51
|
van Tilburg CM, Kilburn LB, Perreault S, Schmidt R, Azizi AA, Cruz-Martínez O, Zápotocký M, Scheinemann K, Meeteren AYNSV, Sehested A, Opocher E, Driever PH, Avula S, Ziegler DS, Capper D, Koch A, Sahm F, Qiu J, Tsao LP, Blackman SC, Manley P, Milde T, Witt R, Jones DTW, Hargrave D, Witt O. LOGGIC/FIREFLY-2: a phase 3, randomized trial of tovorafenib vs. chemotherapy in pediatric and young adult patients with newly diagnosed low-grade glioma harboring an activating RAF alteration. BMC Cancer 2024; 24:147. [PMID: 38291372 PMCID: PMC10826080 DOI: 10.1186/s12885-024-11820-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Pediatric low-grade glioma (pLGG) is essentially a single pathway disease, with most tumors driven by genomic alterations affecting the mitogen-activated protein kinase/ERK (MAPK) pathway, predominantly KIAA1549::BRAF fusions and BRAF V600E mutations. This makes pLGG an ideal candidate for MAPK pathway-targeted treatments. The type I BRAF inhibitor, dabrafenib, in combination with the MEK inhibitor, trametinib, has been approved by the United States Food and Drug Administration for the systemic treatment of BRAF V600E-mutated pLGG. However, this combination is not approved for the treatment of patients with tumors harboring BRAF fusions as type I RAF inhibitors are ineffective in this setting and may paradoxically enhance tumor growth. The type II RAF inhibitor, tovorafenib (formerly DAY101, TAK-580, MLN2480), has shown promising activity and good tolerability in patients with BRAF-altered pLGG in the phase 2 FIREFLY-1 study, with an objective response rate (ORR) per Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria of 67%. Tumor response was independent of histologic subtype, BRAF alteration type (fusion vs. mutation), number of prior lines of therapy, and prior MAPK-pathway inhibitor use. METHODS LOGGIC/FIREFLY-2 is a two-arm, randomized, open-label, multicenter, global, phase 3 trial to evaluate the efficacy, safety, and tolerability of tovorafenib monotherapy vs. current standard of care (SoC) chemotherapy in patients < 25 years of age with pLGG harboring an activating RAF alteration who require first-line systemic therapy. Patients are randomized 1:1 to either tovorafenib, administered once weekly at 420 mg/m2 (not to exceed 600 mg), or investigator's choice of prespecified SoC chemotherapy regimens. The primary objective is to compare ORR between the two treatment arms, as assessed by independent review per RANO-LGG criteria. Secondary objectives include comparisons of progression-free survival, duration of response, safety, neurologic function, and clinical benefit rate. DISCUSSION The promising tovorafenib activity data, CNS-penetration properties, strong scientific rationale combined with the manageable tolerability and safety profile seen in patients with pLGG led to the SIOPe-BTG-LGG working group to nominate tovorafenib for comparison with SoC chemotherapy in this first-line phase 3 trial. The efficacy, safety, and functional response data generated from the trial may define a new SoC treatment for newly diagnosed pLGG. TRIAL REGISTRATION ClinicalTrials.gov: NCT05566795. Registered on October 4, 2022.
Collapse
Affiliation(s)
- Cornelis M van Tilburg
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | | | | | - Rene Schmidt
- Institute of Biostatistics and Clinical Research, Münster, Germany
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ofelia Cruz-Martínez
- Neuro-oncology Unit, Pediatric Cancer Center, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Michal Zápotocký
- Department of Paediatric Haematology and Oncology, Charles University, Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Katrin Scheinemann
- Division of Oncology-Hematology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Department of Pediatrics, McMaster Children's Hospital and McMaster University, Hamilton, Canada
| | | | - Astrid Sehested
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Enrico Opocher
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Pablo Hernáiz Driever
- German HIT-LOGGIC-Registry for LGG in Children and Adolescents, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DKTK Partner Site, Berlin, Germany
| | - Arend Koch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Sahm
- Department of Neuropathology, German Cancer Research Center (DKFZ), University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Jiaheng Qiu
- Day One Biopharmaceuticals, Brisbane, CA, USA
| | - Li-Pen Tsao
- Day One Biopharmaceuticals, Brisbane, CA, USA
| | | | | | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Ruth Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Darren Hargrave
- UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| |
Collapse
|
52
|
Barbato MI, Nashed J, Bradford D, Ren Y, Khasar S, Miller CP, Zolnik BS, Zhao H, Li Y, Bi Y, Shord SS, Amatya AK, Mishra-Kalyani PS, Scepura B, Al-Matari RA, Pazdur R, Kluetz PG, Donoghue M, Singh H, Drezner N. FDA Approval Summary: Dabrafenib in Combination with Trametinib for BRAFV600E Mutation-Positive Low-Grade Glioma. Clin Cancer Res 2024; 30:263-268. [PMID: 37610803 PMCID: PMC10841289 DOI: 10.1158/1078-0432.ccr-23-1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
On March 16, 2023, the FDA approved dabrafenib in combination with trametinib (Tafinlar, Mekinist; Novartis Pharmaceuticals Corporation) for the treatment of pediatric patients with low-grade glioma (LGG) with a BRAFV600E mutation who require systemic therapy. FDA also approved oral formulations of both drugs suitable for patients who cannot swallow pills. This approval was based on the LGG cohort from study CDRB436G2201 (NCT02684058), a multicenter, open-label trial in which pediatric patients with LGG with a BRAFV600E mutation were randomly assigned 2:1 to dabrafenib plus trametinib (D+T) or carboplatin plus vincristine (C+V). The overall response rate (ORR) by independent review based on Response Assessment in Neuro-oncology LGG (2017) criteria was assessed in 110 patients randomly assigned to D+T (n = 73) or C+V (n = 37). ORR was 47% [95% confidence interval (CI), 35-59] in the D+T arm and 11% (95% CI, 3.0-25) in the C+V arm. Duration of response (DOR) was 23.7 months (95% CI, 14.5-NE) in the D+T arm and not estimable (95% CI, 6.6- NE) in the C+V arm. Progression-free survival (PFS) was 20.1 months (95% CI: 12.8, NE) and 7.4 months (95% CI, 3.6- 11.8) [HR, 0.31 (95% CI, 0.17-0.55); P < 0.001] in the D+T and C+V arms, respectively. The most common (>20%) adverse reactions were pyrexia, rash, headache, vomiting, musculoskeletal pain, fatigue, diarrhea, dry skin, nausea, hemorrhage, abdominal pain, and dermatitis acneiform. This represents the first FDA approval of a systemic therapy for the first-line treatment of pediatric patients with LGG with a BRAFV600E mutation.
Collapse
Affiliation(s)
- Michael I. Barbato
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| | - Jeannette Nashed
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| | - Diana Bradford
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| | - Yi Ren
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| | - Sachia Khasar
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| | - Claudia P. Miller
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| | - Banu S. Zolnik
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| | - Hong Zhao
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| | - Yangbing Li
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| | - Youwei Bi
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| | - Stacy S. Shord
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| | - Anup K. Amatya
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| | | | - Barbara Scepura
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| | | | - Richard Pazdur
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
- Oncology Center of Excellence, U.S. Food and Drug Administration
| | - Paul G. Kluetz
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
- Oncology Center of Excellence, U.S. Food and Drug Administration
| | - Martha Donoghue
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
- Oncology Center of Excellence, U.S. Food and Drug Administration
| | - Harpreet Singh
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
- Oncology Center of Excellence, U.S. Food and Drug Administration
| | - Nicole Drezner
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration
| |
Collapse
|
53
|
Wen PY, van den Bent M, Vogelbaum MA, Chang SM. RANO 2.0: The revised Response Assessment in Neuro-Oncology (RANO) criteria for high- and low-grade glial tumors in adults designed for the future. Neuro Oncol 2024; 26:2-4. [PMID: 37774741 PMCID: PMC10768981 DOI: 10.1093/neuonc/noad189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 10/01/2023] Open
Affiliation(s)
- Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Martin van den Bent
- Department Neuro-Oncology, ErasmusMC Cancer Institute, Rotterdam, Netherlands
| | - Michael A Vogelbaum
- Departments of Neuro-Oncology and Neurosurgery, Moffit Cancer Center, Tampa, Florida, USA
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurosurgery, University of California, San Francisco, California, USA
| |
Collapse
|
54
|
Bhatia A, Moreno R, Reiner AS, Nandakumar S, Walch HS, Thomas TM, Nicklin PJ, Choi Y, Skakodub A, Malani R, Prabhakaran V, Tiwari P, Diaz M, Panageas KS, Mellinghoff IK, Bale TA, Young RJ. Tumor Volume Growth Rates and Doubling Times during Active Surveillance of IDH-mutant Low-Grade Glioma. Clin Cancer Res 2024; 30:106-115. [PMID: 37910594 PMCID: PMC10841595 DOI: 10.1158/1078-0432.ccr-23-1180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE Isocitrate dehydrogenase-mutant (IDH-mt) gliomas are incurable primary brain tumors characterized by a slow-growing phase over several years followed by a rapid-growing malignant phase. We hypothesized that tumor volume growth rate (TVGR) on MRI may act as an earlier measure of clinical benefit during the active surveillance period. EXPERIMENTAL DESIGN We integrated three-dimensional volumetric measurements with clinical, radiologic, and molecular data in a retrospective cohort of IDH-mt gliomas that were observed after surgical resection in order to understand tumor growth kinetics and the impact of molecular genetics. RESULTS Using log-linear mixed modeling, the entire cohort (n = 128) had a continuous %TVGR per 6 months of 10.46% [95% confidence interval (CI), 9.11%-11.83%] and a doubling time of 3.5 years (95% CI, 3.10-3.98). High molecular grade IDH-mt gliomas, defined by the presence of homozygous deletion of CDKN2A/B, had %TVGR per 6 months of 19.17% (95% CI, 15.57%-22.89%) which was significantly different from low molecular grade IDH-mt gliomas with a growth rate per 6 months of 9.54% (95% CI, 7.32%-11.80%; P < 0.0001). Using joint modeling to comodel the longitudinal course of TVGR and overall survival, we found each one natural logarithm tumor volume increase resulted in more than a 3-fold increase in risk of death (HR = 3.83; 95% CI, 2.32-6.30; P < 0.0001). CONCLUSIONS TVGR may be used as an earlier measure of clinical benefit and correlates well with the WHO 2021 molecular classification of gliomas and survival. Incorporation of TVGR as a surrogate endpoint into future prospective studies of IDH-mt gliomas may accelerate drug development.
Collapse
Affiliation(s)
- Ankush Bhatia
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York City, New York
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Raquel Moreno
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Subhiksha Nandakumar
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Henry S Walch
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Teena M Thomas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Philip J Nicklin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Ye Choi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Anna Skakodub
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Rachna Malani
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Pallavi Tiwari
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Maria Diaz
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Katherine S. Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York
| |
Collapse
|
55
|
Tan H, Nugent JG, Fecker A, Richie EA, Maanum KA, Nerison C, Bowden SG, Yaylali I, Han SJ, Colgan DD, Oken B, Raslan AM. Rapid Passive Gamma Mapping as an Adjunct to Electrical Stimulation Mapping for Functional Localization in Resection of Primary Brain Neoplasms. World Neurosurg 2024; 181:e483-e492. [PMID: 37871691 DOI: 10.1016/j.wneu.2023.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE We examined the utility of passive high gamma mapping (HGM) as an adjunct to conventional awake brain mapping during glioma resection. We compared functional and survival outcomes before and after implementing intraoperative HGM. METHODS This was a retrospective cohort study of 75 patients who underwent a first-time, awake craniotomy for glioma resection. Patients were stratified by whether their operation occurred before or after the implementation of a U.S. Food and Drug Administration-approved high-gamma mapping tool in July 2017. RESULTS The preimplementation and postimplementation cohorts included 28 and 47 patients, respectively. Median intraoperative time (261 vs. 261 minutes, P = 0.250) and extent of resection (97.14% vs. 98.19%, P = 0.481) were comparable between cohorts. Median Karnofsky performance status at initial follow-up was similar between cohorts (P = 0.650). Multivariable Cox regression models demonstrated an adjusted hazard ratio for overall survival of 0.10 (95% confidence interval: 0.02-0.43, P = 0.002) for the postimplementation cohort relative to the preimplementation cohort. Progression-free survival adjusted for insular involvement showed an adjusted hazard ratio of 1.00 (95% confidence interval: 0.49-2.06, P = 0.999) following HGM implementation. Falling short of statistical significance, prevalence of intraoperative seizures and/or afterdischarges decreased after HGM implementation as well (12.7% vs. 25%, P = 0.150). CONCLUSIONS Our results tentatively indicate that passive HGM is a safe and potentially useful adjunct to electrical stimulation mapping for awake cortical mapping, conferring at least comparable functional and survival outcomes with a nonsignificant lower rate of intraoperative epileptiform events. Considering the limitations of our study design and patient cohort, further investigation is needed to better identify optimal use cases for HGM.
Collapse
Affiliation(s)
- Hao Tan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph G Nugent
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Adeline Fecker
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Emma A Richie
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Kayla A Maanum
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Caleb Nerison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Stephen G Bowden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Ilker Yaylali
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Seunggu J Han
- Department of Neurosurgery, Stanford Medicine, Palo Alto, California, USA
| | - Dana D Colgan
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Barry Oken
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
56
|
Albert NL, Galldiks N, Ellingson BM, van den Bent MJ, Chang SM, Cicone F, de Groot J, Koh ES, Law I, Le Rhun E, Mair MJ, Minniti G, Rudà R, Scott AM, Short SC, Smits M, Suchorska B, Tolboom N, Traub-Weidinger T, Tonn JC, Verger A, Weller M, Wen PY, Preusser M. PET-based response assessment criteria for diffuse gliomas (PET RANO 1.0): a report of the RANO group. Lancet Oncol 2024; 25:e29-e41. [PMID: 38181810 PMCID: PMC11787868 DOI: 10.1016/s1470-2045(23)00525-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 01/07/2024]
Abstract
Response Assessment in Neuro-Oncology (RANO) response criteria have been established and were updated in 2023 for MRI-based response evaluation of diffuse gliomas in clinical trials. In addition, PET-based imaging with amino acid tracers is increasingly considered for disease monitoring in both clinical practice and clinical trials. So far, a standardised framework defining timepoints for baseline and follow-up investigations and response evaluation criteria for PET imaging of diffuse gliomas has not been established. Therefore, in this Policy Review, we propose a set of criteria for response assessment based on amino acid PET imaging in clinical trials enrolling participants with diffuse gliomas as defined in the 2021 WHO classification of tumours of the central nervous system. These proposed PET RANO criteria provide a conceptual framework that facilitates the structured implementation of PET imaging into clinical research and, ultimately, clinical routine. To this end, the PET RANO 1.0 criteria are intended to encourage specific investigations of amino acid PET imaging of gliomas.
Collapse
Affiliation(s)
- Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany; Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Francesco Cicone
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - John de Groot
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Eng-Siew Koh
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Emilie Le Rhun
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Maximilian J Mair
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy; IRCCS Neuromed, Pozzilli IS, Italy
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin and City of Health and Science of Turin, Turin, Italy
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health and University of Melbourne, Melbourne, VIC, Australia; Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Susan C Short
- Leeds Institute of Medical Research at St James's, The University of Leeds, Leeds, UK
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC-University Medical Centre Rotterdam, Rotterdam, Netherlands; Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, Netherlands; Medical Delta, Delft, Netherlands
| | - Bogdana Suchorska
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Antoine Verger
- Department of Nuclear Medicine & Nancyclotep Imaging Platform, CHRU Nancy and IADI INSERM UMR 1254, Universitè de Lorraine, Nancy, France
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland; Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
57
|
Dos Santos T, Deverdun J, Chaptal T, Darlix A, Duffau H, Van Dokkum LEH, Coget A, Carrière M, Denis E, Verdier M, Menjot de Champfleur N, Le Bars E. Diffuse low-grade glioma: What is the optimal linear measure to assess tumor growth? Neurooncol Adv 2024; 6:vdae044. [PMID: 39071735 PMCID: PMC11274528 DOI: 10.1093/noajnl/vdae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Background Radiological follow-up of diffuse low-grade gliomas (LGGs) growth is challenging. Approximative visual assessment still predominates over objective quantification due to the complexity of the pathology. The infiltrating character, diffuse borders and presence of surgical cavities demand LGG-based linear measurement rules to efficiently and precisely assess LGG evolution over time. Methods We compared optimized 1D, 2D, and 3D linear measurements with manual volume segmentation as a reference to assess LGG tumor growth in 36 patients with LGG (340 magnetic resonance imaging scans), using the clinically important mean tumor diameter (MTD) and the velocity diameter expansion (VDE). LGG-specific progression thresholds were established using the high-grade gliomas-based RECIST, Macdonald, and RANO criteria, comparing the sensitivity to identify progression/non-progression for each linear method compared to the ground truth established by the manual segmentation. Results 3D linear volume approximation correlated strongly with manually segmented volume. It also showed the highest sensitivity for progression detection. The MTD showed a comparable result, whereas the VDE highlighted that caution is warranted in the case of small tumors with multiple residues. Novel LGG-specific progression thresholds, or the critical change in estimated tumor volume, were increased for the 3D (from 40% to 52%) and 2D methods (from 25% to 33%) and decreased for the 1D method (from 20% to 16%). Using the 3D method allowed a ~5-minute time gain. Conclusions While manual volumetric assessment remains the gold standard for calculating growth rate, the 3D linear method is the best time-efficient standardized alternative for radiological evaluation of LGGs in routine use.
