51
|
Cui T, Zhang A, Cui J, Chen L, Chen G, Dai H, Qin X, Li G, Sun J. Feasibility of omitting the clinical target volume under PET-CT guidance in unresectable stage III non-small-cell lung cancer: A phase II clinical trial. Radiother Oncol 2023; 181:109505. [PMID: 36764460 DOI: 10.1016/j.radonc.2023.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND This clinical trial aims at investigate the feasibility of CTV-omitted, positron-emission tomography computed tomography (PET-CT) combined with intensity-modulated radiation therapy (IMRT) for unresectable stage III NSCLC. METHODS AND MATERIALS This was a single-center, phase II clinical trial initiated in July 2016. Patients with unresectable stage III NSCLC undergoing routine IMRT were randomly enrolled into the study group (CTV-omitted under PET-CT guidance) and the control group (CTV-delineated). Patients received platinum-based dual-drug concurrent chemoradio therapy. In the study group, the PGTV dose was 60 Gy given in 30 daily 2 Gy fractions; in the control group, the PCTV dose was 54 Gy given in 30 daily 1.8 Gy fractions, and the PGTV dose was 60 Gy given in 30 daily 2 Gy fractions. The primary endpoint was the incidence of radiation respiratory events or esophagitis with grade 3 or higher. The secondary endpoints included objective response rate (ORR), locate control rate, progression-free survival (PFS), failure pattern and overall survival (OS). RESULTS A total of 90 patients were enrolled between July 2016 and March 2019. The incidence of radiation respiratory events or esophagitis with grade 3 or higher was 11.1 % in the study group, significantly lower than the rate of 28.9 % in the control group (P = 0.035), basically due to the reduced irradiated volumes of the lungs and esophagus in the study group. The median PFS was 9.0 months versus 10.0 months (P = 0.597), and the median OS 31.0 months versus 26.0 months (P = 0.489) in the study group and the control group, respectively. The failure pattern was not significantly different between the two groups (P = 0.826). CONCLUSION Omitting the CTV under PET-CT guidance has high feasibility to reduce severe radiation associated toxicity in IMRT for unresectable stage III NSCLC, without compromising the efficacy.
Collapse
Affiliation(s)
- Tianxiang Cui
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Anmei Zhang
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jianxiong Cui
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China; Department of Oncology, Sichuan Provincial Crops Hospital of Chinese People's Armed Police Forces, Leshan, China
| | - Lu Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Guangpeng Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hongya Dai
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xianli Qin
- Department of Nuclear Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Guanghui Li
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
52
|
Thorwarth D. Clinical use of positron emission tomography for radiotherapy planning - Medical physics considerations. Z Med Phys 2023; 33:13-21. [PMID: 36272949 PMCID: PMC10068574 DOI: 10.1016/j.zemedi.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
PET/CT imaging plays an increasing role in radiotherapy treatment planning. The aim of this article was to identify the major use cases and technical as well as medical physics challenges during integration of these data into treatment planning. Dedicated aspects, such as (i) PET/CT-based radiotherapy simulation, (ii) PET-based target volume delineation, (iii) functional avoidance to optimized organ-at-risk sparing and (iv) functionally adapted individualized radiotherapy are discussed in this article. Furthermore, medical physics aspects to be taken into account are summarized and presented in form of check-lists.
Collapse
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
53
|
Eichkorn T, Lischalk JW, Stüwe C, Tonndorf-Martini E, Schubert K, Dinges LA, Regnery S, Bozorgmehr F, König L, Christopoulos P, Hörner-Rieber J, Adeberg S, Herfarth K, Winter H, Thomas M, Rieken S, Debus J, El Shafie RA. High-risk patients with locally advanced non-small cell lung cancer treated with stereotactic body radiation therapy to the peripheral primary combined with conventionally fractionated volumetric arc therapy to the mediastinal lymph nodes. Front Oncol 2023; 12:1035370. [PMID: 36713565 PMCID: PMC9880536 DOI: 10.3389/fonc.2022.1035370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction A very narrow therapeutic window exists when delivering curative chemoradiotherapy for inoperable locally advanced non-small cell lung cancer (NSCLC), particularly when large distances exist between areas of gross disease in the thorax. In the present study, we hypothesize that a novel technique of stereotactic body radiation therapy (SBRT) to the primary tumor in combination with volumetric arc therapy (VMAT) to the mediastinal lymph nodes (MLN) is a suitable approach for high-risk patients with large volume geographically distant locally advanced NSCLC. Patients and methods In this single institutional review, we identified high-risk patients treated between 2014 and 2017 with SBRT to the parenchymal lung primary as well as VMAT to the involved MLN using conventional fractionation. Dosimetrically, comparative plans utilizing VMAT conventionally fractionated delivered to both the primary and MLN were analyzed. Clinically, toxicity (CTCAE version 5.0) and oncologic outcomes were analyzed in detail. Results A total of 21 patients were identified, 86% (n=18) of which received chemotherapy as a portion of their treatment. As treatment phase was between 2014 and 2017, none of the patients received consolidation immunotherapy. Target volume (PTV) dose coverage (99 vs. 87%) and CTV volume (307 vs. 441 ml) were significantly improved with SBRT+MLN vs. for VMAT alone (p<0.0001). Moreover, low-dose lung (median V5Gy [%]: 71 vs. 77, p<0.0001), heart (median V5Gy [%]: 41 vs. 49, p<0.0001) and esophagus (median V30Gy [%]: 54 vs. 55, p=0.03) dose exposure were all significantly reduced with SBRT+MLN. In contrast, there was no difference observed in high-dose exposure of lungs, heart, and spinal cord. Following SBRT+MLN treatment, we identified only one case of high-grade pneumonitis. As expected, we observed a higher rate of esophagitis with a total of seven patients experience grade 2+ toxicity. Overall, there were no grade 4+ toxicities identified. After a median 3 years follow up, disease progression was observed in 70% of patients irradiated using SBRT+MLN, but never in the spared 'bridging' tissue between pulmonary SBRT and mediastinal VMAT. Conclusion For high risk patients, SBRT+MLN is dosimetrically feasible and can provide an alternative to dose reductions necessitated by otherwise very large target volumes.
Collapse
Affiliation(s)
- Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany,National Center for Tumor diseases (NCT) Heidelberg University Hospital, Heidelberg, Germany,*Correspondence: Tanja Eichkorn,
| | - Jonathan W. Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Langone Health at Long Island, New York, NY, United States
| | - Cedric Stüwe
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Eric Tonndorf-Martini
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Kai Schubert
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Lisa-Antonia Dinges
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany,National Center for Tumor diseases (NCT) Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany,National Center for Tumor diseases (NCT) Heidelberg University Hospital, Heidelberg, Germany
| | - Farastuk Bozorgmehr
- National Center for Tumor diseases (NCT) Heidelberg University Hospital, Heidelberg, Germany,Thoracic Clinic, Heidelberg University, Heidelberg, Germany,Translational Lung Research Center (TLRC), Member of German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany,National Center for Tumor diseases (NCT) Heidelberg University Hospital, Heidelberg, Germany
| | - Petros Christopoulos
- National Center for Tumor diseases (NCT) Heidelberg University Hospital, Heidelberg, Germany,Thoracic Clinic, Heidelberg University, Heidelberg, Germany,Translational Lung Research Center (TLRC), Member of German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany,National Center for Tumor diseases (NCT) Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany,National Center for Tumor diseases (NCT) Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany,National Center for Tumor diseases (NCT) Heidelberg University Hospital, Heidelberg, Germany
| | - Hauke Winter
- Translational Lung Research Center (TLRC), Member of German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Heidelberg, Germany,Department of Thoracic Surgery, Thoracic Clinic, Heidelberg University, Heidelberg, Germany
| | - Michael Thomas
- National Center for Tumor diseases (NCT) Heidelberg University Hospital, Heidelberg, Germany,Thoracic Clinic, Heidelberg University, Heidelberg, Germany,Translational Lung Research Center (TLRC), Member of German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, Göttingen University Hospital, Göttingen, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany,National Center for Tumor diseases (NCT) Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Radiation Oncology (E050), German Cancer Research Center (dkfz), Heidelberg, Germany,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Heidelberg, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Rami A. El Shafie
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany,National Center for Tumor diseases (NCT) Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
54
|
Craddock M, Nestle U, Koenig J, Schimek-Jasch T, Kremp S, Lenz S, Banfill K, Davey A, Price G, Salem A, Faivre-Finn C, van Herk M, McWilliam A. Cardiac Function Modifies the Impact of Heart Base Dose on Survival: A Voxel-Wise Analysis of Patients With Lung Cancer From the PET-Plan Trial. J Thorac Oncol 2023; 18:57-66. [PMID: 36130693 DOI: 10.1016/j.jtho.2022.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Heart dose has emerged as an independent predictor of overall survival in patients with NSCLC treated with radiotherapy. Several studies have identified the base of the heart as a region of enhanced dose sensitivity and a potential target for cardiac sparing. We present a dosimetric analysis of overall survival in the multicenter, randomized PET-Plan trial (NCT00697333) and for the first time include left ventricular ejection fraction (EF) at baseline as a metric of cardiac function. METHODS A total of 205 patients with inoperable stage II or III NSCLC treated with 60 to 72 Gy in 2 Gy fractions were included in this study. A voxel-wise image-based data mining methodology was used to identify anatomical regions where higher dose was significantly associated with worse overall survival. Univariable and multivariable Cox proportional hazards models tested the association of survival with dose to the identified region, established prognostic factors, and baseline cardiac function. RESULTS A total of 172 patients remained after processing and censoring for follow-up. At 2-years posttreatment, a highly significant region was identified within the base of the heart (p < 0.005), centered on the origin of the left coronary artery and the region of the atrioventricular node. In multivariable analysis, the number of positron emission tomography-positive nodes (p = 0.02, hazard ratio = 1.13, 95% confidence interval: 1.02-1.25) and mean dose to the cardiac subregion (p = 0.02, hazard ratio = 1.11 Gy-1, 95% confidence interval: 1.02-1.21) were significantly associated with overall survival. There was a significant interaction between EF and region dose (p = 0.04) for survival, with contrast plots revealing a larger effect of region dose on survival in patients with lower EF values. CONCLUSIONS This work validates previous image-based data mining studies by revealing a strong association between dose to the base of the heart and overall survival. For the first time, an interaction between baseline cardiac health and heart base dose was identified, potentially suggesting preexisting cardiac dysfunction exacerbates the impact of heart dose on survival.
Collapse
Affiliation(s)
- Matthew Craddock
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.
| | - Ursula Nestle
- Department of Radiation Oncology, Medical Center, University of Freiburg, Freiburg, Germany; Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Jochem Koenig
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Hospital Mainz, Mainz, Germany
| | - Tanja Schimek-Jasch
- Department of Radiation Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Stephanie Kremp
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center and Faculty of Medicine, Homburg/Saar, Germany
| | - Stefan Lenz
- Faculty of Medicine and Medical Center, University of Freiburg, Institute of Medical Biometry and Statistics, Freiburg, Germany
| | - Kathryn Banfill
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Angela Davey
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Gareth Price
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Ahmed Salem
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom; Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Corinne Faivre-Finn
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom; Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Marcel van Herk
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Alan McWilliam
- Radiotherapy Related Research Group, Division of Cancer Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
55
|
Yang PC, Chen WM, Chen M, Shia BC, Wu SY, Chiang CW. Survival effect of pretreatment FDG-PET-CT on nasopharyngeal cancer. J Formos Med Assoc 2023; 122:36-46. [PMID: 35999158 DOI: 10.1016/j.jfma.2022.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 07/28/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND/PURPOSE Accurate staging is the first step for optimal treatment selection in patients with nasopharyngeal carcinoma (NPC). In this propensity-score-matched, population-based cohort study, we investigated the survival effects of pretreatment 8-fluorodeoxyglucose positron emission tomography-computed tomography (18FDG-PET-CT) on patients with NPC. METHODS We included patients with stage I-IVA NPC receiving radiotherapy or concurrent chemoradiotherapy and categorized them into two 1:1 propensity score-matched groups according to whether or not they underwent pretreatment 18FDG-PET-CT and compared their outcomes. RESULTS Of the 10,756 patients, propensity score matching yielded 4366 patients in each group. According to multivariable Cox regression analyses, the most prominent correlation between pretreatment 18FDG-PET-CT and all-cause death was observed in patients with stage II NPC (adjusted hazard ratio [aHR], 0.77; 95% confidence interval [CI], 0.60-0.90; P = .0433), followed by patients with stage III NPC (aHR, 0.81; 95% CI, 0.69-0.94; P = .0071) and patients with stage IVA NPC (aHR, 0.88; 95% CI, 0.79-0.97; P = .0091). This association was not significant in patients with stage I NPC (aHR, 1.20; 95% CI, 0.75-1.93; P = .4426). CONCLUSION Pretreatment 18FDG-PET-CT is associated with longer survival in patients with clinical stage II-IVA NPC but not in stage I NPC.
