, Rio de Janeiro CEP: 24020-140, Brazil
| |
Collapse
|
64
|
Park MJ, Moon SJ, Lee SH, Kim EK, Yang EJ, Min JK, Park SH, Kim HY, Yang CW, Cho ML. Blocking activator protein 1 activity in donor cells reduces severity of acute graft-versus-host disease through reciprocal regulation of IL-17-producing T cells/regulatory T cells. Biol Blood Marrow Transplant 2014; 20:1112-20. [PMID: 24813170 DOI: 10.1016/j.bbmt.2014.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 04/29/2014] [Indexed: 01/21/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a major cause of mortality in allogeneic bone marrow transplantation. Here, the diminishing effect of activator protein 1 (AP-1) blocking with a synthetic retinoid (SR11302) on the severity of aGVHD in a murine model was investigated. MHC-mismatched strain combinations were used in vivo: C57BL/6 (H-2k(b)) donors into lethally irradiated BALB/c (H-2k(d)) recipients. SR11302 inhibited alloreactive T cell response in a dose-dependent manner and negatively regulated signal transducer and activator of transcription 3 (STAT3) activation. AP-1 blocking in T cells inhibited the differentiation of Th1 and Th17. Conversely, Foxp3(+) regulatory T cells (Treg) population dramatically expanded. Transfer of SR11302-treated donor splenocytes into lethally irradiated recipients diminished the lethality and clinical severity of aGVHD. In line with these results, AP-1 blocking in donor splenocytes exhibited reduced Th17/Th1 population and enhanced in vivo Treg population. Beneficial Treg expanding property of SR11302 was associated with the induction of Foxp3 and STAT5 transcription factor, where the inhibiting property of Th17 was achieved by suppressing the phosphorylated form of STAT3 and enhancing SOCS3. In conclusion, the preventive potential of AP-1 inhibitor in aGVHD may be accomplished by altering CD4(+) T cell differentiation through modulating transcription factors.
Collapse
Affiliation(s)
- Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea; Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Seoul, Republic of Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hee Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea; Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Seoul, Republic of Korea
| | - Eun-Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea; Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Seoul, Republic of Korea
| | - Eun-Ji Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea; Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Seoul, Republic of Korea
| | - Jun-Ki Min
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Ho-Youn Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Chul-Woo Yang
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Seoul, Republic of Korea; Transplant Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea; Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Seoul, Republic of Korea.
| |
Collapse
|
65
|
The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014; 2014:561459. [PMID: 24876674 PMCID: PMC4021678 DOI: 10.1155/2014/561459] [Citation(s) in RCA: 1087] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/12/2014] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic disease of human joints. The basis of pathologic changes involves all the tissues forming the joint; already, at an early stage, it has the nature of inflammation with varying degrees of severity. An analysis of the complex relationships indicates that the processes taking place inside the joint are not merely a set that (seemingly) only includes catabolic effects. Apart from them, anti-inflammatory anabolic processes also occur continually. These phenomena are driven by various mediators, of which the key role is attributed to the interactions within the cytokine network. The most important group controlling the disease seems to be inflammatory cytokines, including IL-1β, TNFα, IL-6, IL-15, IL-17, and IL-18. The second group with antagonistic effect is formed by cytokines known as anti-inflammatory cytokines such as IL-4, IL-10, and IL-13. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of OA with respect to inter- and intracellular signaling pathways is still under investigation. This paper summarizes the current state of knowledge. The cytokine network in OA is put in the context of cells involved in this degenerative joint disease. The possibilities for further implementation of new therapeutic strategies in OA are also pointed.
Collapse
|
66
|
Interleukin-6 disrupts blood-testis barrier through inhibiting protein degradation or activating phosphorylated ERK in Sertoli cells. Sci Rep 2014; 4:4260. [PMID: 24584780 PMCID: PMC3939460 DOI: 10.1038/srep04260] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/14/2014] [Indexed: 11/09/2022] Open
Abstract
It has been recently ascribed to several inflammatory cytokines (i.e. TGF-β3, TNF-α, and IL-1) a functional role in regulating Sertoli cell blood-testis barrier (BTB) dynamics. In the testis, IL-6 inhibits meiotic DNA synthesis during the seminiferous epithelium cycle, reduces sperm motility and influences the secretion of transferrin and inhibin B by Sertoli cells. Also, it has been shown that IL-6 affects tight junction permeability in Sertoli cells, but, little is known about its role in regulating the BTB. The aim of this study was to investigate the molecular mechanisms by which IL-6 affects BTB dynamics. We show that IL-6 perturbs the integrity of the BTB, and alters the normal localization and steady-state levels of BTB integral membrane proteins. We demonstrated that IL-6 regulates the BTB by inhibiting the degradation of BTB constitutive proteins and activating ERK-MAPK pathways. Our results provide mechanistic insight into the roles of IL-6 in regulating BTB dynamics.
Collapse
|
67
|
Interleukin-6 signal transduction and its role in hepatic lipid metabolic disorders. Cytokine 2014; 66:133-42. [PMID: 24491813 DOI: 10.1016/j.cyto.2013.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/14/2013] [Accepted: 12/30/2013] [Indexed: 01/12/2023]
Abstract
Hepatic lipid dysregulation can lead to spectrum of metabolic disease conditions including metabolic syndrome (MS), fatty liver and diabetes. Liver lipids are regulated by a complex set of extra-hepatic and intra-hepatic factors including cellular cross-talk with variety of cells, inducing various cytokines. Interleukin 6(IL-6) is a pleiotropic cytokine that exerts both pro-inflammatory and anti-inflammatory effects on hepatic system through either JNK/STAT or ERK/MAPK signaling. Although, IL-6 has shown to protect the liver from fat storage in both rodent and human models and various IL-6(-/-) studies have supported this notion yet a question remains over its deleterious pro-inflammatory effects on hepatocytes. IL-6 ability to produce reactive oxygen species (ROS) and subsequently disturb the hepatic lipid balance has created a conundrum. Furthermore, IL-6 has shown to behave differently under different disease states within hepatocytes and hence, modulating the hepatic lipids accordingly. This review deals with the role of IL-6 on hepatic lipid metabolism and analyzes various data presented on this topic.
