51
|
Ishida K, Hata T, Urushihara H. Gamete fusion and cytokinesis preceding zygote establishment in the sexual process of Dictyostelium discoideum. Dev Growth Differ 2005; 47:25-35. [PMID: 15740584 DOI: 10.1111/j.1440-169x.2004.00776.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cells of Dictyostelium discoideum become sexually mature under submerged and dark conditions, and fuse with opposite mating-type cells to form zygote giant cells, which gather surrounding cells and finally develop into dormant structures called macrocysts. In the present study, we found that the multinuclear fused cells formed during this process frequently underwent cytokinesis driven by random local movements. The split cells were capable of re-fusion, and repeated cytokinesis. These radical behaviors continued until the extensive cell aggregation started around the giant cells. Thus, gamete fusion and initiation of zygote development do not coincide in the mating of D. discoideum. Analyses by confocal microscopy and flow cytometry indicated that the cessation of the random movement followed pronuclear fusion, and that microtubule organizing centers (MTOC), abundant in the fused cells at the beginning, gradually decreased and only one of them remained within the developed macrocyst. Some of the genes known to control cell movement, such as rasGEFB and rasS, increased shortly before the cessation of repeated fusion-cytokinesis and initiation of phagocytosis. These results suggest that the sequential molecular events are necessary in D. discoideum after gamete fusion to establish a new individuality of zygotes.
Collapse
Affiliation(s)
- Kentaro Ishida
- Graduate School of Life and Environmental sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba-shi 305-8572, Japan
| | | | | |
Collapse
|
52
|
Ferris PJ, Waffenschmidt S, Umen JG, Lin H, Lee JH, Ishida K, Kubo T, Lau J, Goodenough UW. Plus and minus sexual agglutinins from Chlamydomonas reinhardtii. THE PLANT CELL 2005; 17:597-615. [PMID: 15659633 PMCID: PMC548829 DOI: 10.1105/tpc.104.028035] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 11/24/2004] [Indexed: 05/18/2023]
Abstract
Gametes of the unicellular green alga Chlamydomonas reinhardtii undergo sexual adhesion via enormous chimeric Hyp-rich glycoproteins (HRGPs), the plus and minus sexual agglutinins, that are displayed on their flagellar membrane surfaces. We have previously purified the agglutinins and analyzed their structural organization using electron microscopy. We report here the cloning and sequencing of the Sag1 and Sad1 genes that encode the two agglutinins and relate their derived amino acid sequences and predicted secondary structure to the morphology of the purified proteins. Both agglutinin proteins are organized into three distinct domains: a head, a shaft in a polyproline II configuration, and an N-terminal domain. The plus and minus heads are related in overall organization but poorly conserved in sequence except for two regions of predicted hydrophobic alpha-helix. The shafts contain numerous repeats of the PPSPX motif previously identified in Gp1, a cell wall HRGP. We propose that the head domains engage in autolectin associations with the distal termini of their own shafts and suggest ways that adhesion may involve head-head interactions, exolectin interactions between the heads and shafts of opposite type, and antiparallel shaft-shaft interactions mediated by carbohydrates displayed in polyproline II configurations.
Collapse
Affiliation(s)
- Patrick J Ferris
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Wang Q, Snell WJ. Flagellar adhesion between mating type plus and mating type minus gametes activates a flagellar protein-tyrosine kinase during fertilization in Chlamydomonas. J Biol Chem 2003; 278:32936-42. [PMID: 12821679 DOI: 10.1074/jbc.m303261200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When Chlamydomonas gametes of opposite mating type are mixed together, flagellar adhesion through sex-specific adhesion molecules triggers a transient elevation of intracellular cAMP, leading to gamete activation in preparation for cell-cell fusion and zygote formation. Here, we have identified a protein-tyrosine kinase (PTK) activity that is stimulated by flagellar adhesion. We determined that the protein-tyrosine kinase inhibitor genistein inhibited fertilization, and that fertilization was rescued by dibutyryl cAMP, indicating that the genistein-sensitive step was upstream of the increase in cAMP. Incubation with ATP of flagella isolated from non-adhering and adhering gametes followed by SDS-PAGE and immunoblotting with anti-phosphotyrosine antibodies showed that adhesion activated a flagellar PTK that phosphorylated a 105-kDa flagellar protein. Assays using an exogenous protein-tyrosine kinase substrate confirmed that the activated PTK could be detected only in flagella isolated from adhering gametes. Our results indicate that stimulation of the PTK is a very early event during fertilization. Activation of the PTK was blocked when gametes underwent flagellar adhesion in the presence of the protein kinase inhibitor staurosporine, but not in the presence of the cyclic nucleotide-dependent protein kinase inhibitor, H8, which (unlike staurosporine) does not block the increases in cAMP. In addition, incubation of gametes of a single mating type in dibutyryl cAMP failed to activate the PTK. Finally, flagella adhesion between plus and minus fla10-1 gametes, which have a temperature-sensitive lesion in the microtubule motor protein kinesin-II, failed to activate the PTK at elevated temperatures. Our results show that kinesin-II is essential for coupling flagellar adhesion to activation of a flagellar PTK and cAMP generation during fertilization in Chlamydomonas.
