51
|
Pala ZR, Saxena V, Saggu GS, Garg S. Recent Advances in the [Fe-S] Cluster Biogenesis (SUF) Pathway Functional in the Apicoplast of Plasmodium. Trends Parasitol 2018; 34:800-809. [PMID: 30064903 DOI: 10.1016/j.pt.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
Abstract
Iron-sulfur [Fe-S] clusters are one of the most ancient, ubiquitous, structurally and functionally versatile natural biosynthetic prosthetic groups required by various proteins involved in important metabolic processes. Genome mining and localization studies in Plasmodium have shown two evolutionarily distinct biogenesis pathways: the ISC pathway in mitochondria and the SUF pathway in the apicoplast. In recent years, the myriad efforts made to elucidate the SUF pathway have deciphered the role of various proteins involved in the pathway and their importance for the parasite life cycle in both asexual and sexual stages. This review aims to discuss recent research in the apicoplast [Fe-S] biogenesis pathway from Plasmodium to enhance our current understanding of parasite biology with an overall aim to identify gaps to strengthen our fight against malaria.
Collapse
Affiliation(s)
- Zarna Rajeshkumar Pala
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| | - Vishal Saxena
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India
| | - Gagandeep Singh Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergic and Infectious Diseases, National Institute of Health, Rockville, MD, USA
| | - Shilpi Garg
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India.
| |
Collapse
|
52
|
Latorre M, Quenti D, Travisany D, Singh KV, Murray BE, Maass A, Cambiazo V. The Role of Fur in the Transcriptional and Iron Homeostatic Response of Enterococcus faecalis. Front Microbiol 2018; 9:1580. [PMID: 30065712 PMCID: PMC6056675 DOI: 10.3389/fmicb.2018.01580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/25/2018] [Indexed: 01/23/2023] Open
Abstract
The ferric uptake regulator (Fur) plays a major role in controlling the expression of iron homeostasis genes in bacterial organisms. In this work, we fully characterized the capacity of Fur to reconfigure the global transcriptional network and influence iron homeostasis in Enterococcus faecalis. The characterization of the Fur regulon from E. faecalis indicated that this protein (Fur) regulated the expression of genes involved in iron uptake systems, conferring to the system a high level of efficiency and specificity to respond under different iron exposure conditions. An RNAseq assay coupled with a systems biology approach allowed us to identify the first global transcriptional network activated by different iron treatments (excess and limited), with and without the presence of Fur. The results showed that changes in iron availability activated a complex network of transcriptional factors in E. faecalis, among them global regulators such as LysR, ArgR, GalRS, and local regulators, LexA and CopY, which were also stimulated by copper and zinc treatments. The deletion of Fur impacted the expression of genes encoding for ABC transporters, energy production and [Fe-S] proteins, which optimized detoxification and iron uptake under iron excess and limitation, respectively. Finally, considering the close relationship between iron homeostasis and pathogenesis, our data showed that the absence of Fur increased the internal concentration of iron in the bacterium and also affected its ability to produce biofilm. These results open new alternatives in the field of infection mechanisms of E. faecalis.
Collapse
Affiliation(s)
- Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile.,Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Daniela Quenti
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile
| | - Kavindra V Singh
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Barbara E Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile.,Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile
| |
Collapse
|
53
|
Anti-σ factor YlaD regulates transcriptional activity of σ factor YlaC and sporulation via manganese-dependent redox-sensing molecular switch in Bacillus subtilis. Biochem J 2018; 475:2127-2151. [PMID: 29760236 DOI: 10.1042/bcj20170911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/29/2018] [Accepted: 05/14/2018] [Indexed: 02/01/2023]
Abstract
YlaD, a membrane-anchored anti-sigma (σ) factor of Bacillus subtilis, contains a HX3CXXC motif that functions as a redox-sensing domain and belongs to one of the zinc (Zn)-co-ordinated anti-σ factor families. Despite previously showing that the YlaC transcription is controlled by YlaD, experimental evidence of how the YlaC-YlaD interaction is affected by active cysteines and/or metal ions is lacking. Here, we showed that the P yla promoter is autoregulated solely by YlaC. Moreover, reduced YlaD contained Zn and iron, while oxidized YlaD did not. Cysteine substitution in YlaD led to changes in its secondary structure; Cys3 had important structural functions in YlaD, and its mutation caused dissociation from YlaC, indicating the essential requirement of a HX3CXXC motif for regulating interactions of YlaC with YlaD. Analyses of the far-UV CD spectrum and metal content revealed that the addition of Mn ions to Zn-YlaD changed its secondary structure and that iron was substituted for manganese (Mn). The ylaC gene expression using βGlu activity from P yla :gusA was observed at the late-exponential and early-stationary phase, and the ylaC-overexpressing mutant constitutively expressed gene transcripts of clpP and sigH, an important alternative σ factor regulated by ClpXP. Collectively, our data demonstrated that YlaD senses redox changes and elicits increase in Mn ion concentrations and that, in turn, YlaD-mediated transcriptional activity of YlaC regulates sporulation initiation under oxidative stress and Mn-substituted conditions by regulating clpP gene transcripts. This is the first report of the involvement of oxidative stress-responsive B. subtilis extracytoplasmic function σ factors during sporulation via a Mn-dependent redox-sensing molecular switch.
Collapse
|
54
|
Ciok A, Budzik K, Zdanowski MK, Gawor J, Grzesiak J, Decewicz P, Gromadka R, Bartosik D, Dziewit L. Plasmids of Psychrotolerant Polaromonas spp. Isolated From Arctic and Antarctic Glaciers - Diversity and Role in Adaptation to Polar Environments. Front Microbiol 2018; 9:1285. [PMID: 29967598 PMCID: PMC6015842 DOI: 10.3389/fmicb.2018.01285] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/25/2018] [Indexed: 12/23/2022] Open
Abstract
Cold-active bacteria of the genus Polaromonas (class Betaproteobacteria) are important components of glacial microbiomes. In this study, extrachromosomal replicons of 26 psychrotolerant Polaromonas strains, isolated from Arctic and Antarctic glaciers, were identified, sequenced, and characterized. The plasmidome of these strains consists of 13 replicons, ranging in size from 3,378 to 101,077 bp. In silico sequence analyses identified the conserved backbones of these plasmids, composed of genes required for plasmid replication, stable maintenance, and conjugal transfer. Host range analysis revealed that all of the identified plasmids are narrow-host-range replicons, only able to replicate in bacteria of closely related genera (Polaromonas and Variovorax) of the Comamonadaceae family. Special attention was paid to the identification of plasmid auxiliary genetic information, which may contribute to the adaptation of bacteria to environmental conditions occurring in glaciers. Detailed analysis revealed the presence of genes encoding proteins potentially involved in (i) protection against reactive oxygen species, ultraviolet radiation, and low temperatures; (ii) transport and metabolism of organic compounds; (iii) transport of metal ions; and (iv) resistance to heavy metals. Some of the plasmids also carry genes required for the molecular assembly of iron-sulfur [Fe-S] clusters. Functional analysis of the predicted heavy metal resistance determinants demonstrated that their activity varies, depending on the host strain. This study provides the first molecular insight into the mobile DNA of Polaromonas spp. inhabiting polar glaciers. It has generated valuable data on the structure and properties of a pool of plasmids and highlighted their role in the biology of psychrotolerant Polaromonas strains and their adaptation to the environmental conditions of Arctic and Antarctic glaciers.
Collapse
Affiliation(s)
- Anna Ciok
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karol Budzik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marek K. Zdanowski
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Gawor
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Grzesiak
- Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Przemyslaw Decewicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Gromadka
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
55
|
Avci FG, Sayar NA, Sariyar Akbulut B. An OMIC approach to elaborate the antibacterial mechanisms of different alkaloids. PHYTOCHEMISTRY 2018; 149:123-131. [PMID: 29494814 DOI: 10.1016/j.phytochem.2017.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/25/2017] [Accepted: 12/30/2017] [Indexed: 06/08/2023]
Abstract
Plant-derived substances have regained interest in the fight against antibiotic resistance owing to their distinct antimicrobial mechanisms and multi-target properties. With the recent advances in instrumentation and analysis techniques, OMIC approaches are extensively used for target identification and elucidation of the mechanism of phytochemicals in drug discovery. In the current study, RNA sequencing based transcriptional profiling together with global differential protein expression analysis was used to comparatively elaborate the activities and the effects of the plant alkaloids boldine, bulbocapnine, and roemerine along with the well-known antimicrobial alkaloid berberine in Bacillus subtilis cells. The transcriptomic findings were validated by qPCR. Images from scanning electron microscope were obtained to visualize the effects on the whole-cells. The results showed that among the three selected alkaloids, only roemerine possessed antibacterial activity. Unlike berberine, which is susceptible to efflux through multidrug resistance pumps, roemerine accumulated in the cells. This in turn resulted in oxidative stress and building up of reactive oxygen species, which eventually deregulated various pathways such as iron uptake. Treatment with boldine or bulbocapnine slightly affected various metabolic pathways but has not changed the growth patterns at all.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Department of Bioengineering, Marmara University, 34722, Kadikoy, Istanbul, Turkey; Department of Bioengineering, Adana Science and Technology University, 01250, Adana, Turkey.
| | - Nihat Alpagu Sayar
- Department of Bioengineering, Marmara University, 34722, Kadikoy, Istanbul, Turkey.
| | | |
Collapse
|
56
|
Carini P, Dupont CL, Santoro AE. Patterns of thaumarchaeal gene expression in culture and diverse marine environments. Environ Microbiol 2018; 20:2112-2124. [PMID: 29626379 DOI: 10.1111/1462-2920.14107] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/15/2018] [Indexed: 11/28/2022]
Abstract
Thaumarchaea are ubiquitous in marine habitats where they participate in carbon and nitrogen cycling. Although metatranscriptomes suggest thaumarchaea are active microbes in marine waters, we understand little about how thaumarchaeal gene expression patterns relate to substrate utilization and activity. Here, we report the global transcriptional response of the marine ammonia-oxidizing thaumarchaeon 'Candidatus Nitrosopelagicus brevis' str. CN25 to ammonia limitation using RNA-Seq. We further describe the genome and transcriptome of Ca. N. brevis str. U25, a new strain capable of urea utilization. Ammonia limitation in CN25 resulted in reduced expression of transcripts coding for ammonia oxidation proteins, and increased expression of a gene coding an Hsp20-like chaperone. Despite significantly different transcript abundances across treatments, two ammonia monooxygenase subunits (amoAB), a nitrite reductase (nirK) and both ammonium transporter genes were always among the most abundant transcripts, regardless of growth state. Ca. N. brevis str. U25 cells expressed a urea transporter 139-fold more than the urease catalytic subunit ureC. Gene coexpression networks derived from culture transcriptomes and 10 thaumarchaea-enriched metatranscriptomes revealed a high degree of correlated gene expression across disparate environmental conditions and identified a module of coexpressed genes, including amoABC and nirK, that we hypothesize to represent the core ammonia oxidation machinery.