Collapse
|
68
|
Kotasová H, Procházková J, Pacherník J. Interaction of Notch and gp130 signaling in the maintenance of neural stem and progenitor cells. Cell Mol Neurobiol 2014; 34:1-15. [PMID: 24132391 PMCID: PMC11488917 DOI: 10.1007/s10571-013-9996-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/30/2013] [Indexed: 01/10/2023]
Abstract
Notch and gp130 signaling are involved in the regulation of multiple cellular processes across various tissues during animal ontogenesis. In the developing nervous system, both signaling pathways intervene at many stages to determine cell fate-from the first neural lineage commitment and generation of neuronal precursors, to the terminal specification of cells as neurons and glia. In most cases, the effects of Notch and gp130 signaling in these processes are similar. The aim of the current review was to summarize the knowledge regarding the roles of Notch and gp130 signaling in the maintenance of neural stem and progenitor cells during animal ontogenesis, from early embryo to adult. Recent data show a direct crosstalk between these signaling pathways that seems to be specific for a particular type of neural progenitors.
Collapse
Affiliation(s)
- Hana Kotasová
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Jiřina Procházková
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Jiří Pacherník
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
- Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
69
|
Wu Y, Yang L, Mei X, Yu Y. Selective inhibition of STAT1 reduces spinal cord injury in mice. Neurosci Lett 2013; 580:7-11. [PMID: 24321405 DOI: 10.1016/j.neulet.2013.11.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/15/2013] [Accepted: 11/30/2013] [Indexed: 12/15/2022]
Abstract
The signal transducer and activator of transcription 1 (STAT1) is associated with neuronal cell death after cerebral ischemia. However, the role of STAT1 in the spinal cord injury (SCI) remains unclear. Here, we examined whether STAT1 blockade reduces neural tissue damage and locomotor impairment after SCI in mice. The small interfering RNA against STAT1 (STAT1 siRNA) or control non-targeting siRNA was injected intraperitoneally into SCI mice. Histological damage and locomotor function were evaluated. Inflammatory markers and apoptosis were determined. STAT1 siRNA treatment significantly decreased the histological damage following SCI. STAT1 siRNA-treated mice showed significantly improved locomotor function compared with the controls. Furthermore, TNF-α, IL-1β, and IL-6 levels at the injured site from the STAT1 siRNA-treated group were significantly reduced and IL-10 increased, in comparison with controls. The NF-κB activation and apoptosis in SCI were also inhibited. These results reveal that selective STAT1 inhibition reduced neural tissue damage and locomotor impairment by regulating inflammatory response and possibly apoptosis. STAT1 represents a novel therapeutic target after SCI.
Collapse
Affiliation(s)
- Yuexin Wu
- Department of Hand Surgery, First Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning, China
| | - Limin Yang
- Department of Hand Surgery, First Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning, China.
| | - Xifan Mei
- Department of Spine, First Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning, China
| | - Yang Yu
- Department of Spine, First Hospital of Liaoning Medical University, Jinzhou 121000, Liaoning, China
| |
Collapse
|
70
|
The role of glycogen synthase kinase 3-β in immunity and cell cycle: implications in esophageal cancer. Arch Immunol Ther Exp (Warsz) 2013; 62:131-44. [PMID: 24276788 DOI: 10.1007/s00005-013-0263-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 11/06/2013] [Indexed: 01/01/2023]
Abstract
Esophageal cancer (EC) is one of the most aggressive gastrointestinal malignancies, possessing an insidious onset and a poor prognosis. Numerous transcription factors and inflammatory mediators have been reported to play a pivotal role in the initiation and progression of this cancer. However, the specifics of the signaling network responsible for said factors, especially which elements are the critical regulators, are still being elucidated. Glycogen synthesis kinases 3 (GSK3)β was originally regarded as a kinase regulating glucose metabolism. Accumulating evidence demonstrated that it also played an essential role in a variety of cellular processes including proliferation, differentiation, inflammation, motility, and survival by regulating various transcription factors such as c-Jun, AP-1, β-catenin, CREB, and NF-κB. Aberrant regulation of GSK3β has been shown to promote cell growth in some cancers, while suppressing it in others, and thus may play an important role in the development of EC. This review will discuss our current understanding of GSK3β signaling, and its control of the expression and activation of various transcription factors that mediate the inflammatory response. We will also explore some of the known mediators of EC progression, and based on current literature, elucidate the potential roles and implications of GSK3 in this disease.
Collapse
|
71
|
Abstract
Hepatocytes, like other epithelia, are situated at the interface between the organism's exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes.
