51
|
Chailapakul P, Maloney O, Hirakawa H, Fujimori A, Kitamura H, Kato TA. The contribution of high-LET track to DNA damage formation and cell death for Monoenergy and SOBP carbon ion irradiation. Biochem Biophys Res Commun 2024; 696:149500. [PMID: 38219488 DOI: 10.1016/j.bbrc.2024.149500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Carbon ion radiotherapy (CIRT) is a heavy ion charge particle therapy with 29 years of prominent use. Despite advantages like high relative biological effectiveness (RBE), improved quality of life, and reduced treatment time, challenges persist, especially regarding heavy nuclear fragments. Our research addresses these challenges in horizontal irradiation, aiming to comprehend Monoenergetic and Spread-Out Bragg peak (SOBP) carbon ion beam trajectories using cell survival analysis and visualizing biological effects through DNA damage (γ-H2AX). This reveals repair-related protein foci near the Bragg peak. CR-39, a plastic nuclear track detector, was explored to understand high-linear energy transfer (LET) tracks and radiation quality near the Bragg peak. Findings unveil high-LET DNA damage signatures through aligned γ-H2AX foci, correlating with LET values in SOBP. CR-39 visualized high-LET particle exposure, indicating comet-type etch-pits at the Bragg peak and suggesting carbon ion fragmentation. Unexpectedly, dot-type etch-pits in irradiated and post-Bragg peak regions indicated high-LET neutron production. This investigation highlights the intricate interplay of carbon ion beams, stressing the importance of understanding LET variations, DNA damage patterns, and undesired secondary exposure.
Collapse
Affiliation(s)
- Piyawan Chailapakul
- Department of Environmental & Radiological Health Sciences, Colorado State University, USA
| | - Olivia Maloney
- Department of Environmental & Radiological Health Sciences, Colorado State University, USA
| | - Hirokazu Hirakawa
- Institute for Quantum Science, National Institutes for Quantum Science and Technology, Japan
| | - Akira Fujimori
- Institute for Quantum Science, National Institutes for Quantum Science and Technology, Japan
| | - Hisashi Kitamura
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, Japan
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, USA.
| |
Collapse
|
52
|
Masuda T, Inaniwa T. Effects of cellular radioresponse on therapeutic helium-, carbon-, oxygen-, and neon-ion beams: a simulation study. Phys Med Biol 2024; 69:045003. [PMID: 38232394 DOI: 10.1088/1361-6560/ad1f87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Objective. Helium, oxygen, and neon ions in addition to carbon ions will be used for hypofractionated multi-ion therapy to maximize the therapeutic effectiveness of charged-particle therapy. To use new ions in cancer treatments based on the dose-fractionation protocols established in carbon-ion therapy, this study examined the cell-line-specific radioresponse to therapeutic helium-, oxygen-, and neon-ion beams within wide dose ranges.Approach. Response of cells to ions was described by the stochastic microdosimetric kinetic model. First, simulations were made for the irradiation of one-field spread-out Bragg peak beams in water with helium, carbon, oxygen, and neon ions to achieve uniform survival fractions at 37%, 10%, and 1% for human salivary gland tumor (HSG) cells, the reference cell line for the Japanese relative biological effectiveness weighted dose system, within the target region defined at depths from 90 to 150 mm. The HSG cells were then replaced by other cell lines with different radioresponses to evaluate differences in the biological dose distributions of each ion beam with respect to those of carbon-ion beams.Main results. For oxygen- and neon-ion beams, the biological dose distributions within the target region were almost equivalent to those of carbon-ion beams, differing by less than 5% in most cases. In contrast, for helium-ion beams, the biological dose distributions within the target region were largely different from those of carbon-ion beams, more than 10% in several cases.Significance.From the standpoint of tumor control evaluated by the clonogenic cell survival, this study suggests that the dose-fractionation protocols established in carbon-ion therapy could be reasonably applied to oxygen- and neon-ion beams while some modifications in dose prescription would be needed when the protocols are applied to helium-ion beams. This study bridges the gap between carbon-ion therapy and hypofractionated multi-ion therapy.
Collapse
Affiliation(s)
- Takamitsu Masuda
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
53
|
Jang JY, Kim K, Chen M, Akimoto T, Wang MLC, Kim M, Kim K, Lee TH, Yoo GS, Park HC. A meta-analysis comparing efficacy and safety between proton beam therapy versus carbon ion radiotherapy. Cancer Med 2024; 13:e7023. [PMID: 38396380 PMCID: PMC10891363 DOI: 10.1002/cam4.7023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND This study aimed to compare the outcomes of proton beam therapy (PBT) and carbon ion radiotherapy (CIRT) by a systematic review and meta-analysis of the existing clinical evidence. METHODS A systematic literature search was performed to identify studies comparing the clinical outcomes of PBT and CIRT. The included studies were required to report oncological outcomes (local control [LC], progression-free survival [PFS], or overall survival [OS]) or adverse events. RESULTS Eighteen articles comprising 1857 patients (947 treated with PBT and 910 treated with CIRT) were included in the analysis. The pooled analysis conducted for the overall population yielded average hazard ratios of 0.690 (95% confidence interval (CI), 0.493-0.967, p = 0.031) for LC, 0.952 (95% CI, 0.604-1.500, p = 0.590) for PFS, and 1.183 (0.872-1.607, p = 0.281) for OS with reference to CIRT. The subgroup analyses included patients treated in the head and neck, areas other than the head and neck, and patients with chordomas and chondrosarcomas. These analyses revealed no significant differences in most outcomes, except for LC in the subgroup of patients treated in areas other than the head and neck. Adverse event rates were comparable in both groups, with an odds ratio (OR) of 1.097 (95% CI, 0.744-1.616, p = 0.641). Meta-regression analysis for possible heterogeneity did not demonstrate a significant association between treatment outcomes and the ratio of biologically effective doses between modalities. CONCLUSION This study highlighted the comparability of PBT and CIRT in terms of oncological outcomes and adverse events.
Collapse
Affiliation(s)
- Jeong Yun Jang
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Kangpyo Kim
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Miao‐Fen Chen
- Department of Radiation OncologyChang Gung Memorial HospitalTaoyuanTaiwan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle TherapyNational Cancer Center Hospital EastChibaJapan
- Department of Radiation OncologyNational Cancer Center Hospital EastChibaJapan
| | | | - Min‐Ji Kim
- Biomedical Statistics Center, Research Institute for Future MedicineSamsung Medical CenterSeoulRepublic of Korea
| | - Kyunga Kim
- Biomedical Statistics Center, Research Institute for Future MedicineSamsung Medical CenterSeoulRepublic of Korea
| | - Tae Hoon Lee
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Radiation OncologyChungbuk National University HospitalCheongjuRepublic of Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| |
Collapse
|
54
|
Imaizumi A, Hirayama R, Ikoma Y, Nitta N, Obata T, Hasegawa S. Neon ion ( 20 Ne 10 + ) charged particle beams manipulate rapid tumor reoxygenation in syngeneic mouse models. Cancer Sci 2024; 115:227-236. [PMID: 37994570 PMCID: PMC10823265 DOI: 10.1111/cas.16017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
Charged particle beams induce various biological effects by creating high-density ionization through the deposition of energy along the beam's trajectory. Charged particle beams composed of neon ions (20 Ne10+ ) hold great potential for biomedical applications, but their physiological effects on living organs remain uncertain. In this study, we demonstrate that neon-ion beams expedite the process of reoxygenation in tumor models. We simulated mouse SCCVII syngeneic tumors and exposed them to either X-ray or neon-ion beams. Through an in vivo radiobiological assay, we observed a reduction in the hypoxic fraction in tumors irradiated with 8.2 Gy of neon-ion beams 30 h after irradiation compared to 6 h post-irradiation. Conversely, no significant changes in hypoxia were observed in tumors irradiated with 8.2 Gy of X-rays. To directly quantify hypoxia in the irradiated living tumors, we utilized dynamic contrast-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging. These combined MRI techniques revealed that the non-hypoxic fraction in neon-irradiated tumors was significantly higher than that in X-irradiated tumors (69.53% vs. 47.67%). Simultaneously, the hypoxic fraction in neon-ion-irradiated tumors (2.77%) was lower than that in X-irradiated tumors (4.27%) and non-irradiated tumors (32.44%). These results support the notion that accelerated reoxygenation occurs more effectively with neon-ion beam irradiation compared to X-rays. These findings shed light on the physiological effects of neon-ion beams on tumors and their microenvironment, emphasizing the therapeutic advantage of using neon-ion charged particle beams to manipulate tumor reoxygenation.
Collapse
Affiliation(s)
- Akiko Imaizumi
- Department of Molecular Imaging and TheranosticsNational Institutes for Quantum Science and TechnologyChibaJapan
- Present address:
Department of Dental Radiology and Radiation OncologyTokyo Medical and Dental UniversityTokyoJapan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy ResearchNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Yoko Ikoma
- Department of Molecular Imaging and TheranosticsNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Nobuhiro Nitta
- Department of Molecular Imaging and TheranosticsNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Takayuki Obata
- Department of Molecular Imaging and TheranosticsNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Sumitaka Hasegawa
- Department of Charged Particle Therapy ResearchNational Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
55
|
Kohno R, Koto M, Ikawa H, Lee SH, Sato K, Hashimoto M, Inaniwa T, Shirai T. High-Linear Energy Transfer Irradiation in Clinical Carbon-Ion Beam With the Linear Energy Transfer Painting Technique for Patients With Head and Neck Cancer. Adv Radiat Oncol 2024; 9:101317. [PMID: 38260238 PMCID: PMC10801634 DOI: 10.1016/j.adro.2023.101317] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/10/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose Dose-averaged linear energy transfer (LETd) is one of the important factors in determining clinical outcomes for carbon-ion radiation therapy. Innovative LET painting (LP) has been developed as an advanced form of conventional intensity modulated carbon-ion radiation therapy (IMIT) at the QST Hospital. The study had 2 motivations: to increase the minimum LETd (LETdmin) and to improve uniformity of the LETd distribution within the gross tumor volume (GTV) by using LP treatment plans for patients with head and neck cancer while maintaining the relative biologic effectiveness (RBE)-weighted dose coverage within the planning tumor volume (PTV) the same as in the conventional IMIT plan. Methods and Materials The LP treatment plans were designed with the in-house treatment planning system. For the plans, LETd constraints and LETdmin, goal-LETd, and maximum-LETd (LETdmax) constraints for the GTV were added to the conventional dose constraints in the IMIT prescription. For 13 patients with head and neck cancer, the RBE-weighted dose to 90% (D90) and 50% (D50) of the PTV and the LETdmin, mean (LETdmean), and LETdmax values within the GTV in the LP plans were evaluated by comparing them with those in the conventional IMIT plans. Results The LP for 13 patients with head and neck cancer could keep D90s and D50s for the PTV within 1.0% of those by the conventional IMIT. Among the 13 patients, the mean LETdmin of the LP plans for the GTV was 59.2 ± 7.9 keV/μm, whereas that of the IMIT plans was 45.9 ± 6.0 keV/μm. The LP increased the LETdmin to 8 to 24 keV/μm for the GTV compared with IMIT. Conclusions While maintaining the dose coverage to the PTV as comparable to that for IMIT, the LP increased the mean LETdmin to 13.2 keV/μm for the GTV. For a GTV up to 170 cm3, LETd > 44 keV/μm could be achieved using LP, which according to previous studies was associated with lower recurrence. In addition, the LP method delivered more uniform LETd distributions compared with IMIT.