Collapse
Affiliation(s)
- Thomas Dos Santos
- Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
| | - Jeremy Deverdun
- Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
- I2FH, Institut d’Imagerie Fonctionnelle Humaine, Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
| | - Thierry Chaptal
- Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
- I2FH, Institut d’Imagerie Fonctionnelle Humaine, Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
| | - Amélie Darlix
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier (ICM), University of Montpellier, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics, INSERM 1191, University of Montpellier, Montpellier, France
| | - Liesjet Elisabeth Henriette Van Dokkum
- Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
- I2FH, Institut d’Imagerie Fonctionnelle Humaine, Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
| | - Arthur Coget
- Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
| | - Mathilde Carrière
- Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
| | - Eve Denis
- Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
| | - Margaux Verdier
- Institute de Recherche en Cancerologie Montpellier, Montpellier University, INSERM, Montpellier, France
| | - Nicolas Menjot de Champfleur
- Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
- I2FH, Institut d’Imagerie Fonctionnelle Humaine, Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
- Laboratoire Charles Coulomb, University of Montpellier, Montpellier, France
| | - Emmanuelle Le Bars
- Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
- I2FH, Institut d’Imagerie Fonctionnelle Humaine, Department of Neuroradiology, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
58
|
Suero Molina E, Azemi G, Russo C, Liu S, Di Ieva A. Artificial Intelligence in Brain Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:201-220. [PMID: 39523267 DOI: 10.1007/978-3-031-64892-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The introduction of "intelligent machines" goes back to Alan Turing in the 1940s. Artificial intelligence (AI) is a broad umbrella covering different methodologies, such as machine learning and deep learning. Deep learning, characterized by multilayered computational models, has revolutionized data representation across various abstraction levels. Deep learning can unravel complex structures within extensive datasets by guiding computer algorithms to adjust internal parameters for successive data representation layers.Specifically, deep convolutional networks have advanced image, video, and audio data analysis, while recurrent networks have offered insights into sequential data, notably in medical imaging. Radiomics involves extraction and quantification of features from medical images and has emerged as an important field of research. Interesting predictions can be made with the help of radiomics features and machine learning algorithms. This chapter reviews the applications of AI methodologies in brain tumors. We highlight the significance of data preprocessing and augmentation and explore deep learning models for brain tumor segmentation and the fusion of clinical and imaging data.
Collapse
Affiliation(s)
- Eric Suero Molina
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia.
- Macquarie Neurosurgery & Spine, MQ Health, Macquarie University Hospital, Sydney, NSW, Australia.
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany.
| | - Ghasem Azemi
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Carlo Russo
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sidong Liu
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Centre for Health Informatics, Australian Institute of Health Innovation, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Human and Health Sciences, Macquarie University, Sydney, NSW, Australia.
- Macquarie Neurosurgery & Spine, MQ Health, Macquarie University Hospital, Sydney, NSW, Australia.
- Department of Neurosurgery, Nepean Blue Mountains Local Health District, Kingswood, NSW, Australia.
- Centre for Applied Artificial Intelligence, School of Computing, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
59
|
Cabezas-Camarero S, Pérez-Alfayate R, Polidura C, Gómez-Ruiz MN, Gil-Martínez L, Casado-Fariñas I, Bartolomé J, Pérez-Segura P. Durable benefit and slowdown in tumor growth dynamics with erdafitinib in a FGFR3-TACC3 fusion-positive IDH-wild type glioblastoma. Neurooncol Adv 2024; 6:vdae139. [PMID: 39211518 PMCID: PMC11358818 DOI: 10.1093/noajnl/vdae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
FGFR3-TACC3 fusion-positive IDH-wild-type (IDH-WT) glioblastoma (GB) is a rare GB subtype occurring in approximately 3% of cases. It is clinical behavior and molecular profile is different from those of fusion-negative IDH-WT GBs. Evidence on the role of FGFR inhibitors in FGFR-altered gliomas is limited. We present the case of a patient with a FGFR3-TACC3 fusion-positive IDH-WT GB that at its second recurrence was treated with the FGFR inhibitor erdafitinib through a compassionate use program. Although no objective response was achieved, an overt deceleration in tumor growth was evidenced and the patient remained on treatment for 5.5 months.
Collapse
Affiliation(s)
- Santiago Cabezas-Camarero
- Medical Oncology Department, IOB Institute of Oncology-Madrid, Madrid, Spain
- Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | - Carmen Polidura
- Radiology Department, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | - Lidia Gil-Martínez
- Radiology Department, Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | - Jorge Bartolomé
- Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Pedro Pérez-Segura
- Medical Oncology Department, IOB Institute of Oncology-Madrid, Madrid, Spain
- Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico Universitario San Carlos, Madrid, Spain
| |
Collapse
|
60
|
Sahm K, Kessler T, Eisele P, Ratliff M, Sperk E, König L, Breckwoldt MO, Seliger C, Mildenberger I, Schrimpf D, Herold-Mende C, Zeiner PS, Tabatabai G, Meuth SG, Capper D, Bendszus M, von Deimling A, Wick W, Sahm F, Platten M. Concurrent gliomas in patients with multiple sclerosis. COMMUNICATIONS MEDICINE 2023; 3:186. [PMID: 38110626 PMCID: PMC10728097 DOI: 10.1038/s43856-023-00381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/10/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Concurrent malignant brain tumors in patients with multiple sclerosis (MS) constitute a rare but paradigmatic phenomenon for studying neuroimmunological mechanisms from both molecular and clinical perspectives. METHODS A multicenter cohort of 26 patients diagnosed with both primary brain tumors and multiple sclerosis was studied for disease localization, tumor treatment-related MS activity, and molecular characteristics specific for diffuse glioma in MS patients. RESULTS MS neither predisposes nor protects from the development of gliomas. Patients with glioblastoma WHO grade 4 without isocitratdehydrogenase (IDH) mutations have a longstanding history of MS, whereas patients diagnosed with IDH-mutant astrocytoma WHO grade 2 receive multiple sclerosis diagnosis mostly at the same time or later. Concurrent MS is associated with a lesser extent of tumor resection and a worse prognosis in IDH-mutant glioma patients (PFS 32 vs. 64 months, p = 0.0206). When assessing tumor-intrinsic differences no distinct subgroup-defining methylation pattern is identified in gliomas of MS patients compared to other glioma samples. However, differential methylation of immune-related genetic loci including human leukocyte antigen locus on 6p21 and interleukin locus on 5q31 is found in MS patients vs. matched non-MS patients. In line, inflammatory disease activity increases in 42% of multiple sclerosis patients after brain tumor radiotherapy suggesting a susceptibility of multiple sclerosis brain tissue to pro-inflammatory stimuli such as ionizing radiation. CONCLUSIONS Concurrent low-grade gliomas should be considered in multiple sclerosis patients with slowly progressive, expansive T2/FLAIR lesions. Our findings of typically reduced extent of resection in MS patients and increased MS activity after radiation may inform future treatment decisions.
Collapse
Affiliation(s)
- Katharina Sahm
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany.
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Eisele
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany
| | - Miriam Ratliff
- Department of Neurosurgery, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany
| | - Elena Sperk
- Department of Radiation Oncology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael O Breckwoldt
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Corinna Seliger
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Iris Mildenberger
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Pia S Zeiner
- Dr Senckenberg Institute of Neurooncology, University of Frankfurt, Frankfurt, Germany
| | - Ghazaleh Tabatabai
- Department of Neurology & Interdisciplinary Neurooncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sven G Meuth
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences (MCTN), University of Heidelberg, Mannheim, Germany.
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
61
|
Sanvito F, Kaufmann TJ, Cloughesy TF, Wen PY, Ellingson BM. Standardized brain tumor imaging protocols for clinical trials: current recommendations and tips for integration. FRONTIERS IN RADIOLOGY 2023; 3:1267615. [PMID: 38152383 PMCID: PMC10751345 DOI: 10.3389/fradi.2023.1267615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023]
Abstract
Standardized MRI acquisition protocols are crucial for reducing the measurement and interpretation variability associated with response assessment in brain tumor clinical trials. The main challenge is that standardized protocols should ensure high image quality while maximizing the number of institutions meeting the acquisition requirements. In recent years, extensive effort has been made by consensus groups to propose different "ideal" and "minimum requirements" brain tumor imaging protocols (BTIPs) for gliomas, brain metastases (BM), and primary central nervous system lymphomas (PCSNL). In clinical practice, BTIPs for clinical trials can be easily integrated with additional MRI sequences that may be desired for clinical patient management at individual sites. In this review, we summarize the general concepts behind the choice and timing of sequences included in the current recommended BTIPs, we provide a comparative overview, and discuss tips and caveats to integrate additional clinical or research sequences while preserving the recommended BTIPs. Finally, we also reflect on potential future directions for brain tumor imaging in clinical trials.
Collapse
Affiliation(s)
- Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Timothy F. Cloughesy
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA, United States
| | - Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
62
|
Pasquini L, Tao A, Ferraro GD, Jenabi M, Peck KK, Napolitano A, Fahy TA, Brennan C, Moss NS, Tabar V, Makse H, Holodny AI. Association of Lack of Speech Arrest During Cortical Stimulation With Interhemispheric Reorganization of the Functional Language Network in Patients With Brain Tumors. AJR Am J Roentgenol 2023; 221:806-816. [PMID: 37377358 PMCID: PMC12001089 DOI: 10.2214/ajr.23.29434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
BACKGROUND. Brain tumors induce language reorganization, which may influence the extent of resection in surgical planning. Direct cortical stimulation (DCS) allows definitive language mapping during awake surgery by locating areas of speech arrest (SA) surrounding the tumor. Although functional MRI (fMRI) combined with graph theory analysis can illustrate whole-brain network reorganization, few studies have corroborated these findings with DCS intraoperative mapping and clinical language performance. OBJECTIVE. We evaluated whether patients with low-grade gliomas (LGGs) without SA during DCS show increased right-hemispheric connections and better speech performance compared with patients with SA. METHODS. We retrospectively recruited 44 consecutive patients with left perisylvian LGG, preoperative language task-based fMRI, speech performance evaluation, and awake surgery with DCS. We generated language networks from ROIs corresponding to known language areas (i.e., language core) on fMRI using optimal percolation. Language core connectivity in the left and right hemispheres was quantified as fMRI laterality index (LI) and connectivity LI on the basis of fMRI activation maps and connectivity matrices. We compared fMRI LI and connectivity LI between patients with SA and without SA and used multivariable logistic regression (p < .05) to assess associations between DCS and connectivity LI, fMRI LI, tumor location, Broca area and Wernicke area involvement, prior treatments, age, handedness, sex, tumor size, and speech deficit before surgery, within 1 week after surgery, and 3-6 months after surgery. RESULTS. Patients with SA showed left-dominant connectivity; patients without SA lateralized more to the right hemisphere (p < .001). Between patients with SA and those without, fMRI LI was not significantly different. Patients without SA showed right-greater-than-left connectivity of Broca area and premotor area compared with patients with SA. Regression analysis showed significant association between no SA and right-lateralized connectivity LI (p < .001) and fewer speech deficits before (p < .001) and 1 week after (p = .02) surgery. CONCLUSION. Patients without SA had increased right-hemispheric connections and right translocation of the language core, suggesting language reorganization. Lack of interoperative SA was associated with fewer speech deficits both before and immediately after surgery. CLINICAL IMPACT. These findings support tumor-induced language plasticity as a compensatory mechanism, which may lead to fewer postsurgical deficits and allow extended resection.
Collapse
Affiliation(s)
- Luca Pasquini
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alice Tao
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | | | - Mehrnaz Jenabi
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | - Kyung K Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Tara A Fahy
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | - Cameron Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nelson S Moss
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vivian Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hernan Makse
- Levich Institute and Physics Department, City College of New York, New York, NY
| | - Andrei I Holodny
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- Department of Neuroscience, Weill Cornell Medicine Graduate School of the Medical Sciences, New York, NY
- Department of Radiology, Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
63
|
Chen Q, Wang K, Ren X, Zhao X, Chen Q, Fan D, Zhang S, Li X, Ai L. Individualized discrimination of tumor progression from treatment-related changes in different types of adult-type diffuse gliomas using [ 11C]methionine PET. J Neurooncol 2023; 165:547-559. [PMID: 38095773 DOI: 10.1007/s11060-023-04529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE This study aimed to assess the ability of [11C]methionine (MET) PET in distinguishing between tumor progression (TP) and treatment-related changes (TRCs) among different types of adult-type diffuse gliomas according to the 2021 World Health Organization classification and predict overall survival (OS). METHODS We retrospectively selected 113 patients with adult-type diffuse gliomas with suspected TP who underwent MET PET imaging. Maximum and mean tumor-to-background ratios (TBRmax, TBRmean) and metabolic tumor volume (MTV) were calculated. Diagnoses were verified by histopathology (n = 50) or by clinical/radiological follow-up (n = 63). The diagnostic performance of MET PET parameters was evaluated through receiver operating characteristic (ROC) analysis and area under the curve (AUC) calculation. Survival analysis employed the Kaplan-Meier method and Cox proportional-hazards regression. RESULTS TP and TRCs were diagnosed in 76 (67%) and 37 (33%) patients, respectively. ROC analysis revealed TBRmax had the best performance in differentiating TP from TRCs with a cut-off of 1.96 in IDH-mutant astrocytoma (AUC, 0.87; sensitivity, 93%; specificity 69%), 1.80 in IDH-mutant and 1p/19q-codeleted oligodendroglioma (AUC, 0.96; sensitivity, 100%; specificity, 89%), and 2.13 in IDH wild-type glioblastoma (AUC, 0.89; sensitivity, 89%; specificity, 78%), respectively. On multivariate analysis, higher TBRmean and MTV were significantly correlated with shorter OS in all IDH-mutant gliomas, as well as in IDH-mutant astrocytoma subgroup. CONCLUSION This work confirms that MET PET has varying diagnostic performances in distinguishing TP from TRCs within three types of adult-type diffuse gliomas, and highlights its high diagnostic accuracy in IDH-mutant and 1p/19q-codeleted oligodendroglioma and potential prognostic value for IDH-mutant gliomas, particularly IDH-mutant astrocytoma.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Kai Wang
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaobin Zhao
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Qian Chen
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Di Fan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Shu Zhang
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Xiaotong Li
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119 West Road of South 4th Ring, Fengtai District, Beijing, China.
| |
Collapse
|
64
|
Wen PY, van den Bent M, Youssef G, Cloughesy TF, Ellingson BM, Weller M, Galanis E, Barboriak DP, de Groot J, Gilbert MR, Huang R, Lassman AB, Mehta M, Molinaro AM, Preusser M, Rahman R, Shankar LK, Stupp R, Villanueva-Meyer JE, Wick W, Macdonald DR, Reardon DA, Vogelbaum MA, Chang SM. RANO 2.0: Update to the Response Assessment in Neuro-Oncology Criteria for High- and Low-Grade Gliomas in Adults. J Clin Oncol 2023; 41:5187-5199. [PMID: 37774317 PMCID: PMC10860967 DOI: 10.1200/jco.23.01059] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 10/01/2023] Open
Abstract
PURPOSE The Response Assessment in Neuro-Oncology (RANO) criteria for high-grade gliomas (RANO-HGG) and low-grade gliomas (RANO-LGG) were developed to improve reliability of response assessment in glioma trials. Over time, some limitations of these criteria were identified, and challenges emerged regarding integrating features of the modified RANO (mRANO) or the immunotherapy RANO (iRANO) criteria. METHODS Informed by data from studies evaluating the different criteria, updates to the RANO criteria are proposed (RANO 2.0). RESULTS We recommend a standard set of criteria for both high- and low-grade gliomas, to be used for all trials regardless of the treatment modalities being evaluated. In the newly diagnosed setting, the postradiotherapy magnetic resonance imaging (MRI), rather than the postsurgical MRI, will be used as the baseline for comparison with subsequent scans. Since the incidence of pseudoprogression is high in the 12 weeks after radiotherapy, continuation of treatment and confirmation of progression during this period with a repeat MRI, or histopathologic evidence of unequivocal recurrent tumor, are required to define tumor progression. However, confirmation scans are not mandatory after this period nor for the evaluation of treatment for recurrent tumors. For treatments with a high likelihood of pseudoprogression, mandatory confirmation of progression with a repeat MRI is highly recommended. The primary measurement remains the maximum cross-sectional area of tumor (two-dimensional) but volumetric measurements are an option. For IDH wild-type glioblastoma, the nonenhancing disease will no longer be evaluated except when assessing response to antiangiogenic agents. In IDH-mutated tumors with a significant nonenhancing component, clinical trials may require evaluating both the enhancing and nonenhancing tumor components for response assessment. CONCLUSION The revised RANO 2.0 criteria refine response assessment in gliomas.