Collapse
Affiliation(s)
- Aleksandr Treyer
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, New York, USA
| | | |
Collapse
|
72
|
Huang YH, Yang HY, Hsu YF, Chiu PT, Ou G, Hsu MJ. Src contributes to IL6-induced vascular endothelial growth factor-C expression in lymphatic endothelial cells. Angiogenesis 2013; 17:407-18. [DOI: 10.1007/s10456-013-9386-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 09/12/2013] [Indexed: 12/20/2022]
|
73
|
Murakami T, Kanchiku T, Suzuki H, Imajo Y, Yoshida Y, Nomura H, Cui D, Ishikawa T, Ikeda E, Taguchi T. Anti-interleukin-6 receptor antibody reduces neuropathic pain following spinal cord injury in mice. Exp Ther Med 2013; 6:1194-1198. [PMID: 24223643 PMCID: PMC3820708 DOI: 10.3892/etm.2013.1296] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 08/29/2013] [Indexed: 12/15/2022] Open
Abstract
The present study reports the beneficial effects of an anti-mouse interleukin-6 (IL-6) receptor antibody (MR16-1) on neuropathic pain in mice with spinal cord injury (SCI). Following laminectomy, contusion SCI models were produced using an Infinite Horizon (IH)-impactor. MR16-1 was continuously injected for 14 days using Alzet osmotic pumps. A mouse IL-6 ELISA kit was then used to analyze IL-6 levels in the spinal cord tissue between 12 and 72 h after injury. Motor and sensory functions were evaluated each week using the Basso Mouse Scale (BMS), plantar von Frey and thermal threshold tests. Histological examinations were performed 42 days after SCI. Between 24 and 72 h after SCI, the expression levels of IL-6 were significantly decreased in the MR16-1 treated group. Six weeks after surgery, the BMS score of the MR16-1-treated group indicated significant recovery of neurological functions. MR16-1-treated mice in the SCI group exhibited lower paw withdrawal thresholds in the plantar von Frey and thermal tests, which were used to evaluate allodynia. MR16-1 treatment significantly increased the area of Luxol fast blue-stained tissue, representing spared myelin sheaths. These results indicate that the continuous inhibition of IL-6 signaling by MR16-1 between the early and sub-acute phases following SCI leads to neurological recovery and the suppression of hyperalgesia and allodynia. Overall, our data suggest that the inhibition of severe inflammation may be a promising neuroprotective approach to limit secondary injury following SCI and that an anti-IL-6 receptor antibody may have clinical potential for the treatment of SCI.
Collapse
Affiliation(s)
- Tomotoshi Murakami
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Zhang L, Pan J, Dong Y, Tweardy DJ, Dong Y, Garibotto G, Mitch WE. Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell Metab 2013; 18:368-79. [PMID: 24011072 PMCID: PMC3794464 DOI: 10.1016/j.cmet.2013.07.012] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 03/17/2013] [Accepted: 07/24/2013] [Indexed: 01/02/2023]
Abstract
Catabolic conditions like chronic kidney disease (CKD) cause loss of muscle mass by unclear mechanisms. In muscle biopsies from CKD patients, we found activated Stat3 (p-Stat3) and hypothesized that p-Stat3 initiates muscle wasting. We created mice with muscle-specific knockout (KO) that prevents activation of Stat3. In these mice, losses of body and muscle weights were suppressed in models with CKD or acute diabetes. A small-molecule that inhibits Stat3 activation produced similar responses, suggesting a potential for translation strategies. Using CCAAT/enhancer-binding protein δ (C/EBPδ) KO mice and C2C12 myotubes with knockdown of C/EBPδ or myostatin, we determined that p-Stat3 initiates muscle wasting via C/EBPδ, stimulating myostatin, a negative muscle growth regulator. C/EBPδ KO also improved survival of CKD mice. We verified that p-Stat3, C/EBPδ, and myostatin were increased in muscles of CKD patients. The pathway from p-Stat3 to C/EBPδ to myostatin and muscle wasting could identify therapeutic targets that prevent muscle wasting.
Collapse
Affiliation(s)
- Liping Zhang
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
75
|
Middleton K, Jones J, Lwin Z, Coward JIG. Interleukin-6: an angiogenic target in solid tumours. Crit Rev Oncol Hematol 2013; 89:129-39. [PMID: 24029605 DOI: 10.1016/j.critrevonc.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/29/2013] [Accepted: 08/13/2013] [Indexed: 12/18/2022] Open
Abstract
During the past decade, incorporating anti-angiogenic agents into the therapeutic management of a myriad of malignancies has in certain cases made a significant impact on survival. However, the development of resistance to these drugs is inevitable and swift disease progression on their cessation often ensues. Hence, there is a drive to devise strategies that aim to enhance response to anti-angiogenic therapies by combining them with other targeted agents that facilitate evasion from resistance. The pleiotropic cytokine, interleukin-6 (IL-6), exerts pro-angiogenic effects in the tumour microenvironment of several solid malignancies and there is emerging evidence that reveals significant relationships between IL-6 signalling and treatment failure with antibodies directed against vascular endothelial growth factor (VEGF). This review summarises the role of IL-6 in pivotal angiogenic processes and preclinical/clinical research to support the future introduction of anti-IL-6 therapies to be utilised either in combination with other anti-angiogenic drugs or as a salvage therapy for patients with diseases that become refractory to these approaches.
Collapse
Affiliation(s)
- Kathryn Middleton
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia
| | - Joanna Jones
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia
| | - Zarnie Lwin
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia
| | - Jermaine I G Coward
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia; Inflammation & Cancer Therapeutics Group, Mater Research, Level 4, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD 4102, Australia; School of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
76
|
Kojima H, Inoue T, Kunimoto H, Nakajima K. IL-6-STAT3 signaling and premature senescence. JAKSTAT 2013; 2:e25763. [PMID: 24416650 PMCID: PMC3876432 DOI: 10.4161/jkst.25763] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/13/2013] [Accepted: 07/15/2013] [Indexed: 12/12/2022] Open
Abstract
Cytokines play several roles in developing and/or reinforcing premature cellular senescence of young cells. One such cytokine, interleukin-6 (IL-6), regulates senescence in some systems in addition to its known functions of immune regulation and promotion of tumorigenesis. In this review, we describe recent advances in studies on the roles of IL-6 and its downstream signal transducer and activator of transcription 3 (STAT3) in regulating premature cellular senescence. IL-6/sIL-6Rα stimulation forms a senescence-inducing circuit involving the STAT3-insulin-like growth factor-binding protein 5 (IGFBP5) as a key axis triggering and reinforcing component in human fibroblasts. We describe how cytokines regulate the process of senescence by activating STAT3 in one system and anti-senescence or tumorigenesis in other systems. The roles of other STAT members in premature senescence also will be discussed to show the multiple mechanisms leading to cytokine-induced senescence.