Collapse
Affiliation(s)
- Ryosuke Kohno
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institute for Quantum Science and Technology, Chiba, Japan
- Department of Radiologic Sciences, Graduate School of Health and Welfare Sciences, International University of Health and Welfare Graduate School, Tokyo, Japan
| | - Masashi Koto
- QST Hospital, National Institute for Quantum Science and Technology, Chiba, Japan
| | - Hiroaki Ikawa
- QST Hospital, National Institute for Quantum Science and Technology, Chiba, Japan
| | - Sung Hyun Lee
- Department of Heavy Particle Medical Science, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Kana Sato
- Department of Radiology, IUHW Narita Hospital, Chiba, Japan
| | - Mitsuyasu Hashimoto
- Department of Radiologic Sciences, Graduate School of Health and Welfare Sciences, International University of Health and Welfare Graduate School, Tokyo, Japan
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institute for Quantum Science and Technology, Chiba, Japan
| | - Toshiyuki Shirai
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institute for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
56
|
Mizobuchi T, Nomoto A, Wada H, Yamamoto N, Nakajima M, Fujisawa T, Suzuki H, Yoshino I. Outcomes of carbon ion radiotherapy compared with segmentectomy for ground glass opacity-dominant early-stage lung cancer. Radiat Oncol 2023; 18:201. [PMID: 38110971 PMCID: PMC10726495 DOI: 10.1186/s13014-023-02387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023] Open
Abstract
PURPOSE This study aimed to compare the outcomes of patients with ground-grass opacity (GGO)-dominant non-small cell lung cancer (NSCLC) who were treated with carbon ion radiotherapy (CIRT) versus segmentectomy. METHODS A retrospective review of medical records was conducted. The study included 123 cases of clinical stage 0/IA peripheral NSCLC treated with single-fraction CIRT from 2003 to 2012, 14 of which were determined to be GGO-dominant and were assigned to CIRT group. As a control, 48 consecutive patients who underwent segmentectomy for peripheral GGO-dominant clinical stage IA NSCLC were assigned to segmentectomy group. RESULTS The patients in CIRT group, compared with segmentectomy group, were significantly older (75 ± 7.2 vs. 65 ± 8.2 years, P = 0.000660), more likely to be male (13/14 vs. 22/48, P = 0.00179), and had a lower forced vital capacity (91 ± 19% vs. 110 ± 13%, P = 0.0173). There was a significant difference in the 5-years overall survival rate (86% vs. 96%, P = 0.000860), but not in the 5-years disease-specific survival rate (93% vs. 98%, P = 0.368). DISCUSSION Compared with segmentectomy, CIRT may be an alternative option for patients with early GGO-dominant NSCLC who are poor candidates for, or who refuse, surgery.
Collapse
Affiliation(s)
- Teruaki Mizobuchi
- Department of General Thoracic Surgery, Social Welfare Organization Saiseikai Imperial Gift Foundation, Chibaken Saiseikai Narashino Hospital, 1-8-1 Izumi-Cho, Narashino-Shi, Chiba, 275-8580, Japan.
| | - Akihiro Nomoto
- Department of Radiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hironobu Wada
- Department of Pulmonary Surgery, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Naoyoshi Yamamoto
- Department of Internal Medicine, Chosei Municipal Hospital, Chiba, Japan
| | - Mio Nakajima
- National Institutes for Quantum Science and Technology QST Hospital, Chiba, Japan
| | - Takehiko Fujisawa
- Chiba Foundation for Health Promotion and Disease Prevention, Chiba, Japan
| | - Hidemi Suzuki
- Departments of General Thoracic Surgery, Departments of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Yoshino
- Departments of General Thoracic Surgery, Departments of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
57
|
Hayashi N, Okumura M, Nakamura M, Ishihara Y, Ota S, Tohyama N, Shimomura K, Okamoto H, Onishi H. Current status of the educational environment to acquire and maintain the professional skills of radiotherapy technology and medical physics specialists in Japan: a nationwide survey. Radiol Phys Technol 2023; 16:431-442. [PMID: 37668931 DOI: 10.1007/s12194-023-00739-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
This study aimed to investigate the educational environment of radiotherapy technology and medical physics specialists (RTMP) in Japan. We conducted a nationwide questionnaire survey in radiotherapy institutions between June and August 2022. Participants were asked questions regarding the educational system, perspectives on updating RTMP's skills and qualifications, and perspectives on higher education for RTMP at radiotherapy institutions. The results were then analyzed in detail according to three factors: whether the hospital was designed for cancer care, whether it was a Japanese Society for Radiation Oncology (JASTRO)-accredited hospital, and whether it was an intensity-modulated radiation therapy charged hospital. Responses were obtained from 579 (69%) nationwide radiation therapy institutions. For non-qualified RTMP, 10% of the institutions had their own educational systems, only 17% of institutions provided on-the-job training, and 84% of institutions encouraged participation in educational lectures and workshops in academic societies. However, for qualified RTMP, 3.0% of institutions had their own educational systems, only 8.9% of the institutions provided on-the-job training, and 83% encouraged participation in academic conferences and workshops. Less than 1% of the facilities offered salary increases for certification, whereas 8.2% offered consideration for occupational promotion. Regarding the educational environment, JASTRO-accredited hospitals were better than general hospitals. Few institutions have their own educational systems for qualified and non-qualified RTMP, but they encourage them to attend educational seminars and conferences. It is desirable to provide systematic education and training by academic and professional organizations to maintain the skills of individuals.
Collapse
Affiliation(s)
- Naoki Hayashi
- Division of Medical Physics, School of Medical Sciences, Fujita Health University, Toyoake, Japan.
| | - Masahiko Okumura
- Department of Radiological Sciences, Faculty of Health Science, Morinomiya University of Medical Science, Osaka, Japan
| | - Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitomo Ishihara
- Department of Radiation Oncology, Division of Medical Physics, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Seiichi Ota
- Department of Medical Technology, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoki Tohyama
- Division of Medical Physics, Tokyo Bay Makuhari Clinic for Advanced Imaging, Cancer Screening, and High-Precision Radiotherapy, Chiba, Japan
| | - Kohei Shimomura
- Department of Radiological Technology, Faculty of Medical Science , Kyoto College of Medical Science, Nantan, Japan
| | - Hiroyuki Okamoto
- Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Onishi
- Department of Radiology, Faculty of Medicine, University of Yamanashi, Kofu, Japan
| |
Collapse
|
58
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
59
|
Ma N, Ming X, Chen J, Wu KL, Lu J, Jiang G, Mao J. Dosimetric rationale and preliminary experience in proton plus carbon-ion radiotherapy for esophageal carcinoma: a retrospective analysis. Radiat Oncol 2023; 18:195. [PMID: 38041122 PMCID: PMC10693034 DOI: 10.1186/s13014-023-02371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/29/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Concurrent chemoradiotherapy has been standard of care for unresectable esophageal carcinoma. There were no reports on proton radiotherapy (PRT) plus carbon-ion radiotherapy (CIRT) with pencil beam scanning (PBS) for esophageal carcinoma. This study evaluated the tolerability and efficiency of proton and sequential carbon-ion boost radiotherapy for esophageal carcinoma. METHODS From April 2017 to July 2020, 20 patients with primary esophageal carcinoma at stages II-IV were treated with PRT plus sequential CIRT with PBS. A median relative biological effectiveness-weighted PRT dose of 50 Gy in 25 fractions, and a sequential CIRT dose of 21 Gy in 7 fractions were delivered. Respiratory motion management was used if the tumor moved > 5 mm during the breathing cycle. A dosimetric comparison of photon intensity-modulated radiotherapy (IMRT), PRT, and CIRT was performed. The median times and rates of survivals were estimated using the Kaplan-Meier method. Comparison of the dose-volume parameters of the organs at risk employed the Wilcoxon matched-pairs test. RESULTS Twenty patients (15 men and 5 women, median age 70 years) were included in the analysis. With a median follow-up period of 25.0 months, the 2-year overall survival and progression-free survival rates were 69.2% and 57.4%, respectively. The patients tolerated radiotherapy and chemotherapy well. Grades 1, 2, 3, and 4 acute hematological toxicities were detected in 25%, 30%, 10%, and 30% of patients, respectively. Grades 3-5 acute non-hematological toxicities were not observed. Late toxicity events included grades 1, 2, and 3 in 50%, 20%, and 10% (pulmonary and esophageal toxicity in each) of patients. Grades 4-5 late toxicities were not noted. PRT or CIRT produced lower doses to organs at risk than did photon IMRT, especially the maximum dose delivered to the spinal cord and the mean doses delivered to the lungs and heart. CONCLUSIONS PRT plus CIRT with PBS appears to be a safe and effective treatment for esophageal carcinoma. PRT and CIRT delivered lower doses to organs at risk than did photon IMRT. Further investigation is warranted.
Collapse
Affiliation(s)
- Ningyi Ma
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kang Xin Road, Shanghai, 201315, China
| | - Xue Ming
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jian Chen
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kang Xin Road, Shanghai, 201315, China
| | - Kai-Liang Wu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kang Xin Road, Shanghai, 201315, China
| | - Jiade Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kang Xin Road, Shanghai, 201315, China
| | - Guoliang Jiang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kang Xin Road, Shanghai, 201315, China
| | - Jingfang Mao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, 4365 Kang Xin Road, Shanghai, 201315, China.
| |
Collapse
|
60
|
He P, Mori S, Ono T, Nomoto A, Ishikawa H. Impact of varying the number of irradiation fields on dose distribution: A four-dimensional scanned carbon-ion lung radiotherapy. Radiat Phys Chem Oxf Engl 1993 2023; 212:111183. [DOI: 10.1016/j.radphyschem.2023.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
61
|
Broder BA, Aulwes EF, Espy M, Merrill FE, Sidebottom RB, Tupa D, Freeman MS. A TOPAS model for lens-based proton radiography. Biomed Phys Eng Express 2023; 9:065026. [PMID: 37812911 DOI: 10.1088/2057-1976/ad015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Objective.Proton Radiography can be used in conjunction with proton therapy for patient positioning, real-time estimates of stopping power, and adaptive therapy in regions with motion. The modeling capability shown here can be used to evaluate lens-based radiography as an instantaneous proton-based radiographic technique. The utilization of user-friendly Monte Carlo program TOPAS enables collaborators and other users to easily conduct medical- and therapy- based simulations of the Los Alamos Neutron Science Center (LANSCE). The resulting transport model is an open-source Monte Carlo package for simulations of proton and heavy ion therapy treatments and concurrent particle imaging.Approach.The four-quadrupole, magnetic lens system of the 800-MeV proton beamline at LANSCE is modeled in TOPAS. Several imaging and contrast objects were modelled to assess transmission at energies from 230-930 MeV and different levels of particle collimation. At different proton energies, the strength of the magnetic field was scaled according toβγ,the inverse product of particle relativistic velocity and particle momentum.Main results.Materials with high atomic number, Z, (gold, gallium, bone-equivalent) generated more contrast than materials with low-Z (water, lung-equivalent, adipose-equivalent). A 5-mrad collimator was beneficial for tissue-to-contrast agent contrast, while a 10-mrad collimator was best to distinguish between different high-Z materials. Assessment with a step-wedge phantom showed water-equivalent path length did not scale directly according to predicted values but could be mapped more accurately with calibration. Poor image quality was observed at low energies (230 MeV), but improved as proton energy increased, with sub-mm resolution at 630 MeV.Significance.Proton radiography becomes viable for shallow bone structures at 330 MeV, and for deeper structures at 630 MeV. Visibility improves with use of high-Z contrast agents. This modality may be particularly viable at carbon therapy centers with accelerators capable of delivering high energy protons and could be performed with carbon therapy.
Collapse
Affiliation(s)
- Brittany A Broder
- The University of Chicago, 5841 South Ellis Avenue, Chicago, IL 60637, United States of America
| | - Ethan F Aulwes
- Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Michelle Espy
- Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Frank E Merrill
- Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Rachel B Sidebottom
- The University of New Mexico, Albuquerque, NM 87131, United States of America
| | - Dale Tupa
- Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| | - Matthew S Freeman
- Los Alamos National Laboratory, Los Alamos, NM, 87545, United States of America
| |
Collapse
|
62
|
Ito H, Shoji Y, Ueno M, Matsumoto KI, Nakanishi I. Photodynamic Therapy for X-ray-Induced Radiation-Resistant Cancer Cells. Pharmaceutics 2023; 15:2536. [PMID: 38004516 PMCID: PMC10674178 DOI: 10.3390/pharmaceutics15112536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Radiotherapy, in which X-rays are commonly used, is one of the most effective procedures for treating cancer. However, some cancer cells become resistant to radiation therapy, leading to poor prognosis. Therefore, a new therapeutic method is required to prevent cancer cells from acquiring radiation resistance. Photodynamic therapy (PDT) is a cancer treatment that uses photosensitizers, such as porphyrin compounds, and low-powered laser irradiation. We previously reported that reactive oxygen species (ROS) derived from mitochondria induce the expression of a porphyrin transporter (HCP1) and that laser irradiation enhances the cytotoxic effect. In addition, X-ray irradiation induces the production of mitochondrial ROS. Therefore, radioresistant cancer cells established with continuous X-ray irradiation would also overexpress ROS, and photodynamic therapy could be an effective therapeutic method. In this study, we established radioresistant cancer cells and examined the therapeutic effects and mechanisms with photodynamic therapy. We confirmed that X-ray-resistant cells showed overgeneration of mitochondrial ROS and elevated expression of HCP1, which led to the active accumulation of porphyrin and an increase in cytotoxicity with laser irradiation. Thus, photodynamic therapy is a promising treatment for X-ray-resistant cancers.