Collapse
Affiliation(s)
- Paul Carini
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA
| | | | - Alyson E Santoro
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA
| |
Collapse
|
57
|
Lu R, Osei-Adjei G, Huang X, Zhang Y. Role and regulation of the orphan AphA protein of quorum sensing in pathogenic Vibrios. Future Microbiol 2018; 13:383-391. [PMID: 29441822 DOI: 10.2217/fmb-2017-0165] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Quorum sensing (QS), a cell-to-cell communication process, is widely distributed in the bacterial kingdom. Bacteria use QS to control gene expression in response to cell density by detecting the signal molecules called autoinducers. AphA protein is the master QS regulator of vibrios operating at low cell density. It regulates the expression of a variety of genes, especially those encoding virulence factors, flagella/motility and biofilm formation. The role and regulation of AphA in vibrios, especially in human pathogenic vibrios, are summarized in this review. Clarification of the roles of AphA will help us to understand the pathogenesis of vibrios.
Collapse
Affiliation(s)
- Renfei Lu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - George Osei-Adjei
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Xinxiang Huang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
58
|
Yin S, Bernstein ER. Photoelectron spectroscopy and density functional theory studies of (FeS) mH - (m = 2-4) cluster anions: effects of the single hydrogen. Phys Chem Chem Phys 2017; 20:367-382. [PMID: 29210391 DOI: 10.1039/c7cp07012h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single hydrogen containing iron hydrosulfide cluster anions (FeS)mH- (m = 2-4) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by Density Functional Theory (DFT) calculations. The structural properties, relative energies of different spin states and isomers, and the first calculated vertical detachment energies (VDEs) of different spin states for these (FeS)mH- (m = 2-4) cluster anions are investigated at various reasonable theory levels. Two types of structural isomers are found for these (FeS)mH- (m = 2-4) clusters: (1) the single hydrogen atom bonds to a sulfur site (SH-type); and (2) the single hydrogen atom bonds to an iron site (FeH-type). Experimental and theoretical results suggest such available different SH- and FeH-type structural isomers should be considered when evaluating the properties and behavior of these single hydrogen containing iron sulfide clusters in real chemical and biological systems. Compared to their related, respective pure iron sulfur (FeS)m- clusters, the first VDE trend of the diverse type (FeS)mH0,1- (m = 1-4) clusters can be understood through (1) the different electron distribution properties of their highest singly occupied molecular orbital employing natural bond orbital analysis (NBO/HSOMO), and (2) the partial charge distribution on the NBO/HSOMO localized sites of each cluster anion. Generally, the properties of the NBO/HSOMOs play the principal role with regard to the physical and chemical properties of all the anions. The change of cluster VDE from low to high is associated with the change in nature of their NBO/HSOMO from a dipole bound and valence electron mixed character, to a valence p orbital on S, to a valence d orbital on Fe, and to a valence p orbital on Fe or an Fe-Fe delocalized valence bonding orbital. For clusters having the same properties for NBO/HSOMOs, the partial charge distributions at the NBO/HSOMO localized sites additionally affect their VDEs: a more negative or less positive localized charge distribution is correlated with a lower first VDE. The single hydrogen in these (FeS)mH- (m = 2-4) cluster anions is suggested to affect their first VDEs through the different structure types (SH- or FeH-), the nature of the NBO/HSOMOs at the local site, and the value of partial charge number at the local site of the NBO/HSOMO.
Collapse
Affiliation(s)
- Shi Yin
- Department of Chemistry, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
59
|
Tsai CL, Tainer JA. Robust Production, Crystallization, Structure Determination, and Analysis of [Fe-S] Proteins: Uncovering Control of Electron Shuttling and Gating in the Respiratory Metabolism of Molybdopterin Guanine Dinucleotide Enzymes. Methods Enzymol 2017; 599:157-196. [PMID: 29746239 DOI: 10.1016/bs.mie.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
[Fe-S] clusters are essential cofactors in all domains of life. They play many biological roles due to their unique abilities for electron transfer and conformational control. Yet, producing and analyzing Fe-S proteins can be difficult and even misleading if not done anaerobically. Due to unique redox properties of [Fe-S] clusters and their oxygen sensitivity, they pose multiple challenges and can lose enzymatic activity or cause their component proteins to be structurally disordered due to [Fe-S] cluster oxidation and loss in air. Here we highlight tested protocols and strategies enabling efficient and stable [Fe-S] protein production, purification, crystallization, X-ray diffraction data collection, and structure determination. From multiple high-resolution anaerobic crystal structures, we furthermore analyze exemplary data defining [Fe-S] clusters, substrate entry, and product exit for the functional oxidation states of type II molybdo-bis(molybdopterin guanine dinucleotide) (Mo-bisMGD) enzymes. Notably, these enzymes perform electron shuttling between quinone pools and specific substrates to catalyze respiratory metabolism. The identified structure-activity relationships for this enzyme class have broad implications germane to perchlorate environments on Earth and Mars extending to an alternative mechanism underlying metabolic origins for the evolution of the oxygen atmosphere. Integrated structural analyses of type II Mo-bisMGD enzymes unveil novel distinctive shared molecular mechanisms for dynamic control of substrate entry and product release gated by hydrophobic residues. Collective findings support a prototypic model for type II Mo-bisMGD enzymes including insights for a fundamental molecular mechanistic understanding of selectivity and regulation by a conformationally gated channel with general implications for [Fe-S] cluster respiratory enzymes.
Collapse
Affiliation(s)
- Chi-Lin Tsai
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States
| | - John A Tainer
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
60
|
Abstract
SIGNIFICANCE Iron-sulfur cluster proteins carry out a wide range of functions, including as regulators of gene transcription/translation in response to environmental stimuli. In all known cases, the cluster acts as the sensory module, where the inherent reactivity/fragility of iron-sulfur clusters towards small/redox active molecules is exploited to effect conformational changes that modulate binding to DNA regulatory sequences. This promotes an often substantial re-programming of the cellular proteome that enables the organism or cell to adapt to, or counteract, its changing circumstances. Recent Advances. Significant progress has been made recently in the structural and mechanistic characterization of iron-sulfur cluster regulators and, in particular, the O2 and NO sensor FNR, the NO sensor NsrR, and WhiB-like proteins of Actinobacteria. These are the main focus of this review. CRITICAL ISSUES Striking examples of how the local environment controls the cluster sensitivity and reactivity are now emerging, but the basis for this is not yet fully understood for any regulatory family. FUTURE DIRECTIONS Characterization of iron-sulfur cluster regulators has long been hampered by a lack of high resolution structural data. Though this still presents a major future challenge, recent advances now provide a firm foundation for detailed understanding of how a signal is transduced to effect gene regulation. This requires the identification of often unstable intermediate species, which are difficult to detect and may be hard to distinguish using traditional techniques. Novel approaches will be required to solve these problems.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry , University of East Anglia , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| | - Nick E Le Brun
- University of East Anglia, School of Chemistry , University plain , Norwich, United Kingdom of Great Britain and Northern Ireland , NR4 7TJ ;
| |
Collapse
|
61
|
Identification of Genes Involved in the Responses of Tangor (C. reticulata × C. sinensis) to Drought Stress. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8068725. [PMID: 29085842 PMCID: PMC5612316 DOI: 10.1155/2017/8068725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022]
Abstract
Drought is the major abiotic stress with adverse effects on citrus, decreasing the agronomical yield and influencing the fruit quality. In this study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique was used to investigate the transcriptional profile changes and identify drought-responsive genes in “Amakusa” tangor (C. reticulata × C. sinensis), a hybrid citrus sensitive to water stress. The 255 out of 6,245 transcript-derived fragments (TDFs) displayed altered expression patterns including (A) induction, (B) repression, (C) upregulation, and (D) downregulation. With BLAST search, the gene products of differentially expressed fragments (DEFs) could be classified into several categories: cellular processes, transcription, transport, metabolism, stress/stimuli response, and developmental processes. Downregulated genes were highly represented by photosynthesis and basic metabolism, while upregulated ones were enriched in genes that were involved in transcription regulation, defense, energy, and transport. Present result also revealed some transient and up- and then downregulated genes such as aquaporin protein and photosystem enzyme. Expression patterns of 17 TDFs among 18 homologous to function-known genes were confirmed by qRT-PCR analysis. The present results revealed potential mechanism of drought tolerance in fruit crop and also provided candidate genes for future experiments in citrus.