Collapse
Affiliation(s)
- Qian Wang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039, USA
| | | |
Collapse
|
54
|
Pan J, Misamore MJ, Wang Q, Snell WJ. Protein transport and signal transduction during fertilization in chlamydomonas. Traffic 2003; 4:452-9. [PMID: 12795690 DOI: 10.1034/j.1600-0854.2003.00105.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fertilization in Chlamydomonas begins with flagellar adhesion between mating type plus and mating type minus gametes and is consummated within minutes by zygote formation. Once fusion occurs, the newly merged gametes cease existence as distinct entities, and the diploid zygote immediately initiates transcription of zygote-specific genes. Accomplishing fertilization within such a short time requires the rapid and signaled movement of pre-existing membrane and cytoplasmic proteins between and within several cellular compartments. Generation within the adhering flagella of the initial signals for protein movement, as well as movement itself of at least one cytoplasmic protein from the cell body to the flagella, depend on the microtubule motor, kinesin-II and presumably on intraflagellar transport (IFT). Adhesion and fusion of the two gametes depend on a second translocation event, the movement of an adhesion/fusion protein onto the surface of a rapidly elongating, microvillous-like fusion organelle. Finally, the merging of the two separate gametes, each containing sex-specific proteins, into a single cell allows the formerly separate proteins to form new interactions that regulate zygote development. Two proteins - a nuclease and a homeodomain protein - which were present only in the plus gamete, are 'delivered' to the cytoplasm of the zygote during gamete fusion. The nuclease is selectively imported into the minus chloroplast, where it degrades the chloroplast DNA, thereby ensuring uniparental inheritance of plus chloroplast traits. The homeodomain protein binds with an as yet unidentified protein delivered by the minus gamete, and the new complex activates transcription of zygote-specific genes.
Collapse
Affiliation(s)
- Junmin Pan
- Department of Cell Biology, University of Texas South-western Medical Center, Dallas, Texas 75390-9039, USA
| | | | | | | |
Collapse
|
55
|
Misamore MJ, Gupta S, Snell WJ. The Chlamydomonas Fus1 protein is present on the mating type plus fusion organelle and required for a critical membrane adhesion event during fusion with minus gametes. Mol Biol Cell 2003; 14:2530-42. [PMID: 12808049 PMCID: PMC194900 DOI: 10.1091/mbc.e02-12-0790] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The molecular mechanisms of the defining event in fertilization, gamete fusion, remain poorly understood. The FUS1 gene in the unicellular, biflagellated green alga Chlamydomonas is one of the few sex-specific eukaryotic genes shown by genetic analysis to be essential for gamete fusion during fertilization. In Chlamydomonas, adhesion and fusion of the plasma membranes of activated mt+ and mt- gametes is accomplished via specialized fusion organelles called mating structures. Herein, we identify the endogenous Fus1 protein, test the idea that Fus1 is at the site of fusion, and identify the step in fusion that requires Fus1. Our results show that Fus1 is a approximately 95-kDa protein present on the external surface of both unactivated and activated mt+ gametes. Bioassays indicate that adhesion between mating type plus and mating type minus fusion organelles requires Fus1 and that Fus1 is functional only after gamete activation. Finally, immunofluorescence demonstrates that the Fus1 protein is present as an apical patch on unactivated gametes and redistributes during gamete activation over the entire surface of the microvillous-like activated plus mating structure, the fertilization tubule. Thus, Fus1 is present on mt+ gametes at the site of cell-cell fusion and essential for an early step in the fusion process.