Collapse
Affiliation(s)
- Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Martin van den Bent
- Department Neuro-Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Timothy F Cloughesy
- UCLA Brain Tumor Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | | | - John de Groot
- Division of Neuro-Oncology, Department of Neurosurgery, University of California, San Francisco, CA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Raymond Huang
- Division of Neuro-radiology, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology, Herbert Irving Comprehensive Cancer Center and Irving Institute for Clinical and Translational Research, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY
| | | | - Annette M Molinaro
- Division of Biomedical Statistics and Informatics, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Rifaquat Rahman
- Department of Radiation Oncology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Lalitha K Shankar
- Clinical Trials Branch, Cancer Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Roger Stupp
- Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center and Departments of Neurological Surgery, Neurology and Division of Hematology/Oncology, Northwestern University, Chicago, IL
| | - Javier E Villanueva-Meyer
- Departments of Radiology and Neurosurgery, University of California San Francisco, San Francisco, CA
| | - Wolfgang Wick
- Department of Neurology Heidelberg University Hospital & Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David R Macdonald
- Departments of Clinical Neurological Sciences and Oncology (Emeritus), Western University, London, Ontario, Canada
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Michael A Vogelbaum
- Departments of Neuro-Oncology and Neurosurgery, Moffitt Cancer Center, Tampa, FL
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurosurgery, University of California, San Francisco, CA
| |
Collapse
|
65
|
Leske H, Blakstad H, Lund-Iversen M, Skovholt EK, Niehusmann P, Ramm-Pettersen JT, Skogen K, Kongelf G, Sprauten M, Magelssen H, Brandal P. Astrocytoma (CNS WHO grade 4), IDH-mutant with co-occurrence of BRAF p.V600E mutation, and homozygous loss of CDKN2A. Neuropathology 2023; 43:385-390. [PMID: 36754566 DOI: 10.1111/neup.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/10/2023]
Abstract
Molecular alterations nowadays play a crucial role in the diagnosis of brain tumors. Some of these alterations are associated with outcome and/or response to treatment, including sequence variants of isocitrate dehydrogenase (IDH) at position p.R132 or p.R172. Such IDH variants have so far been described in histone H3-wildtype primary brain tumors only in adult-type diffuse gliomas and are associated with a better outcome compared to their IDH-wildtype counterpart, the glioblastoma. Moreover, homozygous loss of CDKN2A and/or CDKN2B in IDH-mutant astrocytomas shortens the median overall survival regardless of histological features of malignancy. Such tumors are therefore considered to be aggressive and graded as WHO central nervous system (CNS) grade 4 lesions. The coexistence of an IDH-sequence variation and a BRAF p.V600E alteration has only rarely been described in diffuse astrocytomas. Due to the small number of cases, little is known about such neoplasms in terms of clinical behavior and response to treatment. Herein we describe the first case, to our knowledge, of an astrocytoma (CNS WHO grade 4), IDH-mutant, and BRAF p.V600E-mutant with homozygous deletion of CDKN2A. Pathologists should be aware that such an expression profile does exist even in WHO CNS grade 4 astrocytomas, IDH-mutant, and are encouraged to test for the BRAF p.V600E sequence variant as such an alteration may provide additional treatment options.
Collapse
Affiliation(s)
- Henning Leske
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- University of Oslo (UiO), Oslo, Norway
| | - Hanne Blakstad
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Pitt Niehusmann
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Karoline Skogen
- Department of Radiology, Oslo University Hospital, Oslo, Norway
| | - Geir Kongelf
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Mette Sprauten
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
66
|
Bouffet E, Hansford JR, Garrè ML, Hara J, Plant-Fox A, Aerts I, Locatelli F, van der Lugt J, Papusha L, Sahm F, Tabori U, Cohen KJ, Packer RJ, Witt O, Sandalic L, Bento Pereira da Silva A, Russo M, Hargrave DR. Dabrafenib plus Trametinib in Pediatric Glioma with BRAF V600 Mutations. N Engl J Med 2023; 389:1108-1120. [PMID: 37733309 DOI: 10.1056/nejmoa2303815] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
BACKGROUND Detection of the BRAF V600E mutation in pediatric low-grade glioma has been associated with a lower response to standard chemotherapy. In previous trials, dabrafenib (both as monotherapy and in combination with trametinib) has shown efficacy in recurrent pediatric low-grade glioma with BRAF V600 mutations, findings that warrant further evaluation of this combination as first-line therapy. METHODS In this phase 2 trial, patients with pediatric low-grade glioma with BRAF V600 mutations who were scheduled to receive first-line therapy were randomly assigned in a 2:1 ratio to receive dabrafenib plus trametinib or standard chemotherapy (carboplatin plus vincristine). The primary outcome was the independently assessed overall response (complete or partial response) according to the Response Assessment in Neuro-Oncology criteria. Also assessed were the clinical benefit (complete or partial response or stable disease for ≥24 weeks) and progression-free survival. RESULTS A total of 110 patients underwent randomization (73 to receive dabrafenib plus trametinib and 37 to receive standard chemotherapy). At a median follow-up of 18.9 months, an overall response occurred in 47% of the patients treated with dabrafenib plus trametinib and in 11% of those treated with chemotherapy (risk ratio, 4.31; 95% confidence interval [CI], 1.7 to 11.2; P<0.001). Clinical benefit was observed in 86% of the patients receiving dabrafenib plus trametinib and in 46% receiving chemotherapy (risk ratio, 1.88; 95% CI, 1.3 to 2.7). The median progression-free survival was significantly longer with dabrafenib plus trametinib than with chemotherapy (20.1 months vs. 7.4 months; hazard ratio, 0.31; 95% CI, 0.17 to 0.55; P<0.001). Grade 3 or higher adverse events occurred in 47% of the patients receiving dabrafenib plus trametinib and in 94% of those receiving chemotherapy. CONCLUSIONS Among pediatric patients with low-grade glioma with BRAF V600 mutations, dabrafenib plus trametinib resulted in significantly more responses, longer progression-free survival, and a better safety profile than standard chemotherapy as first-line therapy. (Funded by Novartis; ClinicalTrials.gov number, NCT02684058.).
Collapse
Affiliation(s)
- Eric Bouffet
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Jordan R Hansford
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Maria Luisa Garrè
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Junichi Hara
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Ashley Plant-Fox
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Isabelle Aerts
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Franco Locatelli
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Jasper van der Lugt
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Ludmila Papusha
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Felix Sahm
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Uri Tabori
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Kenneth J Cohen
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Roger J Packer
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Olaf Witt
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Larissa Sandalic
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Ana Bento Pereira da Silva
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Mark Russo
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| | - Darren R Hargrave
- From the Hospital for Sick Children, University of Toronto, Toronto (E.B., U.T.); the Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne, VIC, and the Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australian immunoGENomics Cancer Institute, and the University of Adelaide, Adelaide - all in Australia (J.R.H.); IRCCS Giannina Gaslini Institute, Genoa (M.L.G.), and IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome (F.L.) - both in Italy; Osaka City General Hospital, Osaka, Japan (J.H.); the Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago (A.P.-F.); Institut Curie, SIREDO Oncology Center, Paris Sciences et Lettres Research University, Paris (I.A.); the Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands (J.L.); Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow (L.P.); the Department of Neuropathology and Clinical Cooperation Unit Neuropathology (F.S.) and the Hopp Children's Cancer Center, German Consortium for Translational Cancer Research, and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg University Hospital, Heidelberg, Germany (F.S., O.W.); the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore (K.J.C.); Children's National Hospital, Washington, D.C. (R.J.P.); Novartis Pharma, Basel, Switzerland (L.S., A.B.P.S.); Novartis Pharmaceuticals, East Hanover, NJ (M.R.); and the University College London Great Ormond Street Institute of Child Health, London (D.R.H.)
| |
Collapse
|
67
|
Ninatti G, Pini C, Bono BC, Gelardi F, Antunovic L, Fernandes B, Sollini M, Landoni C, Chiti A, Pessina F. The prognostic power of [ 11C]methionine PET in IDH-wildtype diffuse gliomas with lower-grade histological features: venturing beyond WHO classification. J Neurooncol 2023; 164:473-481. [PMID: 37695488 DOI: 10.1007/s11060-023-04438-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE IDH-wildtype (IDH-wt) diffuse gliomas with histological features of lower-grade gliomas (LGGs) are rare and heterogeneous primary brain tumours. [11C]Methionine (MET) positron emission tomography (PET) is commonly used to evaluate glial neoplasms at diagnosis. The present study aimed to assess the prognostic value of MET PET in newly diagnosed, treatment naïve IDH-wt gliomas with histological features of LGGs. METHODS Patients with a histological diagnosis of IDH-wt LGG who underwent preoperative (< 100 days) MET PET/CT and surgery were retrospectively included. Qualitative and semi-quantitative analyses of MET PET images were performed. Progression-free survival (PFS) and overall survival (OS) were analysed by Kaplan-Meier curves. Cox proportional-hazards regression was used to test the association of imaging and clinical data to PFS and OS. RESULTS We included 48 patients (M:F = 25:23; median age 55). 39 lesions were positive and 9 negative at MET PET. Positive MET PET was significantly associated with shorter median PFS (15.7 months vs. not reached, p = 0.0146) and OS time (32.6 months vs. not reached, p = 0.0253). Incomplete surgical resection and higher TBRmean values were independent predictors of shorter PFS on multivariate analysis (p < 0.001 for both). Higher tumour grade and incomplete surgical resection were independent predictors of OS at multivariate analysis (p = 0.027 and p = 0.01, respectively). CONCLUSION MET PET is useful for the prognostic stratification of patients with IDH-wt glial neoplasms with histological LGGs features. Considering their huge biological heterogeneity, the combination of MET PET and molecular analyses may help to improve the prognostic accuracy in these diffuse gliomas subset and influence therapeutic choices accordingly.
Collapse
Affiliation(s)
- Gaia Ninatti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristiano Pini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Beatrice Claudia Bono
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabrizia Gelardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
| | - Lidija Antunovic
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bethania Fernandes
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy.
- Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Claudio Landoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Nuclear Medicine Department, IRCCS Monza, San Gerardo Hospital, Monza, Italy
| | - Arturo Chiti
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
68
|
Pasquini L, Yildirim O, Silveira P, Tamer C, Napolitano A, Lucignani M, Jenabi M, Peck KK, Holodny A. Effect of tumor genetics, pathology, and location on fMRI of language reorganization in brain tumor patients. Eur Radiol 2023; 33:6069-6078. [PMID: 37074422 PMCID: PMC10415458 DOI: 10.1007/s00330-023-09610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES Language reorganization may follow tumor invasion of the dominant hemisphere. Tumor location, grade, and genetics influence the communication between eloquent areas and tumor growth dynamics, which are drivers of language plasticity. We evaluated tumor-induced language reorganization studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness). METHODS The study was retrospective cross-sectional. We included patients with left-hemispheric tumors (study group) and right-hemispheric tumors (controls). We calculated five fMRI laterality indexes (LI): hemispheric, temporal lobe, frontal lobe, Broca's area (BA), Wernicke's area (WA). We defined LI ≥ 0.2 as left-lateralized (LL) and LI < 0.2 as atypical lateralized (AL). Chi-square test (p < 0.05) was employed to identify the relationship between LI and tumor/patient variables in the study group. For those variables having significant results, confounding factors were evaluated in a multinomial logistic regression model. RESULTS We included 405 patients (235 M, mean age: 51 years old) and 49 controls (36 M, mean age: 51 years old). Contralateral language reorganization was more common in patients than controls. The statistical analysis demonstrated significant association between BA LI and patient sex (p = 0.005); frontal LI, BA LI, and tumor location in BA (p < 0.001); hemispheric LI and fibroblast growth factor receptor (FGFR) mutation (p = 0.019); WA LI and O6-methylguanine-DNA methyltransferase promoter (MGMT) methylation in high-grade gliomas (p = 0.016). CONCLUSIONS Tumor genetics, pathology, and location influence language laterality, possibly due to cortical plasticity. Increased fMRI activation in the right hemisphere was seen in patients with tumors in the frontal lobe, BA and WA, FGFR mutation, and MGMT promoter methylation. KEY POINTS • Patients harboring left-hemispheric tumors present with contralateral translocation of language function. Influential variables for this phenomenon included frontal tumor location, BA location, WA location, sex, MGMT promoter methylation, and FGFR mutation. • Tumor location, grade, and genetics may influence language plasticity, thereby affecting both communication between eloquent areas and tumor growth dynamics. • In this retrospective cross-sectional study, we evaluated language reorganization in 405 brain tumor patients by studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness).
Collapse
Affiliation(s)
- Luca Pasquini
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- NESMOS Department, Neuroradiology Unit, Sant'Andrea Hospital, La Sapienza University, 00189, Rome, Italy.
| | - Onur Yildirim
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Patrick Silveira
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christel Tamer
- Diagnostic Radiology Department, American University of Beirut Medical Center, Beirut, 1107 2020, Lebanon
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Mehrnaz Jenabi
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kyung K Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Andrei Holodny
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY, 10065, USA
| |
Collapse
|
69
|
Swinburne NC, Yadav V, Murthy KNK, Elnajjar P, Shih HH, Panyam PK, Santilli A, Gutman DC, Pike L, Moss NS, Stone J, Hatzoglou V, Shah A, Juluru K, Shah SP, Holodny AI, Young RJ. Fast, light, and scalable: harnessing data-mined line annotations for automated tumor segmentation on brain MRI. Eur Radiol 2023; 33:6582-6591. [PMID: 37042979 PMCID: PMC10523913 DOI: 10.1007/s00330-023-09583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 04/13/2023]
Abstract
OBJECTIVES While fully supervised learning can yield high-performing segmentation models, the effort required to manually segment large training sets limits practical utility. We investigate whether data mined line annotations can facilitate brain MRI tumor segmentation model development without requiring manually segmented training data. METHODS In this retrospective study, a tumor detection model trained using clinical line annotations mined from PACS was leveraged with unsupervised segmentation to generate pseudo-masks of enhancing tumors on T1-weighted post-contrast images (9911 image slices; 3449 adult patients). Baseline segmentation models were trained and employed within a semi-supervised learning (SSL) framework to refine the pseudo-masks. Following each self-refinement cycle, a new model was trained and tested on a held-out set of 319 manually segmented image slices (93 adult patients), with the SSL cycles continuing until Dice score coefficient (DSC) peaked. DSCs were compared using bootstrap resampling. Utilizing the best-performing models, two inference methods were compared: (1) conventional full-image segmentation, and (2) a hybrid method augmenting full-image segmentation with detection plus image patch segmentation. RESULTS Baseline segmentation models achieved DSC of 0.768 (U-Net), 0.831 (Mask R-CNN), and 0.838 (HRNet), improving with self-refinement to 0.798, 0.871, and 0.873 (each p < 0.001), respectively. Hybrid inference outperformed full image segmentation alone: DSC 0.884 (Mask R-CNN) vs. 0.873 (HRNet), p < 0.001. CONCLUSIONS Line annotations mined from PACS can be harnessed within an automated pipeline to produce accurate brain MRI tumor segmentation models without manually segmented training data, providing a mechanism to rapidly establish tumor segmentation capabilities across radiology modalities. KEY POINTS • A brain MRI tumor detection model trained using clinical line measurement annotations mined from PACS was leveraged to automatically generate tumor segmentation pseudo-masks. • An iterative self-refinement process automatically improved pseudo-mask quality, with the best-performing segmentation pipeline achieving a Dice score of 0.884 on a held-out test set. • Tumor line measurement annotations generated in routine clinical radiology practice can be harnessed to develop high-performing segmentation models without manually segmented training data, providing a mechanism to rapidly establish tumor segmentation capabilities across radiology modalities.