Collapse
|
62
|
Yin S, Bernstein ER. Photoelectron Spectroscopy and Density Functional Theory Studies of Iron Sulfur (FeS)m– (m = 2–8) Cluster Anions: Coexisting Multiple Spin States. J Phys Chem A 2017; 121:7362-7373. [DOI: 10.1021/acs.jpca.7b07676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shi Yin
- Department of Chemistry,
NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Elliot R. Bernstein
- Department of Chemistry,
NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
63
|
|
64
|
Barbieri NL, Vande Vorde JA, Baker AR, Horn F, Li G, Logue CM, Nolan LK. FNR Regulates the Expression of Important Virulence Factors Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli. Front Cell Infect Microbiol 2017; 7:265. [PMID: 28690981 PMCID: PMC5481319 DOI: 10.3389/fcimb.2017.00265] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the etiologic agent of colibacillosis, an important cause of morbidity and mortality in poultry. Though, many virulence factors associated with APEC pathogenicity are known, their regulation remains unclear. FNR (fumarate and nitrate reduction) is a well-known global regulator that works as an oxygen sensor and has previously been described as a virulence regulator in bacterial pathogens. The goal of this study was to examine the role of FNR in the regulation of APEC virulence factors, such as Type I fimbriae, and processes such as adherence and invasion, type VI secretion, survival during oxidative stress, and growth in iron-restricted environments. To accomplish this goal, APEC O1, a well-characterized, highly virulent, and fully sequenced strain of APEC harboring multiple virulence mechanisms, some of which are plasmid-linked, was compared to its FNR mutant for expression of various virulence traits. Deletion of FNR was found to affect APEC O1's adherence, invasion and expression of ompT, a plasmid-encoded outer membrane protein, type I fimbriae, and aatA, encoding an autotransporter. Indeed, the fnr− mutant showed an 8-fold reduction in expression of type I fimbriae and a highly significant (P < 0.0001) reduction in expression of fimA, ompT (plasmid-borne), and aatA. FNR was also found to regulate expression of the type VI secretion system, affecting the expression of vgrG. Further, FNR was found to be important to APEC O1's growth in iron-deficient media and survival during oxidative stress with the mutant showing a 4-fold decrease in tolerance to oxidative stress, as compared to the wild type. Thus, our results suggest that FNR functions as an important regulator of APEC virulence.
Collapse
Affiliation(s)
- Nicolle L Barbieri
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Jessica A Vande Vorde
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Alison R Baker
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Fabiana Horn
- Departamento de Biofísica, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Ganwu Li
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Catherine M Logue
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Lisa K Nolan
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States.,Department of Infectious Disease, College of Veterinary Medicine, University of GeorgiaAthens, Georgia
| |
Collapse
|
65
|
Millan-Oropeza A, Henry C, Blein-Nicolas M, Aubert-Frambourg A, Moussa F, Bleton J, Virolle MJ. Quantitative Proteomics Analysis Confirmed Oxidative Metabolism Predominates in Streptomyces coelicolor versus Glycolytic Metabolism in Streptomyces lividans. J Proteome Res 2017; 16:2597-2613. [DOI: 10.1021/acs.jproteome.7b00163] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aaron Millan-Oropeza
- Institute
for
Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud,
Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Céline Henry
- Micalis Institute,
INRA, PAPPSO, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Mélisande Blein-Nicolas
- Génétique
Quantitative et Évolution (GQE) - Le Moulon, INRA, Univ Paris-Sud,
CNRS, AgroParisTech, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Anne Aubert-Frambourg
- Micalis Institute,
INRA, PAPPSO, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Fathi Moussa
- Lip(Sys)2, LETIAM (formerly included in
EA4041 Groupe de Chimie Analytique
de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, IUT
d’Orsay, Plateau de Moulon, F-91400 Orsay, France
| | - Jean Bleton
- Lip(Sys)2, LETIAM (formerly included in
EA4041 Groupe de Chimie Analytique
de Paris-Sud), Univ. Paris-Sud, Université Paris-Saclay, IUT
d’Orsay, Plateau de Moulon, F-91400 Orsay, France
| | - Marie-Jöelle Virolle
- Institute
for
Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud,
Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
66
|
Lanigan N, Bottacini F, Casey PG, O'Connell Motherway M, van Sinderen D. Genome-Wide Search for Genes Required for Bifidobacterial Growth under Iron-Limitation. Front Microbiol 2017; 8:964. [PMID: 28620359 PMCID: PMC5449479 DOI: 10.3389/fmicb.2017.00964] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria evolved over millennia in the presence of the vital micronutrient iron. Iron is involved in numerous processes within the cell and is essential for nearly all living organisms. The importance of iron to the survival of bacteria is obvious from the large variety of mechanisms by which iron may be acquired from the environment. Random mutagenesis and global gene expression profiling led to the identification of a number of genes, which are essential for Bifidobacterium breve UCC2003 survival under iron-restrictive conditions. These genes encode, among others, Fe-S cluster-associated proteins, a possible ferric iron reductase, a number of cell wall-associated proteins, and various DNA replication and repair proteins. In addition, our study identified several presumed iron uptake systems which were shown to be essential for B. breve UCC2003 growth under conditions of either ferric and/or ferrous iron chelation. Of these, two gene clusters encoding putative iron-uptake systems, bfeUO and sifABCDE, were further characterised, indicating that sifABCDE is involved in ferrous iron transport, while the bfeUO-encoded transport system imports both ferrous and ferric iron. Transcription studies showed that bfeUO and sifABCDE constitute two separate transcriptional units that are induced upon dipyridyl-mediated iron limitation. In the anaerobic gastrointestinal environment ferrous iron is presumed to be of most relevance, though a mutation in the sifABCDE cluster does not affect B. breve UCC2003's ability to colonise the gut of a murine model.
Collapse
Affiliation(s)
- Noreen Lanigan
- APC Microbiome Institute and School of Microbiology, University College CorkCork, Ireland
| | - Francesca Bottacini
- APC Microbiome Institute and School of Microbiology, University College CorkCork, Ireland
| | - Pat G Casey
- APC Microbiome Institute and School of Microbiology, University College CorkCork, Ireland
| | | | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, University College CorkCork, Ireland
| |
Collapse
|
67
|
Cho HJ, Kwon YS, Kim DR, Cho G, Hong SW, Bae DW, Kwak YS. wblE2 transcription factor in Streptomyces griseus S4-7 plays an important role in plant protection. Microbiologyopen 2017; 6. [PMID: 28523731 PMCID: PMC5635160 DOI: 10.1002/mbo3.494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022] Open
Abstract
Streptomyces griseus S4‐7 was originally isolated from the strawberry rhizosphere as a microbial agent responsible for Fusarium wilt suppressive soils. S. griseus S4‐7 shows specific and pronounced antifungal activity against Fusarium oxysporum f. sp. fragariae. In the Streptomyces genus, the whi transcription factors are regulators of sporulation, cell differentiation, septation, and secondary metabolites production. wblE2 function as a regulator has emerged as a new group in whi transcription factors. In this study, we reveal the involvement of the wblE2 transcription factor in the plant‐protection by S. griseus S4‐7. We generated ΔwblE, ΔwblE2, ΔwhiH, and ΔwhmD gene knock‐out mutants, which showed less antifungal activity both in vitro and in planta. Among the mutants, wblE2 mutant failed to protect the strawberry against the Fusarium wilt pathogen. Transcriptome analyses revealed major differences in the regulation of phenylalanine metabolism, polyketide and siderophore biosynthesis between the S4‐7 and the wblE2 mutant. The results contribute to our understanding of the role of streptomycetes wblE2 genes in a natural disease suppressing system.
Collapse
Affiliation(s)
- Hyun Ji Cho
- Division of Applied Life Science (BK21 Plue) and IALS, Gyeongsang National University, Jinju, Korea
| | - Young Sang Kwon
- Environmental Chemistry Research Center, Korea Institute of Toxicology, Jinju, Korea
| | - Da-Ran Kim
- Department of Plant Medicine, Gyeongsang National University, Jinju, Korea
| | - Gyeongjun Cho
- Division of Applied Life Science (BK21 Plue) and IALS, Gyeongsang National University, Jinju, Korea
| | - Seong Won Hong
- Division of Applied Life Science (BK21 Plue) and IALS, Gyeongsang National University, Jinju, Korea
| | - Dong-Won Bae
- Center for Research Facilities, Gyeongsang National University, Jinju, Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21 Plue) and IALS, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
68
|
Tazibt S, Chikhaoui A, Bouarab S, Vega A. Structural, Electronic, and Magnetic Properties of Iron Disulfide FenS20/± (n = 1–6) Clusters. J Phys Chem A 2017; 121:3768-3780. [DOI: 10.1021/acs.jpca.7b00942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S. Tazibt
- Faculté
du Génie Electrique et d’Informatique, Université Mouloud Mammeri de Tizi-Ouzou, B.P. 17 RP, 15000 Tizi-Ouzou, Algeria
| | - A. Chikhaoui
- Laboratoire
de Physique et Chimie Quantique, Faculté des Sciences, Université Mouloud Mammeri de Tizi-Ouzou, B.P. 17 RP, 15000 Tizi-Ouzou, Algeria
| | - S. Bouarab
- Laboratoire
de Physique et Chimie Quantique, Faculté des Sciences, Université Mouloud Mammeri de Tizi-Ouzou, B.P. 17 RP, 15000 Tizi-Ouzou, Algeria
| | - A. Vega
- Departamento
de Física Teórica, Atómica y Óptica, Universidad de Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| |
Collapse
|
69
|
Stiban J, So M, Kaguni LS. Iron-Sulfur Clusters in Mitochondrial Metabolism: Multifaceted Roles of a Simple Cofactor. BIOCHEMISTRY (MOSCOW) 2017; 81:1066-1080. [PMID: 27908232 DOI: 10.1134/s0006297916100059] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron-sulfur metabolism is essential for cellular function and is a key process in mitochondria. In this review, we focus on the structure and assembly of mitochondrial iron-sulfur clusters and their roles in various metabolic processes that occur in mitochondria. Iron-sulfur clusters are crucial in mitochondrial respiration, in which they are required for the assembly, stability, and function of respiratory complexes I, II, and III. They also serve important functions in the citric acid cycle, DNA metabolism, and apoptosis. Whereas the identification of iron-sulfur containing proteins and their roles in numerous aspects of cellular function has been a long-standing research area, that in mitochondria is comparatively recent, and it is likely that their roles within mitochondria have been only partially revealed. We review the status of the field and provide examples of other cellular iron-sulfur proteins to highlight their multifarious roles.