Collapse
Affiliation(s)
- Michael J Misamore
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75390-9039, USA
| | | | | |
Collapse
|
56
|
Pan J, Snell WJ. Kinesin II and regulated intraflagellar transport of Chlamydomonas aurora protein kinase. J Cell Sci 2003; 116:2179-86. [PMID: 12692152 DOI: 10.1242/jcs.00438] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly and functioning of cilia and flagella depend on a complex system of traffic between the organelles and the cell body. Two types of transport into these organelles have been identified. The best characterized is constitutive: in a process termed intraflagellar transport (IFT), flagellar structural components are continuously carried into cilia and flagella on transport complexes termed IFT particles via the microtubule motor protein kinesin II. Previous studies have shown that the flagella of the unicellular green alga Chlamydomonas exhibit a second type of protein import that is regulated. During fertilization, the Chlamydomonas aurora protein kinase CALK undergoes regulated translocation from the cell body into the flagella. The motor that powers this second, regulated type of movement is unknown. Here, we have examined the cellular properties of the CALK in Chlamydomonas and used a kinesin II mutant to test the idea that the motor protein is essential for regulated translocation of proteins into flagella. We found that the CALK that is transported into flagella of wild-type gametes becomes part of a membrane-associated complex, that kinesin II is essential for the normal localization of this Chlamydomonas aurora protein kinase in unactivated gametes and that the cAMP-induced translocation of the protein kinase into flagella is disrupted in the fla10 mutants. Our results indicate that, in addition to its role in the constitutive transport of IFT particles and their cargo, kinesin II is essential for regulated translocation of proteins into flagella.
Collapse
Affiliation(s)
- Junmin Pan
- University of Texas Southwestern Medical School, 5323 Harry Hines Blvd, Dallas, TX 75235-9039, USA
| | | |
Collapse
|
57
|
Abstract
Eukaryotic cilia and flagella, including primary cilia and sensory cilia, are highly conserved organelles that project from the surfaces of many cells. The assembly and maintenance of these nearly ubiquitous structures are dependent on a transport system--known as 'intraflagellar transport' (IFT)--which moves non-membrane-bound particles from the cell body out to the tip of the cilium or flagellum, and then returns them to the cell body. Recent results indicate that defects in IFT might be a primary cause of some human diseases.
Collapse
Affiliation(s)
- Joel L Rosenbaum
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
58
|
Nishimura Y, Misumi O, Kato K, Inada N, Higashiyama T, Momoyama Y, Kuroiwa T. An mt(+) gamete-specific nuclease that targets mt(-) chloroplasts during sexual reproduction in C. reinhardtii. Genes Dev 2002; 16:1116-28. [PMID: 12000794 PMCID: PMC186255 DOI: 10.1101/gad.979902] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although the active digestion of mating-type minus (mt-) chloroplast DNA (cpDNA) in young zygotes is considered to be the basis for the uniparental inheritance of cpDNA in Chlamydomonas reinhardtii, little is known about the underlying molecular mechanism. One model of active digestion proposes that nucleases are either synthesized or activated to digest mt- cpDNA. We used a native-PAGE/in gelo assay to investigate nuclease activities in chloroplasts from young zygotes, and identified a novel Ca(2+)-dependent nuclease activity. The timing of activation (approximately 60-90 min after mating) and the localization of the nuclease activity (in mt- chloroplasts) coincided with the active digestion of mt- cpDNA. Furthermore, the activity of the nuclease was coregulated with the maturation of mating-type plus (mt+) gametes, which would enable the efficient digestion of mt- cpDNA. Based on these observations, we propose that the nuclease (designated as Mt(+)-specific DNase, MDN) is a developmentally controlled nuclease that is activated in mt+ gametes and participates in the destruction of mt- cpDNA in young zygotes, thereby ensuring uniparental inheritance of chloroplast traits.