Collapse
Affiliation(s)
- Nathaniel C Swinburne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
| | - Vivek Yadav
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | | | - Pierre Elnajjar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Hao-Hsin Shih
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Prashanth Kumar Panyam
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Alice Santilli
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - David C Gutman
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Luke Pike
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nelson S Moss
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacqueline Stone
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Akash Shah
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Krishna Juluru
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|
70
|
Zegers C, Offermann C, Dijkstra J, Compter I, Hoebers F, de Ruysscher D, Anten M, Broen M, Postma A, Hoeben A, Hovinga K, Van Elmpt W, Eekers D. Clinical implementation of standardized neurocognitive assessment before and after radiation to the brain. Clin Transl Radiat Oncol 2023; 42:100664. [PMID: 37576068 PMCID: PMC10413416 DOI: 10.1016/j.ctro.2023.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/19/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Background Radiotherapy induced impairment of cognitive function can lead to a reduced quality of life. The aim of this study was to describe the implementation and compliance of standardized neurocognitive assessment. In addition, the first results of cognitive changes for patients receiving a radiation dose to the brain are described. Materials and methods Patients that received radiation dose to the brain (neuro, head and neck and prophylactic cranial irradiation between April-2019 and Dec-2021 were included. Three neuro cognitive tests were performed a verbal learning and memory test, the Hopkins Verbal Learning Test; a verbal fluency test, the Controlled Oral Word Association Test and a speed and cognitive flexibility test, the Trail Making Test A&B. Tests were performed before the start of radiation, 6 months (6 m) and 1 year (1y) after irradiation. The Reliable Change Index (RCI) between baseline and follow-up was calculated using reference data from literature. Results 644 patients performed the neurocognitive tests at baseline, 346 at 6 months and 205 at 1y after RT, with compliance rates of 90.4%, 85.6%, and 75.3%, respectively. Reasons for non-compliance were: 1. Patient did not attend appointment (49%), 2. Patient was unable to perform the test due to illness (12%), 3. Patient refused the test (8 %), 4. Various causes, (31%). A semi-automated analysis was developed to evaluate the test results. In total, 26% of patients showed a significant decline in at least one of variables at 1y and 11% on at least 2 variables at 1y. However, an increase in cognitive performance was observed in 49% (≥1 variable) and 22% (≥2 variables). Conclusion Standardized neurocognitive testing within the radiotherapy clinic was successfully implemented, with a high patient compliance. A semi-automatic method to evaluate cognitive changes after treatment was defined. Data collection is ongoing, long term follow-up (up to 5 years after treatment) and dose-effect analysis will be performed.
Collapse
Affiliation(s)
- C.M.L. Zegers
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW-School for Oncology and Reproduction, Maastricht, the Netherlands
| | - C. Offermann
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW-School for Oncology and Reproduction, Maastricht, the Netherlands
| | - J. Dijkstra
- Department of Medical Psychology Maastricht University Medical Center+, MHeNs School for Mental Health and Neuroscience, Maastricht, the Netherlands
| | - I. Compter
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW-School for Oncology and Reproduction, Maastricht, the Netherlands
| | - F.J.P. Hoebers
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW-School for Oncology and Reproduction, Maastricht, the Netherlands
| | - D. de Ruysscher
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW-School for Oncology and Reproduction, Maastricht, the Netherlands
| | - M.M. Anten
- Department of Neurology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
| | - M.P.G. Broen
- Department of Neurology, GROW – School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
| | - A.A. Postma
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, MHeNs School for Mental Health and Neuroscience, Maastricht, the Netherlands
| | - A. Hoeben
- Dept of Medical Oncology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - K.E. Hovinga
- Department of Neurosurgery, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - W. Van Elmpt
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW-School for Oncology and Reproduction, Maastricht, the Netherlands
| | - D.B.P. Eekers
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center+, GROW-School for Oncology and Reproduction, Maastricht, the Netherlands
| |
Collapse
|
71
|
Minniti G, Paolini S, Antonelli M, Gianno F, Tini P, Lanzetta G, Arcella A, De Pietro R, Giraffa M, Capone L, Romano A, Bozzao A, Esposito V. Long-term treatment outcomes of temozolomide-based chemoradiation in patients with adult-type diffuse IDH-mutant grade 2 astrocytoma. J Neurooncol 2023; 164:331-339. [PMID: 37665475 PMCID: PMC10522719 DOI: 10.1007/s11060-023-04418-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE To report the long-term outcomes in adult patients with grade 2 IDH-mutant astrocytoma treated with temozolomide (TMZ)-based chemoradiation. METHODS One hundred and three patients with histologically proven grade 2 astrocytoma received radiation therapy (RT), 50.4-54 Gy in 1.8 Gy fractions, and adjuvant TMZ up to 12 cycles. Fifty-two patients received RT at the time of tumor progression and 51 in the early postoperative period for the presence of at least one high-risk feature (age > 40 years, preoperative tumor size > 5 cm, large postoperative residual tumor, tumor crossing the midline, or presence of neurological symptoms). Overall survival (OS) and progression-free survival (PFS) were calculated from the time of diagnosis. RESULTS With a median follow-up time of 9.0 years (range, 1.3-15 years), median PFS and OS times were 9 years (95%CI, 6.6-10.3) and 11.8 years (95%CI, 9.3-13.4), respectively. Median PFS was 10.6 years in the early treatment group and 6 years in delayed treatment group (hazard ratio (HR) 0.30; 95%CI 0.16-0.59; p = 0.0005); however, OS was not significantly different between groups (12.8 vs. 10.4 years; HR 0.64; 95%CI 0.33-1.25; p = 0.23). Extent of resection, KPS, and small residual disease were associated with OS, with postoperative tumor ≤ 1 cc that emerged as the strongest independent predictor (HR: 0.27; 95%CI 0.08-0.87; p = 0.01). CONCLUSIONS TMZ-based chemoradiation is associated with survival benefit in patients with grade 2 IDH-mutant astrocytoma. For this group of patients, chemoradiation can be deferred until time of progression in younger patients receiving extensive resection, while early treatment should be recommended in high-risk patients.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Radiological Science, Oncology and Anatomical Pathology, Umberto I Hospital, University Sapienza, Policlinico Umberto I, Rome, Italy.
- IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Sergio Paolini
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Neuroscience, Sapienza University, Rome, Italy
| | - Manila Antonelli
- Department of Radiological Science, Oncology and Anatomical Pathology, Umberto I Hospital, University Sapienza, Policlinico Umberto I, Rome, Italy
| | - Francesca Gianno
- Department of Radiological Science, Oncology and Anatomical Pathology, Umberto I Hospital, University Sapienza, Policlinico Umberto I, Rome, Italy
| | - Paolo Tini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | | | - Raffaella De Pietro
- Department of Radiological Science, Oncology and Anatomical Pathology, Umberto I Hospital, University Sapienza, Policlinico Umberto I, Rome, Italy
| | - Martina Giraffa
- UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Luca Capone
- UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy
| | - Vincenzo Esposito
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
72
|
Phillips KA, Kamson DO, Schiff D. Disease Assessments in Patients with Glioblastoma. Curr Oncol Rep 2023; 25:1057-1069. [PMID: 37470973 DOI: 10.1007/s11912-023-01440-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE OF REVIEW The neuro-oncology team faces a unique challenge when assessing treatment response in patients diagnosed with glioblastoma. Magnetic resonance imaging (MRI) remains the standard imaging modality for measuring therapeutic response in both clinical practice and clinical trials. However, even for the neuroradiologist, MRI interpretations are not straightforward because of tumor heterogeneity, as evidenced by varying degrees of enhancement, infiltrating tumor patterns, cellular densities, and vasogenic edema. The situation is even more perplexing following therapy since treatment-related changes can mimic viable tumor. Additionally, antiangiogenic therapies can dramatically decrease contrast enhancement giving the false impression of decreasing tumor burden. Over the past few decades, several approaches have emerged to augment and improve visual interpretation of glioblastoma response to therapeutics. Herein, we summarize the state of the art for evaluating the response of glioblastoma to standard therapies and investigational agents as well as challenges and future directions for assessing treatment response in neuro-oncology. RECENT FINDINGS Monitoring glioblastoma responses to standard therapy and novel agents has been fraught with many challenges and limitations over the past decade. Excitingly, new promising methods are emerging to help address these challenges. Recently, the Response Assessment in Neuro-Oncology (RANO) working group proposed an updated response criteria (RANO 2.0) for the evaluation of all grades of glial tumors regardless of IDH status or therapies being evaluated. In addition, advanced neuroimaging techniques, such as histogram analysis, parametric response maps, morphometric segmentation, radio pharmacodynamics approaches, and the integrating of amino acid radiotracers in the tumor evaluation algorithm may help resolve equivocal lesion interpretations without operative intervention. Moreover, the introduction of other techniques, such as liquid biopsy and artificial intelligence could complement conventional visual assessment of glioblastoma response to therapies. Neuro-oncology has evolved over the past decade and has achieved significant milestones, including the establishment of new standards of care, emerging therapeutic options, and novel clinical, translational, and basic research. More recently, the integration of histopathology with molecular features for tumor classification has marked an important paradigm shift in brain tumor diagnosis. In a similar manner, treatment response monitoring in neuro-oncology has made considerable progress. While most techniques are still in their inception, there is an emerging body of evidence for clinical application. Further research will be critically important for the development of impactful breakthroughs in this area of the field.
Collapse
Affiliation(s)
- Kester A Phillips
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment at Swedish Neuroscience Institute, 550 17Th Ave Suite 540, Seattle, WA, 98122, USA
| | - David O Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 201 North Broadway, Skip Viragh Outpatient Cancer Building, 9Th Floor, Room 9177, Mailbox #3, Baltimore, MD, 21218, USA
| | - David Schiff
- Division of Neuro-Oncology, University of Virginia Health System, 1300 Jefferson Park Avenue, West Complex, Room 6225, Charlottesville, VA, 22903, USA.
| |
Collapse
|
73
|
Mellinghoff IK, van den Bent MJ, Blumenthal DT, Touat M, Peters KB, Clarke J, Mendez J, Yust-Katz S, Welsh L, Mason WP, Ducray F, Umemura Y, Nabors B, Holdhoff M, Hottinger AF, Arakawa Y, Sepulveda JM, Wick W, Soffietti R, Perry JR, Giglio P, de la Fuente M, Maher EA, Schoenfeld S, Zhao D, Pandya SS, Steelman L, Hassan I, Wen PY, Cloughesy TF. Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma. N Engl J Med 2023; 389:589-601. [PMID: 37272516 PMCID: PMC11445763 DOI: 10.1056/nejmoa2304194] [Citation(s) in RCA: 304] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH)-mutant grade 2 gliomas are malignant brain tumors that cause considerable disability and premature death. Vorasidenib, an oral brain-penetrant inhibitor of mutant IDH1 and IDH2 enzymes, showed preliminary activity in IDH-mutant gliomas. METHODS In a double-blind, phase 3 trial, we randomly assigned patients with residual or recurrent grade 2 IDH-mutant glioma who had undergone no previous treatment other than surgery to receive either oral vorasidenib (40 mg once daily) or matched placebo in 28-day cycles. The primary end point was imaging-based progression-free survival according to blinded assessment by an independent review committee. The key secondary end point was the time to the next anticancer intervention. Crossover to vorasidenib from placebo was permitted on confirmation of imaging-based disease progression. Safety was also assessed. RESULTS A total of 331 patients were assigned to receive vorasidenib (168 patients) or placebo (163 patients). At a median follow-up of 14.2 months, 226 patients (68.3%) were continuing to receive vorasidenib or placebo. Progression-free survival was significantly improved in the vorasidenib group as compared with the placebo group (median progression-free survival, 27.7 months vs. 11.1 months; hazard ratio for disease progression or death, 0.39; 95% confidence interval [CI], 0.27 to 0.56; P<0.001). The time to the next intervention was significantly improved in the vorasidenib group as compared with the placebo group (hazard ratio, 0.26; 95% CI, 0.15 to 0.43; P<0.001). Adverse events of grade 3 or higher occurred in 22.8% of the patients who received vorasidenib and in 13.5% of those who received placebo. An increased alanine aminotransferase level of grade 3 or higher occurred in 9.6% of the patients who received vorasidenib and in no patients who received placebo. CONCLUSIONS In patients with grade 2 IDH-mutant glioma, vorasidenib significantly improved progression-free survival and delayed the time to the next intervention. (Funded by Servier; INDIGO ClinicalTrials.gov number, NCT04164901.).
Collapse
Affiliation(s)
- Ingo K Mellinghoff
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Martin J van den Bent
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Deborah T Blumenthal
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Mehdi Touat
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Katherine B Peters
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Jennifer Clarke
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Joe Mendez
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Shlomit Yust-Katz
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Liam Welsh
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Warren P Mason
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - François Ducray
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Yoshie Umemura
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Burt Nabors
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Matthias Holdhoff
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Andreas F Hottinger
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Yoshiki Arakawa
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Juan M Sepulveda
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Wolfgang Wick
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Riccardo Soffietti
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - James R Perry
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Pierre Giglio
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Macarena de la Fuente
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Elizabeth A Maher
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Steven Schoenfeld
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Dan Zhao
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Shuchi S Pandya
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Lori Steelman
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Islam Hassan
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Patrick Y Wen
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| | - Timothy F Cloughesy
- From Memorial Sloan Kettering Cancer Center, New York (I.K.M.); the Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands (M.J.B.); Tel Aviv Medical Center, Tel Aviv University, Tel Aviv (D.T.B., S.Y.-K.), and the Davidoff Cancer Center, Rabin Medical Center, Petah Tikva (S.Y.-K.) - both in Israel; Sorbonne Université, Institut du Cerveau, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires la Pitié Salpêtrière-Charles Foix, Paris (M.T.), and Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon (F.D.) - both in France; Duke University Medical Center, Durham, NC (K.B.P.); the University of California, San Francisco, San Francisco (J.C.); Huntsman Cancer Institute, University of Utah, Salt Lake City (J.M.); the Royal Marsden Hospital, London (L.W.); Princess Margaret Cancer Centre (W.P.M.), and Sunnybrook Health Sciences Centre (J.R.P.), University of Toronto (W.P.M.) - both in Toronto; the University of Michigan Comprehensive Cancer Center, Ann Arbor (Y.U.); the University of Alabama at Birmingham, Birmingham (B.N.); Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore (M.H.); Lundin Family Brain Tumor Research Center, University Hospital of Lausanne, and the University of Lausanne - both in Lausanne, Switzerland (A.F.H.); Kyoto University Graduate School of Medicine, Kyoto, Japan (Y.A.); Hospital Universitario 12 de Octubre, Madrid (J.M.S.); Universitätsklinikum Heidelberg and the German Cancer Research Center - both in Heidelberg, Germany (W.W.); the University of Turin, Turin, Italy (R.S.); Ohio State University Wexner Medical Center, Columbus (P.G.); Sylvester Comprehensive Cancer Center and the Department of Neurology, University of Miami, Miami (M.F.); University of Texas Southwestern Medical Center, Dallas (E.A.M.); Servier Pharmaceuticals (S.S., D.Z., S.S.P., L.S., I.H.) and Dana-Farber Cancer Institute (P.Y.W.) - both in Boston; and the University of California, Los Angeles, Los Angeles (T.F.C.)
| |
Collapse
|
74
|
Sun F, Lv H, Feng B, Sun J, Zhang L, Dong B. Identification of natural killer cell-related characteristics to predict the clinical prognosis and immune microenvironment of patients with low-grade glioma. Aging (Albany NY) 2023; 15:6264-6291. [PMID: 37405952 PMCID: PMC10373982 DOI: 10.18632/aging.204850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Individuals with low-grade glioma (LGG) have a dismal prognosis, and most patients will eventually progress to high-grade disease. Therefore, it is crucial to accurately determine their prognoses. METHODS Seventy-nine NK cell genes were downloaded from the LM22 database and univariate Cox regression analysis was utilized to detect NK cell-related genes affecting prognosis. Molecular types were established for LGG using the "ConsensusClusterPlus" R package. The results from a functional enrichment analysis and the immune microenvironment were intensively explored to determine molecular heterogeneity and immune characteristics across distinct subtypes. Furthermore, a RiskScore model was developed and verified using expression profiles of NK cells, and a nomogram consisting of the RiskScore model and clinical traits was constructed. Moreover, pan-cancer traits of NK cells were also investigated. RESULTS The C1 subtype included the greatest amount of immune infiltration and the poorest prognosis among well-established subtypes. The majority of enriched pathways were those involved in tumor progression, including epithelial-mesenchymal transition and cell cycle pathways. Differentially expressed genes among distinct subtypes were determined and used to develop a novel RiskScore model. This model was able to distinguish low-risk patients with LGG from those with high-risk disease. An accurate nomogram including the RiskScore, disease grade and patient's age was constructed to predict clinical outcomes of LGG patients. Finally, a pan-cancer analysis further highlighted the crucial roles of NK cell-related genes in the tumor microenvironment. CONCLUSIONS An NK cell-related RiskScore model can accurately predict the prognoses of patients with LGG and provide valuable insights into personalized medicine.