Collapse
Affiliation(s)
- Hiromu Ito
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan;
| | - Yoshimi Shoji
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan;
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute for Radiological Science (NIRS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; (M.U.); (K.-i.M.)
| | - Megumi Ueno
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute for Radiological Science (NIRS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; (M.U.); (K.-i.M.)
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute for Radiological Science (NIRS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan; (M.U.); (K.-i.M.)
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan;
| |
Collapse
|
63
|
Ahern V, Adeberg S, Fossati P, Garrett R, Hoppe B, Mahajan A, Orlandi E, Orecchia R, Prokopovich D, Seuntjens J, Thwaites D, Trifiletti D, Tsang R, Tsuji H. An international approach to estimating the indications and number of eligible patients for carbon ion radiation therapy (CIRT) in Australia. Radiother Oncol 2023; 187:109816. [PMID: 37480996 DOI: 10.1016/j.radonc.2023.109816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND AND PURPOSE To establish the treatment indications and potential patient numbers for carbon ion radiation therapy (CIRT) at the proposed national carbon ion (and proton) therapy facility in the Westmead precinct, New South Wales (NSW), Australia. METHODS An expert panel was convened, including representatives of four operational and two proposed international carbon ion facilities, as well as NSW-based CIRT stakeholders. They met virtually to consider CIRT available evidence and experience. Information regarding Japanese CIRT was provided pre- and post- the virtual meeting. Published information for South Korea was included in discussions. RESULTS There was jurisdictional variation in the tumours treated by CIRT due to differing incidences of some tumours, referral patterns, differences in decisions regarding which tumours to prioritise, CIRT resources available and funding arrangements. The greatest level of consensus was reached that CIRT in Australia can be justified currently for patients with adenoid cystic carcinomas and mucosal melanomas of the head and neck, hepatocellular cancer and liver metastases, base of skull meningiomas, chordomas and chondrosarcomas. Almost 1400 Australian patients annually meet the consensus-derived indications now. CONCLUSION A conservative estimate is that 1% of cancer patients in Australia (or 2% of patients recommended for radiation therapy) may preferentially benefit from CIRT for initial therapy of radiation resistant tumours, or to boost persistently active disease after other therapies, or for re-irradiation of recurrent disease. On this basis, one national carbon ion facility with up to four treatment rooms is justified for Australian patients.
Collapse
Affiliation(s)
- Verity Ahern
- Sydney West Radiation Oncology Network, Westmead, Australia; Westmead Clinical School, The University of Sydney, Australia.
| | - Sebastian Adeberg
- Marburg Ion-Beam Therapy Center (MIT), Department of Radiation Oncology, Heidelberg University Hospital, Marburg, Germany; Department of Radiation Oncology, Marburg University Hospital, Marburg, Germany
| | - Piero Fossati
- MedAustron Ion Therapy Center, Austria; Karl Landsteiner University of Health Sciences, Austria
| | - Richard Garrett
- Australian Nuclear Science and Technology Organisation, Australia
| | | | | | - Ester Orlandi
- National Center for Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Jan Seuntjens
- Department of Medical Physics, Princess Margaret Cancer Centre, Toronto, Canada; Radiation Oncology, University of Toronto, Toronto, Canada
| | - David Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, Australia; Radiotherapy Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Richard Tsang
- Radiation Oncology, University of Toronto, Toronto, Canada; Department of Radiation Oncology and Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hiroshi Tsuji
- National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
64
|
Ebner D, Koto M, Furuichi W, Mori S. Simulation study of comparative dosimetric analysis of coplanar horizontal-port scanned carbon-ion beam therapy in the head and neck. Br J Radiol 2023; 96:20221138. [PMID: 37427708 PMCID: PMC10461273 DOI: 10.1259/bjr.20221138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE Carbon-ion radiotherapy (CIRT) has demonstrated success in treating radioresistant disease within the head and neck, owing to its unique physical and radiobiological properties. Construction cost remains prohibitive; a center offering only a horizontal port may bridge this difficulty, but removal of the vertical port may prohibit treatment of disease near critical organs-at-risk. Building a center only containing a horizontal treatment port has been proposed as one method for cost savings. METHODS 20 complex cases of head and neck cancer previously treated with conventional CIRT were retrospectively planned using horizontal-port-only treatment incorporating non-coplanar treatment angles to achieve greater degrees of freedom. These were dosimetrically compared with the previous plans. RESULTS Comparable D95 coverage of both planning target volume and gross tumor volume with ability to meet organ-at-risk constraints were feasible with horizontal-port-only treatment. Collectively differences were noted in PTV D95, brain stem Dmax, contralateral eye Dmax and V10 Gy (RBE); further qualitative differences were noted on a plan-by-plan basis dependent on disease location. CONCLUSION Horizontal-port-only treatment employing non-coplanar angles was feasible for complicated head and neck disease typically treated with CIRT, though careful consideration is necessary on a plan-by-plan basis. ADVANCES IN KNOWLEDGE It is worth noting that non-coplanar approaches are not typically used with the current treatment gantry and may extend further the difference between horizontal port planning and a gantry-based gold-standard.
Collapse
Affiliation(s)
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Wataru Furuichi
- Accelerator Engineering Corporation, Konakadai, Inage-Ku, Chiba, Japan
| | - Shinichiro Mori
- Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
65
|
Li C, Zhang Q, Luo H, Liu R, Feng S, Geng Y, Wang L, Yang Z, Zhang Y, Wang X. Carbon Ions Suppress Angiogenesis and Lung Metastases in Melanoma by Targeting CXCL10. Radiat Res 2023; 200:307-319. [PMID: 37527364 DOI: 10.1667/rade-22-0086.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Carbon-ion radiotherapy (CIRT) enhanced local control in patients with malignant melanoma. In several in vitro studies, carbon ions (C ions) have been also shown to decrease the metastatic potential of melanoma cells. CXC motif 10 (CXCL10) has been shown to play a crucial role in regulating tumor metastasis and it significantly increase in human embryonic kidney cells after heavy ion irradiations. This study sought to explore the regulatory effect of C ions on melanoma metastasis, emphasizing the role of CXCL10 in this process. To explore the potential regulatory effect of C ions on tumor metastasis in vivo, we developed a lung metastasis mouse model by injecting B16F10 cells into the footpad and subjected all mice to treatment with X rays and C ions. Subsequently, a series of assays, including histopathological analysis, enzyme-linked immunosorbent assay, real-time PCR, and western blotting, were conducted to assess the regulatory effects of C ions on melanoma. Our results showed that mice treated with C ions exhibited significantly less tumor vascularity, enhanced tumor necrosis, alleviated lung metastasis, and experienced longer survival than X-ray irradiated mice. Moreover, VEGF expression in B16F10 cells was significantly reduced by C-ion treatment, which could be alleviated by CXCL10 knockdown in vitro. Further investigations revealed that co-culturing with HUVECs resulted in a significant inhibition of proliferation, migration, and tube formation ability in the C-ion treated group, while the opposite effect was observed in the C-ion treated with si-CXCL10 group. In conclusion, our findings demonstrate that treatment with carbon-ion radiation can suppress angiogenesis and lung metastases in melanoma by specifically targeting CXCL10. These results suggest the potential utility of carbon ions in treating melanoma.
Collapse
Affiliation(s)
- Chengcheng Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Department of Oncology, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shuangwu Feng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yichao Geng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lina Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhen Yang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yanying Zhang
- Laboratory Animal Center of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Department of Oncology, Lanzhou Heavy Ions Hospital, Lanzhou, China
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
66
|
Kobayashi K, Hanai N, Yoshimoto S, Saito Y, Homma A. Current topics and management of head and neck sarcomas. Jpn J Clin Oncol 2023; 53:743-756. [PMID: 37309253 PMCID: PMC10533342 DOI: 10.1093/jjco/hyad048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023] Open
Abstract
Given the low incidence, variety of histological types, and heterogeneous biological features of head and neck sarcomas, there is limited high-quality evidence available to head and neck oncologists. For resectable sarcomas, surgical resection followed by radiotherapy is the principle of local treatment, and perioperative chemotherapy is considered for chemotherapy-sensitive sarcomas. They often originate in anatomical border areas such as the skull base and mediastinum, and they require a multidisciplinary treatment approach considering functional and cosmetic impairment. Moreover, head and neck sarcomas may exhibit different behaviour and characteristics than sarcomas of other areas. In recent years, the molecular biological features of sarcomas have been used for the pathological diagnosis and development of novel agents. This review describes the historical background and recent topics that head and neck oncologists should know about this rare tumour from the following five perspectives: (i) epidemiology and general characteristics of head and neck sarcomas; (ii) changes in histopathological diagnosis in the genomic era; (iii) current standard treatment by histological type and clinical questions specific to head and neck; (iv) new drugs for advanced and metastatic soft tissue sarcomas; and (v) proton and carbon ion radiotherapy for head and neck sarcomas.
Collapse
Affiliation(s)
- Kenya Kobayashi
- Department of Otolaryngology–Head and Neck Surgery, University of Tokyo, Tokyo
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya
| | - Seiichi Yoshimoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo
| | - Yuki Saito
- Department of Otolaryngology–Head and Neck Surgery, University of Tokyo, Tokyo
| | - Akihiro Homma
- Department of Otolaryngology–Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
67
|
Wang Z, Yang G, Zhou X, Peng X, Li M, Zhang M, Lu D, Yang D, Cheng L, Ren B. Heavy Ion Radiation Directly Induced the Shift of Oral Microbiota and Increased the Cariogenicity of Streptococcus mutans. Microbiol Spectr 2023; 11:e0132223. [PMID: 37310225 PMCID: PMC10434067 DOI: 10.1128/spectrum.01322-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Radiation caries is one of the most common complications of head and neck radiotherapy. A shift in the oral microbiota is the main factor of radiation caries. A new form of biosafe radiation, heavy ion radiation, is increasingly being applied in clinical treatment due to its superior depth-dose distribution and biological effects. However, how heavy ion radiation directly impacts the oral microbiota and the progress of radiation caries are unknown. Here, unstimulated saliva samples from both healthy and caries volunteers and caries-related bacteria were directly exposed to therapeutic doses of heavy ion radiation to determine the effects of radiation on oral microbiota composition and bacterial cariogenicity. Heavy ion radiation significantly decreased the richness and diversity of oral microbiota from both healthy and caries volunteers, and a higher percentage of Streptococcus was detected in radiation groups. In addition, heavy ion radiation significantly enhanced the cariogenicity of saliva-derived biofilms, including the ratios of the genus Streptococcus and biofilm formation. In the Streptococcus mutans-Streptococcus sanguinis dual-species biofilms, heavy ion radiation increased the ratio of S. mutans. Next, S. mutans was directly exposed to heavy ions, and the radiation significantly upregulated the gtfC and gtfD cariogenic virulence genes to enhance the biofilm formation and exopolysaccharides synthesis of S. mutans. Our study demonstrated, for the first time, that direct exposure to heavy ion radiation can disrupt the oral microbial diversity and balance of dual-species biofilms by increasing the virulence of S. mutans, increasing its cariogenicity, indicating a potential correlation between heavy ions and radiation caries. IMPORTANCE The oral microbiome is crucial to understanding the pathogenesis of radiation caries. Although heavy ion radiation has been used to treat head and neck cancers in some proton therapy centers, its correlation with dental caries, especially its direct effects on the oral microbiome and cariogenic pathogens, has not been reported previously. Here, we showed that the heavy ion radiation directly shifted the oral microbiota from a balanced state to a caries-associated state by increasing the cariogenic virulence of S. mutans. Our study highlighted the direct effect of heavy ion radiation on oral microbiota and the cariogenicity of oral microbes for the first time.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ge Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Deqin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
68
|
Zheng X, Jin X, Ye F, Liu X, Yu B, Li Z, Zhao T, Chen W, Liu X, Di C, Li Q. Ferroptosis: a novel regulated cell death participating in cellular stress response, radiotherapy, and immunotherapy. Exp Hematol Oncol 2023; 12:65. [PMID: 37501213 PMCID: PMC10375783 DOI: 10.1186/s40164-023-00427-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Ferroptosis is a regulated cell death mode triggered by iron-dependent toxic membrane lipid peroxidation. As a novel cell death modality that is morphologically and mechanistically different from other forms of cell death, such as apoptosis and necrosis, ferroptosis has attracted extensive attention due to its association with various diseases. Evidence on ferroptosis as a potential therapeutic strategy has accumulated with the rapid growth of research on targeting ferroptosis for tumor suppression in recent years. METHODS We summarize the currently known characteristics and major regulatory mechanisms of ferroptosis and present the role of ferroptosis in cellular stress responses, including ER stress and autophagy. Furthermore, we elucidate the potential applications of ferroptosis in radiotherapy and immunotherapy, which will be beneficial in exploring new strategies for clinical tumor treatment. RESULT AND CONCLUSION Based on specific biomarkers and precise patient-specific assessment, targeting ferroptosis has great potential to be translated into practical new approaches for clinical cancer therapy, significantly contributing to the prevention, diagnosis, prognosis, and treatment of cancer.