Collapse
Affiliation(s)
- Pei-Chen Yang
- Department of Otorhinolaryngology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Wan-Ming Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Mingchih Chen
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Ben-Chang Shia
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan; Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Division of Radiation Oncology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Cancer Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Centers for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Management, College of Management, Fo Guang University, Yilan, Taiwan.
| | - Ching-Wen Chiang
- Department of Otorhinolaryngology, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan
| |
Collapse
|
56
|
Wang Y, Wang Y, Yu J, Meng X. The treatment in patients with unresectable locally advanced non-small cell lung cancer: Explorations on hot issues. Cancer Lett 2022; 551:215947. [PMID: 36265654 DOI: 10.1016/j.canlet.2022.215947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
Abstract
The treatment efficacy for patients with unresectable, locally advanced non-small-cell lung cancer (LA-NSCLC) stagnated for a long time until the advent of immunotherapy. Immune checkpoint inhibitors, particularly programmed cell death protein 1/programmed death-ligand 1 inhibitors, have thrived, reshaping the treatment landscape for patients with lung cancer. Based on the results of the PACIFIC trial, concurrent chemoradiotherapy followed by durvalumab has become the standard of care for patients with unresectable LA-NSCLC; however, numerous issues are yet to be resolved. Currently, several clinical trials are exploring an optimal treatment paradigm, and we have summarized them for comparison to eliminate barriers. In addition, we discuss better predictive biomarkers, therapeutic options for specific populations, and other challenges to identify directions for future research design.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Wang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Xiangjiao Meng
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
57
|
Dhawan A, Pifer PM, Sandulache VC, Skinner HD. Metabolic targeting, immunotherapy and radiation in locally advanced non-small cell lung cancer: Where do we go from here? Front Oncol 2022; 12:1016217. [PMID: 36591457 PMCID: PMC9794617 DOI: 10.3389/fonc.2022.1016217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
In the US, there are ~250,000 new lung cancer diagnoses and ~130,000 deaths per year, and worldwide there are an estimated 1.6 million deaths per year from this deadly disease. Lung cancer is the most common cause of cancer death worldwide, and it accounts for roughly a quarter of all cancer deaths in the US. Non-small cell lung cancer (NSCLC) represents 80-85% of these cases. Due to an enormous tobacco cessation effort, NSCLC rates in the US are decreasing, and the implementation of lung cancer screening guidelines and other programs have resulted in a higher percentage of patients presenting with potentially curable locoregional disease, instead of distant disease. Exciting developments in molecular targeted therapy and immunotherapy have resulted in dramatic improvement in patients' survival, in combination with new surgical, pathological, radiographical, and radiation techniques. Concurrent platinum-based doublet chemoradiation therapy followed by immunotherapy has set the benchmark for survival in these patients. However, despite these advances, ~50% of patients diagnosed with locally advanced NSCLC (LA-NSCLC) survive long-term. In patients with local and/or locoregional disease, chemoradiation is a critical component of curative therapy. However, there remains a significant clinical gap in improving the efficacy of this combined therapy, and the development of non-overlapping treatment approaches to improve treatment outcomes is needed. One potential promising avenue of research is targeting cancer metabolism. In this review, we will initially provide a brief general overview of tumor metabolism as it relates to therapeutic targeting. We will then focus on the intersection of metabolism on both oxidative stress and anti-tumor immunity. This will be followed by discussion of both tumor- and patient-specific opportunities for metabolic targeting in NSCLC. We will then conclude with a discussion of additional agents currently in development that may be advantageous to combine with chemo-immuno-radiation in NSCLC.
Collapse
Affiliation(s)
- Annika Dhawan
- Department of Radiation Oncology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, United States
| | - Phillip M. Pifer
- Department of Radiation Oncology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, United States
| | - Vlad C. Sandulache
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Heath D. Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center and University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Heath D. Skinner,
| |
Collapse
|
58
|
Manapov F, Eze C, Holzgreve A, Käsmann L, Nieto A, Taugner J, Unterrainer M. PET/CT for Target Delineation of Lung Cancer Before Radiation Therapy. Semin Nucl Med 2022; 52:673-680. [PMID: 35781392 DOI: 10.1053/j.semnuclmed.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/11/2022]
Abstract
In clinical routine of patients suffering from lung cancer, radiotherapy/radiation oncology represents one of the therapeutic hallmarks in the multimodal treatment besides or in combination with other local treatments such as surgery, but also systemic treatments such as chemotherapy, tyrosine kinase, and immune check-point inhibitors. Conventional morphological imagings such as CT or MR are commonly used for staging, response assessment, but also for radiotherapy planning. However, advanced imaging techniques such as PET do continuously get increasing access to clinical routine overcoming limitations of standard imaging techniques by visualizing and quantifying molecular processes such as glucose metabolism, which is also of relevance for radiotherapy planning. This review article summarizes the current place of radiotherapy within the treatment regimens of patients with lung cancer and elucidates current concepts of standard morphological imaging for staging and radiotherapy planning. Moreover, the place of PET-based radiotherapy planning in a clinical context is presented and current methodological/technical advances that do comprise a potential role for radiotherapy planning in lung cancer patients are discussed.
Collapse
Affiliation(s)
- Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Nieto
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Julian Taugner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
59
|
Yi X, Wang Z, Hu X, Yu A. Affinity probes based on small-molecule inhibitors for tumor imaging. Front Oncol 2022; 12:1028493. [PMID: 36387103 PMCID: PMC9647038 DOI: 10.3389/fonc.2022.1028493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Methods for molecular imaging of target areas, including optical imaging, radionuclide imaging, magnetic resonance imaging and other imaging technologies, are helpful for the early diagnosis and precise treatment of cancers. In addition to cancer management, small-molecule inhibitors are also used for developing cancer target probes since they act as the tight-binding ligands of overexpressed proteins in cancer cells. This review aims to summarize the structural designs of affinity probes based on small-molecule inhibitors from the aspects of the inhibitor, linker, dye and radionuclide, and discusses the influence of the modification of these structures on affinity and pharmacokinetics. We also present examples of inhibitor affinity probes in clinical applications, and these summaries will provide insights for future research and clinical translations.
Collapse
Affiliation(s)
| | | | - Xiang Hu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| | - Aixi Yu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| |
Collapse
|
60
|
Prediction of malignant lymph nodes in NSCLC by machine-learning classifiers using EBUS-TBNA and PET/CT. Sci Rep 2022; 12:17511. [PMID: 36266403 PMCID: PMC9584941 DOI: 10.1038/s41598-022-21637-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023] Open
Abstract
Accurate determination of lymph-node (LN) metastases is a prerequisite for high precision radiotherapy. The primary aim is to characterise the performance of PET/CT-based machine-learning classifiers to predict LN-involvement by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in stage-III NSCLC. Prediction models for LN-positivity based on [18F]FDG-PET/CT features were built using logistic regression and machine-learning models random forest (RF) and multilayer perceptron neural network (MLP) for stage-III NSCLC before radiochemotherapy. A total of 675 LN-stations were sampled in 180 patients. The logistic and RF models identified SUVmax, the short-axis LN-diameter and the echelon of the considered LN among the most important parameters for EBUS-positivity. Adjusting the sensitivity of machine-learning classifiers to that of the expert-rater of 94.5%, MLP (P = 0.0061) and RF models (P = 0.038) showed lower misclassification rates (MCR) than the standard-report, weighting false positives and false negatives equally. Increasing the sensitivity of classifiers from 94.5 to 99.3% resulted in increase of MCR from 13.3/14.5 to 29.8/34.2% for MLP/RF, respectively. PET/CT-based machine-learning classifiers can achieve a high sensitivity (94.5%) to detect EBUS-positive LNs at a low misclassification rate. As the specificity decreases rapidly above that level, a combined test of a PET/CT-based MLP/RF classifier and EBUS-TBNA is recommended for radiation target volume definition.
Collapse
|
61
|
Liu CS, Song YQ, Wang RZ, Wang Z, He R, Xu K, Wang CY, Wu Y, Wang Y, Zhang XF, Li G, Wang TL. Thorax radiotherapy using 18F-positron emission tomography/computed tomography-guided precision radiotherapy is a prognostic factor for survival in patients with extracranial oligometastatic non-small cell lung cancer:A two-center propensity score-matched analysis. Front Oncol 2022; 12:991378. [PMID: 36353556 PMCID: PMC9639371 DOI: 10.3389/fonc.2022.991378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background This retrospective study compared positron emission tomography (PET)/computed tomography (CT) and CT in the treatment of extracranial oligometastatic non-small-cell lung cancer (NSCLC) and explored the impact of thorax radiotherapy (TRT) on patient survival. Methods We reviewed the medical records of Chinese patients with stage IV extracranial oligometastatic NSCLC who underwent PET/CT or CT at two centers. Propensity score matching (PSM) was used to control differences in patient characteristics between the maintenance chemotherapy alone and TRT plus maintenance chemotherapy groups. Results We analyzed 192 eligible patients. The median survival time was better in patients who received PET/CT than in those who only received CT (n = 192, 16 months vs. 6 months, p<0.001). Subgroup analysis showed the median survival time was significantly longer in the TRT plus maintenance group than in the chemotherapy alone group in patients who underwent PET/CT examinations (n = 94, 25 months vs. 11 months, p<0.001). However, there was no statistical difference in survival between both groups in patients who underwent CT examinations (n = 98, 8 months vs. 5 months, p = 0.180). A multifactorial analysis revealed a more favorable prognosis in patients who underwent PET/CT evaluation (HR: 0.343, 95% CI: 0.250-0.471, p <0.001) and TRT (HR: 0.624, 95% CI: 0.464-0.840, p = 0.002), than in those who did not. PSM was consistent with these results. Conclusions PET/CT-guided TRT is associated with improved clinical outcomes in patients with stage IV extracranial oligometastatic NSCLC.
Collapse
Affiliation(s)
- Cheng-Sen Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Ying-Qiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Run-Ze Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Zheng Wang
- Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Rong He
- Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Ke Xu
- Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Chen-Yu Wang
- Department of Information Management, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yu Wu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Ye Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Xiao-fang Zhang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Guang Li
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tian-Lu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
- *Correspondence: Tian-Lu Wang,
| |
Collapse
|
62
|
Thureau S, Mallet R, Gouel P, Modzelewski R, Vera P. [What dose escalation in the treatment of locally advanced non-small cell lung cancer?]. Cancer Radiother 2022; 26:890-893. [PMID: 36075830 DOI: 10.1016/j.canrad.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Despite significant therapeutic advances in the treatment of locally advanced inoperable non-small cell lung cancer (NSCLC), notably through adjuvant immunotherapy, the rate of therapeutic failure remains high. The use of positron emission tomography with fluorodeoxyglucose (FDG-PET), respiratory motion and intensity modulated radiotherapy (IMRT) have led to therapeutic improvements with reduced toxicity and better local control. The optimal dose to be delivered remains unknown due to discordant results of studies for almost 20 years and the way to define the area to benefit from a dose increase (whole volume, subvolume defined by pre- or per-radiotherapy PET).
Collapse
Affiliation(s)
- S Thureau
- Département de radiothérapie et de physique médicale, centre Henri-Becquerel, Rouen, France; Unité QuantIF LITIS EA 4108, université de Rouen, Normandie, France; Département d'imagerie, centre Henri-Becquerel, Rouen, France.
| | - R Mallet
- Département de radiothérapie et de physique médicale, centre Henri-Becquerel, Rouen, France
| | - P Gouel
- Département d'imagerie, centre Henri-Becquerel, Rouen, France
| | - R Modzelewski
- Unité QuantIF LITIS EA 4108, université de Rouen, Normandie, France; Département d'imagerie, centre Henri-Becquerel, Rouen, France
| | - P Vera
- Unité QuantIF LITIS EA 4108, université de Rouen, Normandie, France; Département d'imagerie, centre Henri-Becquerel, Rouen, France
| |
Collapse
|
63
|
Laprie A, Tensaouti F, Cohen-Jonathan Moyal E. [Radiation dose intensification for glioblastoma]. Cancer Radiother 2022; 26:894-898. [PMID: 36085279 DOI: 10.1016/j.canrad.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 10/14/2022]
Abstract
Glioblastoma is the most common brain tumor in adults; its treatment includes surgical excision or biopsy followed by radio-chemotherapy. Even if radiotherapy increases the survival of all patients regardless of their age or their general condition, there are always sources of radioresistance, where relapses occur and therefore treatment fails. Indeed, these foci result in a local relapse, which is observed in 95% of cases in the irradiation fields. We will describe here the current approaches to overcome this radioresistance by dose escalation, without or with guidance by metabolic and functional imaging (dose-painting). We will detail several prospective trials including the French phase III trial, SPECTRO-GLIO, randomizing the use of an integrated boost guided by spectrometric magnetic resonance imaging and similar trials developed across the Atlantic. We will also discuss approaches using different PET markers as well as diffusion or perfusion magnetic resonance imaging.
