51
|
Torres K, Singleton M. Analyses of correct responses and errors on measures of verbal fluency among Parkinson's disease and essential tremor patients. Clin Neuropsychol 2023; 37:1479-1497. [PMID: 36550679 PMCID: PMC11569621 DOI: 10.1080/13854046.2022.2157885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Objective: Parkinson's disease (PD) and essential tremor (ET) involve neuroanatomical circuitry that impact frontal lobe functioning, via the striatum and cerebellum, respectively. The aim of this exploratory study was to investigate quantitative and qualitative performance between and within these groups on measures of verbal fluency. Method: Sixty-three PD and 53 ET patients completed neuropsychological testing. Linear regression models with robust variance estimation compared verbal fluency performance between groups related to correct responses and errors. Paired t-tests investigated within group error rates. Results: PD patients gave more correct responses for phonological (β ̂ =5.3, p=.01) and category fluency (β ̂ =4.1, p=.01) than ET patients; however, when processing speed was added as a covariate, this attenuated performance on both measures and only phonological fluency remained significant (β ̂ =4.0, p=.04). There were no statistical differences in error scores between groups. Error rates within groups suggested that PD patients had higher error rates in total errors and perseveration errors on phonological fluency (M = 2.6, p=.00; M = 1.6, p=.00) and higher total errors and set-loss error rates on category switching (M = 5.1, p<.001; M = 4.1, p<.001). ET patients had higher error rate with relation to total errors and set-loss errors on phonological fluency (M = 2.5, p=.00; M = 1.5, p=.02) and category switching (M = 3.9, p=,00; M = 3.9, p<.001). Conclusions: PD patients performed better than ET patients on phonological fluency. PD patients appear to make more perseveration errors on phonological fluency, while ET patients made more set-loss errors. Implications for frontal lobe dysfunction and clinical impact are discussed.
Collapse
Affiliation(s)
- Karen Torres
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Michael Singleton
- Institute of Translational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
52
|
Torres K. Comparison of core and process scores on the California Verbal Learning Test-3 for Parkinson's disease and essential tremor patients. J Clin Exp Neuropsychol 2023; 45:798-812. [PMID: 37505187 DOI: 10.1080/13803395.2023.2241653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) and essential tremor (ET) are two disorders known to lead to executive dysfunction, presumably through distinct pathways to the frontal lobes via the striatum or cerebellum, respectively. Memory functioning in PD and ET patients has been previously suggested to be adversely impacted by executive dysfunction. The aims of this exploratory study were to compare memory performance between and within groups on the California Verbal Learning Test - 3 (CVLT-3) through the analysis of core and process scores and to understand the relationship of these scores with measures of executive functioning. METHOD Seventy PD and 54 ET patients completed comprehensive neuropsychological testing. Independent sample t-tests or Mann-Whitney tests were used to compare between group core and process scores on the CVLT-3. Within-subjects analyses were conducted via Wilcoxon Signed Rank Test due to nonparametric data. Spearman's correlations were conducted to explore the relationship between memory process scores and measures of executive functioning. RESULTS The ET and PD samples were similar with regard to age, education, gender, and general cognitive functioning. PD patients made more repetition errors (U = 2391.50, p = .01) than ET patients and Normal Memory PD patients made more repetition errors than Low Memory PD patients (U= 711.00, p= .00). Correlational analyses revealed repetition errors were negatively associated with tests of inhibition, set shifting, and working memory (rs = -.293, -.232). ET patients demonstrated a preference for a serial cluster learning strategy (T = 861.00, p = .005), similar to PD patients (T= 1633.00, p = <.001). CONCLUSIONS The study revealed presence of higher repetition errors in the PD sample that was demonstrated to have a negative relationship with measures of executive functioning. Implications for investigating process ("qualitative") scores in memory performance to determine extent of executive involvement are discussed.
Collapse
Affiliation(s)
- Karen Torres
- Department of Neurology, University of Washington Seattle WA, United States
| |
Collapse
|
53
|
Hollunder B, Ostrem JL, Sahin IA, Rajamani N, Oxenford S, Butenko K, Neudorfer C, Reinhardt P, Zvarova P, Polosan M, Akram H, Vissani M, Zhang C, Sun B, Navratil P, Reich MM, Volkmann J, Yeh FC, Baldermann JC, Dembek TA, Visser-Vandewalle V, Alho EJL, Franceschini PR, Nanda P, Finke C, Kühn AA, Dougherty DD, Richardson RM, Bergman H, DeLong MR, Mazzoni A, Romito LM, Tyagi H, Zrinzo L, Joyce EM, Chabardes S, Starr PA, Li N, Horn A. Mapping Dysfunctional Circuits in the Frontal Cortex Using Deep Brain Stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.07.23286766. [PMID: 36945497 PMCID: PMC10029043 DOI: 10.1101/2023.03.07.23286766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Frontal circuits play a critical role in motor, cognitive, and affective processing - and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)function remains largely elusive. Here, we study 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregate the frontal cortex into circuits that became dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to rostral, ranging from interconnections with sensorimotor cortices in dystonia, with the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairment in the human brain.
Collapse
Affiliation(s)
- Barbara Hollunder
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jill L. Ostrem
- Movement Disorders and Neuromodulation Centre, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Ilkem Aysu Sahin
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nanditha Rajamani
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Simón Oxenford
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pablo Reinhardt
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Zvarova
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mircea Polosan
- Univ. Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Psychiatry Department, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, UK
| | - Matteo Vissani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Chencheng Zhang
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pavel Navratil
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Martin M. Reich
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Till A. Dembek
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - Pranav Nanda
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carsten Finke
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea A. Kühn
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Darin D. Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hagai Bergman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University, Hassadah Medical School, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Mahlon R. DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Luigi M. Romito
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Himanshu Tyagi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, UK
| | - Eileen M. Joyce
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, UK
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Grenoble, France
- Inserm, U1216, Grenoble Institut des Neurosciences, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Philip A. Starr
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ningfei Li
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Horn
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
54
|
Li W, Tang Y, Peng L, Wang Z, Hu S, Gao X. The reconfiguration pattern of individual brain metabolic connectome for Parkinson's disease identification. MedComm (Beijing) 2023; 4:e305. [PMID: 37388240 PMCID: PMC10300308 DOI: 10.1002/mco2.305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
18F-Fluorodeoxyglucose positron emission tomography (18F-FDG PET) is widely employed to reveal metabolic abnormalities linked to Parkinson's disease (PD) at a systemic level. However, the individual metabolic connectome details with PD based on 18F-FDG PET remain largely unknown. To alleviate this issue, we derived a novel brain network estimation method for individual metabolic connectome, that is, Jensen-Shannon Divergence Similarity Estimation (JSSE). Further, intergroup difference between the individual's metabolic brain network and its global/local graph metrics was analyzed to investigate the metabolic connectome's alterations. To further improve the PD diagnosis performance, multiple kernel support vector machine (MKSVM) is conducted for identifying PD from normal control (NC), which combines both topological metrics and connection. Resultantly, PD individuals showed higher nodal topological properties (including assortativity, modularity score, and characteristic path length) than NC individuals, whereas global efficiency and synchronization were lower. Moreover, 45 most significant connections were affected. Further, consensus connections in occipital, parietal, and frontal regions were decrease in PD while increase in subcortical, temporal, and prefrontal regions. The abnormal metabolic network measurements depicted an ideal classification in identifying PD of NC with an accuracy up to 91.84%. The JSSE method identified the individual-level metabolic connectome of 18F-FDG PET, providing more dimensional and systematic mechanism insights for PD.