Collapse
Affiliation(s)
- Hirotada Kojima
- Department of Immunology; Osaka City University Graduate School of Medicine; Osaka, Japan
| | - Toshiaki Inoue
- Division of Human Genome Science; Department of Molecular and Cellular Biology; School of Life Sciences; Faculty of Medicine; Tottori University; Yonago, Japan
| | - Hiroyuki Kunimoto
- Department of Immunology; Osaka City University Graduate School of Medicine; Osaka, Japan
| | - Koichi Nakajima
- Department of Immunology; Osaka City University Graduate School of Medicine; Osaka, Japan
| |
Collapse
|
77
|
Abstract
During the last decades a large number of cucurbitacins have been isolated from various plant species belonging to other plant families than Cucurbitaceae. Although the roots and the fruits of plant belong to these Cucurbitaceae species are very bitter, they have been used as folk medicines in some countries because of their wide spectrum of pharmacological activities such as anti-inflammation and anticancer effects. In the last ten years, cucurbitacins had been shown to inhibit proliferation and induced apoptosis utilizing a long array of in vitro and in vivo cancer cell models. Several molecular targets for cucurbitacins have been discovered, such as fibrous-actin, signal transducer and activator of transcription (STAT), cyclooxygenase-2, etc. This review aimed at elucidating the natural sources of some cucurbitacin compounds, their chemical structure and derivatives, physical properties, biological activities and mechanism by which they reduce the proliferation human cancer cells. This widens our armaments against a devastating disease that we are failing to face.
Collapse
|
78
|
Böttger E, Grangeiro de Carvalho E, Meese S, Kun JF, Esen M. Expression of Interleukin-6 Family Receptors in NK92 Cells Is Regulated by Cytokines and Not Through Direct Interaction withPlasmodium falciparum-Infected Erythrocytes. J Interferon Cytokine Res 2013; 33:65-71. [DOI: 10.1089/jir.2012.0094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Evelyn Böttger
- Institute for Tropical Medicine, Tübingen University, Tübingen, Germany
| | | | - Stefanie Meese
- Institute for Tropical Medicine, Tübingen University, Tübingen, Germany
| | - Jürgen F.J. Kun
- Institute for Tropical Medicine, Tübingen University, Tübingen, Germany
| | - Meral Esen
- Institute for Tropical Medicine, Tübingen University, Tübingen, Germany
| |
Collapse
|
79
|
IL-6 treatment increases the survival of retinal ganglion cells in vitro: The role of adenosine A1 receptor. Biochem Biophys Res Commun 2013; 430:512-8. [DOI: 10.1016/j.bbrc.2012.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/03/2012] [Indexed: 11/23/2022]
|
80
|
Coward JI, Kulbe H. The role of interleukin-6 in gynaecological malignancies. Cytokine Growth Factor Rev 2012; 23:333-42. [DOI: 10.1016/j.cytogfr.2012.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/20/2012] [Indexed: 12/19/2022]
|
81
|
Subramaniam A, Shanmugam MK, Perumal E, Li F, Nachiyappan A, Dai X, Swamy SN, Ahn KS, Kumar AP, Tan BKH, Hui KM, Sethi G. Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2012; 1835:46-60. [PMID: 23103770 DOI: 10.1016/j.bbcan.2012.10.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/18/2012] [Accepted: 10/21/2012] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, and is also the fourth most common cancer worldwide with around 700,000 new cases each year. Currently, first line chemotherapeutic drugs used for HCC include fluorouracil, cisplatin, doxorubicin, paclitaxel and mitomycin, but most of these are non-selective cytotoxic molecules with significant side effects. Sorafenib is the only approved targeted therapy by the U.S. Food and Drug Administration for HCC treatment, but patients suffer from various kinds of adverse effects, including hypertension. The signal-transducer-and-activator-of-transcription 3 (STAT3) protein, one of the members of STATs transcription factor family, has been implicated in signal transduction by different cytokines, growth factors and oncogenes. In normal cells, STAT3 activation is tightly controlled to prevent dysregulated gene transcription, whereas constitutively activated STAT3 plays an important role in tumorigenesis through the upregulation of genes involved in anti-apoptosis, proliferation and angiogenesis. Thus, pharmacologically safe and effective agents that can block STAT3 activation have the potential both for the prevention and treatment of HCC. In the present review, we discuss the possible role of STAT3 signaling cascade and its interacting partners in the initiation of HCC and also analyze the role of various STAT3 regulated genes in HCC progression, inflammation, survival, invasion and angiogenesis.
Collapse
Affiliation(s)
- Aruljothi Subramaniam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Eyre H, Baune BT. Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology 2012; 37:1397-416. [PMID: 22525700 DOI: 10.1016/j.psyneuen.2012.03.019] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/15/2012] [Accepted: 03/22/2012] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that there is a rich cross-talk between the neuroimmune system and neuroplasticity mechanisms under both physiological conditions and pathophysiological conditions in depression. Anti-neuroplastic changes which occur in depression include a decrease in proliferation of neural stem cells (NSCs), decreased survival of neuroblasts and immature neurons, impaired neurocircuitry (cortical-striatal-limbic circuits), reduced levels of neurotrophins, reduced spine density and dendritic retraction. Since both humoral and cellular immune factors have been implicated in neuroplastic processes, in this review we present a model suggesting that neuroplastic processes in depression are mediated through various neuroimmune mechanisms. The review puts forward a model in that both humoral and cellular neuroimmune factors are involved with impairing neuroplasticity under pathophysiological conditions such as depression. Specifically, neuroimmune factors including interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, CD4⁺CD25⁺T regulatory cells (T reg), self-specific CD4⁺T cells, monocyte-derived macrophages, microglia and astrocytes are shown to be vital to processes of neuroplasticity such as long-term potentiation (LTP), NSC survival, synaptic branching, neurotrophin regulation and neurogenesis. In rodent models of depression, IL-1, IL-6 and TNF are associated with reduced hippocampal neurogenesis; mechanisms which are associated with this include the stress-activated protein kinase (SAPK)/Janus Kinase (JNK) pathway, hypoxia-inducible factors (HIF)-1α, JAK-Signal Transducer and Activator of Transcription (STAT) pathway, mitogen-activated protein kinase (MAPK)/cAMP responsive element binding protein (CREB) pathway, Ras-MAPK, PI-3 kinase, IKK/nuclear factor (NF)-κB and TGFβ activated kinase-1 (TAK-1). Neuroimmunological mechanisms have an active role in the neuroplastic changes associated with depression. Since therapies in depression, including antidepressants (AD), omega-3 polyunsaturated fatty acids (PUFAs) and physical activity exert neuroplasticity-enhancing effects potentially mediated by neuroimmune mechanisms, the immune system might serve as a promising target for interventions in depression.