Collapse
Affiliation(s)
- Xiaogang Zheng
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Ye
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiongxiong Liu
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boyi Yu
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Li
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ting Zhao
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqiang Chen
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinguo Liu
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuixia Di
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Li
- Department of Medical Physics, Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
69
|
Okonogi N, Murata K, Yamada S, Habu Y, Hori M, Kurokawa T, Inaba Y, Fujiwara T, Fujii Y, Hanawa M, Kawasaki Y, Hattori Y, Suzuki K, Tsuyuki K, Wakatsuki M, Koto M, Hasegawa S, Ishikawa H, Hanaoka H, Shozu M, Tsuji H, Usui H. A Phase Ib Study of Durvalumab (MEDI4736) in Combination with Carbon-Ion Radiotherapy and Weekly Cisplatin for Patients with Locally Advanced Cervical Cancer (DECISION Study): The Early Safety and Efficacy Results. Int J Mol Sci 2023; 24:10565. [PMID: 37445743 DOI: 10.3390/ijms241310565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
We conducted a phase Ib study to examine the safety of a combination of carbon-ion RT (CIRT) with durvalumab (MEDI4736; AstraZeneca) in patients with locally advanced cervical cancer. This was an open-label, single-arm study with a modified 3 + 3 design. Patients with newly diagnosed histologically proven locally advanced cervical cancer were enrolled. All patients received 74.4 Gy of CIRT in 20 fractions and concurrent weekly cisplatin (chemo-CIRT) at a dose of 40 mg/m2. Durvalumab was administered (1500 mg/body) at weeks two and six. The primary endpoint was the incidence of adverse events (AEs) and serious AEs (SAEs), including dose-limiting toxicity (DLT). All three enrolled patients completed the treatment without interruption. One patient developed hypothyroidism after treatment and was determined to be an SAE. No other SAEs were observed. The patient recovered after levothyroxine sodium hydrate treatment. None of the AEs, including hypothyroidism, were associated with DLT in the present study. All three patients achieved complete responses within the CIRT region concerning treatment efficacy. This phase 1b trial demonstrates the safety of combining chemo-CIRT and durvalumab for locally advanced cervical cancer in the early phase. Further research is required as only three patients were included in this study.
Collapse
Affiliation(s)
- Noriyuki Okonogi
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazutoshi Murata
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yuji Habu
- Department of Reproductive Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Makoto Hori
- Clinical Research Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Tomoya Kurokawa
- Clinical Research Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Yosuke Inaba
- Clinical Research Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Tadami Fujiwara
- Clinical Research Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Yasuhisa Fujii
- Clinical Research Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Michiko Hanawa
- Clinical Research Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Yohei Kawasaki
- Faculty of Nursing, Japanese Red Cross College of Nursing, 4-1-3 Hiroo, Shibuya-Ku, Tokyo 150-0012, Japan
| | - Yoko Hattori
- Clinical Research Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Kazuko Suzuki
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kyoko Tsuyuki
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masaru Wakatsuki
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Sumitaka Hasegawa
- Department of Charged Particle Therapy Research, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hitoshi Ishikawa
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hideki Hanaoka
- Clinical Research Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Makio Shozu
- Department of Reproductive Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hirokazu Usui
- Department of Reproductive Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
70
|
Jeans EB, Ebner DK, Takiyama H, Qualls K, Cunningham DA, Waddle MR, Jethwa KR, Harmsen WS, Hubbard JM, Dozois EJ, Mathis KL, Tsuji H, Merrell KW, Hallemeier CL, Mahajan A, Yamada S, Foote RL, Haddock MG. Comparing Oncologic Outcomes and Toxicity for Combined Modality Therapy vs. Carbon-Ion Radiotherapy for Previously Irradiated Locally Recurrent Rectal Cancer. Cancers (Basel) 2023; 15:cancers15113057. [PMID: 37297019 DOI: 10.3390/cancers15113057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
No standard treatment paradigm exists for previously irradiated locally recurrent rectal cancer (PILRRC). Carbon-ion radiotherapy (CIRT) may improve oncologic outcomes and reduce toxicity compared with combined modality therapy (CMT). Eighty-five patients treated at Institution A with CIRT alone (70.4 Gy/16 fx) and eighty-six at Institution B with CMT (30 Gy/15 fx chemoradiation, resection, intraoperative electron radiotherapy (IOERT)) between 2006 and 2019 were retrospectively compared. Overall survival (OS), pelvic re-recurrence (PR), distant metastasis (DM), or any disease progression (DP) were analyzed with the Kaplan-Meier model, with outcomes compared using the Cox proportional hazards model. Acute and late toxicities were compared, as was the 2-year cost. The median time to follow-up or death was 6.5 years. Median OS in the CIRT and CMT cohorts were 4.5 and 2.6 years, respectively (p ≤ 0.01). No difference was seen in the cumulative incidence of PR (p = 0.17), DM (p = 0.39), or DP (p = 0.19). Lower acute grade ≥ 2 skin and GI/GU toxicity and lower late grade ≥ 2 GU toxicities were associated with CIRT. Higher 2-year cumulative costs were associated with CMT. Oncologic outcomes were similar for patients treated with CIRT or CMT, although patient morbidity and cost were lower with CIRT, and CIRT was associated with longer OS. Prospective comparative studies are needed.
Collapse
Affiliation(s)
- Elizabeth B Jeans
- Department of Radiation Oncology, Mayo Clinic, 200 2nd Street SW, Rochester, MN 55905, USA
| | - Daniel K Ebner
- Department of Radiation Oncology, Mayo Clinic, 200 2nd Street SW, Rochester, MN 55905, USA
| | - Hirotoshi Takiyama
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | - Kaitlin Qualls
- Department of Radiation Oncology, Mayo Clinic, 200 2nd Street SW, Rochester, MN 55905, USA
| | - Danielle A Cunningham
- Department of Radiation Oncology, Mayo Clinic, 200 2nd Street SW, Rochester, MN 55905, USA
| | - Mark R Waddle
- Department of Radiation Oncology, Mayo Clinic, 200 2nd Street SW, Rochester, MN 55905, USA
| | - Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, 200 2nd Street SW, Rochester, MN 55905, USA
| | - William S Harmsen
- Department of Statistics, Mayo Clinic, 200 2nd Street SW, Rochester, MN 55905, USA
| | - Joleen M Hubbard
- Division of Medical Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Eric J Dozois
- Division of Colon & Rectal Surgery, Mayo Clinic, 200 2nd Street SW, Rochester, MN 55905, USA
| | - Kellie L Mathis
- Division of Colon & Rectal Surgery, Mayo Clinic, 200 2nd Street SW, Rochester, MN 55905, USA
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | - Kenneth W Merrell
- Department of Radiation Oncology, Mayo Clinic, 200 2nd Street SW, Rochester, MN 55905, USA
| | | | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, 200 2nd Street SW, Rochester, MN 55905, USA
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba 263-8555, Japan
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, 200 2nd Street SW, Rochester, MN 55905, USA
| | - Michael G Haddock
- Department of Radiation Oncology, Mayo Clinic, 200 2nd Street SW, Rochester, MN 55905, USA
| |
Collapse
|
71
|
Cammarata FP, Torrisi F, Vicario N, Bravatà V, Stefano A, Salvatorelli L, D'Aprile S, Giustetto P, Forte GI, Minafra L, Calvaruso M, Richiusa S, Cirrone GAP, Petringa G, Broggi G, Cosentino S, Scopelliti F, Magro G, Porro D, Libra M, Ippolito M, Russo G, Parenti R, Cuttone G. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model. Commun Biol 2023; 6:388. [PMID: 37031346 PMCID: PMC10082834 DOI: 10.1038/s42003-023-04770-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Despite aggressive therapeutic regimens, glioblastoma (GBM) represents a deadly brain tumor with significant aggressiveness, radioresistance and chemoresistance, leading to dismal prognosis. Hypoxic microenvironment, which characterizes GBM, is associated with reduced therapeutic effectiveness. Moreover, current irradiation approaches are limited by uncertain tumor delineation and severe side effects that comprehensively lead to unsuccessful treatment and to a worsening of the quality of life of GBM patients. Proton beam offers the opportunity of reduced side effects and a depth-dose profile, which, unfortunately, are coupled with low relative biological effectiveness (RBE). The use of radiosensitizing agents, such as boron-containing molecules, enhances proton RBE and increases the effectiveness on proton beam-hit targets. We report a first preclinical evaluation of proton boron capture therapy (PBCT) in a preclinical model of GBM analyzed via μ-positron emission tomography/computed tomography (μPET-CT) assisted live imaging, finding a significant increased therapeutic effectiveness of PBCT versus proton coupled with an increased cell death and mitophagy. Our work supports PBCT and radiosensitizing agents as a scalable strategy to treat GBM exploiting ballistic advances of proton beam and increasing therapeutic effectiveness and quality of life in GBM patients.
Collapse
Affiliation(s)
- Francesco Paolo Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Molecular Preclinical and Translational Imaging Research Center - IMPRonTe, University of Catania, Catania, Italy
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Lucia Salvatorelli
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | - Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pierangela Giustetto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giusi Irma Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Selene Richiusa
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | | | - Giada Petringa
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| | - Giuseppe Broggi
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Fabrizio Scopelliti
- Radiopharmacy Laboratory Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy
| | - Gaetano Magro
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele" Anatomic Pathology, University of Catania, Catania, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Ippolito
- Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
- Molecular Preclinical and Translational Imaging Research Center - IMPRonTe, University of Catania, Catania, Italy.
| | - Giacomo Cuttone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania, Italy
| |
Collapse
|
72
|
Chinniah S, Deisher AJ, Herman MG, Johnson JE, Mahajan A, Foote RL. Rotating Gantries Provide Individualized Beam Arrangements for Charged Particle Therapy. Cancers (Basel) 2023; 15:cancers15072044. [PMID: 37046705 PMCID: PMC10093456 DOI: 10.3390/cancers15072044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/12/2023] [Accepted: 03/25/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE This study evaluates beam angles used to generate highly individualized proton therapy treatment plans for patients eligible for carbon ion radiotherapy (CIRT). METHODS AND MATERIALS We retrospectively evaluated patients treated with pencil beam scanning intensity modulated proton therapy from 2015 to 2020 who had indications for CIRT. Patients were treated with a 190° rotating gantry with a robotic patient positioning system. Treatment plans were individualized to provide maximal prescription dose delivery to the tumor target volume while sparing organs at risk. The utilized beam angles were grouped, and anatomic sites with at least 10 different beam angles were sorted into histograms. RESULTS A total of 467 patients with 484 plans and 1196 unique beam angles were evaluated and characterized by anatomic treatment site and the number of beam angles utilized. The most common beam angles used were 0° and 180°. A wide range of beam angles were used in treating almost all anatomic sites. Only esophageal cancers had a predominantly unimodal grouping of beam angles. Pancreas cancers showed a modest grouping of beam angles. CONCLUSIONS The wide distribution of beam angles used to treat CIRT-eligible patients suggests that a rotating gantry is optimal to provide highly individualized beam arrangements.