Collapse
Affiliation(s)
- A Laprie
- Département d'oncologie radiothérapie, institut universitaire du cancer de Toulouse-Oncopole, 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France; Inserm Toulouse neuroimaging center (Tonic), place Baylac, 31000 Toulouse, France.
| | - F Tensaouti
- Département d'oncologie radiothérapie, institut universitaire du cancer de Toulouse-Oncopole, 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France; Inserm Toulouse neuroimaging center (Tonic), place Baylac, 31000 Toulouse, France
| | - E Cohen-Jonathan Moyal
- Département d'oncologie radiothérapie, institut universitaire du cancer de Toulouse-Oncopole, 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France; Inserm Radopt, CRCT, Centre de recherche en cancérologie de Toulouse, 2, avenue Hubert-Curien, 31100 Toulouse, France
| |
Collapse
|
64
|
[ 68Ga]FAPI-PET/CT for radiation therapy planning in biliary tract, pancreatic ductal adeno-, and adenoidcystic carcinomas. Sci Rep 2022; 12:16261. [PMID: 36171444 PMCID: PMC9519639 DOI: 10.1038/s41598-022-20447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
Biliary-tract-carcinomas (BTC), pancreatic-ductal-adenocarcinomas (PDAC) and adenoidcystic-carcinomas (AC) have in common that they are traditionally treated with large clinical-target-volumes (CTV). The aim of this study is to examine the impact of pretreatment-[68Ga]FAPI-PET/CT on target-volume-definition and posttreatment-[68Ga]FAPI-PET/CT-response-assessment for BTC-, PDAC- and AC-patients referred to radiation-therapy. All consecutive BTC-, PDAC-, and AC-patients who received pretreatment-[68Ga]FAPI-PET/CT±[18F]FDG-PET/CT were included from 01.01.2020 to 01.03.2022. MTV and SUVmax were separately generated based on [68Ga]FAPI- and [18F]FDG-PET/CT-images. A [68Ga]FAPI- and [18F]FDG-based-CTV was defined. Treatment-plans were compared. Treatment-response was reassessed by a second [68Ga]FAPI-PET/CT and [18F]FDG-PET/CT after treatment-completion. Intermodality comparison of lesion-to-background-ratios [SUVmax_lesion/SUVmean_background] for individual timepoints t1 and t2 revealed significant higher values for [68Ga]FAPI compared to [18F]FDG (t1, p = 0.008; t2, p = 0.005). Intermodality comparison of radiation-therapy-plans showed that [68Ga]FAPI-based planning resulted in D100% = 97.2% and V95% = 98.8% for the [18F]FDG-MTV. [18F]FDG-based-planning resulted in D100% = 35.9% and V95% = 78.1% for [68Ga]FAPI-MTV. [18F]FDG-based-planning resulted only in 2 patients in V95% > 95% for [68Ga]FAPI-MTV, and in 1 patient in D100% > 97% for [68Ga]FAPI-MTV. GTV-coverage in terms of V95% was 76.4% by [18F]FDG-based-planning and 99.5% by [68Ga]FAPI-based-planning. Pretreatment [68Ga]FAPI-PET/CT enhances radiation-treatment-planning in this particular group of patients. While perilesional and tumoral follow-up [18F]FDG-uptake behaved uniformly, perilesional and tumoral reaction may differ in follow-up [68Ga]FAPI-imaging. Complementary [68Ga]FAPI- and [18F]FDG-imaging enhance treatment-response-assessment.
Collapse
|
65
|
Systematic endoscopic staging of mediastinum to determine impact on radiotherapy for locally advanced lung cancer (SEISMIC): protocol for a prospective single arm multicentre interventional study. BMC Pulm Med 2022; 22:364. [PMID: 36153502 PMCID: PMC9509615 DOI: 10.1186/s12890-022-02159-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is established as the preferred method of mediastinal lymph node (LN) staging in non-small cell lung cancer (NSCLC). Selective (targeted) LN sampling is most commonly performed however studies in early stage NSCLC and locally advanced NSCLC confirm systematic EBUS-TBNA evaluation improves accuracy of mediastinal staging. This study aims to establish the rate of detection of positron emission tomography (PET)-occult LN metastases following systematic LN staging by EBUS-TBNA, and to determine the utility of systematic mediastinal staging for accurate delineation of radiation treatment fields in patients with locally advanced NSCLC.
Methods
Consecutive patients undergoing EBUS-TBNA for diagnosis/staging of locally advanced NSCLC will be enrolled in this international multi-centre single arm study. Systematic mediastinal LN evaluation will be performed, with all LN exceeding 6 mm to be sampled by TBNA. Where feasible, endoscopic ultrasound staging (EUS-B) may also be performed. Results of minimally invasive staging will be compared to FDG-PET. The primary end-point is proportion of patients in whom systematic LN staging identified PET-occult NSCLC metastases. Secondary outcome measures include (i) rate of nodal upstaging, (ii) false positive rate of PET for mediastinal LN assessment, (iii) analysis of clinicoradiologic risk factors for presence of PET-occult LN metastases, (iv) impact of systematic LN staging in patients with discrepant findings on PET and EBUS-TBNA on target coverage and dose to organs at risk (OAR) in patients undergoing radiotherapy.
Discussion
With specificity of PET of 90%, guidelines recommend tissue confirmation of positive mediastinal LN to ensure potentially early stage patients are not erroneously denied potentially curative resection. However, while confirmation of pathologic LN is routinely sought, the exact extent of mediastinal LN involvement in NSCLC in patient with Stage III NSCLC is rarely established. Studies examining systematic LN staging in early stage NSCLC report a significant discordance between PET and EBUS-TBNA. In patients with locally advanced disease this has significant implications for radiation field planning, with risk of geographic miss in the event of PET-occult mediastinal LN metastases. The SEISMIC study will examine both diagnostic outcomes following systematic LN staging with EBUS-TBNA, and impact on radiation treatment planning.
Trial registration
ACTRN12617000333314, ANZCTR, Registered on 3 March 2017.
Collapse
|
66
|
Les essais qui changent les pratiques : le point en 2022. Cancer Radiother 2022; 26:823-833. [DOI: 10.1016/j.canrad.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
|
67
|
Guberina M, Guberina N, Pöttgen C, Gauler T, Richlitzki C, Metzenmacher M, Wiesweg M, Plönes T, Forsting M, Wetter A, Herrmann K, Hautzel H, Darwiche K, Theegarten D, Aigner C, Schuler M, Stuschke M, Eberhardt WE. Effectiveness of durvalumab consolidation in stage III non-small-cell lung cancer: focus on treatment selection and prognostic factors. Immunotherapy 2022; 14:927-944. [PMID: 35822656 DOI: 10.2217/imt-2021-0341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pivotal PACIFIC trial defined durvalumab consolidation as the new standard of care in patients with stage III non-small-cell lung cancer treated with definitive radiochemotherapy. The authors characterized the durvalumab effect after induction chemotherapy according to the ESPATUE trial and definitive radiochemotherapy. All consecutive patients with stage III non-small-cell lung cancer receiving definitive radiochemotherapy between January 2017 and February 2020 were included. Primary end points were progression-free survival and overall survival. Altogether, 160 patients (75 PD-L1-positive, 62 PD-L1-negative, 23 unknown) received definitive radiochemotherapy, 146 (91%) of whom received prior induction chemotherapy. Durvalumab consolidation showed high effectiveness overall and in the good-risk group according to the PACIFIC trial (log-rank test: p < 0.005). Hazard ratios for progression-free survival and overall survival were at the lower limits of those in the PACIFIC trial. These results were robust to adjustment for potential confounders by propensity score weighting. Eastern Cooperative Oncology Group (ECOG) performance status was the most important pretreatment prognostic factor.
Collapse
Affiliation(s)
- Maja Guberina
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, Essen, 45147, Germany.,German Cancer Consortium, Partner Site University Hospital Essen, Essen, 45147, Germany
| | - Nika Guberina
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, Essen, 45147, Germany
| | - Christoph Pöttgen
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, Essen, 45147, Germany
| | - Thomas Gauler
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, Essen, 45147, Germany
| | - Cedric Richlitzki
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, Essen, 45147, Germany
| | - Martin Metzenmacher
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, 45147, Germany.,Division of Thoracic Oncology, University Medicine Essen-Ruhrlandklinik, Essen, 45239, Germany
| | - Marcel Wiesweg
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, 45147, Germany.,Division of Thoracic Oncology, University Medicine Essen-Ruhrlandklinik, Essen, 45239, Germany
| | - Till Plönes
- Department of Thoracic Surgery and Endoscopy, University Medicine Essen-Ruhrlandklinik, West German Cancer Center, University Hospital Essen, Essen, 45239, Germany
| | - Michael Forsting
- Institute of Diagnostic, Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, 45147, Germany
| | - Axel Wetter
- Institute of Diagnostic, Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, 45147, Germany
| | - Ken Herrmann
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, 45147, Germany.,Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, 45147, Germany
| | - Hubertus Hautzel
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, 45147, Germany.,Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, 45147, Germany
| | - Kaid Darwiche
- Department of Pulmonary Medicine, Section of Interventional Pneumology, University Medicine Essen-Ruhrlandklinik, Essen, 45239, Germany
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, Essen, 45147, Germany
| | - Clemens Aigner
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, 45147, Germany.,Department of Thoracic Surgery and Endoscopy, University Medicine Essen-Ruhrlandklinik, West German Cancer Center, University Hospital Essen, Essen, 45239, Germany
| | - Martin Schuler
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, 45147, Germany.,Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, 45147, Germany.,Division of Thoracic Oncology, University Medicine Essen-Ruhrlandklinik, Essen, 45239, Germany
| | - Martin Stuschke
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, 45147, Germany
| | - Wilfried Ee Eberhardt
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, 45147, Germany.,Division of Thoracic Oncology, University Medicine Essen-Ruhrlandklinik, Essen, 45239, Germany
| |
Collapse
|
68
|
Wurstbauer K, Kazil M, Meinschad M, Pinter R, De Vries C, Clemens P, Kreuter C, Hernler T, Hitzl W, Cerkl P, Künzler T, De Vries A. Locally advanced NSCLC: a plea for sparing the ipsilateral normal lung-prospective, clinical trial with DART-bid (dose-differentiated accelerated radiation therapy, 1.8 Gy twice daily) by VMAT. Radiat Oncol 2022; 17:120. [PMID: 35799182 PMCID: PMC9264580 DOI: 10.1186/s13014-022-02083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background In radiation treatment of locally advanced non-small cell lung cancer (LA-NSCLC), ‘margins’ from internal target volumes to planning target volumes in the range of 12 to 23 mm are reported, and avoiding exposure of the contralateral lung is common practice. We investigated prospectively an approach with tight margins (7 mm) and maximal sparing of the ipsilateral normal lung. Mature results for the first endpoint (pneumonitis) and further toxicities are reported. Methods Primary tumors were treated by VMAT with 73.8–90.0 Gy in positive correlation to tumor volumes, nodes with 61.2 Gy, a restricted volume of nodes electively with 45 Gy. Fractional doses of 1.8 Gy bid, interval 8 h. Before radiotherapy, two cycles platin-based chemotherapy were given. 12 patients finished maintenance therapy with Durvalumab. Median follow up time for all patients is 19.4 months, for patients alive 27.0 months (3.4–66.5 months). Results 100 consecutive, unselected patients with LA-NSCLC in stages II through IVA were enrolled (UICC/AJCC, 8th edition). No acute grade 4/5 toxicity occurred. Pneumonitis grade 2 and 3 was observed in 12% and 2% of patients, respectively; lowering the risk of pneumonitis grade ≥ 2 in comparison to the largest study in the literature investigating pneumonitis in LA-NSCLC, is significant (p < 0.0006). Acute esophageal toxicity grade 1, 2 and 3 occurred in 12%, 57% and 3% of patients, respectively. Two patients showed late bronchial stricture/atelectasis grade 2. In two patients with lethal pulmonary haemorrhages a treatment correlation cannot be excluded. Median overall survival for all stage III patients, and for those with ‘RTOG 0617 inclusion criteria’ is 46.6 and 50.0 months, respectively. Conclusions Overall toxicity is low. In comparison to results in the literature, maximal sparing the ipsilateral normal lung lowers the risk for pneumonitis significantly. Trial registration Ethics committee of Vorarlberg, Austria; EK-0.04-105, Registered 04/09/2017—Retrospectively registered. http://www.ethikkommission-vorarlberg.at
Collapse
Affiliation(s)
- Karl Wurstbauer
- Department for Radiation Oncology, Academic Teaching Hospital, Carinagasse 47, 6800, Feldkirch, Austria.
| | - Margit Kazil
- Department for Radiation Oncology, Academic Teaching Hospital, Carinagasse 47, 6800, Feldkirch, Austria
| | - Marco Meinschad
- Academic Teaching Hospital, Institute of Medical Physics, Feldkirch, Austria
| | - Raoul Pinter
- Department for Radiation Oncology, Academic Teaching Hospital, Carinagasse 47, 6800, Feldkirch, Austria
| | - Catharina De Vries
- Department for Radiation Oncology, Academic Teaching Hospital, Carinagasse 47, 6800, Feldkirch, Austria
| | - Patrick Clemens
- Department for Radiation Oncology, Academic Teaching Hospital, Carinagasse 47, 6800, Feldkirch, Austria
| | - Christof Kreuter
- Department for Radiation Oncology, Academic Teaching Hospital, Carinagasse 47, 6800, Feldkirch, Austria
| | - Tamara Hernler
- Department for Pneumology, Academic Teaching Hospital, Hohenems, Austria
| | - Wolfgang Hitzl
- Team Biostatistics and Publication of Clincial Studies, FM&TT, Paracelsus Medical University, Salzburg, Austria
| | - Peter Cerkl
- Department for Pneumology, Academic Teaching Hospital, Hohenems, Austria
| | - Thomas Künzler
- Academic Teaching Hospital, Institute of Medical Physics, Feldkirch, Austria
| | - Alexander De Vries
- Department for Radiation Oncology, Academic Teaching Hospital, Carinagasse 47, 6800, Feldkirch, Austria
| |
Collapse
|
69
|
Espenel S, Chargari C, Blanchard P, Bockel S, Morel D, Rivera S, Levy A, Deutsch E. Practice changing data and emerging concepts from recent radiation therapy randomised clinical trials. Eur J Cancer 2022; 171:242-258. [PMID: 35779346 DOI: 10.1016/j.ejca.2022.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Oncology treatments are constantly and rapidly evolving. We aimed at highlighting the latest radiation therapy practice changing trials and emerging concepts, through an overview of recent randomised clinical trials (RCTs). MATERIALS AND METHODS Requests were performed in the Medline database to identify all publications reporting radiation therapy RCTs from 2018 to 2021. RESULTS Recent RCTs sustained the role of newer combinatorial strategies through radioimmunotherapy for early stage or metastatic lung cancer, newer pro-apoptotic agents (e.g. debio 1143 in locoregionally advanced head and neck squamous cell carcinoma) or nanoparticles (e.g. NBTXR3 in locally advanced soft-tissue sarcoma). High-tech radiotherapy allows intensifying treatments and gaining ground in some indications through the development of stereotactic body radiotherapy for example. First randomised evidence on personalised radiation therapy through imaging-based (18FDG positron emission tomography-computed tomography for lung cancer or early stage unfavourable Hodgkin lymphoma, PMSA positron emission tomography-computed tomography or magnetic resonance imaging for high-risk prostate cancer) or biological biomarkers (PSA for prostate cancer, HPV for head and neck cancer, etc) were conducted to more tailored treatments, with more favourable outcomes. Patients' quality of life and satisfaction appeared to be increasing aims. RCTs have validated (ultra)hypofractionated schemes in many indications as for breast, prostate or rectal cancer, resulting in equivalent outcomes and toxicities, more convenient for patients and favouring shared decision making. CONCLUSION Radiation therapy is a dynamic field of research, and many RCTs have greatly impacted therapeutic standards over the last years. Investments in radiotherapy research should facilitate the transfer of innovation to clinic.