Collapse
Affiliation(s)
- Weikai Li
- College of Mathematics and StatisticsChongqing Jiaotong UniversityChongqingChina
- Department of Nuclear Medicine (PET Center)XiangYa HospitalChangshaHunanChina
- Department of PET/MRShanghai Universal Medical Imaging Diagnostic CenterShanghaiChina
- MIIT Key Laboratory of Pattern Analysis and Machine IntelligenceNanjing University of Aeronautics and AstronauticsNanjingChina
| | - Yongxiang Tang
- Department of Nuclear Medicine (PET Center)XiangYa HospitalChangshaHunanChina
| | - Liling Peng
- Department of PET/MRShanghai Universal Medical Imaging Diagnostic CenterShanghaiChina
| | - Zhengxia Wang
- School of Computer Science and Cyberspace SecurityHainan UniversityHainanChina
| | - Shuo Hu
- Department of Nuclear Medicine (PET Center)XiangYa HospitalChangshaHunanChina
- Key Laboratory of Biological Nanotechnology of National Health CommissionXiangYa HospitalCentral South UniversityChangshaHunanChina
| | - Xin Gao
- Department of PET/MRShanghai Universal Medical Imaging Diagnostic CenterShanghaiChina
| |
Collapse
|
55
|
Jia X, Li Y, Ying Y, Jia X, Tang W, Bian Y, Zhang J, Wang DJJ, Cheng X, Yang Q. Effect of corticosubcortical iron deposition on dysfunction in CADASIL is mediated by white matter microstructural damage. Neuroimage Clin 2023; 39:103485. [PMID: 37542975 PMCID: PMC10407949 DOI: 10.1016/j.nicl.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
Iron dysregulation may attenuate cognitive performance in patients with CADASIL. However, the underlying pathophysiological mechanisms remain incompletely understood. Whether white matter microstructural changes mediate these processes is largely unclear. In the present study, 30 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) patients were confirmed via genetic analysis and 30 sex- and age-matched healthy controls underwent multimodal MRI examinations and neuropsychological assessments. Quantitative susceptibility mapping and peak width of skeletonized mean diffusivity (PSMD) were analyzed. Mediation effect analysis was performed to explore the interrelationship between iron deposition, white matter microstructural changes and cognitive deficits in CADASIL. Cognitive deterioration was most affected in memory and executive function, followed by attention and working memory in CADASIL. Excessive iron in the temporal-precuneus pathway and deep gray matter specific to CADASIL were identified. Mediation analysis further revealed that PSMD mediated the relationship between iron concentration and cognitive profile in CADASIL. The present findings provide a new perspective on iron deposition in the corticosubcortical circuit and its contribution to disease-related selective cognitive decline, in which iron concentration may affect cognition by white matter microstructural changes in CADASIL.
Collapse
Affiliation(s)
- Xiuqin Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Key Lab of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing 100020, China
| | - Yingying Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yunqing Ying
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xuejia Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yueyan Bian
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiajia Zhang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, United States
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Key Lab of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing 100020, China.
| |
Collapse
|
56
|
Yun SJ, Hyun SE, Oh BM, Seo HG. Fully immersive virtual reality exergames with dual-task components for patients with Parkinson's disease: a feasibility study. J Neuroeng Rehabil 2023; 20:92. [PMID: 37464349 PMCID: PMC10355082 DOI: 10.1186/s12984-023-01215-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Dual-task training in Parkinson's disease (PD) improves spatiotemporal gait parameters, cognition, and quality of life. Virtual reality (VR) has been used as a therapeutic tool for patients to participate in activities in a safe environment, engage in multisensory experiences, and improve motivation and interest in rehabilitation. This study aimed to investigate the feasibility of fully immersive VR exergames with dual-task components in patients with PD. METHODS We developed VR exergames (go/no-go punch game, go/no-go stepping game, and number punch game) to improve habitual behavior control using motor-cognitive dual-task performance in patients with PD. The participants underwent 10 sessions 2-3 times a week, consisting of 30 min per session. The Unified Parkinson's Disease Rating Scale, Timed Up and Go test (TUG) under single- and dual-task (cognitive and physical) conditions, Berg balance scale (BBS), Stroop test, trail-making test, and digit span were evaluated before and after intervention. The Simulator Sickness Questionnaire (SSQ) was used to assess VR cybersickness. Usability was assessed using a self-reported questionnaire. RESULTS Twelve patients were enrolled and completed the entire training session. The mean age of participants was 73.83 ± 6.09 years; mean disease duration was 128.83 ± 76.96 months. The Hoehn and Yahr stages were 2.5 in seven patients and 3 in five patients. A significant improvement was observed in BBS and Stroop color-word test (p = 0.047 and p = 0.003, respectively). TUG time and dual-task interferences showed positive changes, but these changes were not statistically significant. The median SSQ total score was 28.05 (IQR: 29.92), 13.09 (IQR: 11.22), and 35.53 (IQR: 52.36) before, after the first session, and after the final session, respectively; the differences were not significant. Overall satisfaction with the intervention was 6.0 (IQR: 1.25) on a 7-point Likert-type scale. CONCLUSIONS Fully immersive VR exergames combined with physical and cognitive tasks may be used for rehabilitation of patients with PD without causing serious adverse effects. Furthermore, the exergames using dual-task components improved executive function and balance. Further development of VR training content may be needed to improve motor and dual-task performances. Trial registration NCT04787549 ( https://clinicaltrials.gov/ct2/show/NCT04787549 ).