Collapse
Affiliation(s)
- Siven Chinniah
- Mayo Clinic Alix School of Medicine, Jacksonville, FL 32224, USA
| | - Amanda J Deisher
- Department of Radiation Oncology, Division of Medical Physics, Rochester, MN 55905, USA
| | - Michael G Herman
- Department of Radiation Oncology, Division of Medical Physics, Rochester, MN 55905, USA
| | - Jedediah E Johnson
- Department of Radiation Oncology, Division of Medical Physics, Rochester, MN 55905, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
73
|
Konishi T, Kusumoto T, Hiroyama Y, Kobayashi A, Mamiya T, Kodaira S. Induction of DNA strand breaks and oxidative base damages in plasmid DNA by ultra-high dose rate proton irradiation. Int J Radiat Biol 2023; 99:1405-1412. [PMID: 36731459 DOI: 10.1080/09553002.2023.2176562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
PURPOSE Radiation cancer therapy with ultra-high dose rate (UHDR) exposure, so-called FLASH radiotherapy, appears to reduce normal tissue damage without compromising tumor response to therapy. The aim of this study was to clarify whether a 59.5 MeV proton beam at an UHDR of 48.6 Gy/s could effectively reduce the DNA damage of pBR322 plasmid DNA in solution compared to the conventional dose rate (CONV) of 0.057 Gy/s. MATERIALS AND METHODS A simple system, consisting of pBR322 plasmid DNA in 1× Tris-EDTA buffer, was initially employed for proton beam exposure. We then used formamidopyrimidine-DNA glycosylase (Fpg) enzymes. which convert oxidative base damages of oxidized purines to DNA strand breaks, to quantify DNA single strand breaks (SSBs) and double strand breaks (DSBs) by agarose gel electrophoresis. RESULTS Our findings showed that the SSB induction rate (SSB per plasmid DNA/Gy) at UHDR and the induction of Fpg enzyme sensitive sites (ESS) were significantly reduced in UHDR compared to CONV. However, there was no significant difference in DSB induction and non-DSB cluster damages. CONCLUSIONS UHDR of a 59.5 MeV proton beam could reduce non-clustered, non-DSB damages, such as SSB and sparsely distributed ESS. However, this effect may not be significant in reducing lethal DNA damage that becomes apparent only in acute radiation effects of mammalian cells and in vivo studies.
Collapse
Affiliation(s)
- Teruaki Konishi
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Graduate School of Health Science, Hirosaki University, Hirosaki City, Japan
- Department of Physics, Rikkyo (St. Paul's) University, Tokyo, Japan
| | - Tamon Kusumoto
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| | - Yota Hiroyama
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Graduate School of Health Science, Hirosaki University, Hirosaki City, Japan
| | - Alisa Kobayashi
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| | - Taisei Mamiya
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
- Department of Physics, Rikkyo (St. Paul's) University, Tokyo, Japan
| | - Satoshi Kodaira
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Inageku, Japan
| |
Collapse
|
74
|
Helm A, Totis C, Durante M, Fournier C. Are charged particles a good match for combination with immunotherapy? Current knowledge and perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:1-36. [PMID: 36997266 DOI: 10.1016/bs.ircmb.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Charged particle radiotherapy, mainly using protons and carbon ions, provides physical characteristics allowing for a volume conformal irradiation and a reduction of the integral dose to normal tissue. Carbon ion therapy additionally features an increased biological effectiveness resulting in peculiar molecular effects. Immunotherapy, mostly performed with immune checkpoint inhibitors, is nowadays considered a pillar in cancer therapy. Based on the advantageous features of charged particle radiotherapy, we review pre-clinical evidence revealing a strong potential of its combination with immunotherapy. We argue that the combination therapy deserves further investigation with the aim of translation in clinics, where a few studies have been set up already.
Collapse
Affiliation(s)
- A Helm
- Biophysics Department, GSI, Darmstadt, Germany
| | - C Totis
- Biophysics Department, GSI, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI, Darmstadt, Germany.
| | - C Fournier
- Biophysics Department, GSI, Darmstadt, Germany
| |
Collapse
|
75
|
Jumaniyazova E, Smyk D, Vishnyakova P, Fatkhudinov T, Gordon K. Photon- and Proton-Mediated Biological Effects: What Has Been Learned? Life (Basel) 2022; 13:30. [PMID: 36675979 PMCID: PMC9866122 DOI: 10.3390/life13010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The current understanding of the effects of radiation is gradually becoming broader. However, it still remains unclear why some patients respond to radiation with a pronounced positive response, while in some cases the disease progresses. This is the motivation for studying the effects of radiation therapy not only on tumor cells, but also on the tumor microenvironment, as well as studying the systemic effects of radiation. In this framework, we review the biological effects of two types of radiotherapy: photon and proton irradiations. Photon therapy is a commonly used type of radiation therapy due to its wide availability and long-term history, with understandable and predictable outcomes. Proton therapy is an emerging technology, already regarded as the method of choice for many cancers in adults and children, both dosimetrically and biologically. This review, written after the analysis of more than 100 relevant literary sources, describes the local effects of photon and proton therapy and shows the mechanisms of tumor cell damage, interaction with tumor microenvironment cells and effects on angiogenesis. After systematic analysis of the literature, we can conclude that proton therapy has potentially favorable toxicological profiles compared to photon irradiation, explained mainly by physical but also biological properties of protons. Despite the fact that radiobiological effects of protons and photons are generally similar, protons inflict reduced damage to healthy tissues surrounding the tumor and hence promote fewer adverse events, not only local, but also systemic.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| | - Daniil Smyk
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia
| | - Polina Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Konstantin Gordon
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation (A. Tsyb MRRC), 4, Korolev Street, 249036 Obninsk, Russia
| |
Collapse
|
76
|
Mori Y, Okonogi N, Matsumoto S, Furuichi W, Fukahori M, Miyasaka Y, Murata K, Wakatsuki M, Imai R, Koto M, Yamada S, Ishikawa H, Kanematsu N, Tsuji H. Effects of dose and dose-averaged linear energy transfer on pelvic insufficiency fractures after carbon-ion radiotherapy for uterine carcinoma. Radiother Oncol 2022; 177:33-39. [PMID: 36252637 DOI: 10.1016/j.radonc.2022.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND PURPOSE The correlation between dose-averaged linear energy transfer (LETd) and its therapeutic or adverse effects, especially in carbon-ion radiotherapy (CIRT), remains controversial. This study aimed to investigate the effects of LETd and dose on pelvic insufficiency fractures after CIRT. MATERIAL AND METHODS Among patients who underwent CIRT for uterine carcinoma, 101 who were followed up for > 6 months without any other therapy were retrospectively analyzed. The sacrum insufficiency fractures (SIFs) were graded according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer toxicity criteria. The correlations between the relative biological effectiveness (RBE)-weighted dose, LETd, physical dose, clinical factors, and SIFs were evaluated. In addition, we analyzed the association of SIF with LETd, physical dose, and clinical factors in cases where the sacrum D50% RBE-weighted dose was above the median dose. RESULTS At the last follow-up, 19 patients developed SIFs. Receiver operating characteristic curve analysis revealed that the sacrum D50% RBE-weighted dose was a valuable predictor of SIF. Univariate analyses suggested that LETd V10 keV/µm, physical dose V5 Gy, and smoking status were associated with SIF. Cox regression analysis in patients over 50 years of age validated that current smoking habit was the sole risk factor for SIF. Therefore, LETd or physical dose parameters were not associated with SIF prediction. CONCLUSION The sacrum D50% RBE-weighted dose was identified as a risk factor for SIF. Additionally, neither LETd nor physical dose parameters were associated with SIF prediction.
Collapse
Affiliation(s)
- Yasumasa Mori
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Noriyuki Okonogi
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Shinnosuke Matsumoto
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology.
| | - Wataru Furuichi
- Accelerator Engineering Corporation, 6-18-1-301 Konakadai, Inage-ku, Chiba 263-0043, Japan.
| | - Mai Fukahori
- Managing Unit, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Yuhei Miyasaka
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Kazutoshi Murata
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Masaru Wakatsuki
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Reiko Imai
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Hitoshi Ishikawa
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology.
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
77
|
Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022; 19:791-803. [DOI: 10.1038/s41571-022-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
78
|
Dong M, Liu R, Zhang Q, Luo H, Wang D, Wang Y, Chen J, Ou Y, Wang X. Efficacy and safety of carbon ion radiotherapy for bone sarcomas: a systematic review and meta-analysis. Radiat Oncol 2022; 17:172. [PMID: 36284346 PMCID: PMC9594886 DOI: 10.1186/s13014-022-02089-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Objective This study aimed to systematically evaluate and conduct a meta-analysis of the efficacy and safety of carbon ion radiotherapy for bone sarcomas. Methods We searched for articles using the PubMed, Embase, Cochrane Library, and the Web of Science databases from their inception to January 12, 2022. Two researchers independently screened the literature and extracted data based on the inclusion and exclusion criteria. Statistical analyses were performed using STATA version 14.0. Results We searched for 4378 candidate articles, of which 12 studies were included in our study according to the inclusion and exclusion criteria. Of the 897 BSs patients who received carbon ion radiotherapy in the studies, 526 patients had chordoma, 255 patients had chondrosarcoma, 112 patients had osteosarcoma, and 4 patients had other sarcomas. The local control rate at 1, 2, 3, 4, 5, and 10 years in these studies were 98.5% (95% confidence interval [CI] = 0.961–1.009, I2 = 0%), 85.8% (95% CI = 0.687–1.030, I2 = 91%), 86% (95% CI = 0.763–0.957, I2 = 85.3%), 91.1% (95% CI = 0.849–0.974), 74.3% (95% CI = 0.666–0.820, I2 = 85.2%), and 64.7% (95% CI = 0.451–0.843, I2 = 95.3%), respectively. The overall survival rate at 1, 2, 3, 4, 5, and 10 years in these studies were 99.9% (95% CI = 0.995–1.004, I2 = 0%), 89.6% (95% CI = 0.811–0.980, I2 = 96.6%), 85% (95% CI = 0.750–0.950, I2 = 89.4%), 92.4% (95% CI = 0.866–0.982), 72.7% (95% CI = 0.609–0.844, I2 = 95.3%), and 72.1% (95% CI = 0.661–0.781, I2 = 46.5%), respectively. Across all studies, the incidence of acute and late toxicities was mainly grade 1 to grade 2, and grade 1 to grade 3, respectively. Conclusion As an advanced radiotherapy, carbon ion radiotherapy is promising for patients with bone sarcomas that are unresectable or residual after incomplete surgery. The data indicated that carbon ion radiotherapy was safe and effective for bone sarcomas, showing promising results for local control, overall survival, and lower acute and late toxicity. PROSPERO registration number CRD42021258480. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02089-0.
Collapse
Affiliation(s)
- Meng Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,The First School of Clinical Medicine, Lanzhou University, No.1, Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, People's Republic of China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China. .,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, People's Republic of China. .,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, People's Republic of China.