Collapse
Affiliation(s)
- Johnny Stiban
- Birzeit University, Department of Biology and Biochemistry, West Bank Birzeit, 627, Palestine.
| | | | | |
Collapse
|
70
|
Vergnes A, Viala JPM, Ouadah-Tsabet R, Pocachard B, Loiseau L, Méresse S, Barras F, Aussel L. The iron-sulfur cluster sensor IscR is a negative regulator of Spi1 type III secretion system in Salmonella enterica. Cell Microbiol 2016; 19. [PMID: 27704705 DOI: 10.1111/cmi.12680] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 11/28/2022]
Abstract
Iron-sulfur (Fe-S)-containing proteins contribute to various biological processes, including redox reactions or regulation of gene expression. Living organisms have evolved by developing distinct biosynthetic pathways to assemble these clusters, including iron sulfur cluster (ISC) and sulfur mobilization (SUF). Salmonella enterica serovar Typhimurium is an intracellular pathogen responsible for a wide range of infections, from gastroenteritis to severe systemic diseases. Salmonella possesses all known prokaryotic systems to assemble Fe-S clusters, including ISC and SUF. Because iron starvation and oxidative stress are detrimental for Fe-S enzyme biogenesis and because such environments are often met by Salmonella during its intracellular life, we investigated the role of the ISC and SUF machineries during the course of the infection. The iscU mutant, which is predicted to have no ISC system functioning, was found to be defective for epithelial cell invasion and for mice infection, whereas the sufBC mutant, which is predicted to have no SUF system functioning, did not present any defect. Moreover, the iscU mutant was highly impaired in the expression of Salmonella pathogenicity island 1 (Spi1) type III secretion system that is essential for the first stage of Salmonella infection. The Fe-S cluster sensor IscR, a transcriptional regulator matured by the ISC machinery, was shown to bind the promoter of hilD, which encodes the master regulator of Spi1. IscR was also demonstrated to repress hilD and subsequently Spi1 gene expression, consistent with the observation that an IscR mutant is hyper-invasive in epithelial cells. Collectively, our findings indicate that the ISC machinery plays a central role in Salmonella virulence through the ability of IscR to down-regulate Spi1 gene expression. At a broader level, this model illustrates an adaptive mechanism used by bacterial pathogens to modulate their infectivity according to iron and oxygen availability.
Collapse
Affiliation(s)
- Alexandra Vergnes
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| | - Julie P M Viala
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| | | | | | - Laurent Loiseau
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| | | | - Frédéric Barras
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| | - Laurent Aussel
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| |
Collapse
|
71
|
Yin S, Bernstein ER. Properties of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions through photoelectron spectroscopy and density functional theory calculations. J Chem Phys 2016; 145:154302. [DOI: 10.1063/1.4964651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Shi Yin
- Department of Chemistry, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Elliot R. Bernstein
- Department of Chemistry, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
72
|
Pompilio A, Riviello A, Crocetta V, Di Giuseppe F, Pomponio S, Sulpizio M, Di Ilio C, Angelucci S, Barone L, Di Giulio A, Di Bonaventura G. Evaluation of antibacterial and antibiofilm mechanisms by usnic acid against methicillin-resistant Staphylococcus aureus. Future Microbiol 2016; 11:1315-1338. [PMID: 27633726 DOI: 10.2217/fmb-2016-0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the antibacterial and antibiofilm mechanisms of usnic acid (USN) against methicillin-resistant Staphylococcus aureus from cystic fibrosis patients. MATERIALS & METHODS The effects exerted by USN at subinhibitory concentrations on S. aureus Sa3 strain was evaluated by proteomic, real-time PCR and electron microscopy analyses. RESULTS & CONCLUSION Proteomic analysis showed that USN caused damage in peptidoglycan synthesis, as confirmed by microscopy. Real-time PCR analysis showed that antibiofilm activity of USN is mainly due to impaired adhesion to the host matrix binding proteins, and decreasing lipase and thermonuclease expression. Our data show that USN exerts anti-staphylococcal effects through multitarget inhibitory effects, thus confirming the rationale for considering it 'lead compound' for the treatment of cystic fibrosis infections.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| | - Antonella Riviello
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Valentina Crocetta
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| | - Fabrizio Di Giuseppe
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Stefano Pomponio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| | - Marilisa Sulpizio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Carmine Di Ilio
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Stefania Angelucci
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy.,Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Luana Barone
- Department of Science, LIME, University Roma Tre, Viale G Marconi 446, Rome, Italy
| | - Andrea Di Giulio
- Department of Science, LIME, University Roma Tre, Viale G Marconi 446, Rome, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral & Biotechnological Sciences, 'G d'Annunzio' University of Chieti-Pescara, Via Vestini 31, Chieti, Italy.,Aging Research Center and Translational Medicine, 'G d'Annunzio' University of Chieti-Pescara, Via L Polacchi 13, Chieti, Italy
| |
Collapse
|
73
|
Blauenburg B, Mielcarek A, Altegoer F, Fage CD, Linne U, Bange G, Marahiel MA. Crystal Structure of Bacillus subtilis Cysteine Desulfurase SufS and Its Dynamic Interaction with Frataxin and Scaffold Protein SufU. PLoS One 2016; 11:e0158749. [PMID: 27382962 PMCID: PMC4934914 DOI: 10.1371/journal.pone.0158749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022] Open
Abstract
The biosynthesis of iron sulfur (Fe-S) clusters in Bacillus subtilis is mediated by a SUF-type gene cluster, consisting of the cysteine desulfurase SufS, the scaffold protein SufU, and the putative chaperone complex SufB/SufC/SufD. Here, we present the high-resolution crystal structure of the SufS homodimer in its product-bound state (i.e., in complex with pyrodoxal-5'-phosphate, alanine, Cys361-persulfide). By performing hydrogen/deuterium exchange (H/DX) experiments, we characterized the interaction of SufS with SufU and demonstrate that SufU induces an opening of the active site pocket of SufS. Recent data indicate that frataxin could be involved in Fe-S cluster biosynthesis by facilitating iron incorporation. H/DX experiments show that frataxin indeed interacts with the SufS/SufU complex at the active site. Our findings deepen the current understanding of Fe-S cluster biosynthesis, a complex yet essential process, in the model organism B. subtilis.
Collapse
Affiliation(s)
- Bastian Blauenburg
- Department of Chemistry, Biochemistry, Hans-Meerwein Str. 4, Philipps University Marburg, 35043 Marburg, Germany
| | - Andreas Mielcarek
- Department of Chemistry, Biochemistry, Hans-Meerwein Str. 4, Philipps University Marburg, 35043 Marburg, Germany
| | - Florian Altegoer
- LOEWE Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Christopher D. Fage
- Department of Chemistry, Biochemistry, Hans-Meerwein Str. 4, Philipps University Marburg, 35043 Marburg, Germany
| | - Uwe Linne
- Department of Chemistry, Biochemistry, Hans-Meerwein Str. 4, Philipps University Marburg, 35043 Marburg, Germany
| | - Gert Bange
- Department of Chemistry, Biochemistry, Hans-Meerwein Str. 4, Philipps University Marburg, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Mohamed A. Marahiel
- Department of Chemistry, Biochemistry, Hans-Meerwein Str. 4, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
74
|
Pala ZR, Saxena V, Saggu GS, Yadav SK, Pareek R, Kochar SK, Kochar DK, Garg S. Structural and functional characterization of an iron–sulfur cluster assembly scaffold protein-SufA from Plasmodium vivax. Gene 2016; 585:159-165. [DOI: 10.1016/j.gene.2016.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 11/16/2022]
|
75
|
Abstract
Iron-sulfur (Fe-S) clusters are fundamental to numerous biological processes in most organisms, but these protein cofactors can be prone to damage by various oxidants (e.g., O2, reactive oxygen species, and reactive nitrogen species) and toxic levels of certain metals (e.g., cobalt and copper). Furthermore, their synthesis can also be directly influenced by the level of available iron in the environment. Consequently, the cellular need for Fe-S cluster biogenesis varies with fluctuating growth conditions. To accommodate changes in Fe-S demand, microorganisms employ diverse regulatory strategies to tailor Fe-S cluster biogenesis according to their surroundings. Here, we review the mechanisms that regulate Fe-S cluster formation in bacteria, primarily focusing on control of the Isc and Suf Fe-S cluster biogenesis systems in the model bacterium Escherichia coli.
Collapse
Affiliation(s)
- Erin L Mettert
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, ,
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, ,
| |
Collapse
|
76
|
Yang S, Xu H, Wang J, Liu C, Lu H, Liu M, Zhao Y, Tian B, Wang L, Hua Y. Cyclic AMP Receptor Protein Acts as a Transcription Regulator in Response to Stresses in Deinococcus radiodurans. PLoS One 2016; 11:e0155010. [PMID: 27182600 PMCID: PMC4868304 DOI: 10.1371/journal.pone.0155010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/22/2016] [Indexed: 11/24/2022] Open
Abstract
The cyclic AMP receptor protein family of transcription factors regulates various metabolic pathways in bacteria, and also play roles in response to environmental changes. Here, we identify four homologs of the CRP family in Deinococcus radiodurans, one of which tolerates extremely high levels of oxidative stress and DNA-damaging reagents. Transcriptional levels of CRP were increased under hydrogen peroxide (H2O2) treatment during the stationary growth phase, indicating that CRPs function in response to oxidative stress. By constructing all CRP single knockout mutants, we found that the dr0997 mutant showed the lowest tolerance toward H2O2, ultraviolet radiation, ionizing radiation, and mitomycin C, while the phenotypes of the dr2362, dr0834, and dr1646 mutants showed slight or no significant differences from those of the wild-type strain. Taking advantage of the conservation of the CRP-binding site in many bacteria, we found that transcription of 18 genes, including genes encoding chromosome-partitioning protein (dr0998), Lon proteases (dr0349 and dr1974), NADH-quinone oxidoreductase (dr1506), thiosulfate sulfurtransferase (dr2531), the DNA repair protein UvsE (dr1819), PprA (dra0346), and RecN (dr1447), are directly regulated by DR0997. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses showed that certain genes involved in anti-oxidative responses, DNA repair, and various cellular pathways are transcriptionally attenuated in the dr0997 mutant. Interestingly, DR0997 also regulate the transcriptional levels of all CRP genes in this bacterium. These data suggest that DR0997 contributes to the extreme stress resistance of D. radiodurans via its regulatory role in multiple cellular pathways, such as anti-oxidation and DNA repair pathways.