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
59
|
Pan J, Snell WJ. Kinesin-II is required for flagellar sensory transduction during fertilization in Chlamydomonas. Mol Biol Cell 2002; 13:1417-26. [PMID: 11950949 PMCID: PMC102279 DOI: 10.1091/mbc.01-11-0531] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The assembly and maintenance of eucaryotic flagella and cilia depend on the microtubule motor, kinesin-II. This plus end-directed motor carries intraflagellar transport particles from the base to the tip of the organelle, where structural components of the axoneme are assembled. Here we test the idea that kinesin-II also is essential for signal transduction. When mating-type plus (mt+) and mating-type minus (mt-) gametes of the unicellular green alga Chlamydomonas are mixed together, binding interactions between mt+ and mt- flagellar adhesion molecules, the agglutinins, initiate a signaling pathway that leads to increases in intracellular cAMP, gamete activation, and zygote formation. A critical question in Chlamydomonas fertilization has been how agglutinin interactions are coupled to increases in intracellular cAMP. Recently, fla10 gametes with a temperature-sensitive defect in FLA10 kinesin-II were found to not form zygotes at the restrictive temperature (32 degrees C). We found that, although the rates and extents of flagellar adhesion in fla10 gametes at 32 degrees C are indistinguishable from wild-type gametes, the cells do not undergo gamete activation. On the other hand, fla10 gametes at 32 degrees C regulated agglutinin location and underwent gamete fusion when the cells were incubated in dibutyryl cAMP, indicating that their capacity to respond to the cAMP signal was intact. We show that the cellular defect in the fla10 gametes at 32 degrees C is a failure to undergo increases in cAMP during flagella adhesion. Thus, in addition to being essential for assembly and maintenance of the structural components of flagella, kinesin-II/intraflagellar transport plays a role in sensory transduction in these organelles.
Collapse
Affiliation(s)
- Junmin Pan
- Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, TX 75390-9039, USA
| | | |
Collapse
|
60
|
Kovar DR, Yang P, Sale WS, Drobak BK, Staiger CJ. Chlamydomonas reinhardtiiproduces a profilin with unusual biochemical properties. J Cell Sci 2001; 114:4293-305. [PMID: 11739661 DOI: 10.1242/jcs.114.23.4293] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the characterization of a profilin orthologue from Chlamydomonas reinhardtii. CrPRF, probably the only profilin isoform, is present in both the cell body and flagella. Examination of vegetative and gametic cells by immunofluorescence microscopy using multiple fixation procedures also revealed enrichment of CrPRF at the anterior of the cell near the base of flagella and near the base of the fertilization tubule in mating type plus gametes. Purified, recombinant CrPRF binds to actin with a Kd value ∼10–7 and displaces nuclei in a live cell ‘nuclear displacement’ assay, consistent with profilin’s ability to bind G-actin in vivo. However, when compared with other profilin isoforms, CrPRF has a relatively low affinity for poly-L-proline and for phosphatidylinositol (4,5) bisphosphate micelles. Furthermore, and surprisingly, CrPRF inhibits exchange of adenine nucleotide on G-actin in a manner similar to human ADF or DNase I. Thus, we postulate that a primary role for CrPRF is to sequester actin in Chlamydomonas. The unusual biochemical properties of CrPRF offer a new opportunity to distinguish specific functions for profilin isoforms.
Collapse
Affiliation(s)
- D R Kovar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | | | | | |
Collapse
|
61
|
Singson A, Zannoni S, Kadandale P. Molecules that function in the steps of fertilization. Cytokine Growth Factor Rev 2001; 12:299-304. [PMID: 11544100 DOI: 10.1016/s1359-6101(01)00013-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- A Singson
- Department of Genetics, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
62
|
Zhao H, Lu M, Singh R, Snell WJ. Ectopic expression of a Chlamydomonas mt+-specific homeodomain protein in mt- gametes initiates zygote development without gamete fusion. Genes Dev 2001; 15:2767-77. [PMID: 11641281 PMCID: PMC312805 DOI: 10.1101/gad.919501] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The molecular mechanisms that activate expression of zygote genes after fertilization are obscure. In animals, receptor-ligand interactions during sperm-egg membrane fusion as well as delivery of putative regulatory molecules by the sperm into the egg cytoplasm are proposed to activate zygote development and subsequent transcription of zygote genes. The mechanisms of activation of zygote development in higher plants also are mysterious, in part because of the difficulty of isolating female gametes of higher plants. In the unicellular, biflagellated green alga Chlamydomonas, the early steps in zygote development are much more accessible to investigation. Within minutes after mating type plus (mt+) and mating type minus (mt-) gametes fuse, expression of several zygote-specific transcripts is induced independently of protein synthesis. Here, we show that ectopic expression in mt- gametes of an mt+ gamete-specific, homeodomain protein, GSP1, induces a zygote-like phenotype and activates expression of zygote genes. One of the genes, zsp2, expressed in these "haploid zygotes" encodes a zygote cell surface adhesion molecule that promotes formation of multicellular aggregates. In total, expression of six out of seven zygote genes examined was induced by ectopic expression of GSP1. Our experiments show that in addition to contributing their genomes to the zygote cytoplasm, gametes also deliver proteins that can activate gene transcription.
Collapse
Affiliation(s)
- H Zhao
- Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, Texas 75390-9039, USA
| | | | | | | |
Collapse
|