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, People's Republic of China
| | - Dandan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,The First School of Clinical Medicine, Lanzhou University, No.1, Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Yuhang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,The First School of Clinical Medicine, Lanzhou University, No.1, Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Junru Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,The First School of Clinical Medicine, Lanzhou University, No.1, Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Yuhong Ou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,The First School of Clinical Medicine, Lanzhou University, No.1, Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Xiaohu Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China. .,The First School of Clinical Medicine, Lanzhou University, No.1, Donggang West Road, Lanzhou, 730000, People's Republic of China. .,Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, People's Republic of China. .,Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, People's Republic of China.
| |
Collapse
|
79
|
Zhang Z, Tan X, Jiang Z, Wang H, Yuan H. Immune checkpoint inhibitors in osteosarcoma: A hopeful and challenging future. Front Pharmacol 2022; 13:1031527. [PMID: 36324681 PMCID: PMC9618820 DOI: 10.3389/fphar.2022.1031527] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma (OS), the most common malignant tumor in the musculoskeletal system, mainly occurs in adolescents. OS results in high mortality and disability rates due to a fatal metastatic tendency and subsequent iatrogenic damage caused by surgery, radiotherapy and chemotherapy. Recently, immunotherapies have resulted in promising prognoses with reduced side effects compared with traditional therapies. Immune checkpoint inhibitors (ICIs), which are a representative immunotherapy for OS, enhance the antitumor effects of immune cells. ICIs have shown satisfactory outcomes in other kinds of malignant tumors, especially hemopoietic tumors. However, there is still a high percentage of failures or severe side effects associated with the use of ICIs to treat OS, leading to far worse outcomes. To reveal the underlying mechanisms of drug resistance and side effects, recent studies elucidated several possible reasons, including the activation of other inhibitory immune cells, low immune cell infiltration in the tumor microenvironment, different immune properties of OS subtypes, and the involvement of osteogenesis and osteolysis. According to these mechanisms, researchers have developed new methods to overcome the shortcomings of ICIs. This review summarizes the recent breakthroughs in the use of ICIs to treat OS. Although numerous issues have not been solved yet, ICIs are still the most promising treatment options to cure OS in the long run.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xin Tan
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zengxin Jiang
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Hao Wang, ; Hengfeng Yuan,
| | - Hengfeng Yuan
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Hao Wang, ; Hengfeng Yuan,
| |
Collapse
|
80
|
Yamamoto Y, Hino A, Kurihara H, Kano K, Serizawa I, Katoh H, Hiruma T. Transitional changes of spacer materials used in carbon-ion radiation therapy. Asia Pac J Clin Oncol 2022; 18:e442-e447. [PMID: 35098680 DOI: 10.1111/ajco.13751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/13/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate the imaging findings and transitional changes in spacer materials used in carbon-ion radiation therapy MATERIALS: Medical records were retrospectively reviewed, and the maximum thickness, volume, and CT value of spacers were calculated from CT scans. Procedure-related complications were recorded. RESULTS A spacer was surgically placed in six patients in retroperitoneal, presacral, or peritoneal sites. The spacer material was polyglycolic acid (PGA) in four patients and expanded polytetrafluoroethylene (ePTFE) in two patients. The thickness of PGA spacers showed no changes in any patients within 4 weeks, but increased within 6 weeks in one patient and was unchanged or decreased in the remaining patients. PGA spacer volume decreased gradually after placement in three of four patients; this was observed at 4 months in two patients and at 6 months in one patient. The mean CT value of PGA spacers was 83 HU just after placement, and decreased gradually thereafter. Air was seen in the PGA spacers of two patients. Neither ePTFE spacer showed volume changes over time, and the mean CT value was low (mean, -53.7 HU) just after placement but increased rapidly to 145 HU at 2 months. CONCLUSION Spacer imaging findings may vary according to type and may change over time. Familiarity with these features is beneficial for diagnostic radiologists.
Collapse
Affiliation(s)
- Yayoi Yamamoto
- Department of Radiology and Interventional Radiology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Ayako Hino
- Department of Radiology and Interventional Radiology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Hiroaki Kurihara
- Department of Radiology and Interventional Radiology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Itsuko Serizawa
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Toru Hiruma
- Department of Musculoskeletal Tumor Surgery, Kanagawa Cancer Center, Kanagawa, Japan
| |
Collapse
|
81
|
Ishikawa H, Hiroshima Y, Kanematsu N, Inaniwa T, Shirai T, Imai R, Suzuki H, Akakura K, Wakatsuki M, Ichikawa T, Tsuji H. Carbon-ion radiotherapy for urological cancers. Int J Urol 2022; 29:1109-1119. [PMID: 35692124 PMCID: PMC9796467 DOI: 10.1111/iju.14950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
Abstract
Carbon-ions are charged particles with a high linear energy transfer, and therefore, they make a better dose distribution with greater biological effects on the tumors compared with photons and protons. Since prostate cancer, renal cell carcinoma, and retroperitoneal sarcomas such as liposarcoma and leiomyosarcoma are known to be radioresistant tumors, carbon-ion radiotherapy, which provides the advantageous radiobiological properties such as an increasing relative biological effectiveness toward the Bragg peak, a reduced oxygen enhancement ratio, and a reduced dependence on fractionation and cell-cycle stage, has been tested for these urological tumors at the National Institute for Radiological Sciences since 1994. To promote carbon-ion radiotherapy as a standard cancer therapy, the Japan Carbon-ion Radiation Oncology Study Group was established in 2015 to create a registry of all treated patients and conduct multi-institutional prospective studies in cooperation with all the Japanese institutes. Based on accumulating evidence of the efficacy and feasibility of carbon-ion therapy for prostate cancer and retroperitoneal sarcoma, it is now covered by the Japanese health insurance system. On the other hand, carbon-ion radiotherapy for renal cell cancer is not still covered by the insurance system, although the two previous studies showed the efficacy. In this review, we introduce the characteristics, clinical outcomes, and perspectives of carbon-ion radiotherapy and our efforts to disseminate the use of this new technology worldwide.
Collapse
Affiliation(s)
- Hitoshi Ishikawa
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Yuichi Hiroshima
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Nobuyuki Kanematsu
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Taku Inaniwa
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Toshiyuki Shirai
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Reiko Imai
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Hiroyoshi Suzuki
- Department of UrologyToho University Sakura Medical CenterChibaJapan
| | - Koichiro Akakura
- Department of UrologyJapan Community Health‐care Organization Tokyo Shinjuku Medical CenterTokyoJapan
| | - Masaru Wakatsuki
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Tomohiko Ichikawa
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Hiroshi Tsuji
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
82
|
Lohberger B, Barna S, Glänzer D, Eck N, Kerschbaum-Gruber S, Stasny K, Leithner A, Georg D. Cellular and Molecular Biological Alterations after Photon, Proton, and Carbon Ions Irradiation in Human Chondrosarcoma Cells Linked with High-Quality Physics Data. Int J Mol Sci 2022; 23:11464. [PMID: 36232764 PMCID: PMC9569755 DOI: 10.3390/ijms231911464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Chondrosarcomas are particularly difficult to treat due to their resistance to chemotherapy and radiotherapy. However, particle therapy can enhance local control and patient survival rates. To improve our understanding of the basic cellular radiation response, as a function of dose and linear energy transfer (LET), we developed a novel water phantom-based setup for cell culture experiments and characterized it dosimetrically. In a direct comparison, human chondrosarcoma cell lines were analyzed with regard to their viability, cell proliferation, cell cycle, and DNA repair behavior after irradiation with X-ray, proton, and carbon ions. Our results clearly showed that cell viability and proliferation were inhibited according to the increasing ionization density, i.e., LET, of the irradiation modes. Furthermore, a prominent G2/M arrest was shown. Gene expression profiling proved the upregulation of the senescence genes CDKN1A (p21), CDKN2A (p16NK4a), BMI1, and FOXO4 after particle irradiation. Both proton or C-ion irradiation caused a positive regulation of the repair genes ATM, NBN, ATXR, and XPC, and a highly significant increase in XRCC1/2/3, ERCC1, XPC, and PCNA expression, with C-ions appearing to activate DNA repair mechanisms more effectively. The link between the physical data and the cellular responses is an important contribution to the improvement of the treatment system.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Sandra Barna
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Glänzer
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Eck
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | | | | | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
| |
Collapse
|
83
|
Malicki J, Piotrowski T, Guedea F, Krengli M. Treatment-integrated imaging, radiomics, and personalised radiotherapy: the future is at hand. Rep Pract Oncol Radiother 2022; 27:734-743. [PMID: 36196410 PMCID: PMC9521689 DOI: 10.5603/rpor.a2022.0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Since the introduction of computed tomography for planning purposes in the 1970s, we have been observing a continuous development of different imaging methods in radiotherapy. The current achievements of imaging technologies in radiotherapy enable more than just improvement of accuracy on the planning stage. Through integrating imaging with treatment machines, they allow advanced control methods of dose delivery during the treatment. This article reviews how the integration of existing and novel forms of imaging changes radiotherapy and how these advances can allow a more individualised approach to cancer therapy. We believe that the significant challenge for the next decade is the continued integration of a range of different imaging devices into linear accelerators. These imaging modalities should show intra-fraction changes in body morphology and inter-fraction metabolic changes. As the use of these more advanced, integrated machines grows, radiotherapy delivery will become more accurate, thus resulting in better clinical outcomes: higher cure rates with fewer side effects.
Collapse
Affiliation(s)
- Julian Malicki
- Department of Electroradiology, University of Medical Sciences, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Tomasz Piotrowski
- Department of Electroradiology, University of Medical Sciences, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Ferran Guedea
- Department of Radiation Oncology, Catalan Institute of Oncology, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Marco Krengli
- Radiation Oncology Unit, University Hospital “Maggiore della Carità”, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
84
|
Bianfei S, Fang L, Zhongzheng X, Yuanyuan Z, Tian Y, Tao H, Jiachun M, Xiran W, Siting Y, Lei L. Application of Cherenkov radiation in tumor imaging and treatment. Future Oncol 2022; 18:3101-3118. [PMID: 36065976 DOI: 10.2217/fon-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cherenkov radiation (CR) is the characteristic blue glow that is generated during radiotherapy or radioisotope decay. Its distribution and intensity naturally reflect the actual dose and field of radiotherapy and the location of radioisotope imaging agents in vivo. Therefore, CR can represent a potential in situ light source for radiotherapy monitoring and radioisotope-based tumor imaging. When used in combination with new imaging techniques, molecular probes or nanomedicine, CR imaging exhibits unique advantages (accuracy, low cost, convenience and fast) in tumor radiotherapy monitoring and imaging. Furthermore, photosensitive nanomaterials can be used for CR photodynamic therapy, providing new approaches for integrating tumor imaging and treatment. Here the authors review the latest developments in the use of CR in tumor research and discuss current challenges and new directions for future studies.
Collapse
Affiliation(s)
- Shao Bianfei
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Fang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiation Oncology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Zhongzheng
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeng Yuanyuan
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Tian
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - He Tao
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ma Jiachun
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Xiran
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Siting
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Lei
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
85
|
Ruan H, Xiong J. Value of carbon-ion radiotherapy for early stage non-small cell lung cancer. Clin Transl Radiat Oncol 2022; 36:16-23. [PMID: 35756194 PMCID: PMC9213230 DOI: 10.1016/j.ctro.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Carbon-ion radiotherapy (CIRT) is an important part of modern radiotherapy. Compared to conventional photon radiotherapy modalities, CIRT brings two major types of advantages to physical and biological aspects respectively. The physical advantages include a substantial dose delivery to the tumoral area and a minimization of dose damage to the surrounding tissue. The biological advantages include an increase in double-strand breaks (DSBs) in DNA structures, an upturn in oxygen enhancement ratio and an improvement of radiosensitivity compared with X-ray radiotherapy. The two advantages of CIRT are that the therapy not only inflicts major cytotoxic lesions on tumor cells, but it also protects the surrounding tissue. According to annual diagnoses, lung cancer is the second most common cancer worldwide, followed by breast cancer. However, lung cancer is the leading cause of cancer death. Patients with stage I non-small cell lung cancer (NSCLC) who are optimally received the treatment of lobectomy. Some patients with comorbidities or combined cardiopulmonary insufficiency have been shown to be unable to tolerate the treatment when combined with surgery. Consequentially, radiotherapy may be the best treatment option for this patient category. Multiple radiotherapy options are available for these cases, such as stereotactic body radiotherapy (SBRT), volumetric modulated arc therapy (VMAT), and intensity-modulated radiotherapy (IMRT). Although these treatments have brought some clinical benefits to some patients, the resulting adverse events (AEs), which include cardiotoxicity and radiation pneumonia, cannot be ignored. The damage and toxicity to normal tissue also limit the increase of tumor dose. Due to the significant physical and biological advantages brought by CIRT, some toxicity induced by radiotherapy may be avoided with CIRT Bragg Peak. CIRT brought clinical benefits to lung cancer patients, especially geriatric patients. This review introduced the clinical efficacy and research results for non-small cell lung cancer (NSCLC) with CIRT.
Collapse
Affiliation(s)
- Hanguang Ruan
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
- Gunma University Heavy Ion Medical Center, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
- Department of Radiation Oncology, The Third Hospital of Nanchang, No 1248 Jiuzhou Avenue, Nanchang City 300002, China
| | - Juan Xiong
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Nanchang City 330029, China
| |
Collapse
|
86
|
Hill RM, Rocha S, Parsons JL. Overcoming the Impact of Hypoxia in Driving Radiotherapy Resistance in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:4130. [PMID: 36077667 PMCID: PMC9454974 DOI: 10.3390/cancers14174130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
Hypoxia is very common in most solid tumours and is a driving force for malignant progression as well as radiotherapy and chemotherapy resistance. Incidences of head and neck squamous cell carcinoma (HNSCC) have increased in the last decade and radiotherapy is a major therapeutic technique utilised in the treatment of the tumours. However, effectiveness of radiotherapy is hindered by resistance mechanisms and most notably by hypoxia, leading to poor patient prognosis of HNSCC patients. The phenomenon of hypoxia-induced radioresistance was identified nearly half a century ago, yet despite this, little progress has been made in overcoming the physical lack of oxygen. Therefore, a more detailed understanding of the molecular mechanisms of hypoxia and the underpinning radiobiological response of tumours to this phenotype is much needed. In this review, we will provide an up-to-date overview of how hypoxia alters molecular and cellular processes contributing to radioresistance, particularly in the context of HNSCC, and what strategies have and could be explored to overcome hypoxia-induced radioresistance.