Collapse
Affiliation(s)
- Seo Jung Yun
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Eun Hyun
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
57
|
An EJ, Sim WS, Kim SM, Kim JY. Suitability of visual cues for freezing of gait in patients with idiopathic Parkinson's disease: a case-control pilot study. J Neuroeng Rehabil 2023; 20:91. [PMID: 37464390 PMCID: PMC10354967 DOI: 10.1186/s12984-023-01214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Freezing of gait (FOG) is one of the most debilitating symptoms in patients with idiopathic Parkinson's disease (IPD). Visual cues can relieve FOG symptoms. However, there is no consensus on patient characteristics that can benefit from visual cues. Therefore, we examined the differences in IPD patient characteristics according to the effectiveness of visual cueing. METHODS Through gait experiments, we investigated the number of FOG occurrences, average FOG period per episode, proportion of FOG duration in the total gait cycles, and FOG-free period gait spatiotemporal parameters in ten participants diagnosed with FOG due to IPD. Subsequently, the differences between their clinical characteristics and striatal dopamine active transporter availability from six subregions of the striatum were compared by dividing them into two groups based on the three reduction rates: occurrence numbers, mean durations per episode, and proportion of FOG duration in the total gait cycles improved by visual cueing using laser shoes. The relationships among these three reduction rates and other FOG-related parameters were also investigated using Spearman correlation analyses. RESULTS According to the three FOG-related reduction rates, the group assignments were the same, which was also related to the baseline self-reported FOG severity score (New Freezing of Gait Questionnaire): the more severe the FOG, the poorer the response to the visual cueing. By visual cueing, the better response group demonstrated the characteristics of lower new FOG questionnaire total scores, higher dopamine active transporter availability of the anterior and posterior putamen, and shorter mean duration of FOG per episode in the absence of cueing. These results were replicated using Spearman correlation analyses. CONCLUSIONS For FOG symptoms following IPD, gait assistance by visual cueing may be more effective when the total NFOGQ score is lower and the DAT of putamen is higher. Through this study, we demonstrated clinical and striatal dopaminergic conditions to select patients who may be more likely to benefit from visual cueing with laser shoes, and these findings lead to the need for early diagnosis of FOG in patients with IPD. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05080413. Registered on September 14, 2021.
Collapse
Affiliation(s)
- Eui Jin An
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Woo-Sob Sim
- Department of Prosthetics and Orthotics Center, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Seung Min Kim
- Department of Neurology, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Jun Yup Kim
- Department of Physical Medicine and Rehabilitation, Hanyang University Medical Center, Seoul, Republic of Korea.
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea.
- Mailing address:, 222-1, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
58
|
Bao Y, Ya Y, Liu J, Zhang C, Wang E, Fan G. Regional homogeneity and functional connectivity of freezing of gait conversion in Parkinson's disease. Front Aging Neurosci 2023; 15:1179752. [PMID: 37502425 PMCID: PMC10370278 DOI: 10.3389/fnagi.2023.1179752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
Background Freezing of gait (FOG) is common in the late stage of Parkinson's disease (PD), which can lead to disability and impacts the quality of life. Therefore, early recognition is crucial for therapeutic intervention. We aimed to explore the abnormal regional homogeneity (ReHo) and functional connectivity (FC) in FOG converters and evaluate their diagnostic values. Methods The data downloaded from the Parkinson's Disease Progression Markers Project (PPMI) cohort was subdivided into PD-FOG converters (n = 16) and non-converters (n = 17) based on whether FOG appeared during the 3-year follow-up; 16 healthy controls were well-matched. ReHo and FC analyses were used to explore the variations in spontaneous activity and interactions between significant regions among three groups of baseline data. Correlations between clinical variables and the altered ReHo values were assessed in FOG converter group. Last, logistic regression and receiver operating characteristic curve (ROC) were used to predict diagnostic value. Results Compared with the non-converters, FOG converters had reduced ReHo in the bilateral medial superior frontal gyrus (SFGmed), which was negatively correlated with the postural instability and gait difficulty (PIGD) score. ReHo within left amygdala/olfactory cortex/putamen (AMYG/OLF/PUT) was decreased, which was correlated with anxiety and autonomic dysfunction. Also, increased ReHo in the left supplementary motor area/paracentral lobule was positively correlated with the rapid eye movement sleep behavior disorder screening questionnaire. FOG converters exhibited diminished FC in the basal ganglia, limbic area, and cognitive control cortex, as compared with non-converters. The prediction model combined ReHo of basal ganglia and limbic area, with PIGD score was the best predictor of FOG conversion. Conclusion The current results suggested that abnormal ReHo and FC in the basal ganglia, limbic area, and cognitive control cortex may occur in the early stage of FOG. Basal ganglia and limbic area dysfunction combined with higher PIGD score are useful for the early recognition of FOG conversion.
Collapse
Affiliation(s)
- Yiqing Bao
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Ya
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenchen Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Erlei Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
59
|
Rajalingam R, Fasano A. Punding in Parkinson's Disease: An Update. Mov Disord Clin Pract 2023; 10:1035-1047. [PMID: 37476310 PMCID: PMC10354600 DOI: 10.1002/mdc3.13748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 07/22/2023] Open
Abstract
Background Punding is a stereotyped behavior characterized by an intense fascination with a complex, excessive, non-goal oriented, repetitive activity affecting individuals with Parkinson's disease (PD) on dopamine replacement therapy (DRT). Objectives In 2010, we published the first review focused on the pathophysiology of punding. This study aims to systematically review the literature of the past decade on punding in PD, particularly focusing on the clinical features, underlying pathophysiological mechanisms, and treatment. Methods Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we searched PubMed, Embase, and APA PsycInfo for articles published between July 1, 2010 and March 19, 2022. The search strategy included: (punding) AND (parkinson*). Results Of 256 studies identified, 29 were eligible for inclusion with 19 original research articles and 10 case reports. This review confirmed that predictors of punding in PD are higher doses of DRT, younger age, male sex, and increasing disease severity. We also found an association between punding and psychiatric and/or cognitive symptoms. Neuroimaging studies have showed that punding in PD is associated with a disconnection between midbrain, limbic and white matter tracts projecting to the frontal cortices and a breakdown of the connectivity among the crucial nodes of the reward circuit. Low-frequency repetitive transcranial magnetic stimulation on the dorsolateral prefrontal cortex has been shown to produce a transient beneficial effect in PD patients with punding. Conclusion In conclusion, although the clinical features of punding have been established, in the past 12 years, we gained a better understanding of the pathophysiological mechanisms of punding, mainly thanks to magnetic resonance imaging techniques.
Collapse
Affiliation(s)
- Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, UHNTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, UHNTorontoOntarioCanada
- Division of NeurologyUniversity of TorontoTorontoOntarioCanada
- Krembil Research InstituteTorontoOntarioCanada
| |
Collapse
|
60
|
Sharma NK, Mishra K. Exploration of diacerein as a neuroprotective adjuvant to Adenium obesum: An in-vivo study. J Ayurveda Integr Med 2023; 14:100761. [PMID: 37506605 PMCID: PMC10405303 DOI: 10.1016/j.jaim.2023.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Since the dawn of civilization, medicinal plants have been essential in the treatment of numerous human ailments. Medicinal plants have been the reliable sources to treat various diseases. Over 25% of prescription medications on the market today are made from natural resources. In the present study the selected medicinal plant, is Adenium obesum, of family Apocynaceae. The plant contains various chemical groups, including carbohydrate, cardiac glycoside, flavonoid, polyphenols, terpenoids, pregnanes, etc. OBJECTIVE: Millions of peoples worldwide are affected with neurodegenerative diseases. Parkinson's disease, Alzheimer's disease & Huntingtons disease are important among them. Since ancient times, medicinal herbs have been used to treat illnesses. The objective of present study is to prepare an effective & safe drug formulation to treat neurological diseases. MATERIAL & METHODS Methanolic extract of A. obesum (200 mg/kg, 400 mg/kg) alone as well as with diacerein (100 mg/kg) is used to treat the haloperidol (1 mg/kg) & iron (10 mg/kg) induced Parkinsonism & Isotretinoin induced depression in albino wistar rats. The efficacy of plant extract as well as diacerein were measured by various behavioral models, with the help of histopathological studies & antioxidant assay like GSH, SOD, CAT, and LPO. RESULTS A. obesum alone & with diacerein is effective to treat neurological complications like Parkinson's disease & depression which can be seen in various behavioral models like, staircase test, rotarod test, forced swim test, hole board test etc. Histopathological evidences also suggest the significance of plant extract alone & with diacerein. CONCLUSION The findings of present research work revealed the neuroprotective effect of both A. obesum extract as well as diacerein.