Collapse
Affiliation(s)
- Sophie Espenel
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France.
| | - Cyrus Chargari
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France; Institut de Recherche Biomédicale des Armées, F-91220, Brétigny sur Orge, France.
| | - Pierre Blanchard
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, F-94270, Le Kremlin Bicêtre, France; Oncostat, Inserm U-1018, F-94805, Villejuif, France.
| | - Sophie Bockel
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France.
| | - Daphne Morel
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France.
| | - Sofia Rivera
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France; Université Paris-Saclay, Inserm U-1030, Laboratoire de Radiothérapie Moléculaire et d'Innovation Thérapeutique, F-94805, Villejuif, France.
| | - Antonin Levy
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, F-94270, Le Kremlin Bicêtre, France; Université Paris-Saclay, Inserm U-1030, Laboratoire de Radiothérapie Moléculaire et d'Innovation Thérapeutique, F-94805, Villejuif, France.
| | - Eric Deutsch
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, F-94270, Le Kremlin Bicêtre, France; Université Paris-Saclay, Inserm U-1030, Laboratoire de Radiothérapie Moléculaire et d'Innovation Thérapeutique, F-94805, Villejuif, France.
| |
Collapse
|
70
|
Yu H, Gu Y, Fan W, Gao Y, Wang M, Zhu X, Wu Z, Liu J, Li B, Wu H, Cheng Z, Wang S, Zhang Y, Xu B, Li S, Shi H. Expert consensus on oncological [ 18F]FDG total-body PET/CT imaging (version 1). Eur Radiol 2022; 33:615-626. [PMID: 35751696 DOI: 10.1007/s00330-022-08960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND [18F]FDG imaging on total-body PET/CT (TB PET/CT) scanners, with improved sensitivity, offers new potentials for cancer diagnosis, staging, and radiation treatment planning. This consensus provides the protocols for clinical practices with a goal of paving the way for future studies with the total-body scanners in oncological [18F]FDG TB PET/CT imaging. METHODS The consensus was summarized based on the published guidelines and peer-reviewed articles of TB PET/CT in the literature, along with the opinions of the experts from major research institutions with a total of 40,000 cases performed on the TB PET/CT scanners. RESULTS This consensus describes the protocols for routine and dynamic [18F]FDG TB PET/CT scanning focusing on the reduction of imaging acquisition time and FDG injected activity, which may serve as a reference for research and clinic oncological PET/CT studies. CONCLUSION This expert consensus focuses on the reduction of acquisition time and FDG injected activity with a TB PET/CT scanner, which may improve the patient throughput or reduce the radiation exposure in daily clinical oncologic imaging. KEY POINTS • [18F]FDG-imaging protocols for oncological total-body PET/CT with reduced acquisition time or with different FDG activity levels have been summarized from multicenter studies. • Total-body PET/CT provides better image quality and improved diagnostic insights. • Clinical workflow and patient management have been improved.
Collapse
Affiliation(s)
- Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yushen Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfendong Road, Guangzhou, 510060, China
| | - Yongju Gao
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Henan Key Laboratory of Noval Molecular Probes and Clinical Translation in Nuclear Medicine, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Meiyun Wang
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Henan Key Laboratory of Noval Molecular Probes and Clinical Translation in Nuclear Medicine, No. 7 Weiwu Road, Zhengzhou, 450003, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, China
| | - Jianjun Liu
- Department of Nuclear Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 PuJian Road, Shanghai, 200127, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Shuxia Wang
- Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No. 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, Shanghai, 200032, China.,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China.,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Baixuan Xu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, Shanghai, 200032, China. .,Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. .,Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
71
|
Frost N, Griesinger F, Hoffmann H, Länger F, Nestle U, Schütte W, Wolf J, Reck M. Lung Cancer in Germany. J Thorac Oncol 2022; 17:742-750. [PMID: 35623674 DOI: 10.1016/j.jtho.2022.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Nikolaj Frost
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Frank Griesinger
- Department of Hematology and Oncology, University Medicine Oldenburg, Pius-Hospital, Oldenburg, Germany
| | - Hans Hoffmann
- Division of Thoracic Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Society, Zertifizierungskommission Lungenkrebszentrum, Berlin, Germany
| | - Florian Länger
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany; Department of Radiation Oncology, Medical Center Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Schütte
- Klinik für Innere Medizin II, Krankenhaus Martha-Maria Halle-Dölau, Halle (Saale), Germany
| | - Jürgen Wolf
- Lung Cancer Group Cologne, Department I of Internal Medicine, Center for Integrated Oncology, University Hospital of Cologne, Cologne, Germany
| | - Martin Reck
- Department of Thoracic Oncology, Airway Research Center North, German Center for Lung Research, LungenClinic, Grosshansdorf, Germany.
| |
Collapse
|
72
|
Wang H, Zhou X, Wang Z, Lu T, Li B, Jiang S. Clinical Efficacy of Osimertinib in Patients with Advanced Non-Small Cell Lung Cancer and Its Effect on Serum CEA and VEGF Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3032087. [PMID: 35664943 PMCID: PMC9159882 DOI: 10.1155/2022/3032087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Objective To assess the clinical efficacy of osimertinib in patients with advanced non-small cell lung cancer and its effect on serum carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF) expression. Methods Between July 2018 and January 2020, 80 patients with advanced non-small cell lung cancer were assessed for eligibility and recruited. The patients were assigned at a ratio of 1 : 1 to receive either the PC regimen (pemetrexed + cisplatin) (conventional group) or osimertinib (experimental group). The primary endpoint was the clinical efficacy, and the secondary endpoints were the adverse events, expression of serum CEA and VEGF, and 2-year survival. Results Osimertinib was associated with a significantly higher response rate and disease control rate versus pemetrexed plus cisplatin (P < 0.05). Osimertinib resulted in a significantly lower incidence of adverse events versus the PC regimen (P < 0.05). Patients given osimertinib had significantly lower levels of CEA and VEGF versus those given pemetrexed plus cisplatin (P < 0.05). Osimertinib was associated with a significantly higher 1-year and 2-year survival rate versus pemetrexed plus cisplatin. Conclusion Osimertinib could inhibit the expression of serum CEA and VEGF in patients with advanced non-small cell lung cancer and reduce the adverse events with significant efficacy, so it is worthy of clinical promotion and application.
Collapse
Affiliation(s)
- Huanyuan Wang
- Department of Thoracic Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang 330029, China
| | - Xiangwu Zhou
- Department of Thoracic Surgery, Medical College of Nanchang University, Nanchang 330006, China
| | - Zhaozhen Wang
- Department of Clinical Medicine, Jiangxi Health Vocational College of China, Nanchang, Jiangxi, China
| | - Tianzhu Lu
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang 330029, China
| | - Baoliang Li
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Sicong Jiang
- Division of Thoracic and Endocrine Surgery, University Hospitals and University of Geneva, Geneva 1211, Geneva 4, Switzerland
| |
Collapse
|
73
|
Rodríguez De Dios N, Navarro-Martin A, Cigarral C, Chicas-Sett R, García R, Garcia V, Gonzalez JA, Gonzalo S, Murcia-Mejía M, Robaina R, Sotoca A, Vallejo C, Valtueña G, Couñago F. GOECP/SEOR radiotheraphy guidelines for non-small-cell lung cancer. World J Clin Oncol 2022; 13:237-266. [PMID: 35582651 PMCID: PMC9052073 DOI: 10.5306/wjco.v13.i4.237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/27/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous disease accounting for approximately 85% of all lung cancers. Only 17% of patients are diagnosed at an early stage. Treatment is multidisciplinary and radiotherapy plays a key role in all stages of the disease. More than 50% of patients with NSCLC are treated with radiotherapy (curative-intent or palliative). Technological advances-including highly conformal radiotherapy techniques, new immobilization and respiratory control systems, and precision image verification systems-allow clinicians to individualize treatment to maximize tumor control while minimizing treatment-related toxicity. Novel therapeutic regimens such as moderate hypofractionation and advanced techniques such as stereotactic body radiotherapy (SBRT) have reduced the number of radiotherapy sessions. The integration of SBRT into routine clinical practice has radically altered treatment of early-stage disease. SBRT also plays an increasingly important role in oligometastatic disease. The aim of the present guidelines is to review the role of radiotherapy in the treatment of localized, locally-advanced, and metastatic NSCLC. We review the main radiotherapy techniques and clarify the role of radiotherapy in routine clinical practice. These guidelines are based on the best available evidence. The level and grade of evidence supporting each recommendation is provided.
Collapse
Affiliation(s)
- Núria Rodríguez De Dios
- Department of Radiation Oncology, Hospital del Mar, Barcelona 08003, Spain
- Radiation Oncology Research Group, Hospital Del Mar Medical Research Institution, Barcelona 08003, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08003, Spain
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Thoracic Malignancies Unit, Hospital Duran i Reynals. ICO, L´Hospitalet de L, Lobregat 08908, Spain
| | - Cristina Cigarral
- Department of Radiation Oncology, Hospital Clínico de Salamanca, Salamanca 37007, Spain
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, ASCIRES Grupo Biomédico, Valencia 46004, Spain
| | - Rafael García
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Virginia Garcia
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | | | - Susana Gonzalo
- Department of Radiation Oncology, Hospital Universitario La Princesa, Madrid 28006, Spain
| | - Mauricio Murcia-Mejía
- Department of Radiation Oncology, Hospital Universitario Sant Joan de Reus, Reus 43204, Tarragona, Spain
| | - Rogelio Robaina
- Department of Radiation Oncology, Hospital Universitario Arnau de Vilanova, Lleida 25198, Spain
| | - Amalia Sotoca
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Carmen Vallejo
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - German Valtueña
- Department of Radiation Oncology, Hospital Clínico Universitario Lozano Blesa, Zaragoza 50009, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, Madrid 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28003, Spain
- Department of Clinical, Universidad Europea, Madrid 28670, Spain
| |
Collapse
|
74
|
Open issues in the therapeutic management of unresectable stage III NSCLC in the immunotherapy era. Crit Rev Oncol Hematol 2022; 174:103684. [PMID: 35462031 DOI: 10.1016/j.critrevonc.2022.103684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022] Open
Abstract
Treatment of stage III non-small cell lung cancer (NSCLC) has traditionally been controversial and challenging: multidisciplinary approach is mandatory and defining resectability is a critical issue; furthermore, patients are often frail due to age or comorbidities. After PACIFIC trial publication, a new therapeutic path has been defined for patients with unresectable NSCLC, with a prominent prognostic advantage. A trimodality treatment, with chemo-radiotherapy followed by maintenance durvalumab is now the standard of care, recommended by international guidelines. However, despite an impressive activity, the use of consolidative immunotherapy after concurrent chemoradiotherapy is highly debated in some clinically-relevant situations, including patients harboring EGFR mutations, older and/or frail patients not suitable for combined treatment, PD-L1 tumor expression. Here we report an expert virtual Italian meeting summary, where six medical oncologists and six radiation oncologists discussed all these aspects trying to underline the critical aspects and to find the possible clinical solutions.