Collapse
Affiliation(s)
- Su Yang
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Hong Xu
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jiali Wang
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Chengzhi Liu
- Laboratory of Microbiology and Genomics, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Huizhi Lu
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Mengjia Liu
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Ye Zhao
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Bing Tian
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
| | - Liangyan Wang
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
- * E-mail: (YH); (LW)
| | - Yuejin Hua
- Key Laboratory of Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029, China
- * E-mail: (YH); (LW)
| |
Collapse
|
77
|
Behrens W, Schweinitzer T, McMurry JL, Loewen PC, Buettner FFR, Menz S, Josenhans C. Localisation and protein-protein interactions of the Helicobacter pylori taxis sensor TlpD and their connection to metabolic functions. Sci Rep 2016; 6:23582. [PMID: 27045738 PMCID: PMC4820699 DOI: 10.1038/srep23582] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/09/2016] [Indexed: 12/24/2022] Open
Abstract
The Helicobacter pylori energy sensor TlpD determines tactic behaviour under low energy conditions and is important in vivo. We explored protein-protein interactions of TlpD and their impact on TlpD localisation and function. Pull-down of tagged TlpD identified protein interaction partners of TlpD, which included the chemotaxis histidine kinase CheAY2, the central metabolic enzyme aconitase (AcnB) and the detoxifying enzyme catalase (KatA). We confirmed that KatA and AcnB physically interact with TlpD. While the TlpD-dependent behavioural response appeared not influenced in the interactor mutants katA and acnB in steady-state behavioural assays, acetone carboxylase subunit (acxC) mutant behaviour was altered. TlpD was localised in a bipolar subcellular pattern in media of high energy. We observed a significant change in TlpD localisation towards the cell body in cheAY2-, catalase- or aconitase-deficient bacteria or in bacteria incubated under low energy conditions, including oxidative stress or respiratory inhibition. Inactivation of tlpD resulted in an increased sensitivity to iron limitation and oxidative stress and influenced the H. pylori transcriptome. Oxidative stress, iron limitation and overexpressing the iron-sulfur repair system nifSU altered TlpD-dependent behaviour. We propose that TlpD localisation is instructed by metabolic activity and protein interactions, and its sensory activity is linked to iron-sulfur cluster integrity.
Collapse
Affiliation(s)
- Wiebke Behrens
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Tobias Schweinitzer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Jonathan L McMurry
- Department of Molecular &Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Peter C Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Falk F R Buettner
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - Sarah Menz
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Christine Josenhans
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.,German Center of Infection Research, partner site Hannover-Braunschweig, Germany
| |
Collapse
|
78
|
Ezraty B, Barras F. The ‘liaisons dangereuses’ between iron and antibiotics. FEMS Microbiol Rev 2016; 40:418-35. [DOI: 10.1093/femsre/fuw004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
|
79
|
Roussel C, Cesselin B, Cachon R, Gaudu P. Characterization of two Lactococcus lactis zinc membrane proteins, Llmg_0524 and Llmg_0526, and role of Llmg_0524 in cell wall integrity. BMC Microbiol 2015; 15:246. [PMID: 26519082 PMCID: PMC4628341 DOI: 10.1186/s12866-015-0587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to its extraordinary chemical properties, the cysteine amino acid residue is often involved in protein folding, electron driving, sensing stress, and binding metals such as iron or zinc. Lactococcus lactis, a Gram-positive bacterium, houses around one hundred cysteine-rich proteins (with the CX2C motif) in the cytoplasm, but only a few in the membrane. RESULTS In order to understand the role played by this motif we focused our work on two membrane proteins of unknown function: Llmg_0524 and Llmg_0526. Each of these proteins has two CX2C motifs separated by ten amino-acid residues (CX2CX10CX2C). Together with a short intervening gene (llmg_0525), the genes of these two proteins form an operon, which is induced only during the early log growth phase. In both proteins, we found that the CX2CX10CX2C motif chelated a zinc ion via its cysteine residues, but the sphere of coordination was remarkably different in each case. In the case of Llmg_0524, two of the four cysteines were ligands of a zinc ion whereas in Llmg_0526, all four residues were involved in binding zinc. In both proteins, the cysteine-zinc complex was very stable at 37 °C or in the presence of oxidative agents, suggesting a probable role in protein stability. We found that the complete deletion of llmg_0524 increased the sensitivity of the mutant to cumene hydroperoxide whereas the deletion of the cysteine motif in Llmg_0524 resulted in a growth defect. The latter mutant was much more resistant to lysozyme than other strains. CONCLUSIONS Our data suggest that the CX2CX10CX2C motif is used to chelate a zinc ion but we cannot predict the number of cysteine residue involved as ligand of metal. Although no other motif is present in sequence to identify roles played by these proteins, our results indicate that Llmg_0524 contributes to the cell wall integrity.
Collapse
Affiliation(s)
- Célia Roussel
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France.
| | - Bénédicte Cesselin
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France.
| | - Rémy Cachon
- UMR A 02.102 Unité Procédés Alimentaires et Microbiologiques, AgroSup Dijon-Université de Bourgogne, 1-esplanade Erasme, F-21000, Dijon, France.
| | - Philippe Gaudu
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France. .,Institut Micalis UMR1319 et AgroParisTech, Domaine de Vilvert, 78352 Jouy-en-Josas, Cedex, France.
| |
Collapse
|
80
|
Abstract
This review describes the two main systems, namely the Isc (iron-sulfur cluster) and Suf (sulfur assimilation) systems, utilized by Escherichia coli and Salmonella for the biosynthesis of iron-sulfur (Fe-S) clusters, as well as other proteins presumably participating in this process. In the case of Fe-S cluster biosynthesis, it is assumed that the sulfur atoms from the cysteine desulfurase end up at cysteine residues of the scaffold protein, presumably waiting for iron atoms for cluster assembly. The review discusses the various potential iron donor proteins. For in vitro experiments, in general, ferrous salts are used during the assembly of Fe-S clusters, even though this approach is unlikely to reflect the physiological conditions. The fact that sulfur atoms can be directly transferred from cysteine desulfurases to scaffold proteins supports a mechanism in which the latter bind sulfur atoms first and iron atoms afterwards. In E. coli, fdx gene inactivation results in a reduced growth rate and reduced Fe-S enzyme activities. Interestingly, the SufE structure resembles that of IscU, strengthening the notion that the two proteins share the property of acting as acceptors of sulfur atoms provided by cysteine desulfurases. Several other factors have been suggested to participate in cluster assembly and repair in E. coli and Salmonella. Most of them were identified by their abilities to act as extragenic and/or multicopy suppressors of mutations in Fe-S cluster metabolism, while others possess biochemical properties that are consistent with a role in Fe-S cluster biogenesis.
Collapse
|
81
|
Luebke JL, Giedroc DP. Cysteine sulfur chemistry in transcriptional regulators at the host-bacterial pathogen interface. Biochemistry 2015; 54:3235-49. [PMID: 25946648 DOI: 10.1021/acs.biochem.5b00085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hosts employ myriad weapons to combat invading microorganisms as an integral feature of the host-bacterial pathogen interface. This interface is dominated by highly reactive small molecules that collectively induce oxidative stress. Successful pathogens employ transcriptional regulatory proteins that sense these small molecules directly or indirectly via a change in the ratio of reduced to oxidized low-molecular weight (LMW) thiols that collectively comprise the redox buffer in the cytoplasm. These transcriptional regulators employ either a prosthetic group or reactive cysteine residue(s) to effect changes in the transcription of genes that encode detoxification and repair systems that is driven by regulator conformational switching between high-affinity and low-affinity DNA-binding states. Cysteine harbors a highly polarizable sulfur atom that readily undergoes changes in oxidation state in response to oxidative stress to produce a range of regulatory post-translational modifications (PTMs), including sulfenylation (S-hydroxylation), mixed disulfide bond formation with LMW thiols (S-thiolation), di- and trisulfide bond formation, S-nitrosation, and S-alkylation. Here we discuss several examples of structurally characterized cysteine thiol-specific transcriptional regulators that sense changes in cellular redox balance, focusing on the nature of the cysteine PTM itself and the interplay of small molecule oxidative stressors in mediating a specific transcriptional response.
Collapse
Affiliation(s)
- Justin L Luebke
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
82
|
Taguchi F, Inoue Y, Suzuki T, Inagaki Y, Yamamoto M, Toyoda K, Noutoshi Y, Shiraishi T, Ichinose Y. Characterization of quorum sensing-controlled transcriptional regulator MarR and Rieske (2Fe-2S) cluster-containing protein (Orf5), which are involved in resistance to environmental stresses in Pseudomonas syringae pv. tabaci 6605. MOLECULAR PLANT PATHOLOGY 2015; 16:376-87. [PMID: 25155081 PMCID: PMC6638344 DOI: 10.1111/mpp.12187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pseudomonas syringae pv. tabaci 6605 (Pta6605) produces acyl homoserine lactones (AHLs), quorum sensing (QS) molecules that are indispensable for virulence in host tobacco infection. Genome-wide transcriptional profiling of several QS-defective mutants revealed that the expression of the genes encoding the MarR family transcriptional regulator (MarR) and a Rieske 2Fe-2S cluster-containing protein (Orf5) located adjacent to psyI, a gene encoding AHL synthetase, are significantly repressed. Exogenous application of AHL recovered the expression of both marR and orf5 genes in the ΔpsyI mutant, indicating that AHL positively regulates the expression of these genes. To investigate the role of these genes in the virulence of Pta6605, ΔmarR and Δorf5 mutants were generated. Both mutants showed decreased swimming and swarming motilities, decreased survival ability under oxidative and nitrosative stresses and, consequently, reduced virulence on host tobacco plants. Transmission electron micrographs showed that the structure of the cell membranes of ΔmarR and Δorf5 mutants was severely damaged. Furthermore, not only the ratio of dead cells, but also the amount of flagella, extracellular DNA and protein released into the culture supernatant, was significantly increased in both mutants, indicating that the disruption of marR and orf5 genes might induce structural changes in the membrane and cell lysis. Because both mutants showed partly similar expression profiles, both gene products might be involved in the same regulatory cascades that are required for QS-dependent survival under environmentally stressed conditions.