Collapse
Affiliation(s)
- Fei Sun
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurosurgery, Xinhua Hospital Affiliated to Dalian University, Dalian, Liaoning, China
| | - Hongtao Lv
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Baozhi Feng
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Linyun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bin Dong
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
75
|
Raman F, Mullen A, Byrd M, Bae S, Kim J, Sotoudeh H, Morón FE, Fathallah-Shaykh HM. Evaluation of RANO Criteria for the Assessment of Tumor Progression for Lower-Grade Gliomas. Cancers (Basel) 2023; 15:3274. [PMID: 37444384 DOI: 10.3390/cancers15133274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
PURPOSE The Response Assessment in Neuro-Oncology (RANO) criteria for lower-grade gliomas (LGGs) define tumor progression as ≥25% change in the T2/FLAIR signal area based on an operator's discretion of the perpendicular diameter of the largest tumor cross-section. Potential sources of error include acquisition inconsistency of 2D slices, operator selection variabilities in both representative tumor cross-section and measurement line locations, and the inability to quantify infiltrative tumor margins and satellite lesions. Our goal was to assess the accuracy and reproducibility of RANO in LG. MATERIALS AND METHODS A total of 651 FLAIR MRIs from 63 participants with LGGs were retrospectively analyzed by three blinded attending physicians and three blinded resident trainees using RANO criteria, 2D visual assessment, and computer-assisted 3D volumetric assessment. RESULTS RANO product measurements had poor-to-moderate inter-operator reproducibility (r2 = 0.28-0.82; coefficient of variance (CV) = 44-110%; mean percent difference (diff) = 0.4-46.8%) and moderate-to-excellent intra-operator reproducibility (r2 = 0.71-0.88; CV = 31-58%; diff = 0.3-23.9%). When compared to 2D visual ground truth, the accuracy of RANO compared to previous and baseline scans was 66.7% and 65.1%, with an area under the ROC curve (AUC) of 0.67 and 0.66, respectively. When comparing to volumetric ground truth, the accuracy of RANO compared to previous and baseline scans was 21.0% and 56.5%, with an AUC of 0.39 and 0.55, respectively. The median time delay at diagnosis was greater for false negative cases than for false positive cases for the RANO assessment compared to previous (2.05 > 0.50 years, p = 0.003) and baseline scans (1.08 > 0.50 years, p = 0.02). CONCLUSION RANO-based assessment of LGGs has moderate reproducibility and poor accuracy when compared to either visual or volumetric ground truths.
Collapse
Affiliation(s)
- Fabio Raman
- Department of Radiology, Johns Hopkins Hospital, 600 N Wolfe St., Baltimore, MD 21287, USA
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alexander Mullen
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Matthew Byrd
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sejong Bae
- Department of Medicine, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jinsuh Kim
- Department of Radiology, Emory University, Atlanta, GA 30329, USA
| | - Houman Sotoudeh
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Fanny E Morón
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
76
|
Moreno V, Manuel Sepúlveda J, Reardon DA, Pérez-Núñez Á, González León P, Hanna B, Filvaroff E, Aronchik I, Chang H, Amoroso B, Zuraek M, Sanchez-Perez T, Mendez C, Stephens D, Nikolova Z, Vogelbaum MA. Trotabresib, an oral potent bromodomain and extraterminal inhibitor, in patients with high-grade gliomas: A phase I, "window-of-opportunity" study. Neuro Oncol 2023; 25:1113-1122. [PMID: 36455228 PMCID: PMC10237409 DOI: 10.1093/neuonc/noac263] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND The bromodomain and extraterminal protein (BET) inhibitor trotabresib has demonstrated antitumor activity in patients with advanced solid tumors, including high-grade gliomas. CC-90010-GBM-001 (NCT04047303) is a phase I study investigating the pharmacokinetics, pharmacodynamics, and CNS penetration of trotabresib in patients with recurrent high-grade gliomas scheduled for salvage resection. METHODS Patients received trotabresib 30 mg/day on days 1-4 before surgery, followed by maintenance trotabresib 45 mg/day 4 days on/24 days off after surgery. Primary endpoints were plasma pharmacokinetics and trotabresib concentrations in resected tissue. Secondary and exploratory endpoints included safety, pharmacodynamics, and antitumor activity. RESULTS Twenty patients received preoperative trotabresib and underwent resection with no delays or cancelations of surgery; 16 patients received maintenance trotabresib after recovery from surgery. Trotabresib plasma pharmacokinetics were consistent with previous data. Mean trotabresib brain tumor tissue:plasma ratio was 0.84 (estimated unbound partition coefficient [KPUU] 0.37), and modulation of pharmacodynamic markers was observed in blood and brain tumor tissue. Trotabresib was well tolerated; the most frequent grade 3/4 treatment-related adverse event during maintenance treatment was thrombocytopenia (5/16 patients). Six-month progression-free survival was 12%. Two patients remain on treatment with stable disease at cycles 25 and 30. CONCLUSIONS Trotabresib penetrates the blood-brain-tumor barrier in patients with recurrent high-grade glioma and demonstrates target engagement in resected tumor tissue. Plasma pharmacokinetics, blood pharmacodynamics, and safety were comparable with previous results for trotabresib in patients with advanced solid tumors. Investigation of adjuvant trotabresib + temozolomide and concomitant trotabresib + temozolomide + radiotherapy in patients with newly diagnosed glioblastoma is ongoing (NCT04324840).
Collapse
Affiliation(s)
- Victor Moreno
- START Madrid-FJD, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | | | - David A Reardon
- Department of Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ángel Pérez-Núñez
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Pedro González León
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Bishoy Hanna
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | - Ida Aronchik
- Bristol Myers Squibb, San Francisco, California, USA
| | - Henry Chang
- Bristol Myers Squibb, San Francisco, California, USA
| | - Barbara Amoroso
- Centre for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | | | - Tania Sanchez-Perez
- Centre for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | - Cristina Mendez
- Centre for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | | | - Zariana Nikolova
- Centre for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | | |
Collapse
|
77
|
Akeret K, Weller M, Krayenbühl N. The anatomy of neuroepithelial tumours. Brain 2023:7171408. [PMID: 37201913 PMCID: PMC10393414 DOI: 10.1093/brain/awad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
Many neurological conditions conceal specific anatomical patterns. Their study contributes to the understanding of disease biology and to tailored diagnostics and therapy. Neuroepithelial tumours exhibit distinct anatomical phenotypes and spatiotemporal dynamics that differ from those of other brain tumours. Brain metastases display a preference for the cortico-subcortical boundaries of watershed areas and have a predominantly spherical growth. Primary CNS lymphomas localize to the white matter and generally invade along fibre tracts. In neuroepithelial tumours, topographic probability mapping and unsupervised topological clustering have identified an inherent radial anatomy and adherence to ventriculopial configurations of specific hierarchical orders. Spatiotemporal probability and multivariate survival analyses have identified a temporal and prognostic sequence underlying the anatomical phenotypes of neuroepithelial tumours. Gradual neuroepithelial de-differentiation and declining prognosis follow (i) an expansion into higher order radial units; (ii) a subventricular spread; and (iii) the presence of mesenchymal patterns (expansion along white matter tracts, leptomeningeal or perivascular invasion, CSF spread). While different pathophysiological hypotheses have been proposed, the cellular and molecular mechanisms dictating this anatomical behaviour remain largely unknown. Here we adopt an ontogenetic approach towards the understanding of neuroepithelial tumour anatomy. Contemporary perception of histo- and morphogenetic processes during neurodevelopment permit us to conceptualize the architecture of the brain into hierarchically organized radial units. The anatomical phenotypes in neuroepithelial tumours and their temporal and prognostic sequences share remarkable similarities with the ontogenetic organization of the brain and the anatomical specifications that occur during neurodevelopment. This macroscopic coherence is reinforced by cellular and molecular observations that the initiation of various neuroepithelial tumours, their intratumoural hierarchy and tumour progression are associated with the aberrant reactivation of surprisingly normal ontogenetic programs. Generalizable topological phenotypes could provide the basis for an anatomical refinement of the current classification of neuroepithelial tumours. In addition, we have proposed a staging system for adult-type diffuse gliomas that is based on the prognostically critical steps along the sequence of anatomical tumour progression. Considering the parallels in anatomical behaviour between different neuroepithelial tumours, analogous staging systems may be implemented for other neuroepithelial tumour types and subtypes. Both the anatomical stage of a neuroepithelial tumour and the spatial configuration of its hosting radial unit harbour the potential to stratify treatment decisions at diagnosis and during follow-up. More data on specific neuroepithelial tumour types and subtypes are needed to increase the anatomical granularity in their classification and to determine the clinical impact of stage-adapted and anatomically tailored therapy and surveillance.
Collapse
Affiliation(s)
- Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Niklaus Krayenbühl
- Division of Paediatric Neurosurgery, University Children's Hospital, 8032 Zurich, Switzerland
| |
Collapse
|
78
|
Wollring MM, Werner JM, Bauer EK, Tscherpel C, Ceccon GS, Lohmann P, Stoffels G, Kabbasch C, Goldbrunner R, Fink GR, Langen KJ, Galldiks N. Prediction of response to lomustine-based chemotherapy in glioma patients at recurrence using MRI and FET PET. Neuro Oncol 2023; 25:984-994. [PMID: 36215231 PMCID: PMC10158105 DOI: 10.1093/neuonc/noac229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We evaluated O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET and MRI for early response assessment in recurrent glioma patients treated with lomustine-based chemotherapy. METHODS Thirty-six adult patients with WHO CNS grade 3 or 4 gliomas (glioblastoma, 69%) at recurrence (median number of recurrences, 1; range, 1-3) were retrospectively identified. Besides MRI, serial FET PET scans were performed at baseline and early after chemotherapy initiation (not later than two cycles). Tumor-to-brain ratios (TBR), metabolic tumor volumes (MTV), the occurrence of new distant hotspots with a mean TBR >1.6 at follow-up, and the dynamic parameter time-to-peak were derived from all FET PET scans. PET parameter thresholds were defined using ROC analyses to predict PFS of ≥6 months and OS of ≥12 months. MRI response assessment was based on RANO criteria. The predictive values of FET PET parameters and RANO criteria were subsequently evaluated using univariate and multivariate survival estimates. RESULTS After treatment initiation, the median follow-up time was 11 months (range, 3-71 months). Relative changes of TBR, MTV, and RANO criteria predicted a significantly longer PFS (all P ≤ .002) and OS (all P ≤ .045). At follow-up, the occurrence of new distant hotspots (n ≥ 1) predicted a worse outcome, with significantly shorter PFS (P = .005) and OS (P < .001). Time-to-peak changes did not predict a significantly longer survival. Multivariate survival analyses revealed that new distant hotspots at follow-up FET PET were most potent in predicting non-response (P < .001; HR, 8.578). CONCLUSIONS Data suggest that FET PET provides complementary information to RANO criteria for response evaluation of lomustine-based chemotherapy early after treatment initiation.
Collapse
Affiliation(s)
- Michael M Wollring
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena K Bauer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Caroline Tscherpel
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Garry S Ceccon
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Christoph Kabbasch
- Institute of Radiology, Division of Neuroradiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| |
Collapse
|
79
|
Subbiah V, Kreitman RJ, Wainberg ZA, Gazzah A, Lassen U, Stein A, Wen PY, Dietrich S, de Jonge MJA, Blay JY, Italiano A, Yonemori K, Cho DC, de Vos FYFL, Moreau P, Fernandez EE, Schellens JHM, Zielinski CC, Redhu S, Boran A, Passos VQ, Ilankumaran P, Bang YJ. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: the phase 2 ROAR trial. Nat Med 2023; 29:1103-1112. [PMID: 37059834 PMCID: PMC10202803 DOI: 10.1038/s41591-023-02321-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
BRAFV600E alterations are prevalent across multiple tumors. Here we present final efficacy and safety results of a phase 2 basket trial of dabrafenib (BRAF kinase inhibitor) plus trametinib (MEK inhibitor) in eight cohorts of patients with BRAFV600E-mutated advanced rare cancers: anaplastic thyroid carcinoma (n = 36), biliary tract cancer (n = 43), gastrointestinal stromal tumor (n = 1), adenocarcinoma of the small intestine (n = 3), low-grade glioma (n = 13), high-grade glioma (n = 45), hairy cell leukemia (n = 55) and multiple myeloma (n = 19). The primary endpoint of investigator-assessed overall response rate in these cohorts was 56%, 53%, 0%, 67%, 54%, 33%, 89% and 50%, respectively. Secondary endpoints were median duration of response (DoR), progression-free survival (PFS), overall survival (OS) and safety. Median DoR was 14.4 months, 8.9 months, not reached, 7.7 months, not reached, 31.2 months, not reached and 11.1 months, respectively. Median PFS was 6.7 months, 9.0 months, not reached, not evaluable, 9.5 months, 5.5 months, not evaluable and 6.3 months, respectively. Median OS was 14.5 months, 13.5 months, not reached, 21.8 months, not evaluable, 17.6 months, not evaluable and 33.9 months, respectively. The most frequent (≥20% of patients) treatment-related adverse events were pyrexia (40.8%), fatigue (25.7%), chills (25.7%), nausea (23.8%) and rash (20.4%). The encouraging tumor-agnostic activity of dabrafenib plus trametinib suggests that this could be a promising treatment approach for some patients with BRAFV600E-mutated advanced rare cancers. ClinicalTrials.gov registration: NCT02034110 .
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Robert J Kreitman
- Laboratory of Molecular Biology, National Institutes of Health, Bethesda, MD, USA
| | - Zev A Wainberg
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anas Gazzah
- Drug Development Department (DITEP), Gustave Roussy Cancer Institute, Villejuif, France
| | - Ulrik Lassen
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Stein
- Department of Internal Medicine II (Oncology Center), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Maja J A de Jonge
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jean-Yves Blay
- Center Leon Berard & University Claude Bernard Lyon I, Lyon, France
| | - Antoine Italiano
- Early Phase Trials and Sarcoma Units, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | | | | | - Filip Y F L de Vos
- Department of Medical Oncology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | | | - Elena Elez Fernandez
- Department of Medical Oncology, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), IOB-Quiron, UVic-UCC, Barcelona, Spain
| | | | | | - Suman Redhu
- Global Program Biostatistics, Novartis Oncology, Cambridge, MA, USA
| | - Aislyn Boran
- Global Drug Development, Oncology Development Unit, Novartis Services, Inc., East Hanover, NJ, USA
| | - Vanessa Q Passos
- Global Drug Development, Oncology Development Unit, Novartis Services, Inc., East Hanover, NJ, USA
| | - Palanichamy Ilankumaran
- Global Drug Development, Oncology Development Unit, Novartis Services, Inc., East Hanover, NJ, USA
| | - Yung-Jue Bang
- Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
80
|
Chakrabarty S, Abidi SA, Mousa M, Mokkarala M, Hren I, Yadav D, Kelsey M, LaMontagne P, Wood J, Adams M, Su Y, Thorpe S, Chung C, Sotiras A, Marcus DS. Integrative Imaging Informatics for Cancer Research: Workflow Automation for Neuro-Oncology (I3CR-WANO). JCO Clin Cancer Inform 2023; 7:e2200177. [PMID: 37146265 PMCID: PMC10281444 DOI: 10.1200/cci.22.00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/25/2023] [Accepted: 03/06/2023] [Indexed: 05/07/2023] Open
Abstract
PURPOSE Efforts to use growing volumes of clinical imaging data to generate tumor evaluations continue to require significant manual data wrangling, owing to data heterogeneity. Here, we propose an artificial intelligence-based solution for the aggregation and processing of multisequence neuro-oncology MRI data to extract quantitative tumor measurements. MATERIALS AND METHODS Our end-to-end framework (1) classifies MRI sequences using an ensemble classifier, (2) preprocesses the data in a reproducible manner, (3) delineates tumor tissue subtypes using convolutional neural networks, and (4) extracts diverse radiomic features. Moreover, it is robust to missing sequences and adopts an expert-in-the-loop approach in which the segmentation results may be manually refined by radiologists. After the implementation of the framework in Docker containers, it was applied to two retrospective glioma data sets collected from the Washington University School of Medicine (WUSM; n = 384) and The University of Texas MD Anderson Cancer Center (MDA; n = 30), comprising preoperative MRI scans from patients with pathologically confirmed gliomas. RESULTS The scan-type classifier yielded an accuracy of >99%, correctly identifying sequences from 380 of 384 and 30 of 30 sessions from the WUSM and MDA data sets, respectively. Segmentation performance was quantified using the Dice Similarity Coefficient between the predicted and expert-refined tumor masks. The mean Dice scores were 0.882 (±0.244) and 0.977 (±0.04) for whole-tumor segmentation for WUSM and MDA, respectively. CONCLUSION This streamlined framework automatically curated, processed, and segmented raw MRI data of patients with varying grades of gliomas, enabling the curation of large-scale neuro-oncology data sets and demonstrating high potential for integration as an assistive tool in clinical practice.