Collapse
|
75
|
Bainbridge H, Dunlop A, McQuaid D, Gulliford S, Gunapala R, Ahmed M, Locke I, Nill S, Oelfke U, McDonald F. A Comparison of Isotoxic Dose-escalated Radiotherapy in Lung Cancer with Moderate Deep Inspiration Breath Hold, Mid-ventilation and Internal Target Volume Techniques. Clin Oncol (R Coll Radiol) 2022; 34:151-159. [PMID: 34503896 DOI: 10.1016/j.clon.2021.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/31/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022]
Abstract
AIMS With interest in normal tissue sparing and dose-escalated radiotherapy in the treatment of inoperable locally advanced non-small cell lung cancer, this study investigated the impact of motion-managed moderate deep inspiration breath hold (mDIBH) on normal tissue sparing and dose-escalation potential and compared this to planning with a four-dimensional motion-encompassing internal target volume or motion-compensating mid-ventilation approach. MATERIALS AND METHODS Twenty-one patients underwent four-dimensional and mDIBH planning computed tomography scans. Internal and mid-ventilation target volumes were generated on the four-dimensional scan, with mDIBH target volumes generated on the mDIBH scan. Isotoxic target dose-escalation guidelines were used to generate six plans per patient: three with a target dose cap and three without. Target dose-escalation potential, normal tissue complication probability and differences in pre-specified dose-volume metrics were evaluated for the three motion-management techniques. RESULTS The mean total lung volume was significantly greater with mDIBH compared with four-dimensional scans. Lung dose (mean and V21 Gy) and mean heart dose were significantly reduced with mDIBH in comparison with four-dimensional-based approaches, and this translated to a significant reduction in heart and lung normal tissue complication probability with mDIBH. In 20/21 patients, the trial target prescription dose cap of 79.2 Gy was achievable with all motion-management techniques. CONCLUSION mDIBH aids lung and heart dose sparing in isotoxic dose-escalated radiotherapy compared with four-dimensional planning techniques. Given concerns about lung and cardiac toxicity, particularly in an era of consolidation immunotherapy, reduced normal tissue doses may be advantageous for treatment tolerance and outcome.
Collapse
Affiliation(s)
- H Bainbridge
- Department of Radiotherapy at The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK
| | - A Dunlop
- Joint Department of Physics at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - D McQuaid
- Joint Department of Physics at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - S Gulliford
- Joint Department of Physics at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - R Gunapala
- Department of Statistics at The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - M Ahmed
- Department of Radiotherapy at The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK
| | - I Locke
- Department of Radiotherapy at The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - S Nill
- Joint Department of Physics at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - U Oelfke
- Joint Department of Physics at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, UK
| | - F McDonald
- Department of Radiotherapy at The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, London, UK.
| |
Collapse
|
76
|
Vaz SC, Adam JA, Delgado Bolton RC, Vera P, van Elmpt W, Herrmann K, Hicks RJ, Lievens Y, Santos A, Schöder H, Dubray B, Visvikis D, Troost EGC, de Geus-Oei LF. Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[ 18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0. Eur J Nucl Med Mol Imaging 2022; 49:1386-1406. [PMID: 35022844 PMCID: PMC8921015 DOI: 10.1007/s00259-021-05624-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE 2-[18F]FDG PET/CT is of utmost importance for radiation treatment (RT) planning and response monitoring in lung cancer patients, in both non-small and small cell lung cancer (NSCLC and SCLC). This topic has been addressed in guidelines composed by experts within the field of radiation oncology. However, up to present, there is no procedural guideline on this subject, with involvement of the nuclear medicine societies. METHODS A literature review was performed, followed by a discussion between a multidisciplinary team of experts in the different fields involved in the RT planning of lung cancer, in order to guide clinical management. The project was led by experts of the two nuclear medicine societies (EANM and SNMMI) and radiation oncology (ESTRO). RESULTS AND CONCLUSION This guideline results from a joint and dynamic collaboration between the relevant disciplines for this topic. It provides a worldwide, state of the art, and multidisciplinary guide to 2-[18F]FDG PET/CT RT planning in NSCLC and SCLC. These practical recommendations describe applicable updates for existing clinical practices, highlight potential flaws, and provide solutions to overcome these as well. Finally, the recent developments considered for future application are also reviewed.
Collapse
Affiliation(s)
- Sofia C. Vaz
- Nuclear Medicine Radiopharmacology, Champalimaud Centre for the Unkown, Champalimaud Foundation, Lisbon, Portugal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit A. Adam
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Roberto C. Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño (La Rioja), Spain
| | - Pierre Vera
- Henri Becquerel Cancer Center, QuantIF-LITIS EA 4108, Université de Rouen, Rouen, France
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Rodney J. Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Yolande Lievens
- Radiation Oncology Department, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Andrea Santos
- Nuclear Medicine Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bernard Dubray
- Department of Radiotherapy and Medical Physics, Centre Henri Becquerel, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | | - Esther G. C. Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
77
|
Unterrainer M, Taugner J, Käsmann L, Tufman A, Reinmuth N, Li M, Mittlmeier LM, Bartenstein P, Kunz WG, Ricke J, Belka C, Eze C, Manapov F. Differential role of residual metabolic tumor volume in inoperable stage III NSCLC after chemoradiotherapy ± immune checkpoint inhibition. Eur J Nucl Med Mol Imaging 2022; 49:1407-1416. [PMID: 34664091 PMCID: PMC8921088 DOI: 10.1007/s00259-021-05584-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The PET-derived metabolic tumor volume (MTV) is an independent prognosticator in non-small cell lung cancer (NSCLC) patients. We analyzed the prognostic value of residual MTV (rMTV) after completion of chemoradiotherapy (CRT) in inoperable stage III NSCLC patients with and without immune checkpoint inhibition (ICI). METHODS Fifty-six inoperable stage III NSCLC patients (16 female, median 65.0 years) underwent 18F-FDG PET/CT after completion of standard CRT. rMTV was delineated on 18F-FDG PET/CT using a standard threshold (liver SUVmean + 2 × standard deviation). 21/56 patients underwent additional ICI (CRT-IO, 21/56 patients) thereafter. Patients were divided in volumetric subgroups using median split dichotomization (MTV ≤ 4.3 ml vs. > 4.3 ml). rMTV, clinical features, and ICI-application were correlated with clinical outcome parameters (progression-free survival (PFS), local PFS (LPFS), and overall survival (OS). RESULTS Overall, median follow-up was 52.0 months. Smaller rMTV was associated with longer median PFS (29.3 vs. 10.5 months, p = 0.015), LPFS (49.9 vs. 13.5 months, p = 0.001), and OS (63.0 vs. 23.0 months, p = 0.003). CRT-IO patients compared to CRT patients showed significantly longer median PFS (29.3 vs. 11.2 months, p = 0.034), LPFS (median not reached vs. 14.0 months, p = 0.016), and OS (median not reached vs. 25.2 months, p = 0.007). In the CRT subgroup, smaller rMTV was associated with longer median PFS (33.5 vs. 8.6 months, p = 0.001), LPFS (49.9 vs. 10.1 months, p = 0.001), and OS (63.0 vs. 16.3 months, p = 0.004). In the CRT-IO subgroup, neither PFS, LPFS, nor OS were associated with MTV (p > 0.05 each). The findings were confirmed in subsequent multivariate analyses. CONCLUSION In stage III NSCLC, smaller rMTV is highly associated with superior clinical outcome, especially in patients undergoing CRT without ICI. Patients with CRT-IO show significantly improved outcome compared to CRT patients. Of note, clinical outcome in CRT-IO patients is independent of residual MTV. Hence, even patients with large rMTV might profit from ICI despite extensive tumor load.
Collapse
Affiliation(s)
- Marcus Unterrainer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Julian Taugner
- Department of Radiotherapy and Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Käsmann
- Department of Radiotherapy and Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Amanda Tufman
- Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- Department of Internal Medicine V, LMU Munich, Munich, Germany
| | | | - Minglun Li
- Department of Radiotherapy and Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lena M Mittlmeier
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Claus Belka
- Department of Radiotherapy and Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Chukwuka Eze
- Department of Radiotherapy and Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Farkhad Manapov
- Department of Radiotherapy and Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
78
|
Bundschuh L, Prokic V, Guckenberger M, Tanadini-Lang S, Essler M, Bundschuh RA. A Novel Radiomics-Based Tumor Volume Segmentation Algorithm for Lung Tumors in FDG-PET/CT after 3D Motion Correction—A Technical Feasibility and Stability Study. Diagnostics (Basel) 2022; 12:diagnostics12030576. [PMID: 35328128 PMCID: PMC8947476 DOI: 10.3390/diagnostics12030576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Positron emission tomography (PET) provides important additional information when applied in radiation therapy treatment planning. However, the optimal way to define tumors in PET images is still undetermined. As radiomics features are gaining more and more importance in PET image interpretation as well, we aimed to use textural features for an optimal differentiation between tumoral tissue and surrounding tissue to segment-target lesions based on three textural parameters found to be suitable in previous analysis (Kurtosis, Local Entropy and Long Zone Emphasis). Intended for use in radiation therapy planning, this algorithm was combined with a previously described motion-correction algorithm and validated in phantom data. In addition, feasibility was shown in five patients. The algorithms provided sufficient results for phantom and patient data. The stability of the results was analyzed in 20 consecutive measurements of phantom data. Results for textural feature-based algorithms were slightly worse than those of the threshold-based reference algorithm (mean standard deviation 1.2%—compared to 4.2% to 8.6%) However, the Entropy-based algorithm came the closest to the real volume of the phantom sphere of 6 ccm with a mean measured volume of 26.5 ccm. The threshold-based algorithm found a mean volume of 25.0 ccm. In conclusion, we showed a novel, radiomics-based tumor segmentation algorithm in FDG-PET with promising results in phantom studies concerning recovered lesion volume and reasonable results in stability in consecutive measurements. Segmentation based on Entropy was the most precise in comparison with sphere volume but showed the worst stability in consecutive measurements. Despite these promising results, further studies with larger patient cohorts and histopathological standards need to be performed for further validation of the presented algorithms and their applicability in clinical routines. In addition, their application in other tumor entities needs to be studied.
Collapse
Affiliation(s)
- Lena Bundschuh
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany; (M.E.); (R.A.B.)
- Correspondence: ; Tel.: +49-228-287-16181
| | - Vesna Prokic
- Department of Physics, University Koblenz-Landau, 55118 Koblenz, Germany;
- RheinAhrCampus, University of Applied Science, 56075 Koblenz, Germany
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (M.G.); (S.T.-L.)
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (M.G.); (S.T.-L.)
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany; (M.E.); (R.A.B.)
| | - Ralph A. Bundschuh
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany; (M.E.); (R.A.B.)
| |
Collapse
|
79
|
[Radiotherapy dose escalation does not improve local control in patients with esophageal cancer after definitive radiochemotherapy: the ARTDECO randomized phase III trial]. Strahlenther Onkol 2022; 198:397-399. [PMID: 35166870 PMCID: PMC8940818 DOI: 10.1007/s00066-022-01906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
|
80
|
Mäurer M, Käsmann L, Fleischmann DF, Oertel M, Jazmati D, Medenwald D, Young DEGRO Trial Group. PET/CT-based adaptive radiotherapy of locally advanced non-small cell lung cancer in multicenter yDEGRO ARO 2017-01 cohort study. Radiat Oncol 2022; 17:29. [PMID: 35139856 PMCID: PMC8827193 DOI: 10.1186/s13014-022-01997-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/25/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Stage III non-small cell lung cancer (NSCLC) represents a highly heterogeneous disease and treatment burden. Advances in imaging modality show promising results for radiotherapy planning. In this multicentric study, we evaluated the impact of PET/CT-based radiotherapy planning on the prognosis of patients with stage III NSCLC. METHOD AND PATIENTS A retrospective observational cohort study (ARO 2017-01/NCT03055715) was conducted by the young DEGRO trial group of the German Society for Radiation Oncology (DEGRO) with the primary objective to assess the effect of tumour volume change during chemoradiotherapy and the secondary objective to assess the effect of treatment planning on survival. Three hundred forty-seven patients with stage III NSCLC treated at 21 university centers between January 2010 and December 2013 were enrolled in this trial. Patients received primary curative chemoradiotherapy with an intended dose of 50 Gy (hypofractionated) or > 60 Gy (normofractionated). To assess the effect of radiotherapy planning modality on overall survival, we used multivariate frailty models. Models were adjusted for gross tumor volume at the initiation of therapy, age, sex, simultaneous chemotherapy, lung comorbidities, RT dose and tumor grade. By considering the random effect, we can account for heterogeneity in survival and considered covariates within the model in relation to the study side. RESULTS Patients were predominantly male (n = 269, 78.4%) with mainly adenocarcinoma (56.4%) and an average of 67.2 years. Adaptation of radiotherapy with consecutive reduction of irradiation volume showed no significant disadvantage for patient survival (HR = 1.21, 95% CI 0.89-1.64). The use of PET/CT co-registration in radiation planning tended to result in better oncologic outcomes, although no significant association could be shown (HR = 0.8, 95% CI 0.56-1.16). Centers with a consistent planning strategy performed better than those without a preferred planning method (0.62, 95% CI 0.41-0.94). CONCLUSION A consistent planning strategy has positive effects on overall survival. The use of PET/CT-based adaptive radiotherapy planning shows a similar survival prospect with the prospective of lower treatment volumes. In future research, toxicities need to be analysed in order to assess such reasoning.