Collapse
Affiliation(s)
- Fumiko Taguchi
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
The ferrous iron-responsive BqsRS two-component system activates genes that promote cationic stress tolerance. mBio 2015; 6:e02549. [PMID: 25714721 PMCID: PMC4358008 DOI: 10.1128/mbio.02549-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The physiological resistance of pathogens to antimicrobial treatment is a severe problem in the context of chronic infections. For example, the mucus-filled lungs of cystic fibrosis (CF) patients are readily colonized by diverse antibiotic-resistant microorganisms, including Pseudomonas aeruginosa. Previously, we showed that bioavailable ferrous iron [Fe(II)] is present in CF sputum at all stages of infection and constitutes a significant portion of the iron pool at advanced stages of lung function decline [R. C. Hunter et al., mBio 4(4):e00557-13, 2013]. P. aeruginosa, a dominant CF pathogen, senses Fe(II) using a two-component signal transduction system, BqsRS, which is transcriptionally active in CF sputum [R. C. Hunter et al., mBio 4(4):e00557-13, 2013; N. N. Kreamer, J. C. Wilks, J. J. Marlow, M. L. Coleman, and D. K. Newman, J Bacteriol 194:1195-1204, 2012]. Here, we show that an RExxE motif in BqsS is required for BqsRS activation. Once Fe(II) is sensed, BqsR binds a tandem repeat DNA sequence, activating transcription. The BqsR regulon--defined through iterative bioinformatic predictions and experimental validation--includes several genes whose products are known to drive antibiotic resistance to aminoglycosides and polymyxins. Among them are genes encoding predicted determinants of polyamine transport and biosynthesis. Compared to the wild type, bqsS and bqsR deletion mutants are sensitive to high levels of Fe(II), produce less spermidine in high Fe(II), and are more sensitive to tobramycin and polymyxin B but not arsenate, chromate, or cefsulodin. BqsRS thus mediates a physiological response to Fe(II) that guards the cell against positively charged molecules but not negatively charged stressors. These results suggest Fe(II) is an important environmental signal that, via BqsRS, bolsters tolerance of a variety of cationic stressors, including clinically important antimicrobial agents. IMPORTANCE Clearing chronic infections is challenging due to the physiological resistance of opportunistic pathogens to antibiotics. Effective treatments are hindered by a lack of understanding of how these organisms survive in situ. Fe(II) is typically present at micromolar levels in soils and sedimentary habitats, as well as in CF sputum. All P. aeruginosa strains possess a two-component system, BqsRS, that specifically senses extracellular Fe(II) at low micromolar concentrations. Our work shows that BqsRS protects the cell against cationic perturbations to the cell envelope as well as low pH and reduction potential (Eh), conditions under which Fe(2+) is stable. Fe(II) can thus be understood as a proxy for a broader environmental state; the cellular response to its detection may help rationalize the resistance of P. aeruginosa to clinically important cationic antibiotics. This finding demonstrates the importance of considering environmental chemistry when exploring mechanisms of microbial survival in habitats that include the human body.
Collapse
|
84
|
Py B, Barras F. [Iron and sulfur in proteins. How does the cell build Fe-S clusters, cofactors essential for life?]. Med Sci (Paris) 2014; 30:1110-22. [PMID: 25537041 DOI: 10.1051/medsci/20143012014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Iron-sulfur clusters (Fe-S) are ubiquitous cofactors present in numerous proteins of most living organisms. By way of an example, the E. coli bacterium synthesizes more that 130 different types of Fe-S proteins. Fe-S proteins are involved in a great diversity of biological processes, ranging from respiration, photosynthesis, central metabolism, to genetic expression and genomic stability. Proteins can acquire spontaneously Fe-S clusters in vitro, but in vivo, dedicated molecular machineries are necessary. Dysfunction of these machineries alters cellular capacities leading to lethality in bacteria and severe pathologies in humans. In this review we will describe how cells make Fe-S clusters and deliver them to clients proteins. The importance of Fe-S clusters homeostasis will be illustrated by reporting a list of cellular dysfunctions associated with mutations altering either Fe-S proteins or Fe-S biogenesis machineries.
Collapse
Affiliation(s)
- Béatrice Py
- Laboratoire de Chimie Bactérienne, UMR 7283 CNRS-Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 31, chemin Joseph Aiguier, 13009 Marseille, France
| | - Frédéric Barras
- Laboratoire de Chimie Bactérienne, UMR 7283 CNRS-Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 31, chemin Joseph Aiguier, 13009 Marseille, France
| |
Collapse
|
85
|
Mössbauer spectroscopy of Fe/S proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1395-405. [PMID: 25498248 DOI: 10.1016/j.bbamcr.2014.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 01/02/2023]
Abstract
Iron-sulfur (Fe/S) clusters are structurally and functionally diverse cofactors that are found in all domains of life. (57)Fe Mössbauer spectroscopy is a technique that provides information about the chemical nature of all chemically distinct Fe species contained in a sample, such as Fe oxidation and spin state, nuclearity of a cluster with more than one metal ion, electron spin ground state of the cluster, and delocalization properties in mixed-valent clusters. Moreover, the technique allows for quantitation of all Fe species, when it is used in conjunction with electron paramagnetic resonance (EPR) spectroscopy and analytical methods. (57)Fe-Mössbauer spectroscopy played a pivotal role in unraveling the electronic structures of the "well-established" [2Fe-2S](2+/+), [3Fe-4S](1+/0), and [4Fe-4S](3+/2+/1+/0) clusters and -more-recently- was used to characterize novel Fe/S clustsers, including the [4Fe-3S] cluster of the O2-tolerant hydrogenase from Aquifex aeolicus and the 3Fe-cluster intermediate observed during the reaction of lipoyl synthase, a member of the radical SAM enzyme superfamily.
Collapse
|
86
|
Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Nat Rev Mol Cell Biol 2014; 16:45-55. [PMID: 25425402 DOI: 10.1038/nrm3909] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Iron-sulphur (Fe-S) clusters are inorganic cofactors that are found in nearly all species and are composed of various combinations of iron and sulphur atoms. Fe-S clusters can accept or donate single electrons to carry out oxidation and reduction reactions and to facilitate electron transport. Many details of how these complex modular structures are assembled and ligated to cellular proteins in the mitochondrial, nuclear and cytosolic compartments of mammalian cells remain unclear. Recent evidence indicates that a Leu-Tyr-Arg (LYR) tripeptide motif found in some Fe-S recipient proteins may facilitate the direct and shielded transfer of Fe-S clusters from a scaffold to client proteins. Fe-S clusters are probably an unrecognized and elusive cofactor of many known proteins.
Collapse
|
87
|
Mettert EL, Kiley PJ. Fe-S proteins that regulate gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1284-93. [PMID: 25450978 DOI: 10.1016/j.bbamcr.2014.11.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/24/2014] [Accepted: 11/13/2014] [Indexed: 02/06/2023]
Abstract
Iron-sulfur (Fe-S) cluster containing proteins that regulate gene expression are present in most organisms. The innate chemistry of their Fe-S cofactors makes these regulatory proteins ideal for sensing environmental signals, such as gases (e.g. O2 and NO), levels of Fe and Fe-S clusters, reactive oxygen species, and redox cycling compounds, to subsequently mediate an adaptive response. Here we review the recent findings that have provided invaluable insight into the mechanism and function of these highly significant Fe-S regulatory proteins. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Erin L Mettert
- University of Wisconsin-Madison, Department of Biomolecular Chemistry, 440 Henry Mall, Biochemical Sciences Building, Room 4204C, Madison, WI 53706, USA.
| | - Patricia J Kiley
- University of Wisconsin-Madison, Department of Biomolecular Chemistry, 440 Henry Mall, Biochemical Sciences Building, Room 4204C, Madison, WI 53706, USA.
| |
Collapse
|
88
|
Mazin PV, Fisunov GY, Gorbachev AY, Kapitskaya KY, Altukhov IA, Semashko TA, Alexeev DG, Govorun VM. Transcriptome analysis reveals novel regulatory mechanisms in a genome-reduced bacterium. Nucleic Acids Res 2014; 42:13254-68. [PMID: 25361977 PMCID: PMC4245973 DOI: 10.1093/nar/gku976] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The avian bacterial pathogen Mycoplasma gallisepticum is a good model for systems studies due to small genome and simplicity of regulatory pathways. In this study, we used RNA-Seq and MS-based proteomics to accurately map coding sequences, transcription start sites (TSSs) and transcript 3′-ends (T3Es). We used obtained data to investigate roles of TSSs and T3Es in stress-induced transcriptional responses. We identified 1061 TSSs at a false discovery rate of 10% and showed that almost all transcription in M. gallisepticum is initiated from classic TATAAT promoters surrounded by A/T-rich sequences. Our analysis revealed the pronounced operon structure complexity: on average, each coding operon has one internal TSS and T3Es in addition to the primary ones. Our transcriptomic approach based on the intervals between the two nearest transcript ends allowed us to identify two classes of T3Es: strong, unregulated, hairpin-containing T3Es and weak, heat shock-regulated, hairpinless T3Es. Comparing gene expression levels under different conditions revealed widespread and divergent transcription regulation in M. gallisepticum. Modeling suggested that the core promoter structure plays an important role in gene expression regulation. We have shown that the heat stress activation of cryptic promoters combined with the hairpinless T3Es suppression leads to widespread, seemingly non-functional transcription.
Collapse
Affiliation(s)
- Pavel V Mazin
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation Institute for Information Transmission Problems of the Russian Academy of Sciences, Bolshoy Karetny 19, Moscow 127994, Russian Federation
| | - Gleb Y Fisunov
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation
| | - Alexey Y Gorbachev
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation
| | - Kristina Y Kapitskaya
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny 141700, Russian Federation
| | - Ilya A Altukhov
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny 141700, Russian Federation
| | - Tatiana A Semashko
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation
| | - Dmitry G Alexeev
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny 141700, Russian Federation Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Russian Federation
| | - Vadim M Govorun
- Research Institute of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny 141700, Russian Federation Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
89
|
Lon-mediated proteolysis of the FeoC protein prevents Salmonella enterica from accumulating the Fe(II) transporter FeoB under high-oxygen conditions. J Bacteriol 2014; 197:92-8. [PMID: 25313398 DOI: 10.1128/jb.01826-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Salmonella Feo system consists of the FeoA, FeoB, and FeoC proteins and mediates ferrous iron [Fe(II)] import. FeoB is an inner membrane protein that, along with contributions from two small hydrophilic proteins, FeoA and FeoC, transports Fe(II). We previously reported that FeoC binds to and protects the FeoB transporter from FtsH-mediated proteolysis. In the present study, we report proteolytic regulation of FeoC that occurs in an oxygen-dependent fashion. While relatively stable under low-oxygen conditions, FeoC was rapidly degraded by the Lon protease under high-oxygen conditions. The putative Fe-S cluster of FeoC seemed to function as an oxygen sensor to control FeoC stability, as evidenced by the finding that mutation of the putative Fe-S cluster-binding site greatly increased FeoC stability under high-oxygen conditions. Salmonella ectopically expressing the feoB and feoC genes was able to accumulate FeoB and FeoC only under low-oxygen conditions, suggesting that FeoC proteolysis prevents Salmonella from accumulating the FeoB transporter under high-oxygen conditions. Finally, we propose that Lon-mediated FeoC proteolysis followed by FtsH-mediated FeoB proteolysis helps Salmonella to avoid uncontrolled Fe(II) uptake during the radical environmental changes encountered when shifting from low-iron anaerobic conditions to high-iron aerobic conditions.