Collapse
Affiliation(s)
- Rhianna M. Hill
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L7 8TX, UK
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jason L. Parsons
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L7 8TX, UK
- Clatterbridge Cancer Centre NHS Foundation Trust, Clatterbridge Road, Bebington CH63 4JY, UK
| |
Collapse
|
87
|
Furuta T, Koba Y, Hashimoto S, Chang W, Yonai S, Matsumoto S, Ishikawa A, Sato T. Development of the DICOM-based Monte Carlo dose reconstruction system for a retrospective study on the secondary cancer risk in carbon ion radiotherapy. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/16/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. A retrospective study on secondary cancer risk on carbon ion radiotherapy (CIRT) is ongoing at the Heavy Ion Medical Accelerator in Chiba (HIMAC). The reconstruction of the whole-body patient dose distribution is the key issue in the study because dose distribution only around the planning target volume was evaluated in the treatment planning system. Approach. We therefore developed a new dose reconstruction system based on the Particle and Heavy Ion Transport code System (PHITS) coupled with the treatment plan DICOM data set by extending the functionalities of RadioTherapy package based on PHITS (RT-PHITS). In the system, the geometry of patient-specific beam devices such as the range shifter, range compensator, and collimators as well as the individual patient’s body are automatically reconstructed. Various functions useful for retrospective analysis on the CIRT are implemented in the system, such as those for separately deducing dose contributions from different secondary particles and their origins. Main results. The accuracy of the developed system was validated by comparing the dose distribution to the experimental data measured in a water tank and using a treatment plan on an anthropomorphic phantom. Significance. The extended RT-PHITS will be used in epidemiological studies based on clinical data from HIMAC.
Collapse
|
88
|
Brahme A. Quantifying Cellular Repair, Misrepair and Apoptosis Induced by Boron Ions, Gamma Rays and PRIMA-1 Using the RHR Formulation. Radiat Res 2022; 198:271-296. [PMID: 35834822 DOI: 10.1667/rade-22-00011.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
The recent interaction cross-section-based formulation for radiation-induced direct cellular inactivation, mild and severe sublethal damage, DNA-repair and cell survival have been developed to accurately describe cellular repair, misrepair and apoptosis in TP53 wild-type and mutant cells. The principal idea of this new non-homologous repairable-homologous repairable (RHR) damage formulation is to separately describe the mild damage that can be rapidly handled by the most basic repair processes including the non-homologous end joining (NHEJ), and more complex damage requiring longer repair times and high-fidelity homologous recombination (HR) repair. Taking the interaction between these two key mammalian DNA repair processes more accurately into account has significantly improved the method as indicated in the original publication. Based on the principal mechanisms of 7 repair and 8 misrepair processes presently derived, it has been possible to quite accurately describe the probability that some of these repair processes when unsuccessful can induce cellular apoptosis with increasing doses of γrays, boron ions and PRIMA-1. Interestingly, for all LETs studied (≈0.3-160 eV/nm) the increase in apoptosis saturates when the cell survival reaches about 10% and the fraction of un-hit cells is well below the 1% level. It is shown that most of the early cell kill for low-to-medium LETs are due to apoptosis since the cell survival as well as the non-apoptotic cells agree very well at low doses and other death processes dominate beyond D > 1 Gy. The low-dose apoptosis is due to the fact that the full activation of the checkpoint kinases ATM and Chk2 requires >8 and >18 DSBs per cell to phosphorylate p53 at serine 15 and 20. Therefore, DNA repair is not fully activated until well after 1/2 Gy, and the cellular response may be apoptotic by default before the low-dose hyper sensitivity (LDHS) is replaced by an increased radiation tolerance as the DNA repair processes get maximal efficiency. In effect, simultaneously explaining the LDHS and inverse dose rate phenomena. The partial contributions by the eight newly derived misrepair processes was determined so they together accurately described the experimental apoptosis induction data for γ rays and boron ions. Through these partial misrepair contributions it was possible to predict the apoptotic response based solely on carefully analyzed cell survival data, demonstrating the usefulness of an accurate DNA repair-based cell survival approach. The peak relative biological effectiveness (RBE) of the boron ions was 3.5 at 160 eV/nm whereas the analogous peak relative apoptotic effectiveness (RAE) was 3.4 but at 40 eV/nm indicating the clinical value of the lower LET light ion (15 \le {\rm{LET}} \le 55{\rm{\ eV}}/{\rm{nm}},{\rm{\ }}2 \le Z \le 5) in therapeutic applications to maximize tumor apoptosis and senescence. The new survival expressions were also applied on mouse embryonic fibroblasts with key knocked-out repair genes, showing a good agreement between the principal non-homologous and homologous repair terms and also a reasonable prediction of the associated apoptotic induction. Finally, the formulation was used to estimate the increase in DNA repair and apoptotic response in combination with the mutant p53 reactivating compound PRIMA-1 and γ rays, indicating a 10-2 times increase in apoptosis with 5 μM of the compound reaching apoptosis levels not far from peak apoptosis boron ions in a TP53 mutant cell line. To utilize PRIMA-1 induced apoptosis and cellular sensitization for reactive oxygen species (ROS), concomitant biologically optimized radiation therapy is proposed to maximize the complication free tumor cure for the multitude of TP53 mutant tumors seen in the clinic. The experimental data also indicated the clinically very important high-absorbed dose ROS effect of PRIMA-1.
Collapse
Affiliation(s)
- Anders Brahme
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
89
|
Foote RL, Tsujii H, Imai R, Tsuji H, Hug EB, Kanai T, Lu JJ, Debus J, Engenhart-Cabillic R, Mahajan A. The Majority of United States Citizens With Cancer do not Have Access to Carbon Ion Radiotherapy. Front Oncol 2022; 12:954747. [PMID: 35875126 PMCID: PMC9304691 DOI: 10.3389/fonc.2022.954747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
As of December 31, 2020, there were 12 facilities located in Asia and Europe which were treating cancer patients with carbon ion radiotherapy (CIRT). Between June 1994 and December 2020, 37,548 patients were treated with CIRT worldwide. Fifteen of these patients were United States (U.S.) citizens. Using the Surveillance, Epidemiology, and End Results cancer statistics database, the Mayo Clinic in Rochester, MN has conservatively estimated that there are approximately 44,340 people diagnosed each year in the U.S. with malignancies that would benefit from treatment with CIRT. The absence of CIRT facilities in the U.S. not only limits access to CIRT for cancer care but also prevents inclusion of U.S. citizens in phase III clinical trials that will determine the comparative effectiveness and cost effectiveness of CIRT for a variety of malignancies for FDA approval and insurance coverage. Past and present phase III clinical trials have not been able to enroll U.S. citizens due to their unwillingness or inability to travel abroad for CIRT for an extended period. These barriers could be overcome with a limited number of CIRT facilities in the U.S.
Collapse
Affiliation(s)
- Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- *Correspondence: Robert L. Foote,
| | | | - Reiko Imai
- Department of Bone and Soft Tissue Tumors, QST Hospital, Chiba, Japan
| | - Hiroshi Tsuji
- International Particle Therapy Research Center Director, QST Hospital, Chiba, Japan
| | - Eugen B. Hug
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Tatsuaki Kanai
- Department of Radiation Oncology and Radiation Therapy, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Jiade J. Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Juergen Debus
- Department of Radiation Oncology and Radiation Therapy, Heidelberg Ion Beam Therapy Center, Heidelberg, Germany
| | | | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
90
|
Aoki S, Koto M, Ikawa H, Imai R, Tokuhiko O, Shinoto M, Takiyama H, Yamada S, Tsuji H. Long-term outcomes of high dose carbon-ion radiation therapy for unresectable upper cervical (C1-2) chordoma. Head Neck 2022; 44:2162-2170. [PMID: 35734902 PMCID: PMC9544549 DOI: 10.1002/hed.27127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 11/06/2022] Open
Abstract
Background Chordoma is a rare, locally invasive neoplasm of the axial skeleton. Complete resection is often difficult, especially for the upper‐cervical (C1‐2) spine. We evaluated the efficacy and safety of carbon‐ion radiotherapy (CIRT) for unresectable C1‐2 chordoma. Methods Patients with C1‐2 chordoma treated with definitive CIRT (60.8 Gy [RBE] in 16 fractions) were retrospectively analyzed. We evaluated OS, LC, PFS, and toxicity. Results Nineteen eligible patients all completed the planned course of CIRT. With the median follow‐up 68 months (range: 29–144), median OS was 126 months (range: 36‐NA). Five‐year OS, LC, and PFS were 68.4% (95% CI, 42.8%–84.4%), 75.2% (46.1%–90.0%), and 64.1% (36.3%–82.3%), respectively. Regarding acute toxicity of grade ≥3, there was only one grade 3 mucositis. Late toxicity included radiation‐induced myelitis (grade 3 in 1 patient; 5.3%), and compression fractures (n = 5; 26.3%). Conclusions High‐dose CIRT is a promising treatment option for unresectable upper cervical chordoma.
Collapse
Affiliation(s)
- Shuri Aoki
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan.,Department of Radiology, University of Tokyo Hospital, Tokyo, Japan
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroaki Ikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Reiko Imai
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Omatsu Tokuhiko
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Shinoto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hirotoshi Takiyama
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
91
|
Pan F, Lin X, Hao L, Wang T, Song H, Wang R. The Critical Role of Ferroptosis in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:882571. [PMID: 35800895 PMCID: PMC9255949 DOI: 10.3389/fcell.2022.882571] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Liver cancer is the sixth most frequently diagnosed cancer and the third dominant cause of cancer death worldwide. Ferroptosis is characterized as an iron-dependent form of regulated cell death, with accumulation of lipid peroxides to lethal amounts. Evidences have showed that ferroptosis is closely associated with HCC, but the mechanisms are still poorly understood. In this review, we mainly summarize the roles of several typical molecules as well as radiotherapy in regulating the ferroptosis process in HCC. Chances are that this review may help address specific issues in the treatment of HCC.
Collapse
|
92
|
Pompos A, Foote RL, Koong AC, Le QT, Mohan R, Paganetti H, Choy H. National Effort to Re-Establish Heavy Ion Cancer Therapy in the United States. Front Oncol 2022; 12:880712. [PMID: 35774126 PMCID: PMC9238353 DOI: 10.3389/fonc.2022.880712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we attempt to make a case for the establishment of a limited number of heavy ion cancer research and treatment facilities in the United States. Based on the basic physics and biology research, conducted largely in Japan and Germany, and early phase clinical trials involving a relatively small number of patients, we believe that heavy ions have a considerably greater potential to enhance the therapeutic ratio for many cancer types compared to conventional X-ray and proton radiotherapy. Moreover, with ongoing technological developments and with research in physical, biological, immunological, and clinical aspects, it is quite plausible that cost effectiveness of radiotherapy with heavier ions can be substantially improved.