Collapse
Affiliation(s)
- Harris Eyre
- Discipline of Psychiatry, School of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | | |
Collapse
|
83
|
Baune BT, Konrad C, Grotegerd D, Suslow T, Birosova E, Ohrmann P, Bauer J, Arolt V, Heindel W, Domschke K, Schöning S, Rauch AV, Uhlmann C, Kugel H, Dannlowski U. Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain. J Neuroinflammation 2012; 9:125. [PMID: 22695063 PMCID: PMC3464888 DOI: 10.1186/1742-2094-9-125] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/13/2012] [Indexed: 12/14/2022] Open
Abstract
Background Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.
Collapse
Affiliation(s)
- Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
OBJECTIVES We investigated the signaling pathways activated in response to interleukin 6 (IL-6) in pancreatic cell lines, with a focus on signal transducer and activator of transcription 3 (STAT3) and proto-oncogene serine/threonine-protein (Pim-1) kinase. METHODS Interleukin 6 receptor (IL-6R) expression and IL-6-induced cell signaling was measured by Western blotting in human pancreatic cell lines. Cucurbitacin I was used as a pharmacological tool to investigate the role of STAT3 in Pim-1 activation. Stably overexpressing Pim-1 kinase cell lines were characterized for their response to IL-6 in vitro and for their growth rate as flank tumors in scid mice. RESULTS Interleukin 6 receptor was expressed across multiple cancer cell lines. In Panc-1 cells, IL-6 treatment increased expression of phosphorylation of signal transducer and activator of transcription 3 and Pim-1 kinase. Cucurbitacin I treatment alone increased pErk1/2 expression in wild-type and Pim-1-overexpressing cell lines and resulted in exaggerated Pim-1 kinase protein levels in control and IL-6-stimulated cells, suggesting that up-regulation of Pim-1 may be partially STAT3 independent. Pim-1 overexpression did not significantly affect growth rate in vitro or in vivo in Panc-1 or MiaPaCa2 cell lines. CONCLUSIONS Interleukin 6 activates STAT3 and stimulates Pim-1 kinase in pancreatic cell line models. The regulation and consequence of Pim-1 expression seems to be highly context dependent.
Collapse
|
85
|
Debnath B, Xu S, Neamati N. Small molecule inhibitors of signal transducer and activator of transcription 3 (Stat3) protein. J Med Chem 2012; 55:6645-68. [PMID: 22650325 DOI: 10.1021/jm300207s] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bikash Debnath
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | | | | |
Collapse
|
86
|
Wang Y, Li L, Guo X, Jin X, Sun W, Zhang X, Xu RC. Interleukin-6 signaling regulates anchorage-independent growth, proliferation, adhesion and invasion in human ovarian cancer cells. Cytokine 2012; 59:228-36. [PMID: 22595649 DOI: 10.1016/j.cyto.2012.04.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 04/06/2012] [Accepted: 04/17/2012] [Indexed: 11/30/2022]
Abstract
It has been widely reported that Interleukin-6 (IL-6) is overexpressed in the serum and ascites of ovarian cancer (OVCA) patients, and elevated IL-6 level correlates with poor prognosis and survival. However, the exact role that IL-6 plays in this malignancy or whether IL-6 can regulate tumorigenic properties has not been established. Here we demonstrate that overexpression of IL-6 in non-IL-6-expressing A2780 cells (by transfecting with plasmid encoding for sense IL-6) increases anchorage-independent growth, proliferation, adhesion and invasion, while depletion of endogenous IL-6 expression in IL-6-overexpressing SKOV-3 cells (by transfecting with plasmid encoding for antisense IL-6) decreases. Further investigation indicates that IL-6 promotes OVCA cell proliferation by altering cell cycle distribution rather than inhibiting apoptosis and that IL-6-enhanced OVCA cell invasive may be associated with increased matrix metalloproteinase (MMP)-9 but not MMP-2 proteolytic activity. In addition, overexpressing or deleting of IL-6 in OVCA cells enhances or reduces its receptor (IL-6Rα and gp130) expression and basal phosphorylation levels of both ERK and Akt, and additional treatment with specific inhibitor of the ERK or Akt signaling pathway significantly inhibits the proliferation of IL-6-overexpressing A2780 cells. Our data suggest that the autocrine production of IL-6 by OVCA cells regulates tumorigenic properties of these cells by inducing IL-6 signaling pathways. Thus, regulation of IL-6 expression or its related signaling pathway may be a promising strategy for controlling the progression of OVCA.