Collapse
Affiliation(s)
- Satrajit Chakrabarty
- Department of Electrical and Systems Engineering, Washington University in St Louis, St Louis, MO
| | - Syed Amaan Abidi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - Mina Mousa
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - Mahati Mokkarala
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - Isabelle Hren
- Department of Computer Science & Engineering, Washington University in St Louis, St Louis, MO
| | - Divya Yadav
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matthew Kelsey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - Pamela LaMontagne
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - John Wood
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Adams
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yuzhuo Su
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sherry Thorpe
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Caroline Chung
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Aristeidis Sotiras
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
- Institute for Informatics, Washington University School of Medicine, St Louis, MO
| | - Daniel S. Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
81
|
Sahu A, Mathew R, Ashtekar R, Dasgupta A, Puranik A, Mahajan A, Janu A, Choudhari A, Desai S, Patnam NG, Chatterjee A, Patil V, Menon N, Jain Y, Rangarajan V, Dev I, Epari S, Sahay A, Shetty P, Goda J, Moiyadi A, Gupta T. The complementary role of MRI and FET PET in high-grade gliomas to differentiate recurrence from radionecrosis. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1040998. [PMID: 39355021 PMCID: PMC11440952 DOI: 10.3389/fnume.2023.1040998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/11/2023] [Indexed: 10/03/2024]
Abstract
Introduction Conventional magnetic resonance imaging (MRI) has limitations in differentiating tumor recurrence (TR) from radionecrosis (RN) in high-grade gliomas (HGG), which can present with morphologically similar appearances. Multiparametric advanced MR sequences and Positron Emission Tomography (PET) with amino acid tracers can aid in diagnosing tumor metabolism. The role of both modalities on an individual basis and combined performances were investigated in the current study. Materials and Methods Patients with HGG with MRI and PET within three weeks were included in the retrospective analysis. The multiparametric MRI included T1-contrast, T2-weighted sequences, perfusion, diffusion, and spectroscopy. MRI was interpreted by a neuroradiologist without using information from PET imaging. 18F-Fluoroethyl-Tyrosine (FET) uptake was calculated from the areas of maximum enhancement/suspicion, which was assessed by a nuclear medicine physician (having access to MRI to determine tumor-to-white matter ratio over a specific region). A definitive diagnosis of TR or RN was made based on the combination of multidisciplinary joint clinic decisions, histopathological examination, and clinic-radiological follow-up as applicable. Results 62 patients were included in the study between July 2018 and August 2021. The histology during initial diagnosis was glioblastoma, oligodendroglioma, and astrocytoma in 43, 7, and 6 patients, respectively, while in 6, no definitive histological characterization was available. The median time from radiation (RT) was 23 months. 46 and 16 patients had TR and RN recurrence, respectively. Sensitivity, specificity, and accuracy using MRI were 98, 77, and 94%, respectively. Using PET imaging with T/W cut-off of 2.65, sensitivity, specificity, and accuracy were 79, 84, and 80%, respectively. The best results were obtained using both imaging combined with sensitivity, specificity, and accuracy of 98, 100, and 98%, respectively. Conclusion Combined imaging with MRI and FET-PET offers multiparametric assessment of glioma recurrence that is correlative and complimentary, with higher accuracy and clinical value.
Collapse
Affiliation(s)
- Arpita Sahu
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Ronny Mathew
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Renuka Ashtekar
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Ameya Puranik
- Department of Nuclear Medicine, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Abhishek Mahajan
- Department of Radiology, The Clatterbridge Cancer Centre NHS Foundation Trust, Pembroke Place, Liverpool, United Kingdom
| | - Amit Janu
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Amitkumar Choudhari
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Subhash Desai
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Nandakumar G. Patnam
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Vijay Patil
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Nandini Menon
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Yash Jain
- Department of Nuclear Medicine, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Indraja Dev
- Department of Nuclear Medicine, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Ayushi Sahay
- Department of Pathology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Prakash Shetty
- Department of Neurosurgery, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Jayant Goda
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
82
|
Demetz M, Krigers A, Moser P, Kerschbaumer J, Thomé C, Freyschlag CF. Same but different. Incidental and symptomatic lower grade gliomas show differences in molecular features and survival. J Neurooncol 2023; 162:397-405. [PMID: 37043120 PMCID: PMC10167120 DOI: 10.1007/s11060-023-04301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
PURPOSE Data on differences in overall survival and molecular characteristics between incidental (iLGG) and symptomatic lower grade Glioma (sLGG) are limited. The aim of this study was to investigate differences between patients with iLGG and sLGG. METHODS All adult patients with a histologically proven diffuse (WHO°II) or anaplastic (WHO°III) glioma who underwent their first surgery at the authors' institution between 2010 and 2019 were retrospectively included. Tumor volume on pre- and postoperative MRI scans was determined. Clinical and routine neuropathological data were gained from patients' charts. If IDH1, ATRX and EGFR were not routinely assessed, they were re-determined. RESULTS Out of 161 patients included, 23 (14%) were diagnosed as incidental findings. Main reasons for obtaining MRI were: headache(n = 12), trauma(n = 2), MRI indicated by other departments(n = 7), staging examination for cancer(n = 1), volunteering for MRI sequence testing(n = 1). The asymptomatic patients were significantly younger with a median age of 38 years (IqR28-48) vs. 50 years (IqR38-61), p = 0.011. Incidental LGG showed significantly lower preoperative tumor volumes in T1 CE (p = 0.008), FLAIR (p = 0.038) and DWI (p = 0.028). Incidental LGG demonstrated significantly lower incidence of anaplasia (p = 0.004) and lower expression of MIB-1 (p = 0.008) compared to sLGG. IDH1-mutation was significantly more common in iLGG (p = 0.024). Incidental LGG showed a significantly longer OS (mean 212 vs. 70 months, p = 0.005) and PFS (mean 201 vs. 61 months, p = 0.001) compared to sLGG. CONCLUSION Our study is the first to depict a significant difference in molecular characteristics between iLGG and sLGG. The findings of this study confirmed and extended the results of previous studies showing a better outcome and more favorable radiological, volumetric and neuropathological features of iLGG.
Collapse
Affiliation(s)
- Matthias Demetz
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Aleksandrs Krigers
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Patrizia Moser
- Department of Neuropathology, University Hospital Innsbruck, Tirol Kliniken, Innsbruck, Austria
| | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Christian F Freyschlag
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria.
| |
Collapse
|
83
|
Leblond P, Tresch-Bruneel E, Probst A, Néant N, Solas C, Sterin A, Boulanger T, Aerts I, Faure-Conter C, Bertozzi AI, Chastagner P, Entz-Werlé N, De Carli E, Deley MCL, Bouche G, André N. Phase I Study of a Combination of Fluvastatin and Celecoxib in Children with Relapsing/Refractory Low-Grade or High-Grade Glioma (FLUVABREX). Cancers (Basel) 2023; 15:cancers15072020. [PMID: 37046681 PMCID: PMC10093481 DOI: 10.3390/cancers15072020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Preclinical data support the activity of celecoxib and fluvastatin in high-grade (HGG) and low-grade gliomas (LGG). A phase I trial (NCT02115074) was designed to evaluate the safety of this combination in children with refractory/relapsed HGG and LGG using four dose levels of fluvastatin with a fixed daily dose of celecoxib. A Continual Reassessment Method was used for fluvastatin dose escalation. Dose-limiting toxicities (DLT) were determined on the first treatment cycle. Twenty patients were included. Ten LGG and ten HGG patients received a median of 3.5 treatment cycles. Two DLTs were reported: one grade 3 maculopapular rash (4 mg/kg dose level) and one grade 4 increase of Creatine Phospho-Kinase (6 mg/kg dose level). We identified the dose of 6 mg/kg/day as the recommended phase II dose (RP2D) of fluvastatin with celecoxib. Four patients with LGG continued treatment beyond 12 cycles because of stable disease, including one patient who received 23 treatment cycles. In children with refractory/relapsed glioma, the RP2D of fluvastatin with celecoxib is 6 mg/kg/day. The long-term stable diseases observed in LGG suggest a possible role of the combination in a maintenance setting, given its good tolerance and low cost for children living in low- and middle-income countries.
Collapse
|
84
|
Heggebø LC, Borgen IMH, Rylander H, Kiserud C, Nordenmark TH, Hellebust TP, Evensen ME, Gustavsson M, Ramberg C, Sprauten M, Magelssen H, Blakstad H, Moorthy J, Andersson K, Raunert I, Henry T, Moe C, Granlund C, Goplen D, Brekke J, Johannessen TCA, Solheim TS, Marienhagen K, Humberset Ø, Bergström P, Agrup M, Dahl L, Gubanski M, Gojon H, Brahme CJ, Rydén I, Jakola AS, Vik-Mo EO, Lie HC, Asphaug L, Hervani M, Kristensen I, Rueegg CS, Olsen IC, Ledal RJ, Degsell E, Werlenius K, Blomstrand M, Brandal P. Investigating survival, quality of life and cognition in PROton versus photon therapy for IDH-mutated diffuse grade 2 and 3 GLIOmas (PRO-GLIO): a randomised controlled trial in Norway and Sweden. BMJ Open 2023; 13:e070071. [PMID: 36940951 PMCID: PMC10030923 DOI: 10.1136/bmjopen-2022-070071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
INTRODUCTION The use of proton therapy increases globally despite a lack of randomised controlled trials demonstrating its efficacy and safety. Proton therapy enables sparing of non-neoplastic tissue from radiation. This is principally beneficial and holds promise of reduced long-term side effects. However, the sparing of seemingly non-cancerous tissue is not necessarily positive for isocitrate dehydrogenase (IDH)-mutated diffuse gliomas grade 2-3, which have a diffuse growth pattern. With their relatively good prognosis, yet incurable nature, therapy needs to be delicately balanced to achieve a maximal survival benefit combined with an optimised quality of life. METHODS AND ANALYSIS PRO-GLIO (PROton versus photon therapy in IDH-mutated diffuse grade 2 and 3 GLIOmas) is an open-label, multicentre, randomised phase III non-inferiority study. 224 patients aged 18-65 years with IDH-mutated diffuse gliomas grade 2-3 from Norway and Sweden will be randomised 1:1 to radiotherapy delivered with protons (experimental arm) or photons (standard arm). First intervention-free survival at 2 years is the primary endpoint. Key secondary endpoints are fatigue and cognitive impairment, both at 2 years. Additional secondary outcomes include several survival measures, health-related quality of life parameters and health economy endpoints. ETHICS AND DISSEMINATION To implement proton therapy as part of standard of care for patients with IDH-mutated diffuse gliomas grade 2-3, it should be deemed safe. With its randomised controlled design testing proton versus photon therapy, PRO-GLIO will provide important information for this patient population concerning safety, cognition, fatigue and other quality of life parameters. As proton therapy is considerably more costly than its photon counterpart, cost-effectiveness will also be evaluated. PRO-GLIO is approved by ethical committees in Norway (Regional Committee for Medical & Health Research Ethics) and Sweden (The Swedish Ethical Review Authority) and patient inclusion has commenced. Trial results will be published in international peer-reviewed journals, relevant conferences, national and international meetings and expert forums. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT05190172).
Collapse
Affiliation(s)
- Liv Cathrine Heggebø
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ida Maria Henriksen Borgen
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | | | - Cecilie Kiserud
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Tonje Haug Nordenmark
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Taran Paulsen Hellebust
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Morten Egeberg Evensen
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Section of Oncology, Drammen Hospital, Drammen, Norway
| | - Magnus Gustavsson
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medical Radiation Science, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, Sweden
| | - Christina Ramberg
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Mette Sprauten
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Hanne Blakstad
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Janani Moorthy
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Ingela Raunert
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thomas Henry
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medical Radiation Science, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, Sweden
| | - Cecilie Moe
- Department of Research Support for Clinical Trials, Oslo University Hospital, Oslo, Norway
| | - Carin Granlund
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Dorota Goplen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Jorunn Brekke
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Tora Skeidsvoll Solheim
- Cancer Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Øyvind Humberset
- Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - Per Bergström
- Department of Oncology, University Hospital of Umeå, Umeå, Sweden
| | - Måns Agrup
- Department of Oncology, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ludvig Dahl
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Michael Gubanski
- Department of Radiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | - Helene Gojon
- Department of Radiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | | | - Isabelle Rydén
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Einar O Vik-Mo
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Hanne C Lie
- Department of Behavioural Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lars Asphaug
- Department of Research Support for Clinical Trials, Oslo University Hospital, Oslo, Norway
| | - Maziar Hervani
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Ingrid Kristensen
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Corina Silvia Rueegg
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Inge C Olsen
- Department of Research Support for Clinical Trials, Oslo University Hospital, Oslo, Norway
| | | | | | - Katja Werlenius
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Malin Blomstrand
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
85
|
Vollmuth P, Foltyn M, Huang RY, Galldiks N, Petersen J, Isensee F, van den Bent MJ, Barkhof F, Park JE, Park YW, Ahn SS, Brugnara G, Meredig H, Jain R, Smits M, Pope WB, Maier-Hein K, Weller M, Wen PY, Wick W, Bendszus M. Artificial intelligence (AI)-based decision support improves reproducibility of tumor response assessment in neuro-oncology: An international multi-reader study. Neuro Oncol 2023; 25:533-543. [PMID: 35917833 PMCID: PMC10013635 DOI: 10.1093/neuonc/noac189] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND To assess whether artificial intelligence (AI)-based decision support allows more reproducible and standardized assessment of treatment response on MRI in neuro-oncology as compared to manual 2-dimensional measurements of tumor burden using the Response Assessment in Neuro-Oncology (RANO) criteria. METHODS A series of 30 patients (15 lower-grade gliomas, 15 glioblastoma) with availability of consecutive MRI scans was selected. The time to progression (TTP) on MRI was separately evaluated for each patient by 15 investigators over two rounds. In the first round the TTP was evaluated based on the RANO criteria, whereas in the second round the TTP was evaluated by incorporating additional information from AI-enhanced MRI sequences depicting the longitudinal changes in tumor volumes. The agreement of the TTP measurements between investigators was evaluated using concordance correlation coefficients (CCC) with confidence intervals (CI) and P-values obtained using bootstrap resampling. RESULTS The CCC of TTP-measurements between investigators was 0.77 (95% CI = 0.69,0.88) with RANO alone and increased to 0.91 (95% CI = 0.82,0.95) with AI-based decision support (P = .005). This effect was significantly greater (P = .008) for patients with lower-grade gliomas (CCC = 0.70 [95% CI = 0.56,0.85] without vs. 0.90 [95% CI = 0.76,0.95] with AI-based decision support) as compared to glioblastoma (CCC = 0.83 [95% CI = 0.75,0.92] without vs. 0.86 [95% CI = 0.78,0.93] with AI-based decision support). Investigators with less years of experience judged the AI-based decision as more helpful (P = .02). CONCLUSIONS AI-based decision support has the potential to yield more reproducible and standardized assessment of treatment response in neuro-oncology as compared to manual 2-dimensional measurements of tumor burden, particularly in patients with lower-grade gliomas. A fully-functional version of this AI-based processing pipeline is provided as open-source (https://github.com/NeuroAI-HD/HD-GLIO-XNAT).
Collapse
Affiliation(s)
- Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martha Foltyn
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Jens Petersen
- Department of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Isensee
- Department of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.,Institutes of Neurology & Centre for Medical Image Computing, University College London, London, UK
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gianluca Brugnara
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hagen Meredig
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rajan Jain
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Klaus Maier-Hein
- Department of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
86
|
Tringale KR, Wolden SL, Karajannis M, Haque S, Pasquini L, Yildirim O, Rosenblum M, Benhamida JK, Cheung NK, Souweidane M, Basu EM, Pandit-Taskar N, Zanzonico PB, Humm JL, Kramer K. Outcomes of intraventricular 131-I-omburtamab and external beam radiotherapy in patients with recurrent medulloblastoma and ependymoma. J Neurooncol 2023; 162:69-78. [PMID: 36853490 PMCID: PMC10050019 DOI: 10.1007/s11060-022-04235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/30/2022] [Indexed: 03/01/2023]
Abstract
PURPOSE Intraventricular compartmental radioimmunotherapy (cRIT) with 131-I-omburtamab is a potential therapy for recurrent primary brain tumors that can seed the thecal space. These patients often previously received external beam radiotherapy (EBRT) to a portion or full craniospinal axis (CSI) as part of upfront therapy. Little is known regarding outcomes after re-irradiation as part of multimodality therapy including cRIT. This study evaluates predictors of response, patterns of failure, and radiologic events after cRIT. METHODS Patients with recurrent medulloblastoma or ependymoma who received 131-I-omburtamab on a prospective clinical trial were included. Extent of disease at cRIT initiation (no evidence of disease [NED] vs measurable disease [MD]) was assessed as associated with progression-free (PFS) and overall survival (OS) by Kaplan-Meier analysis. RESULTS All 27 patients (20 medulloblastoma, 7 ependymoma) had EBRT preceding cRIT: most (22, 81%) included CSI (median dose 2340 cGy, boost to 5400 cGy). Twelve (44%) also received EBRT at relapse as bridging to cRIT. There were no cases of radionecrosis. At cRIT initiation, 11 (55%) medulloblastoma and 3 (43%) ependymoma patients were NED, associated with improved PFS (p = 0.002) and OS (p = 0.048) in medulloblastoma. Most relapses were multifocal. With medium follow-up of 3.0 years (95% confidence interval, 1.8-7.4), 6 patients remain alive with NED. CONCLUSION For patients with medulloblastoma, remission at time of cRIT was associated with significantly improved survival outcomes. Relapses are often multifocal, particularly in the setting of measurable disease at cRIT initiation. EBRT is a promising tool to achieve NED status at cRIT initiation, with no cases of radiation necrosis.