Collapse
Affiliation(s)
- Neeraj Kumar Sharma
- Faculty of Medical & Paramedical Sciences, Madhyanchal Professional University, Bhopal 462044, India
| | - Kislaya Mishra
- Department of Pharmacology, Hygia Institute of Pharmaceutical Education and Research, Lucknow 226020, India.
| |
Collapse
|
61
|
Bronte-Stewart H, Merola A. Hope vs. Hype: Closed loop technology will provide more meaningful improvement vs. directional leads in deep brain stimulation. Parkinsonism Relat Disord 2023:105452. [PMID: 37355400 DOI: 10.1016/j.parkreldis.2023.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/26/2023]
Affiliation(s)
- Helen Bronte-Stewart
- Department of Neurology and Neurological Sciences, Stanford Comprehensive Movement Disorders Center, United States.
| | - Aristide Merola
- Center for Parkinson's Disease and Related Movement Disorders, Wexner Medical Center, The Ohio State University, Columbus, United States.
| |
Collapse
|
62
|
Béreau M, Van Waes V, Servant M, Magnin E, Tatu L, Anheim M. Apathy in Parkinson's Disease: Clinical Patterns and Neurobiological Basis. Cells 2023; 12:1599. [PMID: 37371068 DOI: 10.3390/cells12121599] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Apathy is commonly defined as a loss of motivation leading to a reduction in goal-directed behaviors. This multidimensional syndrome, which includes cognitive, emotional and behavioral components, is one of the most prevalent neuropsychiatric features of Parkinson's disease (PD). It has been established that the prevalence of apathy increases as PD progresses. However, the pathophysiology and anatomic substrate of this syndrome remain unclear. Apathy seems to be underpinned by impaired anatomical structures that link the prefrontal cortex with the limbic system. It can be encountered in the prodromal stage of the disease and in fluctuating PD patients receiving bilateral chronic subthalamic nucleus stimulation. In these stages, apathy may be considered as a disorder of motivation that embodies amotivational behavioral syndrome, is underpinned by combined dopaminergic and serotonergic denervation and is dopa-responsive. In contrast, in advanced PD patients, apathy may be considered as cognitive apathy that announces cognitive decline and PD dementia, is underpinned by diffuse neurotransmitter system dysfunction and Lewy pathology spreading and is no longer dopa-responsive. In this review, we discuss the clinical patterns of apathy and their treatment, the neurobiological basis of apathy, the potential role of the anatomical structures involved and the pathways in motivational and cognitive apathy.
Collapse
Affiliation(s)
- Matthieu Béreau
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Vincent Van Waes
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Mathieu Servant
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Eloi Magnin
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Laurent Tatu
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
- Laboratoire d'Anatomie, Université de Franche-Comté, 25000 Besançon, France
| | - Mathieu Anheim
- Département de Neurologie, CHU de Strasbourg, 67200 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
- Institut de génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), INSERM-U964, CNRS-UMR7104, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
63
|
Wyrobnik M, van der Meer E, Klostermann F. Aberrant neural processing of event boundaries in persons with Parkinson's disease. Sci Rep 2023; 13:8818. [PMID: 37258848 PMCID: PMC10232529 DOI: 10.1038/s41598-023-36063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/29/2023] [Indexed: 06/02/2023] Open
Abstract
The perception of everyday events implies the segmentation into discrete sub-events (i.e. event segmentation). This process is relevant for the prediction of upcoming events and for the recall of recent activities. It is thought to involve dopaminergic networks which are strongly compromised in Parkinson's disease (PD). Indeed, deficits of event segmentation have been previously shown in PD, but underlying neuronal mechanisms remain unknown. We therefore investigated 22 persons with PD and 22 age-matched healthy controls, who performed an event segmentation task with simultaneous electroencephalography (EEG). Both groups had to indicate by button press the beginning of sub-events within three movies showing persons performing everyday activities. The segmentation performance of persons with PD deviated significantly from that of controls. Neurophysiologically, persons with PD expressed reduced theta (4-7 Hz) activity around identified event boundaries compared to healthy controls. Together, these results point to disturbed event processing in PD. According to functions attributed to EEG activities in particular frequency ranges, the PD-related theta reduction could reflect impaired matching of perceptual input with stored event representations and decreased updating processes of event information in working memory and, thus, event boundary identification.
Collapse
Affiliation(s)
- Michelle Wyrobnik
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12203, Berlin, Germany.
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, 10117, Berlin, Germany.
- Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany.
| | - Elke van der Meer
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, 10117, Berlin, Germany
- Institute of Psychology, Humboldt-Universität zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany
| | - Fabian Klostermann
- Department of Neurology, Motor and Cognition Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12203, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Luisenstraße 56, 10117, Berlin, Germany
| |
Collapse
|
64
|
Aiello EN, D'Iorio A, Solca F, Torre S, Bonetti R, Scheveger F, Colombo E, Maranzano A, Maderna L, Morelli C, Doretti A, Amboni M, Vitale C, Verde F, Ferrucci R, Barbieri S, Zirone E, Priori A, Pravettoni G, Santangelo G, Silani V, Ticozzi N, Ciammola A, Poletti B. Clinimetrics and feasibility of the Italian version of the Frontal Assessment Battery (FAB) in non-demented Parkinson's disease patients. J Neural Transm (Vienna) 2023; 130:687-696. [PMID: 36976351 DOI: 10.1007/s00702-023-02624-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND This study aimed at assessing the cross-sectional and longitudinal clinimetrics and feasibility of the Frontal Assessment Battery (FAB) in non-demented Parkinson's disease (PD) patients. METHODS N = 109 PD patients underwent the FAB and the Montreal Cognitive Assessment (MoCA). A subsample of patients further underwent a thorough motor, functional and behavioral evaluation (the last including measures of anxiety, depression and apathy). A further subsample was administered a second-level cognitive battery tapping on attention, executive functioning, language, memory, praxis and visuo-spatial abilities. The following properties of the FAB were tested: (1) concurrent validity and diagnostics against the MoCA; (2) convergent validity against the second-level cognitive battery; (4) association with motor, functional and behavioral measures; (5) capability to discriminate patients from healthy controls (HCs; N = 96); (6) assessing its test-retest reliability, susceptibility to practice effects and predictive validity against the MoCA, as well as deriving reliable change indices (RCIs) for it, at a ≈ 6-month interval, within a subsample of patients (N = 33). RESULTS The FAB predicted MoCA scores at both T0 and T1, converged with the vast majority of second-level cognitive measures and was associated with functional independence and apathy. It accurately identified cognitive impairment (i.e., a below-cut-off MoCA score) in patients, also discriminating patients from HCs. The FAB was reliable at retest and free of practice effects; RCIs were derived according to a standardized regression-based approach. DISCUSSION The FAB is a clinimetrically sound and feasible screener for detecting dysexecutive-based cognitive impairment in non-demented PD patients.