Collapse
Affiliation(s)
- Yue Wang
- Department of Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, China.
| | | | | | | | | | | | | |
Collapse
|
87
|
Goronzy JJ, Li G, Yu M, Weyand CM. Signaling pathways in aged T cells - a reflection of T cell differentiation, cell senescence and host environment. Semin Immunol 2012; 24:365-72. [PMID: 22560928 DOI: 10.1016/j.smim.2012.04.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/01/2012] [Accepted: 04/09/2012] [Indexed: 01/04/2023]
Abstract
With increasing age, the ability of the immune system to protect against new antigenic challenges or to control chronic infections erodes. Decline in thymic function and cumulating antigenic experiences of acute and chronic infections threaten T cell homeostasis, but insufficiently explain the failing immune competence and the increased susceptibility for autoimmunity. Alterations in signaling pathways in the aging T cells account for many of the age-related defects. Signaling threshold calibrations seen with aging frequently built on mechanisms that are operational in T cell development and T cell differentiation or are adaptations to the changing environment in the aging host. Age-related changes in transcription of receptors and signaling molecules shift the balance towards inhibitory pathways, most dominantly seen in CD8 T cells and to a lesser degree in CD4 T cells. Prominent examples are the expression of negative regulatory receptors of the CD28 and the TNF receptor superfamilies as well the expression of various cytoplasmic and nuclear dual-specific phosphatases.
Collapse
Affiliation(s)
- Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | | | | | | |
Collapse
|
88
|
Satoh E, Tsukimoto M, Kojima S. Involvement of P2Y receptors in the protective effect of ATP towards the cell damage in HaCaT cells exposed to H₂O₂. J Toxicol Sci 2012; 36:741-50. [PMID: 22129738 DOI: 10.2131/jts.36.741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It has recently been reported that activation of P2Y(1) receptor, one of the purine receptors, by extracellular nucleotides induces cytoprotection against oxidative stress. In this study, we examined the protective effect of ATP on the cell damage in human epidermal keratinocyte HaCaT cells exposed to H(2)O(2) via the P2Y receptor-mediated induction of intracellular antioxidants. The cells were damaged by exposure to H(2)O(2) in a dose- and time-dependent manner. The damage induced by 7.5 mM H(2)O(2) was blocked by pretreatment of the cells with ATP (1-10 µM). The protective effect of ATP was significantly reduced by P2Y receptor antagonists. Exogenously added ATP induced various intracellular antioxidants, including thiol-containing proteins, Cu/Zn superoxide dismutase (SOD) and thioredoxin-1, in HaCaT cells. In conclusion, it was found that ATP protected the cells from the H(2)O(2)-induced cell damages via the P2Y receptor-mediated induction of intracellular antioxidants.
Collapse
Affiliation(s)
- Emi Satoh
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | | | | |
Collapse
|
89
|
Michaud-Levesque J, Bousquet-Gagnon N, Béliveau R. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration. Exp Cell Res 2012; 318:925-35. [PMID: 22394507 DOI: 10.1016/j.yexcr.2012.02.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/13/2012] [Accepted: 02/20/2012] [Indexed: 01/05/2023]
Abstract
Evidence has suggested that STAT3 functions as an oncogene in gliomagenesis. As a consequence, changes in the inflammatory microenvironment are thought to promote tumor development. Regardless of its origin, cancer-related inflammation has many tumor-promoting effects, such as the promotion of cell cycle progression, cell proliferation, cell migration and cell survival. Given that IL-6, a major cancer-related inflammatory cytokine, regulates STAT3 activation and is upregulated in glioblastoma, we sought to investigate the inhibitory effects of the chemopreventive flavonoid quercetin on glioblastoma cell proliferation and migration triggered by IL-6, and to determine the underlying mechanisms of action. In this study, we show that quercetin is a potent inhibitor of the IL-6-induced STAT3 signaling pathway in T98G and U87 glioblastoma cells. Exposure to quercetin resulted in the reduction of GP130, JAK1 and STAT3 activation by IL-6, as well as a marked decrease of the proliferative and migratory properties of glioblastoma cells induced by IL-6. Interestingly, quercetin also modulated the expression of two target genes regulated by STAT3, i.e. cyclin D1 and matrix metalloproteinase-2 (MMP-2). Moreover, quercetin reduced the recruitment of STAT3 at the cyclin D1 promoter and inhibited Rb phosphorylation in the presence of IL-6. Overall, these results provide new insight into the role of quercetin as a blocker of the STAT3 activation pathway stimulated by IL-6, with a potential role in the prevention and treatment of glioblastoma.
Collapse
Affiliation(s)
- Jonathan Michaud-Levesque
- Laboratoire de Médecine Moléculaire, Université du Québec à Montréal, Centre-ville, Montréal, Québec, Canada
| | | | | |
Collapse
|
90
|
Wakahara R, Kunimoto H, Tanino K, Kojima H, Inoue A, Shintaku H, Nakajima K. Phospho-Ser727 of STAT3 regulates STAT3 activity by enhancing dephosphorylation of phospho-Tyr705 largely through TC45. Genes Cells 2012; 17:132-45. [PMID: 22233524 DOI: 10.1111/j.1365-2443.2011.01575.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a latent cytoplasmic transcription factor. It is activated by cytokines, including interleukin-6 (IL-6) through phosphorylation at Tyr705 (pY705), which is required for its dimerization and nuclear translocation. However, the role of Ser727 phosphorylation, occurring during activation, remains poorly understood. Using a combination of HepG2-stat3-knockdown cells reconstituted with various STAT3 mutants and protein kinase inhibitors, we showed that phospho-S727 has an intrinsic mechanism for shortening the duration of STAT3 activity, in turn shortening the duration of socs3 mRNA expression. Both STAT3WT and STAT3Ser727Asp (S727D) but not STAT3Ser727Ala (S727A) showed rapid dephosphorylation of pY705 after the inhibition of tyrosine kinases. We found that the nuclear TC45 phosphatase is most likely responsible for the phospho-S727-dependent pY705 dephosphorylation because TC45 knockdown caused prolonged pY705 with sustained socs3 mRNA expression in STAT3WT but not in STAT3S727A, and overexpressed TC45 caused rapid dephosphorylation of pY705 in STAT3WT but not in STAT3S727A. We further showed that phospho-S727 did not affect the interaction of TC45 with STAT3, and that a reported methylation at K140 of STAT3 occurring after phospho-S727 was not involved in the pY705 regulation. These findings indicate that phospho-Ser727 determines the duration of STAT3 activity largely through TC45.