Collapse
|
90
|
Coordinate regulation of the Suf and Isc Fe-S cluster biogenesis pathways by IscR is essential for viability of Escherichia coli. J Bacteriol 2014; 196:4315-23. [PMID: 25266384 DOI: 10.1128/jb.01975-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fe-S cluster biogenesis is essential for the viability of most organisms. In Escherichia coli, this process requires either the housekeeping Isc or the stress-induced Suf pathway. The global regulator IscR coordinates cluster synthesis by repressing transcription of the isc operon by [2Fe-2S]-IscR and activating expression of the suf operon. We show that either [2Fe-2S]-IscR or apo-IscR can activate suf, making expression sensitive to mainly IscR levels and not the cluster state, unlike isc expression. We also demonstrate that in the absence of isc, IscR-dependent suf activation is essential since strains lacking both the Isc pathway and IscR were not viable unless Suf was expressed ectopically. Similarly, removal of the IscR binding site in the sufA promoter also led to a requirement for isc. Furthermore, suf expression was increased in a Δisc mutant, presumably due to increased IscR levels in this mutant. This was surprising because the iron-dependent repressor Fur, whose higher-affinity binding at the sufA promoter should occlude IscR binding, showed only partial repression. In addition, Fur derepression was not sufficient for viability in the absence of IscR and the Isc pathway, highlighting the importance of direct IscR activation. Finally, a mutant lacking Fur and the Isc pathway increased suf expression to the highest observed levels and nearly restored [2Fe-2S]-IscR activity, providing a mechanism for regulating IscR activity under stress conditions. Together, these findings have enhanced our understanding of the homeostatic mechanism by which cells use one regulator, IscR, to differentially control Fe-S cluster biogenesis pathways to ensure viability.
Collapse
|
91
|
FNR regulates expression of important virulence factors contributing to pathogenicity of uropathogenic Escherichia coli. Infect Immun 2014; 82:5086-98. [PMID: 25245807 DOI: 10.1128/iai.02315-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is responsible for the majority of urinary tract infections (UTIs), which are some of the world's most common bacterial infections of humans. Here, we examined the role of FNR (fumarate and nitrate reduction), a well-known global regulator, in the pathogenesis of UPEC infections. We constructed an fnr deletion mutant of UPEC CFT073 and compared it to the wild type for changes in virulence, adherence, invasion, and expression of key virulence factors. Compared to the wild type, the fnr mutant was highly attenuated in the mouse model of human UTI and showed severe defects in adherence to and invasion of bladder and kidney epithelial cells. Our results showed that FNR regulates motility and multiple virulence factors, including expression of type I and P fimbriae, modulation of hemolysin expression, and expression of a novel pathogenicity island involved in α-ketoglutarate metabolism under anaerobic conditions. Our results demonstrate that FNR is a key global regulator of UPEC virulence and controls expression of important virulence factors that contribute to UPEC pathogenicity.
Collapse
|
92
|
Wu CC, Wang CK, Chen YC, Lin TH, Jinn TR, Lin CT. IscR regulation of capsular polysaccharide biosynthesis and iron-acquisition systems in Klebsiella pneumoniae CG43. PLoS One 2014; 9:e107812. [PMID: 25237815 PMCID: PMC4169559 DOI: 10.1371/journal.pone.0107812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/17/2014] [Indexed: 12/29/2022] Open
Abstract
IscR, an Fe–S cluster-containing transcriptional factor, regulates genes involved in various cellular processes. In response to environmental stimuli such as oxidative stress and iron levels, IscR switches between its holo and apo forms to regulate various targets. IscR binding sequences are classified into two types: the type 1 IscR box that is specific for holo-IscR binding, and the type 2 IscR box that binds holo- and apo-IscR. Studying Klebsiella pneumoniae CG43S3, we have previously shown that iron availability regulates capsular polysaccharide (CPS) biosynthesis and iron-acquisition systems. The present study investigated whether IscR is involved in this regulation. Compared with that in CG43S3, the amount of CPS was decreased in AP001 (ΔiscR) or AP002 (iscR3CA), a CG43S3-derived strain expressing mutated IscR mimicked apo-IscR, suggesting that only holo-IscR activates CPS biosynthesis. Furthermore, a promoter-reporter assay verified that the transcription of cps genes was reduced in AP001 and AP002. Purified IscR::His6, but not IscR3CA::His6, was also found to bind the predicted type 1 IscR box specifically in the cps promoter. Furthermore, reduced siderophore production was observed in AP004 (Δfur-ΔiscR) but not in AP005 (Δfur-iscR3CA), implying that apo-IscR activates iron acquisition. Compared with those in AP004, mRNA levels of three putative iron acquisition systems (fhu, iuc, and sit) were increased in AP005, and both purified IscR::His6 and IscR3CA::His6 bound the predicted type 2 IscR box in the fhuA, iucA, and sitA promoters, whereas IscR3CA::His6 displayed a lower affinity. Finally, we analyzed the effect of external iron levels on iscR expression. The transcription of iscR was increased under iron-depleted conditions as well as in AP001 and AP002, suggesting an auto-repression exerted by apo-IscR. Our results show that in K. pneumoniae, IscR plays a dual role in the regulation of CPS biosynthesis and iron-acquisition systems in response to environmental iron availability.
Collapse
Affiliation(s)
- Chien-Chen Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chien-Kuo Wang
- Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China
| | - Yu-Ching Chen
- Department of Biomedical Informatics, Asia University, Taichung, Taiwan, Republic of China
| | - Tien-Huang Lin
- Division of Urology, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, Republic of China
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan, Republic of China
| | - Tzyy-Rong Jinn
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan, Republic of China
| | - Ching-Ting Lin
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
93
|
Hoelzle RD, Virdis B, Batstone DJ. Regulation mechanisms in mixed and pure culture microbial fermentation. Biotechnol Bioeng 2014; 111:2139-54. [DOI: 10.1002/bit.25321] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/19/2014] [Accepted: 06/25/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Robert D. Hoelzle
- Advanced Water Management Centre; The University of Queensland; Brisbane QLD 4072 Australia
| | - Bernardino Virdis
- Advanced Water Management Centre; The University of Queensland; Brisbane QLD 4072 Australia
- Centre for Microbial Electrosynthesis; The University of Queensland; Brisbane QLD 4072 Australia
| | - Damien J. Batstone
- Advanced Water Management Centre; The University of Queensland; Brisbane QLD 4072 Australia
| |
Collapse
|
94
|
Estellon J, Ollagnier de Choudens S, Smadja M, Fontecave M, Vandenbrouck Y. An integrative computational model for large-scale identification of metalloproteins in microbial genomes: a focus on iron-sulfur cluster proteins. Metallomics 2014; 6:1913-30. [PMID: 25117543 DOI: 10.1039/c4mt00156g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metalloproteins represent a ubiquitous group of molecules which are crucial to the survival of all living organisms. While several metal-binding motifs have been defined, it remains challenging to confidently identify metalloproteins from primary protein sequences using computational approaches alone. Here, we describe a comprehensive strategy based on a machine learning approach to design and assess a penalized generalized linear model. We used this strategy to detect members of the iron-sulfur cluster protein family. A new category of descriptors, whose profile is based on profile hidden Markov models, encoding structural information was combined with public descriptors into a linear model. The model was trained and tested on distinct datasets composed of well-characterized iron-sulfur protein sequences, and the resulting model provided higher sensitivity compared to a motif-based approach, while maintaining a good level of specificity. Analysis of this linear model allows us to detect and quantify the contribution of each descriptor, providing us with a better understanding of this complex protein family along with valuable indications for further experimental characterization. Two newly-identified proteins, YhcC and YdiJ, were functionally validated as genuine iron-sulfur proteins, confirming the prediction. The computational model was then applied to over 550 prokaryotic genomes to screen for iron-sulfur proteomes; the results are publicly available at: . This study represents a proof-of-concept for the application of a penalized linear model to identify metalloprotein superfamilies on a large-scale. The application employed here, screening for iron-sulfur proteomes, provides new candidates for further biochemical and structural analysis as well as new resources for an extensive exploration of iron-sulfuromes in the microbial world.
Collapse
Affiliation(s)
- Johan Estellon
- Univ. Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France.
| | | | | | | | | |
Collapse
|
95
|
Cammack R, Balk J. Iron-sulfur Clusters. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Iron-sulfur clusters are universally distributed groups occurring in iron-sulfur proteins. They have a wide range of cellular functions which reflect the chemistry of the clusters. Some clusters are involved in electron transport and energy transduction in photosynthesis and respiration. Others can bind substrates and participate in enzyme catalysis. Regulatory functions have also been documented for clusters that respond to oxygen partial pressure and iron availability. Finally, there are some for which no function has been defined; they may act as stabilizing structures, for example, in enzymes involved in nucleic acid metabolism. The clusters are constructed intracellularly and inserted into proteins, which can then be transported to intracellular targets, in some cases, across membranes. Three different types of iron-sulfur cluster assembly machinery have evolved in prokaryotes: NIF, ISC and SUF. Each system involves a scaffold protein on which the cluster is constructed (encoded by genes nifU, iscU, sufU or sufB) and a cysteine desulfurase (encoded by nifS, iscS or sufS) which provides the sulfide sulfur. In eukaryotic cells, clusters are formed in the mitochondria for the many iron-sulfur proteins in this organelle. The mitochondrial biosynthesis pathway is linked to the cytoplasmic iron-sulfur assembly system (CIA) for the maturation of cytoplasmic and nuclear iron-sulfur proteins. In plant cells, a SUF-type system is used for cluster assembly in the plastids. Many accessory proteins are involved in cluster transfer before insertion into the appropriate sites in Fe-S proteins.