Collapse
Affiliation(s)
- Edoardo Nicolò Aiello
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, MI, Italy
| | - Alfonsina D'Iorio
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, MI, Italy
| | - Silvia Torre
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, MI, Italy
| | - Ruggero Bonetti
- Neurology Residency Program, Università Degli Studi Di Milano, Milan, Italy
| | | | - Eleonora Colombo
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, MI, Italy
| | - Alessio Maranzano
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, MI, Italy
| | - Luca Maderna
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, MI, Italy
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, MI, Italy
| | - Alberto Doretti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, MI, Italy
| | - Marianna Amboni
- Institute of Diagnosis and Health, IDC-Hermitage Capodimonte, Naples, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Carmine Vitale
- Institute of Diagnosis and Health, IDC-Hermitage Capodimonte, Naples, Italy
- Department of Motor Sciences and Wellness, University "Parthenope", Naples, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, MI, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari Center", Università Degli Studi Di Milano, Milan, Italy
| | - Roberta Ferrucci
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sergio Barbieri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Zirone
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Priori
- ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
- Department of Health Sciences, "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Gabriella Santangelo
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, MI, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari Center", Università Degli Studi Di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, MI, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari Center", Università Degli Studi Di Milano, Milan, Italy
| | - Andrea Ciammola
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, MI, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, MI, Italy.
| |
Collapse
|
65
|
Kehnemouyi YM, Petrucci MN, Wilkins KB, Melbourne JA, Bronte-Stewart HM. The Sequence Effect Worsens Over Time in Parkinson's Disease and Responds to Open and Closed-Loop Subthalamic Nucleus Deep Brain Stimulation. JOURNAL OF PARKINSON'S DISEASE 2023:JPD223368. [PMID: 37125563 DOI: 10.3233/jpd-223368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND The sequence effect is the progressive deterioration in speech, limb movement, and gait that leads to an inability to communicate, manipulate objects, or walk without freezing of gait. Many studies have demonstrated a lack of improvement of the sequence effect from dopaminergic medication, however few studies have studied the metric over time or investigated the effect of open-loop deep brain stimulation in people with Parkinson's disease (PD). OBJECTIVE To investigate whether the sequence effect worsens over time and/or is improved on clinical (open-loop) deep brain stimulation (DBS). METHODS Twenty-one people with PD with bilateral subthalamic nucleus (STN) DBS performed thirty seconds of instrumented repetitive wrist flexion extension and the MDS-UPDRS III off therapy, prior to activation of DBS and every six months for up to three years. A sub-cohort of ten people performed the task during randomized presentations of different intensities of STN DBS. RESULTS The sequence effect was highly correlated with the overall MDS-UPDRS III score and the bradykinesia sub-score and worsened over three years. Increasing intensities of STN open-loop DBS improved the sequence effect and one subject demonstrated improvement on both open-loop and closed-loop DBS. CONCLUSION Sequence effect in limb bradykinesia worsened over time off therapy due to disease progression but improved on open-loop DBS. These results demonstrate that DBS is a useful treatment of the debilitating effects of the sequence effect in limb bradykinesia and upon further investigation closed-loop DBS may offer added improvement.
Collapse
Affiliation(s)
- Yasmine M Kehnemouyi
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Engineering, Department of Bioengineering, Stanford, CA, USA
| | - Matthew N Petrucci
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Engineering, Department of Bioengineering, Stanford, CA, USA
| | - Kevin B Wilkins
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Jillian A Melbourne
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
| | - Helen M Bronte-Stewart
- Stanford University School of Medicine, Department of Neurology and Neurological Sciences, Stanford, CA, USA
- Stanford University School of Medicine, Department of Neurosurgery, Stanford, CA, USA
| |
Collapse
|
66
|
Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, Harkin A, Macrì S, Mora-Maltas B, Jiménez-Murcia S, O'Leary A, Ottomana AM, Presta M, Slattery D, Scholtz S, Glennon JC. Insulin and Disorders of Behavioural Flexibility. Neurosci Biobehav Rev 2023; 150:105169. [PMID: 37059405 DOI: 10.1016/j.neubiorev.2023.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Behavioural inflexibility is a symptom of neuropsychiatric and neurodegenerative disorders such as Obsessive-Compulsive Disorder, Autism Spectrum Disorder and Alzheimer's Disease, encompassing the maintenance of a behaviour even when no longer appropriate. Recent evidence suggests that insulin signalling has roles apart from its regulation of peripheral metabolism and mediates behaviourally-relevant central nervous system (CNS) functions including behavioural flexibility. Indeed, insulin resistance is reported to generate anxious, perseverative phenotypes in animal models, with the Type 2 diabetes medication metformin proving to be beneficial for disorders including Alzheimer's Disease. Structural and functional neuroimaging studies of Type 2 diabetes patients have highlighted aberrant connectivity in regions governing salience detection, attention, inhibition and memory. As currently available therapeutic strategies feature high rates of resistance, there is an urgent need to better understand the complex aetiology of behaviour and develop improved therapeutics. In this review, we explore the circuitry underlying behavioural flexibility, changes in Type 2 diabetes, the role of insulin in CNS outcomes and mechanisms of insulin involvement across disorders of behavioural inflexibility.