Collapse
Affiliation(s)
- Ryohei Wakahara
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
91
|
Multiple Roles of STAT3 in Cardiovascular Inflammatory Responses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:63-73. [DOI: 10.1016/b978-0-12-396456-4.00010-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
92
|
IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 2011; 122:143-59. [PMID: 22029668 DOI: 10.1042/cs20110340] [Citation(s) in RCA: 603] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IL (interleukin)-6, which was originally identified as a B-cell differentiation factor, is a multifunctional cytokine that regulates the immune response, haemopoiesis, the acute phase response and inflammation. IL-6 is produced by various types of cell and influences various cell types, and has multiple biological activities through its unique receptor system. IL-6 exerts its biological activities through two molecules: IL-6R (IL-6 receptor) and gp130. When IL-6 binds to mIL-6R (membrane-bound form of IL-6R), homodimerization of gp130 is induced and a high-affinity functional receptor complex of IL-6, IL-6R and gp130 is formed. Interestingly, sIL-6R (soluble form of IL-6R) also binds with IL-6, and the IL-6-sIL-6R complex can then form a complex with gp130. The homodimerization of receptor complex activates JAKs (Janus kinases) that then phosphorylate tyrosine residues in the cytoplasmic domain of gp130. The gp130-mediated JAK activation by IL-6 triggers two main signalling pathways: the gp130 Tyr759-derived SHP-2 (Src homology 2 domain-containing protein tyrosine phosphatase-2)/ERK (extracellular-signal-regulated kinase) MAPK (mitogen-activated protein kinase) pathway and the gp130 YXXQ-mediated JAK/STAT (signal transducer and activator of transcription) pathway. Increased IL-6 levels are observed in several human inflammatory diseases, such as rheumatoid arthritis, Castleman's disease and systemic juvenile idiopathic arthritis. IL-6 is also critically involved in experimentally induced autoimmune diseases. All clinical findings and animal models suggest that IL-6 plays a number of critical roles in the pathogenesis of autoimmune diseases. In the present review, we first summarize the IL-6/IL-6R system and IL-6 signal transduction, and then go on to discuss the physiological and pathological roles of IL-6.
Collapse
|
93
|
Wen R, Tao W, Li Y, Sieving PA. CNTF and retina. Prog Retin Eye Res 2011; 31:136-51. [PMID: 22182585 DOI: 10.1016/j.preteyeres.2011.11.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 10/29/2011] [Accepted: 11/17/2011] [Indexed: 11/15/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is one of the most studied neurotrophic factors for neuroprotection of the retina. A large body of evidence demonstrates that CNTF promotes rod photoreceptor survival in almost all animal models. Recent studies indicate that CNTF also promotes cone photoreceptor survival and cone outer segment regeneration in the degenerating retina and improves cone function in dogs with congenital achromotopsia. In addition, CNTF is a neuroprotective factor and an axogenesis factor for retinal ganglion cells (RGCs). This review focuses on the effects of exogenous CNTF on photoreceptors and RGCs in the mammalian retina and the potential clinical application of CNTF for retinal degenerative diseases.
Collapse
Affiliation(s)
- Rong Wen
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
94
|
Linden MA, Kirchhof N, Carlson CS, Van Ness BG. Targeted overexpression of an activated N-ras gene results in B-cell and plasma cell lymphoproliferation and cooperates with c-myc to induce fatal B-cell neoplasia. Exp Hematol 2011; 40:216-27. [PMID: 22120021 DOI: 10.1016/j.exphem.2011.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/02/2011] [Accepted: 11/09/2011] [Indexed: 02/04/2023]
Abstract
Multiple myeloma is an incurable malignant expansion of plasma cells in the bone marrow. Although there is no pathognomonic genetic lesion among multiple myeloma patients, activation of the ras gene has been identified as a common mutation. We have previously described the use of the 3' κ immunoglobulin light chain enhancer (3'KE) to target transgenic expression in murine B and plasma cells, resulting in bcl-X(L) and c-myc-driven murine models of multiple myeloma. In this report, we characterize the role of activated mutant N-ras in B and plasma cells in transgenic mice. We constructed transgenic mice that use 3'KE to direct expression of a mutant activated N-ras. We also crossed the N-ras mice with mice bearing a c-myc transgene to study the cooperative effects of the transgenic constructs. Mice were sacrificed when moribund or at specific time intervals and characterized by serology, light microscopy, and flow cytometry. The transgenic N-ras animals develop B- and plasma cell lymphoproliferation, and aged mice develop immunoglobulinemia, renal hyaline tubular casts, and microscopic foci of abnormal plasma cells in extramedullary sites, including the liver and kidney. Bitransgenic 3'KE/N-Ras V12 × Eμ-c-Myc mice develop fatal B-cell neoplasia, with a median survival of 10 weeks. These data indicate that activated N-ras can play a role in B- and plasma cell homeostasis and that activated N-Ras and c-Myc can cooperate to induce B-cell neoplasia.
Collapse
Affiliation(s)
- Michael A Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minn., USA.
| | | | | | | |
Collapse
|
95
|
Ohl K, Tenbrock K. Inflammatory cytokines in systemic lupus erythematosus. J Biomed Biotechnol 2011; 2011:432595. [PMID: 22028588 PMCID: PMC3196871 DOI: 10.1155/2011/432595] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/14/2011] [Indexed: 01/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown origin affecting virtually all organ systems. Beyond genetic and environmental factors, cytokine imbalances contribute to immune dysfunction, trigger inflammation, and induce organ damage. The key cytokine that is involved in SLE pathogenesis is interferon alpha. Interferon secretion is induced by immune complexes and leads to upregulation of several inflammatory proteins, which account for the so-called IFN signature that can be found in the majority of SLE PBMCs. Additionally IL-6 and IFN-y as well as T-cell-derived cytokines like IL-17, IL-21, and IL-2 are dysregulated in SLE. The latter induce a T-cell phenotype that is characterized by enhanced B-cell help and enhanced secretion of proinflammatory cytokines but reduced induction of suppressive T cells and activation-induced cell death. This paper will focus on these cytokines and highlights pathophysiological approaches and therapeutic potential.