Collapse
Affiliation(s)
- Kathryn R Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suzanne L Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthias Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luca Pasquini
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Onur Yildirim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jamal K Benhamida
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nai-Kong Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Souweidane
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen M Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neeta Pandit-Taskar
- Department of Nuclear Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pat B Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John L Humm
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
87
|
Mellinghoff IK, Lu M, Wen PY, Taylor JW, Maher EA, Arrillaga-Romany I, Peters KB, Ellingson BM, Rosenblum MK, Chun S, Le K, Tassinari A, Choe S, Toubouti Y, Schoenfeld S, Pandya SS, Hassan I, Steelman L, Clarke JL, Cloughesy TF. Vorasidenib and ivosidenib in IDH1-mutant low-grade glioma: a randomized, perioperative phase 1 trial. Nat Med 2023; 29:615-622. [PMID: 36823302 DOI: 10.1038/s41591-022-02141-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/21/2022] [Indexed: 02/25/2023]
Abstract
Vorasidenib and ivosidenib inhibit mutant forms of isocitrate dehydrogenase (mIDH) and have shown preliminary clinical activity against mIDH glioma. We evaluated both agents in a perioperative phase 1 trial to explore the mechanism of action in recurrent low-grade glioma (IGG) and select a molecule for phase 3 testing. Primary end-point was concentration of D-2-hydroxyglutarate (2-HG), the metabolic product of mIDH enzymes, measured in tumor tissue from 49 patients with mIDH1-R132H nonenhancing gliomas following randomized treatment with vorasidenib (50 mg or 10 mg once daily, q.d.), ivosidenib (500 mg q.d. or 250 mg twice daily) or no treatment before surgery. Tumor 2-HG concentrations were reduced by 92.6% (95% credible interval (CrI), 76.1-97.6) and 91.1% (95% CrI, 72.0-97.0) in patients treated with vorasidenib 50 mg q.d. and ivosidenib 500 mg q.d., respectively. Both agents were well tolerated and follow-up is ongoing. In exploratory analyses, 2-HG reduction was associated with increased DNA 5-hydroxymethylcytosine, reversal of 'proneural' and 'stemness' gene expression signatures, decreased tumor cell proliferation and immune cell activation. Vorasidenib, which showed brain penetrance and more consistent 2-HG suppression than ivosidenib, was advanced to phase 3 testing in patients with mIDH LGGs. Funded by Agios Pharmaceuticals, Inc. and Servier Pharmaceuticals LLC; ClinicalTrials.gov number NCT03343197.
Collapse
Affiliation(s)
| | - Min Lu
- Agios Pharmaceuticals, Cambridge, MA, USA
- Mersana Therapeutics, Cambridge, MA, USA
| | | | - Jennie W Taylor
- University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | - Saewon Chun
- University of California, Los Angeles, Los Angeles, CA, USA
- California University of Science and Medicine, Colton, CA, USA
| | - Kha Le
- Agios Pharmaceuticals, Cambridge, MA, USA
- Aligos Therapeutics, South San Francisco, CA, USA
| | - Ania Tassinari
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | - Sung Choe
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | - Youssef Toubouti
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
- Sage Therapeutics, Cambridge, MA, USA
| | - Steven Schoenfeld
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | - Shuchi S Pandya
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | - Islam Hassan
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | - Lori Steelman
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | | | | |
Collapse
|
88
|
Vladimirov N, Perlman O. Molecular MRI-Based Monitoring of Cancer Immunotherapy Treatment Response. Int J Mol Sci 2023; 24:3151. [PMID: 36834563 PMCID: PMC9959624 DOI: 10.3390/ijms24043151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Immunotherapy constitutes a paradigm shift in cancer treatment. Its FDA approval for several indications has yielded improved prognosis for cases where traditional therapy has shown limited efficiency. However, many patients still fail to benefit from this treatment modality, and the exact mechanisms responsible for tumor response are unknown. Noninvasive treatment monitoring is crucial for longitudinal tumor characterization and the early detection of non-responders. While various medical imaging techniques can provide a morphological picture of the lesion and its surrounding tissue, a molecular-oriented imaging approach holds the key to unraveling biological effects that occur much earlier in the immunotherapy timeline. Magnetic resonance imaging (MRI) is a highly versatile imaging modality, where the image contrast can be tailored to emphasize a particular biophysical property of interest using advanced engineering of the imaging pipeline. In this review, recent advances in molecular-MRI based cancer immunotherapy monitoring are described. Next, the presentation of the underlying physics, computational, and biological features are complemented by a critical analysis of the results obtained in preclinical and clinical studies. Finally, emerging artificial intelligence (AI)-based strategies to further distill, quantify, and interpret the image-based molecular MRI information are discussed in terms of perspectives for the future.
Collapse
Affiliation(s)
- Nikita Vladimirov
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
89
|
Fukuya Y, Tamura M, Nitta M, Saito T, Tsuzuki S, Koriyama S, Kuwano A, Kawamata T, Muragaki Y. Tumor volume and calcifications as indicators for preoperative differentiation of grade II/III diffuse gliomas. J Neurooncol 2023; 161:555-562. [PMID: 36749444 DOI: 10.1007/s11060-023-04244-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE To retrospectively evaluate preoperative clinical factors for their ability to preoperatively differentiate malignancy grades in patients with incipient supratentorial grade II/III diffuse gliomas. METHODS This retrospective study included 206 adult patients with incipient supratentorial grade II/III diffuse gliomas according to the 2016 World Health Organization classification of tumors of the central nervous system. The cohort included 136 men and 70 women, with a median age of 41 years. Preoperative factors included age, sex, presence of calcifications on computed tomography scans, and preoperative tumor volume measured using preoperative magnetic resonance imaging. RESULTS In patients with oligodendrogliomas (IDH-mutant and 1p/19q-codeleted), calcifications were significantly more frequent (p = 0.0034) and tumor volume was significantly larger (p < 0.001) in patients with grade III tumors than in those with grade II tumors. Moreover, in patients with IDH-mutant astrocytomas, preoperative tumor volume was significantly larger (p = 0.0042) in patients with grade III tumors than in those with grade II tumors. In contrast, none of the evaluated preoperative clinical factors were significantly different between the patients with grade II and III IDH-wildtype astrocytomas. CONCLUSION In adult patients with suspicison incipient supratentorial grade II/III diffuse gliomas, presence of calcifications and larger preoperative tumor volume might be used as preoperative indices to differentiate between malignancy grades II and III in oligodendrogliomas (IDH-mutant and 1p/19q-codeleted) and larger preoperative tumor volume might have similar utility in IDH-mutant astrocytomas.
Collapse
Affiliation(s)
- Yasukazu Fukuya
- Department of Radiology, Kobe Comprehensive Medical College, 7-1-21 Tomugaoka, Suma-ku, Kobe-shi, Hyogo 654-0142, Japan
| | - Manabu Tamura
- Faculty of Advanced Techno‑Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan. .,Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan.
| | - Masayuki Nitta
- Faculty of Advanced Techno‑Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| | - Taiichi Saito
- Faculty of Advanced Techno‑Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| | - Shunsuke Tsuzuki
- Faculty of Advanced Techno‑Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| | - Atsushi Kuwano
- Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| | - Yoshihiro Muragaki
- Faculty of Advanced Techno‑Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, 8‑1 Kawada‑cho, Shinjuku‑ku, Tokyo 162‑8666, Japan
| |
Collapse
|
90
|
Pasquini L, Peck KK, Tao A, Del Ferraro G, Correa DD, Jenabi M, Kobylarz E, Zhang Z, Brennan C, Tabar V, Makse H, Holodny AI. Longitudinal Evaluation of Brain Plasticity in Low-Grade Gliomas: fMRI and Graph-Theory Provide Insights on Language Reorganization. Cancers (Basel) 2023; 15:cancers15030836. [PMID: 36765795 PMCID: PMC9913404 DOI: 10.3390/cancers15030836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Language reorganization may represent an adaptive phenomenon to compensate tumor invasion of the dominant hemisphere. However, the functional changes over time underlying language plasticity remain unknown. We evaluated language function in patients with low-grade glioma (LGG), using task-based functional MRI (tb-fMRI), graph-theory and standardized language assessment. We hypothesized that functional networks obtained from tb-fMRI would show connectivity changes over time, with increased right-hemispheric participation. We recruited five right-handed patients (4M, mean age 47.6Y) with left-hemispheric LGG. Tb-fMRI and language assessment were conducted pre-operatively (pre-op), and post-operatively: post-op1 (4-8 months), post-op2 (10-14 months) and post-op3 (16-23 months). We computed the individual functional networks applying optimal percolation thresholding. Language dominance and hemispheric connectivity were quantified by laterality indices (LI) on fMRI maps and connectivity matrices. A fixed linear mixed model was used to assess the intra-patient correlation trend of LI values over time and their correlation with language performance. Individual networks showed increased inter-hemispheric and right-sided connectivity involving language areas homologues. Two patterns of language reorganization emerged: Three/five patients demonstrated a left-to-codominant shift from pre-op to post-op3 (type 1). Two/five patients started as atypical dominant at pre-op, and remained unchanged at post-op3 (type 2). LI obtained from tb-fMRI showed a significant left-to-right trend in all patients across timepoints. There were no significant changes in language performance over time. Type 1 language reorganization may be related to the treatment, while type 2 may be tumor-induced, since it was already present at pre-op. Increased inter-hemispheric and right-side connectivity may represent the initial step to develop functional plasticity.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Neuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, Italy
- Correspondence:
| | - Kyung K. Peck
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alice Tao
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gino Del Ferraro
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Denise D. Correa
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Mehrnaz Jenabi
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erik Kobylarz
- Department of Neurology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Zhigang Zhang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cameron Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hernán Makse
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
| | - Andrei I. Holodny
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
91
|
Miller JJ, Gonzalez Castro LN, McBrayer S, Weller M, Cloughesy T, Portnow J, Andronesi O, Barnholtz-Sloan JS, Baumert BG, Berger MS, Bi WL, Bindra R, Cahill DP, Chang SM, Costello JF, Horbinski C, Huang RY, Jenkins RB, Ligon KL, Mellinghoff IK, Nabors LB, Platten M, Reardon DA, Shi DD, Schiff D, Wick W, Yan H, von Deimling A, van den Bent M, Kaelin WG, Wen PY. Isocitrate dehydrogenase (IDH) mutant gliomas: A Society for Neuro-Oncology (SNO) consensus review on diagnosis, management, and future directions. Neuro Oncol 2023; 25:4-25. [PMID: 36239925 PMCID: PMC9825337 DOI: 10.1093/neuonc/noac207] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) mutant gliomas are the most common adult, malignant primary brain tumors diagnosed in patients younger than 50, constituting an important cause of morbidity and mortality. In recent years, there has been significant progress in understanding the molecular pathogenesis and biology of these tumors, sparking multiple efforts to improve their diagnosis and treatment. In this consensus review from the Society for Neuro-Oncology (SNO), the current diagnosis and management of IDH-mutant gliomas will be discussed. In addition, novel therapies, such as targeted molecular therapies and immunotherapies, will be reviewed. Current challenges and future directions for research will be discussed.
Collapse
Affiliation(s)
- Julie J Miller
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Nicolas Gonzalez Castro
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Samuel McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, Texas, 75235, USA
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | | | - Jana Portnow
- Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ovidiu Andronesi
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jill S Barnholtz-Sloan
- Informatics and Data Science (IDS), Center for Biomedical Informatics and Information Technology (CBIIT), Trans-Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD, USA
| | - Brigitta G Baumert
- Cantonal Hospital Graubunden, Institute of Radiation-Oncology, Chur, Switzerland
| | - Mitchell S Berger
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Wenya Linda Bi
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ranjit Bindra
- Department of Therapeutic Radiology, Brain Tumor Center, Yale School of Medicine, New Haven, CT, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan M Chang
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Raymond Y Huang
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert B Jenkins
- Individualized Medicine Research, Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55901, USA
| | - Keith L Ligon
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ingo K Mellinghoff
- Department of Neurology, Evnin Family Chair in Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - L Burt Nabors
- Department of Neurology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - David A Reardon
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Diana D Shi
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David Schiff
- Division of Neuro-Oncology, Department of Neurology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Wolfgang Wick
- Neuro-Oncology at the German Cancer Research Center (DKFZ), Program Chair of Neuro-Oncology at the National Center for Tumor Diseases (NCT), and Neurology and Chairman at the Neurology Clinic in Heidelberg, Heidelberg, Germany
| | - Hai Yan
- Genetron Health Inc, Gaithersburg, Maryland 20879, USA
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, and, Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and, DKTK, INF 224, 69120 Heidelberg, Germany
| | - Martin van den Bent
- Brain Tumour Centre, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| | - William G Kaelin
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
92
|
Ferroli P, Restelli F, Bertolini G, Monti E, Falco J, Bonomo G, Tramacere I, Pollo B, Calatozzolo C, Patanè M, Schiavolin S, Broggi M, Acerbi F, Erbetta A, Esposito S, Mazzapicchi E, La Corte E, Vetrano IG, Broggi G, Schiariti M. Are Thalamic Intrinsic Lesions Operable? No-Man's Land Revisited by the Analysis of a Large Retrospective, Mono-Institutional, Cohort. Cancers (Basel) 2023; 15:cancers15020361. [PMID: 36672311 PMCID: PMC9856718 DOI: 10.3390/cancers15020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Thalamic gliomas represent a heterogeneous subset of deep-seated lesions for which surgical removal is advocated, although clear prognostic factors linked to advantages in performance status or overall survival are still lacking. We reviewed our Institutional Cancer Registry, identifying patients who underwent surgery for thalamic gliomas between 2006 and 2020. Associations between possible prognostic factors such as tumor volume, grade, the extent of resection and performance status (PS), and overall survival (OS) were evaluated using univariate and multivariate survival analyses. We found 56 patients: 31 underwent surgery, and 25 underwent biopsy. Compared to biopsy, surgery resulted positively associated with an increase in the OS (hazard ratio, HR, at multivariate analysis 0.30, 95% confidence interval, CI, 0.12-0.75). Considering the extent of resection (EOR), obtaining GTR/STR appeared to offer an OS advantage in high-grade gliomas (HGG) patients submitted to surgical resection if compared to biopsy, although we did not find statistical significance at multivariate analysis (HR 0.53, 95% CI 0.17-1.59). Patients with a stable 3-month KPS after surgery demonstrated to have a better prognosis in terms of OS if compared to biopsy (multivariate HR 0.17, 95% CI, 0.05-0.59). Age and histological grades were found to be prognostic factors for this condition (p = 0.04 and p = 0.004, respectively, chi-square test). Considering the entire cohort, p53 positivity (univariate HR 2.21, 95% CI 1.01-4.82) and ATRX positivity (univariate HR 2.69, 95% CI 0.92-7.83) resulted associated with a worse prognosis in terms of OS. In this work, we demonstrated that surgery aimed at tumor resection might offer a stronger survival advantage when a stable 3-month KPS after surgery is achieved.
Collapse
Affiliation(s)
- Paolo Ferroli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Francesco Restelli
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-02-2394-2309; Fax: +39-02-7063-5017
| | - Giacomo Bertolini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Emanuele Monti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Jacopo Falco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giulio Bonomo
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Neurological Surgery, Policlinico “G. Rodolico–S. Marco”, University Hospital, 95123 Catania, Italy
| | - Irene Tramacere
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Bianca Pollo
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Chiara Calatozzolo
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Monica Patanè
- Unit of Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Silvia Schiavolin
- Public Health and Disability Unit–Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Morgan Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Alessandra Erbetta
- Unit of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Silvia Esposito
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Elio Mazzapicchi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Emanuele La Corte
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Neurosurgery, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Ignazio Gaspare Vetrano
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Giovanni Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- IEN Foundation, 20100 Milan, Italy
| | - Marco Schiariti
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
93
|
de la Fuente MI, Colman H, Rosenthal M, Van Tine BA, Levacic D, Walbert T, Gan HK, Vieito M, Milhem MM, Lipford K, Forsyth S, Guichard SM, Mikhailov Y, Sedkov A, Brevard J, Kelly PF, Mohamed H, Monga V. Olutasidenib (FT-2102) in patients with relapsed or refractory IDH1-mutant glioma: A multicenter, open-label, phase Ib/II trial. Neuro Oncol 2023; 25:146-156. [PMID: 35639513 PMCID: PMC9825299 DOI: 10.1093/neuonc/noac139] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Olutasidenib (FT-2102) is a highly potent, orally bioavailable, brain-penetrant and selective inhibitor of mutant isocitrate dehydrogenase 1 (IDH1). The aim of the study was to determine the safety and clinical activity of olutasidenib in patients with relapsed/refractory gliomas harboring an IDH1R132X mutation. METHODS This was an open-label, multicenter, nonrandomized, phase Ib/II clinical trial. Eligible patients (≥18 years) had histologically confirmed IDH1R132X-mutated glioma that relapsed or progressed on or following standard therapy and had measurable disease. Patients received olutasidenib, 150 mg orally twice daily (BID) in continuous 28-day cycles. The primary endpoints were dose-limiting toxicities (DLTs) (cycle 1) and safety in phase I and objective response rate using the Modified Response Assessment in Neuro-Oncology criteria in phase II. RESULTS Twenty-six patients were enrolled and followed for a median 15.1 months (7.3‒19.4). No DLTs were observed in the single-agent glioma cohort and the pharmacokinetic relationship supported olutasidenib 150 mg BID as the recommended phase II dose. In the response-evaluable population, disease control rate (objective response plus stable disease) was 48%. Two (8%) patients demonstrated a best response of partial response and eight (32%) had stable disease for at least 4 months. Grade 3‒4 adverse events (≥10%) included alanine aminotransferase increased and aspartate aminotransferase increased (three [12%], each). CONCLUSIONS Olutasidenib 150 mg BID was well tolerated in patients with relapsed/refractory gliomas harboring an IDH1R132X mutation and demonstrated preliminary evidence of clinical activity in this heavily pretreated population.