Collapse
Affiliation(s)
- Mairéad Sullivan
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fernando Fernandez-Aranda
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Bernat Mora-Maltas
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Aet O'Leary
- University Hospital Frankfurt, Frankfurt, Germany
| | - Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Jeffrey C Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
67
|
de Jager L, Vidigal CB, de Campos BH, Reginato GS, Fernandes LM, Ariza D, Higashi-Mckeown CM, Bertozzi MM, Rasquel de Oliveira FS, Verri Junior WA, Ceravolo GS, Crestani CC, Pinge-Filho P, Martins-Pinge MC. Role of the iNOS isoform in the cardiovascular dysfunctions of male rats with 6-OHDA-induced Parkinsonism. Nitric Oxide 2023; 134-135:49-60. [PMID: 37054808 DOI: 10.1016/j.niox.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
INTRODUCTION Available studies have shown the involvement of nitric oxide (NO) in the processes that lead to neurodegeneration in PD. Also, the use of inhibitors of the inducible isoform of NO-synthase (iNOS) promotes neuroprotection and attenuates dopamine (DA) loss in experimental models of Parkinsonism. In addition, NO also appears to be involved in cardiovascular changes in 6-hydroxydopamine (6-OHDA)-induced Parkinsonism. The current study aimed to evaluate the effects of iNOS inhibition on cardiovascular and autonomic function in animals that were subjected to Parkinsonism by the administration of 6-OHDA. MATERIALS AND METHODS The animals underwent stereotaxic surgery for bilateral microinfusion of the neurotoxin 6-OHDA (6 mg/mL in 0.2% ascorbic acid in sterile saline solution) or vehicle solution for the Sham group. From the day of stereotaxis until the day of femoral artery catheterization, the animals were treated with the iNOS inhibitor, S-methylisothiourea (SMT; 10 mg/kg; i.p.) or saline solution (0.9%; i.p.) for 7 days. The animals were divided into four groups: Sham-Saline, Sham-SMT, 6-OHDA-Saline, and 6-OHDA-SMT. Subsequent analyses were performed on these four groups. After 6 days, they underwent catheterization of the femoral artery, and 24 hours later, mean arterial pressure (MAP) and heart rate (HR) were recorded. Another group of animals (the 6-OHDA and Sham groups) was assessed for aortic vascular reactivity after 7 days of bilateral infusion of 6-OHDA or vehicle, in which cumulative concentration-effect curves (CCEC) were made for phenylephrine (Phenyl), acetylcholine and sodium nitroprusside (NPS). Also, CCEC in the presence of Nw-nitro-arginine-methyl-ester (l-NAME) (10-5 M), SMT (10-6 M), and indomethacin (10-5M) blockers were made. RESULTS The effectiveness of the 6-OHDA lesion was confirmed with the reduction of DA in 6-OHDA animals. However, treatment with SMT could not reverse the loss of DA. Concerning the baseline parameters, SBP and MAP values were lower in 6-OHDA animals compared to their Sham control, with no effect of treatment with SMT. In the analysis of SBP variability, a decrease in variance, the VLFabs component, and the LFabs component were observed in the 6-OHDA groups when compared to their controls, regardless of treatment with SMT. It was also observed that intravenous injections of SMT resulted in an increase in BP and a decrease in HR. However, the response was not different between the Sham and 6-OHDA groups. In vascular function, there was a hyporeactivity to Phenyl in the 6-OHDA group, and when investigating the mechanisms of this hyporeactivity, it was seen that the Rmax to Phenyl increased with incubation with SMT, indicating that iNOS could be involved in the vascular hyporeactivity of animals with Parkinsonism. CONCLUSION Thus, the set of results presented in this study suggests that part of the cardiovascular dysfunction in animals subjected to 6-OHDA Parkinsonism may be peripheral and involve the participation of endothelial iNOS.
Collapse
Affiliation(s)
- Lorena de Jager
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina - UEL, Londrina, PR, Brazil
| | - Camila Borecki Vidigal
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina - UEL, Londrina, PR, Brazil
| | - Blenda Hyedra de Campos
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina - UEL, Londrina, PR, Brazil
| | - Gabriela Souza Reginato
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina - UEL, Londrina, PR, Brazil
| | - Lorena Maria Fernandes
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina - UEL, Londrina, PR, Brazil
| | - Deborah Ariza
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina - UEL, Londrina, PR, Brazil
| | | | - Mariana Marques Bertozzi
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina - UEL, Londrina, PR, Brazil
| | | | | | | | - Carlos César Crestani
- Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Princípios Ativos Naturais e Toxicologia, Universidade Estadual Paulista, UNESP Araraquara, Brazil
| | - Phileno Pinge-Filho
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina - UEL, Londrina, PR, Brazil
| | | |
Collapse
|
68
|
Kablan A, Silan F, Ozdemir O. Re-evaluation of Genetic Variants in Parkinson's Disease Using Targeted Panel and Next-Generation Sequencing. Twin Res Hum Genet 2023; 26:164-170. [PMID: 37139776 DOI: 10.1017/thg.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Parkinson's disease (PD) is a complex disorder with a significant genetic component. Genetic variations associated with PD play a crucial role in the disease's inheritance and prognosis. Currently, 31 genes have been linked to PD in the OMIM database, and the number of genes and genetic variations identified is steadily increasing. To establish a robust correlation between phenotype and genotype, it is essential to compare research findings with existing literature. In this study, we aimed to identify genetic variants associated with PD using a targeted gene panel with next-generation sequencing (NGS) technology. Our objective was also to explore the idea of re-analyzing genetic variants of unknown significance (VUS). We screened 18 genes known to be related to PD using NGS in 43 patients who visited our outpatient clinic between 2018-2019. After 12-24 months, we re-evaluated the detected variants. We found 14 different heterozygous variants classified as pathogenic, likely pathogenic, or VUS in 14 individuals from nonconsanguineous families. We re-evaluated 15 variants and found changes in their interpretation. Targeted gene panel analysis with NGS can help identify genetic variants associated with PD with confidence. Re-analyzing certain variants at specific time intervals can be especially beneficial in selected situations. Our study aims to expand the clinical and genetic understanding of PD and emphasizes the importance of re-analysis.
Collapse
Affiliation(s)
- Ahmet Kablan
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
- Department of Medical Genetics, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Fatma Silan
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ozturk Ozdemir
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
69
|
Ilardi CR, di Maio G, Villano I, Messina G, Monda V, Messina A, Porro C, Panaro MA, Gamboz N, Iavarone A, La Marra M. The assessment of executive functions to test the integrity of the nigrostriatal network: A pilot study. Front Psychol 2023; 14:1121251. [PMID: 37063521 PMCID: PMC10090354 DOI: 10.3389/fpsyg.2023.1121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundParkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by motor and non-motor symptoms. The latter mainly include affective, sleep, and cognitive deficits. Non-demented PD patients often demonstrate impairments in several executive domains following neuropsychological evaluation. The current pilot study aims at assessing the discriminatory power of the Frontal Assessment Battery-15 (FAB15) in differentiating (i) non-demented PD patients and healthy controls and (ii) PD patients with more and less pronounced motor symptoms.MethodsThirty-nine non-demented early-stage PD patients in the “on” dopamine state (26 females, mean age = 64.51 years, SD = 6.47, mean disease duration = 5.49 years, SD = 2.28) and 39 healthy participants (24 females, mean age = 62.60 years, SD = 5.51) were included in the study. All participants completed the FAB15. Motor symptoms of PD patients were quantified via the Unified Parkinson’s Disease Rating Scale-Part III (UPDRS-Part III) and Hoehn and Yahr staging scale (H&Y).ResultsThe FAB15 score, adjusted according to normative data for sex, age, and education, proved to be sufficiently able to discriminate PD patients from healthy controls (AUC = 0.69 [95% CI 0.60–0.75], SE = 0.06, p = 0.04, optimal cutoff = 11.29). Conversely, the battery lacked sufficient discriminative capability to differentiate PD patients based on the severity of motor symptoms.ConclusionThe FAB15 may be a valid tool for distinguishing PD patients from healthy controls. However, it might be less sensitive in identifying clinical phenotypes characterized by visuospatial impairments resulting from posteroparietal and/or temporal dysfunctions. In line with previous evidence, the battery demonstrated to be not expendable in the clinical practice for monitoring the severity of PD-related motor symptoms.