Collapse
Affiliation(s)
- Kim Ohl
- Division of Pediatric Immunology, Department of Pediatrics, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Klaus Tenbrock
- Division of Pediatric Immunology, Department of Pediatrics, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
96
|
Osuka K, Watanabe Y, Usuda N, Atsuzawa K, Yasuda M, Aoshima C, Wakabayashi T, Takayasu M. Activation of STAT1 in Neurons Following Spinal Cord Injury in Mice. Neurochem Res 2011; 36:2236-43. [DOI: 10.1007/s11064-011-0547-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2011] [Indexed: 01/24/2023]
|
97
|
Cytokine-like factor 1 (CLF1): life after development? Cytokine 2011; 55:325-9. [PMID: 21715184 DOI: 10.1016/j.cyto.2011.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/22/2011] [Accepted: 05/26/2011] [Indexed: 12/12/2022]
Abstract
Cytokine-like factor 1 (CLF1) is a secreted receptor belonging to the interleukin-6 family of cytokines. CLF1 and its physiologic partner, cardiotrophin-like cytokine (CLC) are secreted as a heterodimer and engage the tripartite signaling complex of ciliary neurotrophic factor receptor (CNTFR), leukemia inhibitory factor (LIFR) and gp130. Ligation of this receptor complex leads to activation of the STAT3 and MAPK pathways and mediates survival pathways in neurons. Mutations in CLF1, CLC, or CNTFR in mice lead to the birth of mice that die on post-natal day 1 because of an inability to nurse. These animals exhibit significant decreases in the number of motor neurons in the facial nucleus and the spinal cord. CLF1 or CLC deficiency is associated with the development of the human cold-induced sweating syndromes. A growing body of research suggests that CLF1 expression may be associated with several post-natal disease processes. In this review, we summarize the current understanding of CLF1 expression and suggest future studies to understand the potentially important role of CLF1 in postnatal life and disease.
Collapse
|
98
|
Shinriki S, Jono H, Ueda M, Ota K, Ota T, Sueyoshi T, Oike Y, Ibusuki M, Hiraki A, Nakayama H, Shinohara M, Ando Y. Interleukin-6 signalling regulates vascular endothelial growth factor-C synthesis and lymphangiogenesis in human oral squamous cell carcinoma. J Pathol 2011; 225:142-50. [DOI: 10.1002/path.2935] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 12/23/2022]
|
99
|
Zhang S, Zheng M, Kibe R, Huang Y, Marrero L, Warren S, Zieske AW, Iwakuma T, Kolls JK, Cui Y. Trp53 negatively regulates autoimmunity via the STAT3-Th17 axis. FASEB J 2011; 25:2387-98. [PMID: 21471252 DOI: 10.1096/fj.10-175299] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Emerging evidence suggests that the tumor suppressor p53 is also a crucial regulator for many physiological processes. Previous observations indicate that p53 suppresses inflammation by inhibiting inflammatory antigen-presenting cells. To investigate the potential role of p53 in autoimmune effector T cells, we generated p53(null)CD45.1 mice by crossing p53(null)CD45.2 and CD45.1 mice. We demonstrate that p53(null)CD45.1 mice spontaneously developed autoimmunity, with a significant increase in IL-17-producing Th17 effectors in their lymph nodes (4.7 ± 1.0%) compared to the age-matched counterparts (1.9 ± 0.8% for p53(null)CD45.2, 1.1 ± 0.2% for CD45.1, and 0.5 ± 0.1% for CD45.2 mice). Likewise, p53(null)CD45.1 mice possess highly elevated serum levels of inflammatory cytokines IL-17 and IL-6. This enhanced Th17 response results largely from an increased sensitivity of p53(null)CD45.1 T cells to IL-6-induced STAT3 phosphorylation. Administration of STAT3 inhibitor S31-201 (IC50 of 38.0 ± 7.2 μM for IL-6-induced STAT3 phosphorylation), but not PBS control, to p53(null)CD45.1 mice suppressed Th17 effectors and alleviated autoimmune pathology. This is the first report revealing that p53 activity in T cells suppresses autoimmunity by controlling Th17 effectors. This study suggests that p53 serves as a guardian of immunological functions and that the p53-STAT3-Th17 axis might be a therapeutic target for autoimmunity.
Collapse
Affiliation(s)
- Shuzhong Zhang
- Gene Therapy Program, Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Cross LJM, Matthay MA. Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury. Crit Care Clin 2011; 27:355-77. [PMID: 21440206 PMCID: PMC3073651 DOI: 10.1016/j.ccc.2010.12.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies of potential biomarkers of acute lung injury (ALI) have provided information relating to the pathophysiology of the mechanisms of lung injury and repair. The utility of biomarkers remains solely among research tools to investigate lung injury and repair mechanisms. Because of lack of sensitivity and specificity, they cannot be used in decision making in patients with ALI or acute respiratory distress syndrome. The authors reviewed known biomarkers in context of their major biologic activity. The continued interest in identifying and studying biomarkers is relevant, as it provides information regarding the mechanisms involved in lung injury and repair and how this may be helpful in identifying and designing future therapeutic targets and strategies and possibly identifying a sensitive and specific biomarker.
Collapse
Affiliation(s)
- L J Mark Cross
- Centre for Infection and Immunity, The Queen's University of Belfast, Room 01/014, Health Sciences Building, 97 Lisburn Road, Belfast, BT9 7BL, N Ireland
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, 505 Parnassus Ave, M-917, San Francisco, CA 94143-0624, California, USA
- Department of Medicine, Division of Pulmonary and Critical Care, and Department of Anaesthesia, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-2202, California, USA
| |
Collapse
|