Collapse
Affiliation(s)
- Macarena I de la Fuente
- Sylvester Comprehensive Cancer Center and Department of Neurology, University of Miami, Miami, Florida, USA
| | - Howard Colman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Mark Rosenthal
- Peter MacCallum Cancer Centre Melbourne, Victoria, Australia
| | - Brian A Van Tine
- Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Danijela Levacic
- Baylor and Scott White Vasicek Cancer Center, Baylor University Temple, Temple, Texas, USA
| | - Tobias Walbert
- Henry Ford Cancer Institute, Henry Ford Health System and Wayne State University, Detroit, Michigan, USA
| | - Hui K Gan
- Olivia Newton-John Cancer Wellness and Research Centre Austin Hospital, Heidelberg, Victoria, Australia
| | - Maria Vieito
- Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Mohammed M Milhem
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | - Julie Brevard
- Forma Therapeutics, Inc., Watertown, Massachusetts, USA
| | | | | | - Varun Monga
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
94
|
Di Stefano AL, Nichelli L, Berzero G, Valabregue R, Touat M, Capelle L, Pontoizeau C, Bielle F, Lerond J, Giry M, Villa C, Baussart B, Dehais C, Galanaud D, Baldini C, Savatovsky J, Dhermain F, Deelchand DK, Ottolenghi C, Lehéricy S, Marjańska M, Branzoli F, Sanson M. In Vivo 2-Hydroxyglutarate Monitoring With Edited MR Spectroscopy for the Follow-up of IDH-Mutant Diffuse Gliomas: The IDASPE Prospective Study. Neurology 2023; 100:e94-e106. [PMID: 36180241 PMCID: PMC9827125 DOI: 10.1212/wnl.0000000000201137] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 07/05/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND OBJECTIVES D-2-hydroxyglutarate (2HG) characterizes IDH-mutant gliomas and can be detected and quantified with edited MRS (MEGA-PRESS). In this study, we investigated the clinical, radiologic, and molecular parameters affecting 2HG levels. METHODS MEGA-PRESS data were acquired in 71 patients with glioma (24 untreated, 47 treated) on a 3 T system. Eighteen patients were followed during cytotoxic (n = 12) or targeted (n = 6) therapy. 2HG was measured in tumor samples using gas chromatography coupled to mass spectrometry (GCMS). RESULTS MEGA-PRESS detected 2HG with a sensitivity of 95% in untreated patients and 62% in treated patients. Sensitivity depended on tumor volume (>27 cm3; p = 0.02), voxel coverage (>75%; p = 0.002), and expansive presentation (defined by equal size of T1 and FLAIR abnormalities, p = 0.04). 2HG levels were positively correlated with IDH-mutant allelic fraction (p = 0.03) and total choline levels (p < 0.001) and were higher in IDH2-mutant compared with IDH1 R132H-mutant and non-R132H IDH1-mutant patients (p = 0.002). In patients receiving IDH inhibitors, 2HG levels decreased within a few days, demonstrating the on-target effect of the drug, but 2HG level decrease did not predict tumor response. Patients receiving cytotoxic treatments showed a slower decrease in 2HG levels, consistent with tumor response and occurring before any tumor volume change on conventional MRI. At progression, 1p/19q codeleted gliomas, but not the non-codeleted, showed detectable in vivo 2HG levels, pointing out to different modes of progression characterizing these 2 entities. DISCUSSION MEGA-PRESS edited MRS allows in vivo monitoring of 2-hydroxyglutarate, confirming efficacy of IDH inhibition and suggests different patterns of tumor progression in astrocytomas compared with oligodendrogliomas.
Collapse
Affiliation(s)
- Anna Luisa Di Stefano
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Lucia Nichelli
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Giulia Berzero
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Romain Valabregue
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Mehdi Touat
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Laurent Capelle
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Clément Pontoizeau
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Franck Bielle
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Julie Lerond
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Marine Giry
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Chiara Villa
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Bertrand Baussart
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Caroline Dehais
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Damien Galanaud
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Capucine Baldini
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Julien Savatovsky
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Frédéric Dhermain
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Dinesh K Deelchand
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Chris Ottolenghi
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Stéphane Lehéricy
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Małgorzata Marjańska
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Francesca Branzoli
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Marc Sanson
- From the Sorbonne Université (A.L.D.S.,M.D.P.D., L.N., M.D.P.D., J.L., M.G., S.L., Francesca Branzoli), Inserm, CNRS, Paris Brain Institute-Institut du Cerveau (ICM), Paris, France. Equipe labellisée LNCC; Service de Neurologie 2-Mazarin (A.L.D.S.,M.D.P.D., M.D.P.D., C.D.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Neuroradiologie Diagnostique et Interventionnelle (L.N., D.G., S.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Neurology Unit (G.B.), IRCCS San Raffaele Scientific Institute, Milan, Italy; Centre de NeuroImagerie de Recherche (CENIR) (R.V., S.L., Francesca Branzoli), Institut du Cerveau (ICM), Paris, France; Service de Neurochirurgie (L.C., B.B.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Service de Biochimie Métabolique (C.P.), AP-HP, Hôpital Necker, Paris, France; Laboratoire R Escourolle (J.L.), AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France; Drug Development Department (DITEP) (C.B.), Gustave Roussy, Villejuif, France; Service de Radiologie (J.S.), Fondation Ophtalmologique Adolphe de Rothschild, Paris, France; Radiotherapy Department (F.D.), Gustave Roussy University Hospital, Villejuif, Cedex, France; Center for Magnetic Resonance Research (D.K.D., M.M.), Department of Radiology, Minneapolis, MN; and OncoNeuroTek Tumor Bank (M.D.P.D.), Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.
| |
Collapse
|
95
|
Ramakrishnan D, von Reppert M, Krycia M, Sala M, Mueller S, Aneja S, Nabavizadeh A, Galldiks N, Lohmann P, Raji C, Ikuta I, Memon F, Weinberg BD, Aboian MS. Evolution and implementation of radiographic response criteria in neuro-oncology. Neurooncol Adv 2023; 5:vdad118. [PMID: 37860269 PMCID: PMC10584081 DOI: 10.1093/noajnl/vdad118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Radiographic response assessment in neuro-oncology is critical in clinical practice and trials. Conventional criteria, such as the MacDonald and response assessment in neuro-oncology (RANO) criteria, rely on bidimensional (2D) measurements of a single tumor cross-section. Although RANO criteria are established for response assessment in clinical trials, there is a critical need to address the complexity of brain tumor treatment response with multiple new approaches being proposed. These include volumetric analysis of tumor compartments, structured MRI reporting systems like the Brain Tumor Reporting and Data System, and standardized approaches to advanced imaging techniques to distinguish tumor response from treatment effects. In this review, we discuss the strengths and limitations of different neuro-oncology response criteria and summarize current research findings on the role of novel response methods in neuro-oncology clinical trials and practice.
Collapse
Affiliation(s)
- Divya Ramakrishnan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Marc von Reppert
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mark Krycia
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Matthew Sala
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Sabine Mueller
- Department of Neurology, Neurosurgery, and Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Sanjay Aneja
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ali Nabavizadeh
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich, Juelich, Germany
| | - Cyrus Raji
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Ichiro Ikuta
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, USA
| | - Fatima Memon
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Brent D Weinberg
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mariam S Aboian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
96
|
Radiomics-Based Machine Learning to Predict Recurrence in Glioma Patients Using Magnetic Resonance Imaging. J Comput Assist Tomogr 2023; 47:129-135. [PMID: 36194851 DOI: 10.1097/rct.0000000000001386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Recurrence is a major factor in the poor prognosis of patients with glioma. The aim of this study was to predict glioma recurrence using machine learning based on radiomic features. METHODS We recruited 77 glioma patients, consisting of 57 newly diagnosed patients and 20 patients with recurrence. After extracting the radiomic features from T2-weighted images, the data set was randomly divided into training (58 patients) and testing (19 patients) cohorts. An automated machine learning method (the Tree-based Pipeline Optimization Tool) was applied to generate 10 independent recurrence prediction models. The final model was determined based on the area under the curve (AUC) and average specificity. Moreover, an independent validation set of 20 patients with glioma was used to verify the model performance. RESULTS Recurrence in glioma patients was successfully predicting by machine learning using radiomic features. Among the 10 recurrence prediction models, the best model achieved an accuracy of 0.81, an AUC value of 0.85, and a specificity of 0.69 in the testing cohort, but an accuracy of 0.75 and an AUC value of 0.87 in the independent validation set. CONCLUSIONS Our algorithm that is generated by machine learning exhibits promising power and may predict recurrence noninvasively, thereby offering potential value for the early development of interventions to delay or prevent recurrence in glioma patients.
Collapse
|
97
|
A Multi-Disciplinary Approach to Diagnosis and Treatment of Radionecrosis in Malignant Gliomas and Cerebral Metastases. Cancers (Basel) 2022; 14:cancers14246264. [PMID: 36551750 PMCID: PMC9777318 DOI: 10.3390/cancers14246264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation necrosis represents a potentially devastating complication after radiation therapy in brain tumors. The establishment of the diagnosis and especially the differentiation from progression and pseudoprogression with its therapeutic implications requires interdisciplinary consent and monitoring. Herein, we want to provide an overview of the diagnostic modalities, therapeutic possibilities and an outlook on future developments to tackle this challenging topic. The aim of this report is to provide an overview of the current morphological, functional, metabolic and evolving imaging tools described in the literature in order to (I) identify the best criteria to distinguish radionecrosis from tumor recurrence after the radio-oncological treatment of malignant gliomas and cerebral metastases, (II) analyze the therapeutic possibilities and (III) give an outlook on future developments to tackle this challenging topic. Additionally, we provide the experience of a tertiary tumor center with this important issue in neuro-oncology and provide an institutional pathway dealing with this problem.
Collapse
|
98
|
Li M, Wang J, Chen X, Dong G, Zhang W, Shen S, Jiang H, Yang C, Zhang X, Zhao X, Zhu Q, Li M, Cui Y, Ren X, Lin S. The sinuous, wave-like intratumoral-wall sign is a sensitive and specific radiological biomarker for oligodendrogliomas. Eur Radiol 2022; 33:4440-4452. [PMID: 36520179 DOI: 10.1007/s00330-022-09314-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the clinical utility of the sinuous, wave-like intratumoral-wall (SWITW) sign on T2WI in diagnosing isocitrate dehydrogenase (IDH) mutant and 1p/19q codeleted (IDHmut-Codel) oligodendrogliomas, for which a relatively conservative resection strategy might be sufficient due to a better response to chemoradiotherapy and favorable prognosis. METHODS Imaging data from consecutive adult patients with diffuse lower-grade gliomas (LGGs, histological grades 2-3) in Beijing Tiantan Hospital (December 1, 2013, to October 31, 2021, BTH set, n = 711) and the Cancer Imaging Archive (TCIA) LGGs set (n = 117) were used to develop and validate our findings. Two independent observers assessed the SWITW sign and some well-reported discriminative radiological features to establish a practical diagnostic strategy. RESULTS The SWITW sign showed satisfying sensitivity (0.684 and 0.722 for BTH and TCIA sets) and specificity (0.938 and 0.914 for BTH and TCIA sets) in defining IDHmut-Codels, and the interobserver agreement was substantial (κ 0.718 and 0.756 for BTH and TCIA sets). Compared to calcification, the SWITW sign improved the sensitivity by 0.28 (0.404 to 0.684) in the BTH set, and 81.0% (277/342) of IDHmut-Codel cases demonstrated SWITW and/ or calcification positivity. Combining the SWITW sign, calcification, low ADC values, and other discriminative features, we established a concise and reliable diagnostic protocol for IDHmut-Codels. CONCLUSIONS The SWITW sign was a sensitive and specific imaging biomarker for IDHmut-Codels. The integrated protocol provided an explicable, efficient, and reproducible method for precise preoperative diagnosis, which was essential to guide individualized surgical plan-making. KEY POINTS • The SWITW sign was a sensitive and specific imaging biomarker for IDHmut-Codel oligodendrogliomas. • The SWITW sign was more sensitive than calcification and an integrated strategy could improve diagnostic sensitivity for IDHmut-Codel oligodendrogliomas. • Combining SWITW, calcification, low ADC values, and other discriminative features could make a precise preoperative diagnosis for IDHmut-Codel oligodendrogliomas.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jincheng Wang
- Department of Radiology, Peking University Cancer Hospital, Beijing, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weiwei Zhang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaoping Shen
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Chuanwei Yang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaokang Zhang
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qinghui Zhu
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Song Lin
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Center of Brain Tumor, Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
- Department of Neurosurgical Oncology, Beijing Tiantan Hospital, Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Brain Tumor, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing, 100070, China.
| |
Collapse
|
99
|
Ohno M, Kitano S, Satomi K, Yoshida A, Miyakita Y, Takahashi M, Yanagisawa S, Tamura Y, Ichimura K, Narita Y. Assessment of radiographic and prognostic characteristics of programmed death-ligand 1 expression in high-grade gliomas. J Neurooncol 2022; 160:463-472. [DOI: 10.1007/s11060-022-04165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
|
100
|
Wang L, Li X, Chen T, Zhang C, Shi J, Feng H, Li F. Risk factors for early progression of diffuse low-grade glioma in adults. Chin Neurosurg J 2022; 8:25. [PMID: 36180935 PMCID: PMC9526265 DOI: 10.1186/s41016-022-00295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/31/2022] [Indexed: 11/06/2022] Open
Abstract
Background To explore the risk factors for early progression of diffuse low-grade glioma in adults. Methods A retrospective analysis of pathologic and clinical data of patients diagnosed with diffuse low-grade gliomas at Southwest Hospital between January 2010 and December 2014. The progression-free survival (PFS) less than 60 months was classified as the early progress group, and the PFS greater than 60 months was the control group for comparative analysis. Results A total of 138 patients were included in this study, including 94 cases of astrocytoma and 44 cases of oligodendroglioma. There were 63 cases with 100% resection, 56 cases with 90–100% resection degree, and 19 cases with resection degree < 90%. The average follow-up time was 60 months, of which 80 patients progressed and 58 patients did not progress. The average progression-free survival was 61 months. The median progression-free survival was 60 months. There were 68 patients with PFS≤ 60 months and 70 patients with PFS > 60 months. The two groups were compared for statistical analysis. In univariate analysis, there were significant differences in tumor subtype (p = 0.005), range (p = 0.011), volume (p = 0.005), location (p = 0.000), and extent of resection (p = 0.000). Multifactor analysis shows tumor location (HR = 4.549, 95% CI: 1.324–15.634, p = 0.016) and tumor subtype (HR = 3.347, 95% CI = 1.373–8.157, p = 0.008), and imcomplete resection is factors influencing early progression of low-grade glioma. Conclusions Low-grade gliomas involving deep location such as basal ganglia, inner capsule, and corpus callosum are more likely to progress early, while incomplete resection is a risk factor in early progression of astrocytoma.
Collapse
Affiliation(s)
- Long Wang
- grid.416208.90000 0004 1757 2259Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Xuegang Li
- grid.416208.90000 0004 1757 2259Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Tunan Chen
- grid.416208.90000 0004 1757 2259Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Chao Zhang
- grid.416208.90000 0004 1757 2259Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Jiantao Shi
- grid.416208.90000 0004 1757 2259Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Hua Feng
- grid.416208.90000 0004 1757 2259Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Fei Li
- grid.416208.90000 0004 1757 2259Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| |
Collapse
|