Collapse
Affiliation(s)
- Richard Cammack
- King's College London, Department of Biochemistry, 150 Stamford Street London SE1 9NH UK
| | - Janneke Balk
- John Innes Centre and University of East Anglia Norwich Research Park, Colney Lane Norwich NR4 7UH UK
| |
Collapse
|
96
|
Riboldi GP, Bierhals CG, de Mattos EP, Frazzon APG, d‘Azevedo PA, Frazzon J. Oxidative stress enhances the expression of sulfur assimilation genes: preliminary insights on the Enterococcus faecalis iron-sulfur cluster machinery regulation. Mem Inst Oswaldo Cruz 2014; 109:408-13. [PMID: 24936909 PMCID: PMC4155840 DOI: 10.1590/0074-0276140006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/27/2014] [Indexed: 11/21/2022] Open
Abstract
The Firmicutes bacteria participate extensively in virulence and pathological processes. Enterococcus faecalis is a commensal microorganism; however, it is also a pathogenic bacterium mainly associated with nosocomial infections in immunocompromised patients. Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups involved in diverse biological processes, whose in vivo formation requires several specific protein machineries. Escherichia coli is one of the most frequently studied microorganisms regarding [Fe-S] cluster biogenesis and encodes the iron-sulfur cluster and sulfur assimilation systems. In Firmicutes species, a unique operon composed of the sufCDSUB genes is responsible for [Fe-S] cluster biogenesis. The aim of this study was to investigate the potential of the E. faecalis sufCDSUB system in the [Fe-S] cluster assembly using oxidative stress and iron depletion as adverse growth conditions. Quantitative real-time polymerase chain reaction demonstrated, for the first time, that Gram-positive bacteria possess an OxyR component responsive to oxidative stress conditions, as fully described for E. coli models. Likewise, strong expression of the sufCDSUB genes was observed in low concentrations of hydrogen peroxide, indicating that the lowest concentration of oxygen free radicals inside cells, known to be highly damaging to [Fe-S] clusters, is sufficient to trigger the transcriptional machinery for prompt replacement of [Fe-S] clusters.
Collapse
Affiliation(s)
- Gustavo Pelicioli Riboldi
- Laboratório de Cocos Gram-positivos e Microbiologia Molecular,
Departamento de Microbiologia, Universidade Federal de Ciências da Saúde de Porto
Alegre, Porto Alegre, RS, Brasil
| | | | | | | | - Pedro Alves d‘Azevedo
- Laboratório de Cocos Gram-positivos e Microbiologia Molecular,
Departamento de Microbiologia, Universidade Federal de Ciências da Saúde de Porto
Alegre, Porto Alegre, RS, Brasil
| | - Jeverson Frazzon
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do
Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
97
|
Vergara-Irigaray M, Fookes MC, Thomson NR, Tang CM. RNA-seq analysis of the influence of anaerobiosis and FNR on Shigella flexneri. BMC Genomics 2014; 15:438. [PMID: 24907032 PMCID: PMC4229854 DOI: 10.1186/1471-2164-15-438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 05/23/2014] [Indexed: 01/03/2023] Open
Abstract
Background Shigella flexneri is an important human pathogen that has to adapt to the anaerobic environment in the gastrointestinal tract to cause dysentery. To define the influence of anaerobiosis on the virulence of Shigella, we performed deep RNA sequencing to identify transcriptomic differences that are induced by anaerobiosis and modulated by the anaerobic Fumarate and Nitrate Reduction regulator, FNR. Results We found that 528 chromosomal genes were differentially expressed in response to anaerobic conditions; of these, 228 genes were also influenced by FNR. Genes that were up-regulated in anaerobic conditions are involved in carbon transport and metabolism (e.g. ptsG, manX, murQ, cysP, cra), DNA topology and regulation (e.g. ygiP, stpA, hns), host interactions (e.g. yciD, nmpC, slyB, gapA, shf, msbB) and survival within the gastrointestinal tract (e.g. shiA, ospI, adiY, cysP). Interestingly, there was a marked effect of available oxygen on genes involved in Type III secretion system (T3SS), which is required for host cell invasion and pathogenesis. These genes, located on the large Shigella virulence plasmid, were down regulated in anaerobiosis in an FNR-dependent manner. We also confirmed anaerobic induction of csrB and csrC small RNAs in an FNR-independent manner. Conclusions Anaerobiosis promotes survival and adaption strategies of Shigella, while modulating virulence plasmid genes involved in T3SS-mediated host cell invasion. The influence of FNR on this process is more extensive than previously appreciated, although aside from the virulence plasmid, this transcriptional regulator does not govern expression of genes on other horizontally acquired sequences on the chromosome such as pathogenicity islands. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-438) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Christoph M Tang
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom.
| |
Collapse
|
98
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
99
|
Wu D, Yuan Y, Liu P, Wu Y, Gao M. Cellular responses in Bacillus thuringiensis CS33 during bacteriophage BtCS33 infection. J Proteomics 2014; 101:192-204. [PMID: 24565692 DOI: 10.1016/j.jprot.2014.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/09/2013] [Accepted: 02/16/2014] [Indexed: 11/26/2022]
Abstract
UNLABELLED Bacillus thuringiensis (Bt) has been widely used for 50years as a biopesticide for controlling insect pests. However, bacteriophage infection can cause failures in 50%-80% of the batches during Bt fermentation, resulting in severe losses. In the present work, the physiological and biochemical impacts of Bt strain CS33 have been studied during bacteriophage infection. This study adopted a gel-based proteomics approach to probe the sequential changed proteins in phage-infected Bt cells. To phage, it depressed the host energy metabolism by suppressing the respiration chain, the TCA cycle, and the utilization of PHB on one hand; on the other hand, it hijacked the host translational machine for its own macromolecular synthesis. To host, superinfection exclusion might be triggered by the changes of S-layer protein and flagella related proteins, which were located on the cell surface and might play as the candidates for the phage recognition. More importantly, the growth rate, cell mass, and ICPs yield were significantly decreased. The low yield of ICPs was mainly due to the suppressed utilization of PHB granules. Further functional study on these altered proteins may lead to a better understanding of the pathogenic mechanisms and the identification of new targets for phage control. BIOLOGICAL SIGNIFICANCE B. thuringiensis (Bt) has been widely used for 50years as a safe biopesticide for controlling agricultural and sanitary insect pests. However, bacteriophage infection can cause severe losses during B. thuringiensis fermentation. The processes and consequences of interactions between bacteriophage and Bt were still poorly understood, and the molecular mechanisms involved were more unknown. This study adopted a gel-based proteomics approach to probe the physiological and biochemical impacts of Bt strain CS33 after phage-infection. The interactions between phage BtCS33 and its host Bt strain CS33 occurred mainly on four aspects. First, phage synthesized its nucleic acids through metabolic regulation by increasing the amount of NDK. Second, it is reasonable to infer that a phage resistance or superinfection exclusion was triggered by several increased or decreased proteins (SLP, FliD, FlaB), which were located on the cell surface and might play as candidates for the phage recognition. Third, combining the decreased flavoproteins (SdhA and EtfB) and the down regulated Fe-S cluster biosynthesis pathway together, it can be suggested that the respiration chain was weakened after phage infection. Additionally, three key enzymes (AcnB, FumC and AdhA) involved in the TCA cycle were all decreased, indicating the TCA cycle was seriously inhibited after infection. Fourth, the growth rate, cell mass and ICPs yield of the host were significantly decreased. To the best of our knowledge, this work represents the first systematic study on the interactions of an insecticidal bacterium with its phage, and has contributed novel information to understand the molecular events in the important biological pesticide producer, B. thuringiensis, in response to phage challenge.
Collapse
Affiliation(s)
- Dandan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Pengming Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| |
Collapse
|
100
|
Kassem II, Khatri M, Sanad YM, Wolboldt M, Saif YM, Olson JW, Rajashekara G. The impairment of methylmenaquinol:fumarate reductase affects hydrogen peroxide susceptibility and accumulation in Campylobacter jejuni. Microbiologyopen 2014; 3:168-81. [PMID: 24515965 PMCID: PMC3996566 DOI: 10.1002/mbo3.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/07/2013] [Accepted: 12/26/2013] [Indexed: 12/18/2022] Open
Abstract
The methylmenaquinol:fumarate reductase (Mfr) of Campylobacter jejuni is a periplasmic respiratory (redox) protein that contributes to the metabolism of fumarate and displays homology to succinate dehydrogenase (Sdh). Since chemically oxidized redox-enzymes, including fumarate reductase and Sdh, contribute to the generation of oxidative stress in Escherichia coli, we assessed the role of Mfr in C. jejuni after exposure to hydrogen peroxide (H2 O2 ). Our results show that a Mfr mutant (∆mfrA) strain was less susceptible to H2 O2 as compared to the wildtype (WT). Furthermore, the H2 O2 concentration in the ∆mfrA cultures was significantly higher than that of WT after exposure to the oxidant. In the presence of H2 O2 , catalase (KatA) activity and katA expression were significantly lower in the ∆mfrA strain as compared to the WT. Exposure to H2 O2 resulted in a significant decrease in total intracellular iron in the ∆mfrA strain as compared to WT, while the addition of iron to the growth medium mitigated H2 O2 susceptibility and accumulation in the mutant. The ∆mfrA strain was significantly more persistent in RAW macrophages as compared to the WT. Scanning electron microscopy showed that infection with the ∆mfrA strain caused prolonged changes to the macrophages' morphology, mainly resulting in spherical-shaped cells replete with budding structures and craters. Collectively, our results suggest a role for Mfr in maintaining iron homeostasis in H2 O2 stressed C. jejuni, probably via affecting the concentrations of intracellular iron.
Collapse
Affiliation(s)
- Issmat I Kassem
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | | | | | | | | | | | | |
Collapse
|