Collapse
Affiliation(s)
- Matthias Mäurer
- Department of Radiation Oncology, University Medical Center Jena, Jena, Germany
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | | | - Michael Oertel
- Department of Radiation Oncology, University Medical Center Muenster, Muenster, Germany
| | - Danny Jazmati
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Daniel Medenwald
- Department of Radiation Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Young DEGRO Trial Group
- Department of Radiation Oncology, University Medical Center Jena, Jena, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Department of Radiation Oncology, University Medical Center Muenster, Muenster, Germany
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Radiation Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
81
|
PET imaging of lung and pleural cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
82
|
Pouw JEE, Vriens D, van Velden FHP, de Geus-Oei LF. Use of [18F]FDG PET/CT for Target Volume Definition in Radiotherapy. IMAGE-GUIDED HIGH-PRECISION RADIOTHERAPY 2022:3-30. [DOI: 10.1007/978-3-031-08601-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
83
|
Khalifa J, Lerouge D, Le Péchoux C, Pourel N, Darréon J, Mornex F, Giraud P. Radiotherapy for primary lung cancer. Cancer Radiother 2021; 26:231-243. [PMID: 34953709 DOI: 10.1016/j.canrad.2021.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein are presented the recommendations from the Société française de radiothérapie oncologique regarding indications and modalities of lung cancer radiotherapy. The recommendations for delineation of the target volumes and organs at risk are detailed.
Collapse
Affiliation(s)
- J Khalifa
- Département de radiothérapie, Institut universitaire du cancer de Toulouse - Oncopole, 1, avenue Irène-Joliot-Curie, 31100 Toulouse, France.
| | - D Lerouge
- Département de radiothérapie, centre François-Baclesse, 3, avenue du General-Harris, 14076 Caen, France
| | - C Le Péchoux
- Département de radiothérapie, Gustave-Roussy, 114, rue Édouard-Vaillant, 94805 Villejuif cedex, France
| | - N Pourel
- Département de radiothérapie, institut Sainte-Catherine, 250, chemin de Baigne-Pieds, CS80005, 84918 Avignon cedex 9, France
| | - J Darréon
- Service de physique médicale, institut Paoli-Calmettes, 232, boulevard de Sainte-Marguerite, 13009 Marseille, France
| | - F Mornex
- Service de radiothérapie, CHU Lyon-Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France
| | - P Giraud
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, Paris, France; Université de Paris, 85, boulevard Saint-Germain, 75006 Paris, France
| |
Collapse
|
84
|
Charlier F, Descamps T, Lievens Y, Geets X, Remouchamps V, Lambrecht M, Moretti L. ProCaLung - Peer review in stage III, mediastinal node-positive, non-small-cell lung cancer: How to benchmark clinical practice of nodal target volume definition and delineation in Belgium ☆. Radiother Oncol 2021; 167:57-64. [PMID: 34890738 DOI: 10.1016/j.radonc.2021.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE The Quality Assurance project for stage III non-small cell lung cancer radiotherapy ProCaLung performed a multicentric two-step exercise evaluating mediastinal nodal Target Volume Definition and Delineation (TVD) variability and the opportunity for standardization. The TVD variability before and after providing detailed guidelines and the value of qualitative contour reviewing before applying quantitative measures were investigated. MATERIALS AND METHODS The case of a patient with stage III NSCLC and involved mediastinal lymph nodes was used as a basis for this study. Twenty-two radiation oncologists from nineteen centers in Belgium and Luxembourg participated in at least one of two phases of the project (before and after introduction of ProCaLung contouring guidelines). The resulting thirty-three mediastinal nodal GTV and CTV contours were then evaluated using a qualitative-before-quantitative (QBQ) approach. First, a qualitative analysis was performed, evaluating adherence to most recent guidelines. From this, a list of observed deviations was created and these were used to evaluate contour conformity. The second analysis was quantitative, using overlap and surface distance measures to compare contours within qualitative groups and between phases. A 'most robust' reference volume for these analyses was created using the STAPLE-algorithm and an averaging method. RESULTS Five GTV and seven CTV qualitative groups were identified. Second step contours were more often in higher-conformity groups (p = 0.012 for GTV and p = 0.024 for CTV). Median Residual Mean Square Distances improved from 2.34 mm to 1.36 mm for GTV (p = 0.01) and from 4.53 mm to 1.58 mm for CTV (p < 0.0001). Median Dice coefficients increased from 0.81 to 0.84 for GTV (p = 0.07) and from 0.82 to 0.89 for CTV (p ≤ 0.001). Using HC-contours only to generate references translated in more robust quantitative evaluations. CONCLUSION Variability of mediastinal nodal TVD was reduced after providing the ProCaLung consensus guidelines. A qualitative review was essential for providing meaningful quantitative measures.
Collapse
Affiliation(s)
- Florian Charlier
- Radiation Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas Descamps
- Radiation Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Yolande Lievens
- Radiation Oncology Department, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Xavier Geets
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Vincent Remouchamps
- Radiation Oncology Department, CHU UCL Namur - site Sainte Elisabeth, Namur, Belgium
| | - Maarten Lambrecht
- Department of Radiation Oncology, University Hospitals Leuven, Belgium
| | - Luigi Moretti
- Radiation Oncology Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
85
|
Hulshof MCCM, van Laarhoven HWM. Reply to C. Pöttgen et al and Y.-H. Lin et al. J Clin Oncol 2021; 39:3882-3883. [PMID: 34554862 DOI: 10.1200/jco.21.01980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Maarten C C M Hulshof
- Maarten C. C. M. Hulshof, PhD, MD, Department of Radiotherapy, Amsterdam UMC, Amsterdam, the Netherlands; and Hanneke W. M. van Laarhoven, PhD, MD, on behalf of the ARTDECO study group, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Maarten C. C. M. Hulshof, PhD, MD, Department of Radiotherapy, Amsterdam UMC, Amsterdam, the Netherlands; and Hanneke W. M. van Laarhoven, PhD, MD, on behalf of the ARTDECO study group, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | -
- Maarten C. C. M. Hulshof, PhD, MD, Department of Radiotherapy, Amsterdam UMC, Amsterdam, the Netherlands; and Hanneke W. M. van Laarhoven, PhD, MD, on behalf of the ARTDECO study group, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
86
|
Pöttgen C, Nestle U, Höcht S, Stuschke M. Interactions Between Dose and Volume in Chemoradiotherapy of Esophageal Cancer. J Clin Oncol 2021; 39:3880-3881. [PMID: 34554877 DOI: 10.1200/jco.21.01579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Christoph Pöttgen
- Christoph Pöttgen, MD, PhD, Department of Radiation Oncology, West German Cancer Center, Medical Faculty, University Hospital Essen, Essen, Germany; Ursula Nestle, MD, PhD, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany, Department of Radiation Oncology, Kliniken Maria Hilf, Möchengladbach, Germany; Stefan Höcht, MD, PhD, Department of Radiotherapy, Xcare Group Practices, Saarlouis, Germany; and Martin Stuschke, MD, PhD, Department of Radiation Oncology, West German Cancer Center, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Ursula Nestle
- Christoph Pöttgen, MD, PhD, Department of Radiation Oncology, West German Cancer Center, Medical Faculty, University Hospital Essen, Essen, Germany; Ursula Nestle, MD, PhD, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany, Department of Radiation Oncology, Kliniken Maria Hilf, Möchengladbach, Germany; Stefan Höcht, MD, PhD, Department of Radiotherapy, Xcare Group Practices, Saarlouis, Germany; and Martin Stuschke, MD, PhD, Department of Radiation Oncology, West German Cancer Center, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Stefan Höcht
- Christoph Pöttgen, MD, PhD, Department of Radiation Oncology, West German Cancer Center, Medical Faculty, University Hospital Essen, Essen, Germany; Ursula Nestle, MD, PhD, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany, Department of Radiation Oncology, Kliniken Maria Hilf, Möchengladbach, Germany; Stefan Höcht, MD, PhD, Department of Radiotherapy, Xcare Group Practices, Saarlouis, Germany; and Martin Stuschke, MD, PhD, Department of Radiation Oncology, West German Cancer Center, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Martin Stuschke
- Christoph Pöttgen, MD, PhD, Department of Radiation Oncology, West German Cancer Center, Medical Faculty, University Hospital Essen, Essen, Germany; Ursula Nestle, MD, PhD, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany, Department of Radiation Oncology, Kliniken Maria Hilf, Möchengladbach, Germany; Stefan Höcht, MD, PhD, Department of Radiotherapy, Xcare Group Practices, Saarlouis, Germany; and Martin Stuschke, MD, PhD, Department of Radiation Oncology, West German Cancer Center, Medical Faculty, University Hospital Essen, Essen, Germany
| |
Collapse
|
87
|
Saw SPL, Ong BH, Chua KLM, Takano A, Tan DSW. Revisiting neoadjuvant therapy in non-small-cell lung cancer. Lancet Oncol 2021; 22:e501-e516. [PMID: 34735819 DOI: 10.1016/s1470-2045(21)00383-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
Despite the rapidly evolving treatment landscape in advanced non-small-cell lung cancer (NSCLC), developments in neoadjuvant and adjuvant treatments have been nascent by comparison. Establishing overall survival benefit in the early-stage setting has been challenging because of the need for large trials and long-term survival data. Encouraged by improved treatment outcomes with a biomarker-driven approach in advanced NSCLC, and recognising the need to improve survival outcomes in early-stage NSCLC, there has been renewed interest in revisiting neoadjuvant strategies. Multiple neoadjuvant trials with targeted therapy and immunotherapy, either alone or in combination with chemotherapy, have yielded unique insights into traditional response parameters, such as the discordance between RECIST response and pathological response, and expanded opportunities for biomarker discovery. With further standardisation of trial endpoints across studies, coupled with the implementation of novel technologies including radiomics and digital pathology, individual risk-stratified neoadjuvant treatment approaches are poised to make a striking impact on the outcomes of early-stage NSCLC.
Collapse
Affiliation(s)
- Stephanie P L Saw
- Division of Medical Oncology, National Cancer Centre Singapore, SingHealth Duke-NUS Oncology Academic Clinical Programme, Singapore
| | - Boon-Hean Ong
- Department of Cardiothoracic Surgery, National Heart Centre Singapore, Singapore
| | - Kevin L M Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, SingHealth Duke-NUS Oncology Academic Clinical Programme, Singapore
| | - Angela Takano
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, SingHealth Duke-NUS Oncology Academic Clinical Programme, Singapore; Genome Institue of Singapore A*Star, Singapore.
| |
Collapse
|
88
|
Eze C, Schmidt-Hegemann NS, Sawicki LM, Kirchner J, Roengvoraphoj O, Käsmann L, Mittlmeier LM, Kunz WG, Tufman A, Dinkel J, Ricke J, Belka C, Manapov F, Unterrainer M. PET/CT imaging for evaluation of multimodal treatment efficacy and toxicity in advanced NSCLC-current state and future directions. Eur J Nucl Med Mol Imaging 2021; 48:3975-3989. [PMID: 33760957 PMCID: PMC8484219 DOI: 10.1007/s00259-021-05211-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The advent of immune checkpoint inhibitors (ICIs) has revolutionized the treatment of advanced NSCLC, leading to a string of approvals in recent years. Herein, a narrative review on the role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) in the ever-evolving treatment landscape of advanced NSCLC is presented. METHODS This comprehensive review will begin with an introduction into current treatment paradigms incorporating ICIs; the evolution of CT-based criteria; moving onto novel phenomena observed with ICIs and the current state of hybrid imaging for diagnosis, treatment planning, evaluation of treatment efficacy and toxicity in advanced NSCLC, also taking into consideration its limitations and future directions. CONCLUSIONS The advent of ICIs marks the dawn of a new era bringing forth new challenges particularly vis-à-vis treatment response assessment and observation of novel phenomena accompanied by novel systemic side effects. While FDG PET/CT is widely adopted for tumor volume delineation in locally advanced disease, response assessment to immunotherapy based on current criteria is of high clinical value but has its inherent limitations. In recent years, modifications of established (PET)/CT criteria have been proposed to provide more refined approaches towards response evaluation. Not only a comprehensive inclusion of PET-based response criteria in prospective randomized controlled trials, but also a general harmonization within the variety of PET-based response criteria is pertinent to strengthen clinical implementation and widespread use of hybrid imaging for response assessment in NSCLC.