Collapse
Affiliation(s)
| | - Girolamo di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ines Villano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- *Correspondence: Ines Villano,
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, Naples, Italy
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Nadia Gamboz
- Laboratory of Experimental Psychology, Suor Orsola Benincasa University, Naples, Italy
| | | | - Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
70
|
Chegão A, Vicente Miranda H. Unveiling new secrets in Parkinson's disease: The glycatome. Behav Brain Res 2023; 442:114309. [PMID: 36706808 DOI: 10.1016/j.bbr.2023.114309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
We are witnessing a considerable increase in the incidence of Parkinson's disease (PD), which may be due to the general ageing of the population. While there is a plethora of therapeutic strategies for this disease, they still fail to arrest disease progression as they do not target and prevent the neurodegenerative process. The identification of disease-causing mutations allowed researchers to better dissect the underlying causes of this disease, highlighting, for example, the pathogenic role of alpha-synuclein. However, most PD cases are sporadic, which is making it hard to unveil the major causative mechanisms of this disease. In the recent years, epidemiological evidence suggest that type-2 diabetes mellitus (T2DM) individuals have higher risk and worst outcomes of PD, allowing to raise the hypothesis that some dysregulated processes in T2DM may contribute or even trigger the neurodegenerative process in PD. One major consequence of T2DM is the unprogrammed reaction between sugars, increased in T2DM, and proteins, a reaction named glycation. Pre-clinical reports show that alpha-synuclein is a target of glycation, and glycation potentiates its pathogenicity which contributes for the neurodegenerative process. Moreover, it triggers, anticipates, or aggravates several PD-like motor and non-motor complications. A given profile of proteins are differently glycated in diseased conditions, altering the brain proteome and leading to brain dysfunction and neurodegeneration. Herein we coin the term Glycatome as the profile of glycated proteins. In this review we report on the mechanisms underlying the association between T2DM and PD, with particular focus on the impact of protein glycation.
Collapse
Affiliation(s)
- Ana Chegão
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hugo Vicente Miranda
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
71
|
Fadanni GP, Leão AHFF, Granzotto N, Pereira AG, de Gois AM, Anjos PAR, Linder ÁE, Santos JR, Silva RH, Izídio GS. Genetic effects in a progressive model of parkinsonism induced by reserpine. Psychopharmacology (Berl) 2023; 240:1131-1142. [PMID: 36964320 DOI: 10.1007/s00213-023-06350-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/27/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVE AND METHODS We investigated the locomotor, emotional, physiological, and neurobiological effects induced by low-dose reserpine repeated treatment (0.1 mg/kg; 14 injections) in males from the Lewis (LEW), Spontaneously Hypertensive Rats (SHR), and SHR.LEW-(D4Rat76-D4Mgh11) (SLA16) isogenic rat strains, which have different genetic backgrounds on chromosome 4. Behavioral responses in the catalepsy, open-field, and oral movements' tests were coupled with blood pressure, body weight, and striatal tyrosine hydroxylase (TH) level assessments to establish neurobiological comparisons between reserpine-induced impairments and genetic backgrounds RESULTS: Results revealed the SHR strain was more sensitive in the catalepsy test and exhibited higher TH immunoreactivity in the dorsal striatum. The SLA16 strain presented more oral movements, suggesting increased susceptibility to develop oral dyskinesia. CONCLUSIONS Our results showed the efficacy of repeated treatment with a low dose of reserpine and demonstrated, for the first time, the genetic influence of a specific region of chromosome 4 on the expression of these effects.
Collapse
Affiliation(s)
- Guilherme Pasetto Fadanni
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Natalli Granzotto
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aline Guimarães Pereira
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Auderlan Mendonça de Gois
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Brazil
| | - Pâmela Andressa Ramborger Anjos
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Áurea Elizabeth Linder
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - José Ronaldo Santos
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Brazil
| | - Regina Helena Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Geison Souza Izídio
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
- Biological Sciences Center, Cellular Biology, Embryology and Genetics Department, Behavioral Genetics Laboratory, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
72
|
DiMarco E, Sadibolova R, Jiang A, Liebenow B, Jones RE, Ul Haq I, Siddiqui MS, Terhune DB, Kishida KT. Time perception reflects individual differences in motor and non-motor symptoms of Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530411. [PMID: 36909605 PMCID: PMC10002735 DOI: 10.1101/2023.03.02.530411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Dopaminergic signaling in the striatum has been shown to play a critical role in the perception of time. Decreasing striatal dopamine efficacy is at the core of Parkinson's disease (PD) motor symptoms and changes in dopaminergic action have been associated with many comorbid non-motor symptoms in PD. We hypothesize that patients with PD perceive time differently and in accordance with their specific comorbid non-motor symptoms and clinical state. We recruited patients with PD and compared individual differences in patients' clinical features with their ability to judge millisecond to second intervals of time (500ms-1100ms) while on or off their prescribed dopaminergic medications. We show that individual differences in comorbid non-motor symptoms, PD duration, and prescribed dopaminergic pharmacotherapeutics account for individual differences in time perception performance. We report that comorbid impulse control disorder is associated with temporal overestimation; depression is associated with decreased temporal accuracy; and PD disease duration and prescribed levodopa monotherapy are associated with reduced temporal precision and accuracy. Observed differences in time perception are consistent with hypothesized dopaminergic mechanisms thought to underlie the respective motor and non-motor symptoms in PD, but also raise questions about specific dopaminergic mechanisms. In future work, time perception tasks like the one used here, may provide translational or reverse translational utility in investigations aimed at disentangling neural and cognitive systems underlying PD symptom etiology. One Sentence Summary Quantitative characterization of time perception behavior reflects individual differences in Parkinson's disease motor and non-motor symptom clinical presentation that are consistent with hypothesized neural and cognitive mechanisms.