Collapse
Affiliation(s)
- Arnold Pompos
- Department of Radiation Oncology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Robert L. Foote,
| | - Albert C. Koong
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Quynh Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Radhe Mohan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Harald Paganetti
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
| | - Hak Choy
- Department of Radiation Oncology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
93
|
A Consistent Protocol Reveals a Large Heterogeneity in the Biological Effectiveness of Proton and Carbon-Ion Beams for Various Sarcoma and Normal-Tissue-Derived Cell Lines. Cancers (Basel) 2022; 14:cancers14082009. [PMID: 35454915 PMCID: PMC9029457 DOI: 10.3390/cancers14082009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Using a consistent experimental protocol, we found a large heterogeneity in the relative biological effectiveness (RBE) values of both proton and carbon-ion beams in various sarcomas and normal-tissue-derived cell lines. Our data suggest that proton beam therapy may be more beneficial for some types of tumors. In carbon-ion therapy, for some types of tumors, large heterogeneity in RBE should prompt consideration of dose reduction or an increased dose per fraction. In particular, a higher RBE value in normal tissues requires caution. Specific dose evaluations for tumor and normal tissues are needed for both proton and carbon-ion therapies. Abstract This study investigated variations in the relative biological effectiveness (RBE) values among various sarcoma and normal-tissue-derived cell lines (normal cell line) in proton beam and carbon-ion irradiations. We used a consistent protocol that specified the timing of irradiation after plating cells and detailed the colony formation assay. We examined the cell type dependence of RBE for proton beam and carbon-ion irradiations using four human sarcoma cell lines (MG63 osteosarcoma, HT1080 fibrosarcoma, SW872 liposarcoma, and SW1353 chondrosarcoma) and three normal cell lines (HDF human dermal fibroblast, hTERT-HME1 mammary gland, and NuLi-1 bronchus epithelium). The cells were irradiated with gamma rays, proton beams at the center of the spread-out Bragg peak, or carbon-ion beams at 54.4 keV/μm linear energy transfer. In all sarcoma and normal cell lines, the average RBE values in proton beam and carbon-ion irradiations were 1.08 ± 0.11 and 2.08 ± 0.36, which were consistent with the values of 1.1 and 2.13 used in current treatment planning systems, respectively. Up to 34% difference in the RBE of the proton beam was observed between MG63 and HT1080. Similarly, a 32% difference in the RBE of the carbon-ion beam was observed between SW872 and the other sarcoma cell lines. In proton beam irradiation, normal cell lines had less variation in RBE values (within 10%), whereas in carbon-ion irradiation, RBE values differed by up to 48% between hTERT-HME1 and NuLi-1. Our results suggest that specific dose evaluations for tumor and normal tissues are necessary for treatment planning in both proton and carbon-ion therapies.
Collapse
|
94
|
Galanakou P, Leventouri T, Muhammad W. Non-radioactive elements for prompt gamma enhancement in proton therapy. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
95
|
Investigations of thermoluminescence characteristics of CaSiO3:Yb phosphor irradiated with gamma rays and carbon ion beam. Appl Radiat Isot 2022; 186:110253. [DOI: 10.1016/j.apradiso.2022.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
|
96
|
Key biological mechanisms involved in high-LET radiation therapies with a focus on DNA damage and repair. Expert Rev Mol Med 2022; 24:e15. [PMID: 35357290 DOI: 10.1017/erm.2022.6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA damage and repair studies are at the core of the radiation biology field and represent also the fundamental principles informing radiation therapy (RT). DNA damage levels are a function of radiation dose, whereas the type of damage and biological effects such as DNA damage complexity, depend on radiation quality that is linear energy transfer (LET). Both levels and types of DNA damage determine cell fate, which can include necrosis, apoptosis, senescence or autophagy. Herein, we present an overview of current RT modalities in the light of DNA damage and repair with emphasis on medium to high-LET radiation. Proton radiation is discussed along with its new adaptation of FLASH RT. RT based on α-particles includes brachytherapy and nuclear-RT, that is proton-boron capture therapy (PBCT) and boron-neutron capture therapy (BNCT). We also discuss carbon ion therapy along with combinatorial immune-based therapies and high-LET RT. For each RT modality, we summarise relevant DNA damage studies. Finally, we provide an update of the role of DNA repair in high-LET RT and we explore the biological responses triggered by differential LET and dose.
Collapse
|
97
|
Nitta Y, Murata H, Okonogi N, Murata K, Wakatsuki M, Karasawa K, Kato S, Yamada S, Nakano T, Tsuji H. Secondary cancers after carbon-ion radiotherapy and photon beam radiotherapy for uterine cervical cancer: A comparative study. Cancer Med 2022; 11:2445-2454. [PMID: 35318825 PMCID: PMC9189463 DOI: 10.1002/cam4.4622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND There are limited studies on the risk of secondary cancers after carbon-ion radiotherapy (CIRT). We assessed the incidence of secondary cancers in patients treated with CIRT for cervical cancer. We also evaluated the incidence of secondary cancers in patients who received standard photon radiotherapy (RT) throughout the same period. METHODS This retrospective study included patients with cervical cancer who underwent curative RT at our hospital. All cancers discovered for the first time after RT were classified as secondary cancers. To compare the risk of secondary cancers among cervical cancer survivors to the general population, standardized incidence ratios (SIRs) were calculated. RESULTS The analysis included a total of 197 and 417 patients in the CIRT and photon RT groups, respectively. The total person-years during the observation period were 1052.4 in the CIRT group and 2481.5 in the photon RT group. The SIR for all secondary cancers was 1.1 (95% confidence interval [CI], 0.6-2.1) in the CIRT group and 1.4 (95% CI, 1.0-2.1) in the photon RT group. The 10-year cumulative incidence of all secondary cancers was 9.5% (95% CI, 4.0-21.5) in the CIRT group and 9.4% (95% CI, 6.2-14.1) in the photon RT group. The CIRT and photon RT groups were not significantly different in incidence (p = 0.268). CONCLUSIONS The incidence of secondary cancers after CIRT for cervical cancer was similar to that after photon RT. Validation of our findings after long-term observation is warranted.
Collapse
Affiliation(s)
- Yuki Nitta
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroto Murata
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Radiation Oncology, Saitama Cancer Center, Saitama, Japan
| | - Noriyuki Okonogi
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kazutoshi Murata
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masaru Wakatsuki
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kumiko Karasawa
- Department of Radiation Oncology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Shingo Kato
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takashi Nakano
- Quantum Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
98
|
Serizawa I, Kusano Y, Kano K, Shima S, Tsuchida K, Takakusagi Y, Mizoguchi N, Kamada T, Yoshida D, Katoh H. Three cases of retroperitoneal sarcoma in which bioabsorbable spacers (bioabsorbable polyglycolic acid spacers) were inserted prior to carbon ion radiotherapy. JOURNAL OF RADIATION RESEARCH 2022; 63:296-302. [PMID: 35152291 PMCID: PMC8944322 DOI: 10.1093/jrr/rrac002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/17/2021] [Indexed: 06/14/2023]
Abstract
From August 2019 to August 2020, we inserted polyglycolic acid (PGA) spacers and administered carbon ion radiotherapy (CIRT) to three cases of retroperitoneal sarcoma at our hospital. We aimed to investigate its utility and safety for retroperitoneal sarcoma. We analyzed changes in PGA spacer volume and corresponding computed tomography (CT) values in addition to the dose distribution using in-room CT images that were obtained during treatment. We assessed adverse events and investigated the suitability, safety and effectivity of PGA spacer insertion. During treatment, changes in PGA spacer volumes and CT values were confirmed. Volumes increased in patients with a folded PGA spacer, and it increased 1.6-fold by the end of irradiation compared with planning CT. The CT values decreased by 20-50 Hounsfield units at the end of irradiation compared to the planning CT. Dose distribution evaluation showed that the dose to the gastrointestinal tract adjacent to the tumor was maintained below the tolerable dose, and a sufficient dose was delivered to the target by PGA spacer insertion. One case of subileus caused during abdominal surgery for PGA spacer insertion occurred. No other adverse events, such as digestive disorders, were observed. CIRT with PGA spacer insertion for retroperitoneal sarcomas is safe and effective. For cases in which there is no option but to perform irradiation using a PGA spacer, precautionary measures such as verification of dose distributions using CT images are necessary.
Collapse
Affiliation(s)
- Itsuko Serizawa
- Corresponding author. Itsuko Serizawa, MD, PhD, Department of Radiation Oncology, Kanagawa Cancer Center, 241-8515, Asahi-ku, Yokohama, Kanagawa, Japan. Tel: +81 455202222; Fax: +81 455202202; E-mail:
| | - Yohsuke Kusano
- Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama 241-8515, Japan
| | - Kio Kano
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan
| | - Satoshi Shima
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan
| | - Keisuke Tsuchida
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan
| | - Yosuke Takakusagi
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan
| | - Nobutaka Mizoguchi
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan
| | - Tadashi Kamada
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan
| | - Daisaku Yoshida
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan
| |
Collapse
|
99
|
Ohsawa D, Hiroyama Y, Kobayashi A, Kusumoto T, Kitamura H, Hojo S, Kodaira S, Konishi T. DNA strand break induction of aqueous plasmid DNA exposed to 30 MeV protons at ultra-high dose rate. JOURNAL OF RADIATION RESEARCH 2022; 63:255-260. [PMID: 34952540 PMCID: PMC8944314 DOI: 10.1093/jrr/rrab114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Radiation cancer therapy with ultra-high dose rate exposure, so called FLASH radiotherapy, appears to reduce normal tissue damage without compromising tumor response. The aim of this study was to clarify whether FLASH exposure of proton beam would be effective in reducing the DNA strand break induction. We applied a simple model system, pBR322 plasmid DNA in aqueous 1 × TE solution, where DNA single strand breaks (SSBs) and double strand breaks (DSBs) can be precisely quantified by gel electrophoresis. Plasmid DNA were exposed to 27.5 MeV protons in the conventional dose rate of 0.05 Gy/s (CONV) and ultra-high dose rate of 40 Gy/s (FLASH). With both dose rate, the kinetics of the SSB and DSB induction were proportional to absorbed dose. The SSB induction of FLASH was significantly less than CONV, which were 8.79 ± 0.14 (10-3 SSB per Gy per molecule) and 10.8 ± 0.68 (10-3 SSB per Gy per molecule), respectively. The DSB induction of FLASH was also slightly less than CONV, but difference was not significant. Altogether, 27.5 MeV proton beam at 40 Gy/s reduced SSB and not DSB, thus its effect may not be significant in reducing lethal DNA damage that become apparent in acute radiation effect.
Collapse
Affiliation(s)
- Daisuke Ohsawa
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Yota Hiroyama
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hommachi, Hirosaki-shi, Aomori, 036-8564, Japan
| | - Alisa Kobayashi
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Electrostatic Accelerator Operation Section, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Tamon Kusumoto
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Radiation Measurement Research Group, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Hisashi Kitamura
- Radiation Measurement Research Group, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Satoru Hojo
- Cyclotron Operation Section, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Satoshi Kodaira
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Radiation Measurement Research Group, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
| | - Teruaki Konishi
- Single Cell Radiation Biology Group, National Institutes for Quantum Science and Technology; 4-9-1 Anagawa, Inageku, Chiba, 263-8555, Japan
- Graduate School of Health Sciences, Hirosaki University, 66-1 Hommachi, Hirosaki-shi, Aomori, 036-8564, Japan
| |
Collapse
|
100
|
Guo Z, Buonanno M, Harken A, Zhou G, Hei TK. Mitochondrial Damage Response and Fate of Normal Cells Exposed to FLASH Irradiation with Protons. Radiat Res 2022; 197:569-582. [PMID: 35290449 DOI: 10.1667/rade-21-00181.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/24/2022] [Indexed: 11/03/2022]
Abstract
Radiation therapy (RT) plays an important role in cancer treatment. The clinical efficacy of radiation therapy is, however, limited by normal tissue toxicity in areas surrounding the irradiated tumor. Compared to conventional radiation therapy (CONV-RT) in which doses are typically delivered at dose rates between 0.03-0.05 Gy/s, there is evidence that radiation delivered at dose rates of orders of magnitude higher (known as FLASH-RT), dramatically reduces the adverse side effects in normal tissues while achieving similar tumor control. The present study focused on normal cell response and tested the hypothesis that proton-FLASH irradiation preserves mitochondria function of normal cells through the induction of phosphorylated Drp1. Normal human lung fibroblasts (IMR90) were irradiated under ambient oxygen concentration (21%) with protons (LET = 10 keV/μm) delivered at dose rates of either 0.33 Gy/s or 100 Gy/s. Mitochondrial dynamics, functions, cell growth and changes in protein expression levels were investigated. Compared to lower dose-rate proton irradiation, FLASH-RT prevented mitochondria damage characterized by morphological changes, functional changes (membrane potential, mtDNA copy number and oxidative enzyme levels) and oxyradical production. After CONV-RT, the phosphorylated form of Dynamin-1-like protein (p-Drp1) underwent dephosphorylation and aggregated into the mitochondria resulting in mitochondria fission and subsequent cell death. In contrast, p-Drp1 protein level did not significantly change after delivery of similar FLASH doses. Compared with CONV irradiation, FLASH irradiation using protons induces minimal mitochondria damage; our results highlight a possible contribution of Drp1-mediated mitochondrial homeostasis in this potential novel cancer treatment modality.
Collapse
Affiliation(s)
- Ziyang Guo
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.,Department of Ultrasound Medicine, Peking University First Hospital, Beijing, China
| | - Manuela Buonanno
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York
| | - Andrew Harken
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Tom K Hei
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York
| |
Collapse
|