Collapse
Affiliation(s)
- Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
| | | | - Lino Morris Sawicki
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, D-40225, Dusseldorf, Germany
| | - Julian Kirchner
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University Dusseldorf, D-40225, Dusseldorf, Germany
| | - Olarn Roengvoraphoj
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Lena M Mittlmeier
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Amanda Tufman
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Respiratory Medicine and Thoracic Oncology, Department of Internal Medicine V, Thoracic Oncology Center Munich, University of Munich (LMU), Munich, Germany
| | - Julien Dinkel
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, Asklepios Lung Center Munich-Gauting, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
89
|
Shao Y, Chen H, Wang H, Feng A, Huang Y, Kong Q, Xu Z. Isotoxic investigation of 18F-FDG PET/CT-guided dose escalation with intensity-modulated radiotherapy for LA-NSCLC. Int J Radiat Biol 2021; 97:1641-1648. [PMID: 34597214 DOI: 10.1080/09553002.2021.1987557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE This research compared differences of dosimetric and biological parameters between PET/CT-guided isotoxic SIB-IMRT plans and conventional radiotherapy plans for patients with LA-NSCLC, and it also evaluated the factors that affect dose escalation. MATERIALS AND METHODS This study consisted of a retrospective cohort of thirty patients with IIIA-IIIB NSCLC. SIB-IMRT (Plan_iso) and conventional radiotherapy (Plan_primary) plans were generated using auto-planning. Dosimetric parameters such as mean lung dose (MLD) and other indicators were compared. Tumor control probability (TCP) of PTV and normal tissue complication probability (NTCP) of total lung, heart, esophagus, and spinal cord were calculated. The relationships between dose escalation and 3 D length of PTV and other factors were analyzed. Paired-samples t-test, Mann-Whitney U test, and Chi-Square test were performed for comparisons between datasets. A P < .05 was considered statistically significant. RESULTS The dosimetric parameters of PTV in Plan_iso were higher than those of PTV in Plan_primary, and there were significant differences (p < .05). Compared with Plan_primary, Plan_iso slightly increased dosimetric parameters of the total lung, heart, spinal cord, esophagus, and MUs. The absolute differences were small. TCPs of PTV in Plan_iso were significantly higher than those in Plan_primary. NTCPs of the total lung, esophagus, and spinal cord in Plan_iso were higher than those in Plan_primary. There were significant differences, but the absolute differences were small. NTCP of heart in Plan_iso was slightly higher than that in Plan_primary, but there was no statistical difference. CONCLUSIONS For LA-NSCLC, the SIB based on isotoxic radiotherapy can significantly increase TCP under the premise that the toxicity of OARs is comparable.
Collapse
Affiliation(s)
- Yan Shao
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Modern Physics, Fudan University, Shanghai, China
| | - Hua Chen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Modern Physics, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Modern Physics, Fudan University, Shanghai, China
| | - Aihui Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Huang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Kong
- Institute of Modern Physics, Fudan University, Shanghai, China
| | - Zhiyong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
90
|
Guberina M, Darwiche K, Hautzel H, Pöttgen C, Guberina N, Gauler T, Ploenes T, Umutlu L, Theegarten D, Aigner C, Eberhardt WEE, Metzenmacher M, Wiesweg M, Karpf-Wissel R, Schuler M, Herrmann K, Stuschke M. Patterns of nodal spread in stage III NSCLC: importance of EBUS-TBNA and 18F-FDG PET/CT for radiotherapy target volume definition. Radiat Oncol 2021; 16:176. [PMID: 34526050 PMCID: PMC8442338 DOI: 10.1186/s13014-021-01904-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of this study was to compare the pattern of intra-patient spread of lymph-node (LN)-metastases within the mediastinum as assessed by 18F-FDG PET/CT and systematic endobronchial ultrasound-guided transbronchial-needle aspiration (EBUS-TBNA) for precise target volume definition in stage III NSCLC. Methods This is a single-center study based on our preceding investigation, including all consecutive patients with initial diagnosis of stage IIIA-C NSCLC, receiving concurrent radiochemotherapy (12/2011–06/2018). Inclusion criteria were curative treatment intent, 18F-FDG PET/CT and EBUS-TBNA prior to start of treatment. The lymphatic drainage was classified into echelon-1 (ipsilateral hilum), echelon-2 (ipsilateral LN-stations 4 and 7) and echelon-3 (rest of the mediastinum, contralateral hilum). The pattern of spread was classified according to all permutations of echelon-1, echelon-2, and echelon-3 EBUS-TBNA findings. Results In total, 180 patients were enrolled. Various patterns of LN-spread could be identified. Skip lesions with an involved echelon distal from an uninvolved one were detected in less than 10% of patients by both EBUS-TBNA and PET. The pattern with largest asymmetry was detected in cases with EBUS-TBNA- or PET-positivity at all three echelons (p < 0.0001, exact symmetry test). In a multivariable logistic model for EBUS-positivity at echelon-3, prognostic factors were PET-positivity at echelon-3 (Hazard ratio (HR) = 12.1; 95%-CI: 3.2–46.5), EBUS-TBNA positivity at echelon-2 (HR = 6.7; 95%-CI: 1.31–31.2) and left-sided tumor location (HR = 4.0; 95%-CI: 1.24–13.2). There were significantly less combined ipsilateral upper (LN-stations 2 and 4) and lower (LN-station 7) mediastinal involvements (16.8% of patients) with EBUS-TBNA than with PET (38.9%, p < 0.0001, exact symmetry test). EBUS-TBNA detected a lobe specific heterogeneity between the odds ratios of LN-positivity in the upper versus lower mediastinum (p = 0.0021, Breslow-Day test), while PET did not (p = 0.19). Conclusion Frequent patterns of LN-metastatic spread could be defined by EBUS-TBNA and PET and discrepancies in the pattern were seen between both methods. EBUS-TBNA showed more lobe and tumor laterality specific patterns of LN-metastases than PET and skipped lymph node stations were rare. These systematic relations offer the opportunity to further refine multi-parameter risk of LN-involvement models for target volume delineation based on pattern of spread by EBUS-TBNA and PET. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01904-4.
Collapse
Affiliation(s)
- Maja Guberina
- Department of Radiation Therapy, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany.
| | - Kaid Darwiche
- Department of Pulmonary Medicine, Section of Interventional Pneumology, University Medicine Essen - Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Hubertus Hautzel
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Christoph Pöttgen
- Department of Radiation Therapy, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Nika Guberina
- Department of Radiation Therapy, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Thomas Gauler
- Department of Radiation Therapy, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Till Ploenes
- Department of Thoracic Surgery and Thoracic Endoscopy, University Medicine Essen - Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- Institute of Diagnostic, Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dirk Theegarten
- Institute of Pathology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Thoracic Endoscopy, University Medicine Essen - Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wilfried E E Eberhardt
- Department of Medical Oncology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,Division of Thoracic Oncology, University Medicine Essen - Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Martin Metzenmacher
- Department of Medical Oncology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,Division of Thoracic Oncology, University Medicine Essen - Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Marcel Wiesweg
- Department of Medical Oncology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,Division of Thoracic Oncology, University Medicine Essen - Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Rüdiger Karpf-Wissel
- Department of Pulmonary Medicine, Section of Interventional Pneumology, University Medicine Essen - Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Martin Schuler
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.,Department of Medical Oncology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,Division of Thoracic Oncology, University Medicine Essen - Ruhrlandklinik, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiation Therapy, University Hospital Essen, West German Cancer Center, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
91
|
Gkika E, Schimek-Jasch T, Kremp S, Lenz S, Stockinger M, Schaefer-Schuler A, Mix M, Küsters A, Tosch M, Hehr T, Eschmann SM, Bultel YP, Hass P, Fleckenstein J, Thieme AH, Dieckmann K, Miederer M, Holl G, Rischke HC, Adebahr S, König J, Binder H, Grosu AL, Nestle U. Impact of radiotherapy protocol adherence in NSCLC patients treated with concurrent chemoradiation: RTQA results of the PET-Plan trial. Radiother Oncol 2021; 163:32-38. [PMID: 34311004 DOI: 10.1016/j.radonc.2021.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The success of intensification and personalisation of the curative treatment of non-small cell lung cancer (NSCLC) is strongly associated with the precision in radiotherapy. Here, we evaluate the impact of radiotherapy protocol adherence in a prospective multicentre trial. METHODS In the open-label, randomised, controlled PET-Plan trial, patients with inoperable NSCLC were randomized at a 1:1 ratio regarding the target volume delineation informed by 1F-FDG PET and CT plus elective nodal irradiation (arm A) or target volumes informed by PET alone (arm B) and received iso-toxically dose-escalated concurrent chemoradiation. The prospectively organised quality assurance program (RTQA) included individual case review by predefined criteria. For evaluation, protocol adherence was scored as per protocol (pP), with minor (miD), intermediate (inD) and major (maD) deviations. In order to exclude biases through patients who discontinued treatment, patients who received ≥60 Gy were additionally analysed. RESULTS Between 05/2009-11/2016, 205 patients were randomized, 204 patients started treatment according to protocol of which 31 (15%) patients had maD. Patients with maD had an inferior overall survival (OS) (HR 2.9, 95% CI 1.8-4.4, p < 0.0001) and a higher risk of loco-regional progression (HR 5.7, 95% CI 2.7-11.1, p < 0.0001). These results were significant also in the subgroup of patients receiving ≥ 60 Gy. Patients with maD concerning normal tissue delineation and/or dose constraints had a worse OS (p = 0.006) although no higher incidence of grade ≥ 3 toxicities. CONCLUSIONS Non-adherence to the radiotherapy protocol was associated with an inferior OS and loco-regional control. These results underline the importance of RTQA.
Collapse
Affiliation(s)
- Eleni Gkika
- Department of Radiation Oncology, Medical Center, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Freiburg, Germany.
| | - Tanja Schimek-Jasch
- Department of Radiation Oncology, Medical Center, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Kremp
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center and Faculty of Medicine, Homburg/Saar, Germany
| | - Stefan Lenz
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | - Marcus Stockinger
- Department of Radiation Oncology, University Hospital Mainz, Germany
| | - Andrea Schaefer-Schuler
- Department of Nuclear Medicine, Saarland University Medical Center and Faculty of Medicine, Homburg/Saar, Germany
| | - Michael Mix
- Faculty of Medicine, University of Freiburg, Germany; Department of Nuclear Medicine, Medical Center, University of Freiburg, Germany
| | - Andreas Küsters
- Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Marco Tosch
- Department of Nuclear Medicine, Helios University Hospital Wuppertal, Germany; Department of Medicine, Faculty of Health, University of Witten/Herdecke, Witten, Germany
| | - Thomas Hehr
- Department of Radiation Oncology, Marienhospital, Stuttgart, Germany
| | | | - Yves-Pierre Bultel
- Department of Radiation Oncology, Klinikum Mutterhaus der Boromäerinnen, Trier, Germany
| | - Peter Hass
- Department of Radiation Oncology, University Hospital Magdeburg, Germany
| | - Jochen Fleckenstein
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center and Faculty of Medicine, Homburg/Saar, Germany
| | | | - Karin Dieckmann
- Department of Radiotherapy, Vienna General Hospital, Medical University of Vienna, Austria
| | | | - Gabriele Holl
- Department of Nuclear Medicine, Helios Kliniken Schwerin, Germany
| | - Hans Christian Rischke
- Department of Radiation Oncology, Medical Center, University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; Department of Nuclear Medicine, Saarland University Medical Center and Faculty of Medicine, Homburg/Saar, Germany
| | - Sonja Adebahr
- Department of Radiation Oncology, Medical Center, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochem König
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Hospital of Mainz, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Medical Center, University of Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Freiburg, Germany; Department of Nuclear Medicine, Medical Center, University of Freiburg, Germany
| |
Collapse
|
92
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Strahlenther Onkol 2021; 197:1-23. [PMID: 34259912 DOI: 10.1007/s00066-021-01812-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
- Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Christoph Henkenberens
- Department of Radiotherapy and Special Oncology, Medical School Hannover, Hannover, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany.
| |
Collapse
|
93
|
Lapa C, Nestle U, Albert NL, Baues C, Beer A, Buck A, Budach V, Bütof R, Combs SE, Derlin T, Eiber M, Fendler WP, Furth C, Gani C, Gkika E, Grosu AL, Henkenberens C, Ilhan H, Löck S, Marnitz-Schulze S, Miederer M, Mix M, Nicolay NH, Niyazi M, Pöttgen C, Rödel CM, Schatka I, Schwarzenboeck SM, Todica AS, Weber W, Wegen S, Wiegel T, Zamboglou C, Zips D, Zöphel K, Zschaeck S, Thorwarth D, Troost EGC. Value of PET imaging for radiation therapy. Nuklearmedizin 2021; 60:326-343. [PMID: 34261141 DOI: 10.1055/a-1525-7029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This comprehensive review written by experts in their field gives an overview on the current status of incorporating positron emission tomography (PET) into radiation treatment planning. Moreover, it highlights ongoing studies for treatment individualisation and per-treatment tumour response monitoring for various primary tumours. Novel tracers and image analysis methods are discussed. The authors believe this contribution to be of crucial value for experts in the field as well as for policy makers deciding on the reimbursement of this powerful imaging modality.
Collapse
Affiliation(s)
- Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Baues
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Ambros Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Rebecca Bütof
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany.,Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), Neuherberg, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | | | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Steffen Löck
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Simone Marnitz-Schulze
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Matthias Miederer
- Department of Nuclear Medicine, University Hospital Mainz, Mainz, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Maximilian Niyazi
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Christoph Pöttgen
- Department of Radiation Oncology, West German Cancer Centre, University of Duisburg-Essen, Essen, Germany
| | - Claus M Rödel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | | | - Andrei S Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Simone Wegen
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Thomas Wiegel
- Department of Radiation Oncology, Ulm University Hospital, Ulm, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Klaus Zöphel
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Nuclear Medicine, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | | |
Collapse
|
94
|
Finazzi T, Schneiders FL, Senan S. Developments in radiation techniques for thoracic malignancies. Eur Respir Rev 2021; 30:200224. [PMID: 33952599 PMCID: PMC9488563 DOI: 10.1183/16000617.0224-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy is a cornerstone of modern lung cancer treatment alongside surgery, chemotherapy, immunotherapy and targeted therapies. Advances in radiotherapy techniques have enhanced the accuracy of radiation delivery, which has contributed to the evolution of radiation therapy into a guideline-recommended treatment in both early-stage and locally advanced nonsmall cell lung cancer. Furthermore, although radiotherapy has long been used for palliation of disease in advanced lung cancer, it is increasingly having a role as a locally ablative treatment in patients with oligometastatic disease.This review provides an overview of recent developments in radiation techniques, particularly for non-radiation oncologists who are involved in the care of lung cancer patients. Technical advances are discussed, and findings of recent clinical trials are highlighted, all of which have led to a changing perception of the role of radiation therapy in multidisciplinary care.
Collapse
Affiliation(s)
- Tobias Finazzi
- Clinic of Radiotherapy and Radiation Oncology, University Hospital Basel, Basel, Switzerland
| | - Famke L Schneiders
- Dept of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| | - Suresh Senan
- Dept of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
95
|
Tan H, Sui X, Yin H, Yu H, Gu Y, Chen S, Hu P, Mao W, Shi H. Total-body PET/CT using half-dose FDG and compared with conventional PET/CT using full-dose FDG in lung cancer. Eur J Nucl Med Mol Imaging 2021; 48:1966-1975. [PMID: 33244618 DOI: 10.1007/s00259-020-05091-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE The purpose was to explore the effects of total-body PET/CT with half-dose 18F-FDG activity on image quality, compared with those of conventional PET/CT with clinical routine full-dose 18F-FDG in lung cancer. METHODS Fifty-six primary lung cancer patients who underwent total-body PET/CT on a uEXPLORER scanner with half-dose (1.85 MBq/kg) 18F-FDG activity before treatment were retrospectively studied; among them, 28 patients were confirmed by postoperative pathologic examination and 28 patients by biopsy. After matching with the pathological study results, the other 28 patients with lung cancer who underwent surgery were selected for the full-dose (3.70 MBq/kg) group. Patients in the full-dose group were studied with a conventional uM780 PET/CT scanner. The acquisition time of the half-dose group was 15 min, split into 4-min and 2-min duration groups, which were all referred to as G15, G4 and G2, respectively. The PET/CT scanning speed in the full-dose group was 2 min/bed. Image quality was evaluated by subjective and objective analyses. The subjective analysis method was carried out with a 5-point scale (5-excellent, 1-poor). Objective analysis indicators of PET image quality included the SUVmax, SUVmean and signal-to-noise ratio (SNR) of the liver; the SUVmax and SUVmean of the blood pool; and the SUVmax and tumour-to-background ratio (TBR) of the lesions. G15 served as the reference for G2 and G4 to test lesion detectability. RESULTS Image quality scores in G2 (4.3 ± 0.7) were significantly higher than those in the full-dose group (3.7 ± 0.6) (p = 0.004). The mean and SD of the image quality scores in G4 and G15 were 4.9 ± 0.2 and 5.0 ± 0.0, respectively. The liver SNR in G2 was significantly higher than that in the full-dose group; the corresponding SNR were 11.7 ± 1.5 and 8.3 ± 1.2 (p < 0.001), respectively. The liver SNR significantly increased with the time of acquisition among G2, G4 and G15 (11.1 ± 1.7, 15.2 ± 3.4 and 30.5 ± 6.0, all p < 0.05). G15 served as the reference, and all these lesions (100%) could be identified by G2 and G4. CONCLUSION Total-body PET/CT with half-dose 18F-FDG activity in G2 and G4 achieved comparable image quality to conventional PET/CT, and its image quality was better than that of conventional PET/CT with clinical routine full-dose 18F-FDG in lung cancer.
Collapse
Affiliation(s)
- Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Xiuli Sui
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Hongyan Yin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Haojun Yu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Yusen Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Shuguang Chen
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Pengcheng Hu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Nuclear Medicine Institute of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, China.
| |
Collapse
|
96
|
Huber RM, Kauffmann-Guerrero D, Hoffmann H, Flentje M. New developments in locally advanced nonsmall cell lung cancer. Eur Respir Rev 2021; 30:30/160/200227. [PMID: 33952600 DOI: 10.1183/16000617.0227-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Locally advanced nonsmall cell lung cancer, due to its varying prognosis, is grouped according to TNM stage IIIA, IIIB and IIIC. Developments over the last 3 years have been focused on the integration of immunotherapy into the combination treatment of a locally definitive therapy (surgery or radiotherapy) and chemotherapy. For concurrent chemoradiotherapy, consolidation therapy with durvalumab was established. Adjuvant targeted therapy has again gained increasing interest. In order to adapt treatment to the specific stage subgroup and its prognosis, fluorodeoxyglucose positron emission tomography/computed tomography and pathological evaluation of the mediastinum are important. Tumours should be investigated for immunological features and driver mutations. Regarding toxicity, evaluation of pulmonary and cardiac function, as well as symptoms and quality of life, is of increasing importance. To improve the management and prognosis of this heterogeneous entity, clinical trials and registries should take these factors into account.
Collapse
Affiliation(s)
- Rudolf M Huber
- Division of Respiratory Medicine and Thoracic Oncology, Dept of Medicine, University of Munich - Campus Innenstadt, Comprehensive Pneumology Center Munich (CPC-M) and Thoracic Oncology Centre Munich, Munich, Germany .,Member of the German Centre of Lung Research
| | - Diego Kauffmann-Guerrero
- Division of Respiratory Medicine and Thoracic Oncology, Dept of Medicine, University of Munich - Campus Innenstadt, Comprehensive Pneumology Center Munich (CPC-M) and Thoracic Oncology Centre Munich, Munich, Germany.,Member of the German Centre of Lung Research
| | - Hans Hoffmann
- Division of Thoracic Surgery, Technical University of Munich, Munich, Germany
| | - Michael Flentje
- Dept of Radiation Oncology and Palliative Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
97
|
Yin L, Cao Z, Wang K, Tian J, Yang X, Zhang J. A review of the application of machine learning in molecular imaging. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:825. [PMID: 34268438 PMCID: PMC8246214 DOI: 10.21037/atm-20-5877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Molecular imaging (MI) is a science that uses imaging methods to reflect the changes of molecular level in living state and conduct qualitative and quantitative studies on its biological behaviors in imaging. Optical molecular imaging (OMI) and nuclear medical imaging are two key research fields of MI. OMI technology refers to the optical information generated by the imaging target (such as tumors) due to drug intervention and other reasons. By collecting the optical information, researchers can track the motion trajectory of the imaging target at the molecular level. Owing to its high specificity and sensitivity, OMI has been widely used in preclinical research and clinical surgery. Nuclear medical imaging mainly detects ionizing radiation emitted by radioactive substances. It can provide molecular information for early diagnosis, effective treatment and basic research of diseases, which has become one of the frontiers and hot topics in the field of medicine in the world today. Both OMI and nuclear medical imaging technology require a lot of data processing and analysis. In recent years, artificial intelligence technology, especially neural network-based machine learning (ML) technology, has been widely used in MI because of its powerful data processing capability. It provides a feasible strategy to deal with large and complex data for the requirement of MI. In this review, we will focus on the applications of ML methods in OMI and nuclear medical imaging.
Collapse
Affiliation(s)
- Lin Yin
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Cao
- Peking University First Hospital, Beijing, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Xing Yang
- Peking University First Hospital, Beijing, China
| | | |
Collapse
|
98
|
Bissonnette JP, Sun A, Grills IS, Almahariq MF, Geiger G, Vogel W, Sonke JJ, Everitt S, Manus MM. Non-small cell lung cancer stage migration as a function of wait times from diagnostic imaging: A pooled analysis from five international centres. Lung Cancer 2021; 155:136-143. [PMID: 33819859 DOI: 10.1016/j.lungcan.2021.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/10/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Patients with non-small cell lung cancer (NSCLC) can experience rapid disease progression between initial staging FDG-PET scans and commencement of curative-intent radiotherapy (RT). Previous studies that estimated stage migration rates by comparing staging PET/CT and treatment-planning PET/CT images were limited by small sample sizes. METHODS This multicenter, international study combined prospective data from five institutions for PET-staged patients with NSCLC who were intended to receive curative-intent RT. TNM status was compared for staging and RT planning scans and the probability of TNM status and overall stage migration was analyzed as a function of the interval between PET/CT scans. The impacts of N classification, overall stage, and pathology were also studied. RESULTS Pooled data from 181 patients were analyzed. The median interval between PET/CT scans was 42 days (range, 2-208). Upstaging occurred in 32 % of patients. The overall rate of stage migration was higher for patients presenting with initial stage IIIB/IIIC disease (p = 0.006) and patients with N2-3 nodal disease (p = 0.019). Upstaging to M1 disease was significantly associated with initial stage IIIB/IIIC disease (HR = 15.2) and adenocarcinoma (HR = 10) histology. CONCLUSION Longer intervals between imaging and treatment in patients with NSCLC were associated with high rates disease progression with consequent risks of geographic miss in RT planning and futile treatment in patients with M1 disease. Patients with more extensive initial nodal involvement and those with adenocarcinoma had the highest rates of stage migration. Dedicated RT planning PET/CT imaging is recommended, especially if >3 weeks have elapsed after initial staging.
Collapse
Affiliation(s)
- Jean-Pierre Bissonnette
- Department of Medical Physics, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology and Department of Medical Biophysics, University of Toronto, Techna Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Radiation Oncology, Toronto, Ontario, Canada. https://twitter.com/@JeanPierreBiss2
| | - Alexander Sun
- Department of Radiation Oncology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Radiation Oncology, Toronto, Ontario, Canada
| | - Inga S Grills
- Department of Radiation Oncology, Beaumont Hospitals, Royal Oak, MI, United States
| | - Muayad F Almahariq
- Department of Radiation Oncology, Beaumont Hospitals, Royal Oak, MI, United States
| | - Geoffrey Geiger
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Wouter Vogel
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Nuclear Medicine, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sarah Everitt
- Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael Mac Manus
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
99
|
Nestle U, Le Pechoux C, De Ruysscher D. Evolving target volume concepts in locally advanced non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:1999-2010. [PMID: 34012809 PMCID: PMC8107754 DOI: 10.21037/tlcr-20-805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiotherapy (RT) target volume concepts for locally advanced lung cancer have been under discussion for years. Although they may be as important as treatment doses, many aspects of them are still based on conventions, which, due to the paucity of prospective data, rely on long-term practice or on clinical knowledge and experience (e.g., on patterns of spread or recurrence). However, in recent years, large improvements have been made in medical imaging and molecular imaging methods have been implemented, which are of great interest in RT. For lung cancer, in recent years, 18F-fluoro-desoxy-glucose (FDG)-positron-emission tomography (PET)/computed tomography (CT) has shown a superior diagnostic accuracy as compare to conventional imaging and has become an indispensable standard tool for diagnostic workup, staging and response assessment. This offers the chance to optimize target volume concepts in relation to modern imaging. While actual recommendations as the EORTC or ESTRO-ACROP guidelines already include imaging standards, the recently published PET-Plan trial prospectively investigated conventional versus imaging guided target volumes in relation to patient outcome. The results of this trial may help to further refine standards. The current review gives a practical overview on procedures for pre-treatment imaging and target volume delineation in locally advanced non-small cell lung cancer (NSCLC) in synopsis of the procedures established by the PET-Plan trial with the actual EORTC and ACROP guidelines.
Collapse
Affiliation(s)
- Ursula Nestle
- Department of Radiation Oncology, University of Freiburg, Medical Center Faculty of Medicine, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Kliniken Maria Hilf, Mönchengladbach, Germany
| | - Cecile Le Pechoux
- Department of Radiation Oncology, Gustave Roussy, Institut d'Oncologie Thoracique (IOT), Villejuif, France
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), Maastricht University Medical Center+, GROW Research Institute, Maastricht, The Netherlands
| |
Collapse
|
100
|
Łazar-Poniatowska M, Bandura A, Dziadziuszko R, Jassem J. Concurrent chemoradiotherapy for stage III non-small-cell lung cancer: recent progress and future perspectives (a narrative review). Transl Lung Cancer Res 2021; 10:2018-2031. [PMID: 34012811 PMCID: PMC8107727 DOI: 10.21037/tlcr-20-704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Concurrent chemoradiotherapy (CHRT) remains the therapeutic standard for locally advanced inoperable non-small-cell lung cancer (NSCLC). The median overall survival (OS) with this approach is in the range of 20–30 months, with five-year survival of approximately 30%. These outcomes have recently been further improved by supplementing CHRT with maintenance durvalumab, a monoclonal anti-PD-L1 agent. The progress in treatment outcomes of locally advanced NSCLC before the era of immunotherapy has been achieved mainly by virtue of developments in diagnostics and radiotherapy techniques. Routine implementation of endoscopic and endobronchial ultrasonography for mediastinal lymph nodes assessment, positron emission tomography/computed tomography and magnetic resonance imaging of the brain allows for more accurate staging of NSCLC and for optimizing treatment strategy. Thorough staging and respiratory motion control allows for higher conformity of radiotherapy and reduction of radiotherapy related toxicity. Dose escalation with prolonged overall treatment time does not improve treatment outcomes of CHRT. In consequence, 60 Gy in 2 Gy fractions or equivalent biological dose remains the standard dose for definitive CHRT in locally advanced NSCLC. However, owing to increased toxicity of CHRT, this option may not be applicable in a proportion of elderly or frail patients. This article summarizes recent developments in curative CHRT for inoperable stage III NSCLC, and presents perspectives for further improvements of this strategy
Collapse
Affiliation(s)
| | - Artur Bandura
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Rafał Dziadziuszko
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|