Collapse
|
73
|
Pérez-Sánchez MDC, González-Nosti M, Cuetos F, Álvarez-Cañizo M. Reading fluency in Spanish patients with Parkinson's disease: A reading prosody examination. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2023; 58:357-375. [PMID: 36269041 DOI: 10.1111/1460-6984.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The expressiveness during reading is essential for a fluent reading. Reading prosody has been scarcely studied in an experimental manner, owing to the difficulties in taking objective and direct measures of this reading skill. However, new technologies development has made it possible to analyse reading prosody in an experimental way. Prosodic patterns may vary, not being the same at the beginning of the reading learning process as in adulthood. They may also be altered in disorders such as dyslexia, but little is known about the prosodic characteristics and reading fluency of people with neurodegenerative diseases that cause language impairment, such as Parkinson's disease (PD). AIMS The aim of this work was to study reading fluency in PD considering the prosodic characteristics of its reading. METHODS & PROCEDURES The participants were 31 Spanish adults with PD and 31 healthy controls, aged 59-88 years. Two experimental texts were designed that included declarative, interrogative, and exclamatory sentences and experimental verbs and nouns. The manipulability level of the nouns and the motor content of the verbs were considered. The reading of the participants was recorded and analysed with Praat software. OUTCOMES & RESULTS A longer reading duration and a greater number of pauses, especially in verbs, were found in the PD group, which also showed less pitch variation than the control group in the experimental sentences. The control group showed a big initial rise in declarative and interrogative sentences, as well as a stronger final declination in declarative and exclamatory ones, when compared to the PD group. CONCLUSIONS & IMPLICATIONS The use of experimental methodologies for the analysis of reading fluency allows learning more about the prosodic characteristics of people with different pathologies, such as PD. Scarce pitch variability found in the analysis, together with the great number of pauses and the longer reading duration, leads to poorly expressive reading, which compromises fluency in PD. The exhaustive evaluation of the reading fluency of PD patients will make it possible to design more complete assessment methods that will favour the diagnosis and early detection of this pathology. WHAT THIS STUDY ADDS What is already known on this subject • The speech of people with Parkinson's disease (PD) is often impaired by the appearance of hypokinetic dysarthria. The language of people with PD is usually affected with the progression of the disease, with lexico-semantic impairment which mainly affects verbs. Previous literature on reading fluency in PD usually considers reading speed and accuracy, neglecting prosody. Other neurodegenerative diseases with language impairment, such as Alzheimer's disease, commonly cause reading fluency problems. What this paper adds to existing knowledge • This study provides direct and objective measures of the reading fluency (speed, accuracy and prosody) in patients with PD, by the design of experimental texts. Reading fluency characteristics were found to be altered in these patients, especially in pitch variations and reading duration. The reading of Parkinson's patients showed a more flattened pitch. In addition, a greater number of pauses and longer reading durations were also found in the reading of verbs compared to the control group. What are the potential or actual clinical implications of this work? • The use of experimentally created texts makes it possible to analyse the influence of different psycholinguistic variables (frequency, length, motor content, manipulability) on reading fluency, and how the processing of these stimuli could be affected in PD. The objective analysis of the reading fluency characteristics in PD allows the design of more specific evaluation and diagnostic tasks. More complete assessment methods may allow the early detection of the disease. In the same way, it may favour a differential diagnosis with other neurodegenerative diseases.
Collapse
|
74
|
Alashram AR, Annino G. A Novel Neurorehabilitation Approach for Neural Plasticity
Overstimulation and Reorganization in Patients with Neurological
Disorders. PHYSIKALISCHE MEDIZIN, REHABILITATIONSMEDIZIN, KURORTMEDIZIN 2023. [DOI: 10.1055/a-2004-5836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
AbstractNeurological disorders are those that are associated with impairments in the
nervous system. These impairments affect the patient’s activities of
daily living. Recently, many advanced modalities have been used in the
rehabilitation field to treat various neurological impairments. However, many of
these modalities are available only in clinics, and some are expensive. Most
patients with neurological disorders have difficulty reaching clinics. This
review was designed to establish a new neurorehabilitation approach based on the
scientific way to improve patients’ functional recovery following
neurological disorders in clinics or at home. The human brain is a network, an
intricate, integrated system that coordinates operations among billions of
units. In fact, grey matter contains most of the neuronal cell bodies. It
includes the brain and the spinal cord areas involved in muscle control, sensory
perception, memory, emotions, decision-making, and self-control. Consequently,
patients’ functional ability results from complex interactions among
various brain and spinal cord areas and neuromuscular systems. While white
matter fibers connect numerous brain areas, stimulating or improving non-motor
symptoms, such as motivation, cognitive, and sensory symptoms besides motor
symptoms may enhance functional recovery in patients with neurological
disorders. The basic principles of the current treatment approach are
established based on brain connectivity. Using motor, sensory, motivation, and
cognitive (MSMC) interventions during rehabilitation may promote neural
plasticity and maximize functional recovery in patients with neurological
disorders. Experimental studies are strongly needed to verify our theories and
hypothesis.
Collapse
Affiliation(s)
- Anas R. Alashram
- Department of Physiotherapy, Middle East University, Amman,
Jordan
- Applied Science Research Center, Applied Science Private
University
| | - Giuseppe Annino
- Department of Medicine Systems, University of Rome “Tor
Vergata”, Rome, Italy
| |
Collapse
|
75
|
Jin M, Cai SQ. Mechanisms Underlying Brain Aging Under Normal and Pathological Conditions. Neurosci Bull 2023; 39:303-314. [PMID: 36437436 PMCID: PMC9905409 DOI: 10.1007/s12264-022-00969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Aging is a major risk factor for many human diseases, including cognitive impairment, which affects a large population of the elderly. In the past few decades, our understanding of the molecular and cellular mechanisms underlying the changes associated with aging and age-related diseases has expanded greatly, shedding light on the potential role of these changes in cognitive impairment. In this article, we review recent advances in understanding of the mechanisms underlying brain aging under normal and pathological conditions, compare their similarities and differences, discuss the causative and adaptive mechanisms of brain aging, and finally attempt to find some rules to guide us on how to promote healthy aging and prevent age-related diseases.
Collapse
Affiliation(s)
- Menglong Jin
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Qing Cai
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
76
|
Nicastro N, Nencha U, Burkhard PR, Garibotto V. Dopaminergic imaging in degenerative parkinsonisms, an established clinical diagnostic tool. J Neurochem 2023; 164:346-363. [PMID: 34935143 DOI: 10.1111/jnc.15561] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) and other neurodegenerative parkinsonisms are characterised by loss of striatal dopaminergic neurons. Dopamine functional deficits can be measured in vivo using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) ligands assessing either presynaptic (e.g. dopamine synthesis and storage, transporter density) or postsynaptic terminals (i.e. D2 receptors availability). Nuclear medicine imaging thus helps the clinician to separate degenerative forms of parkinsonism with other neurological conditions, e.g. essential tremor or drug-induced parkinsonism. With the present study, we aimed at summarizing the current evidence about dopaminergic molecular imaging in the diagnostic evaluation of PD, atypical parkinsonian syndromes and dementia with Lewy bodies (DLB), as well as its potential to distinguish these conditions and to estimate disease progression. In fact, PET/SPECT methods are clinically validated and have been increasingly integrated into diagnostic guidelines (e.g. for PD and DLB). In addition, there is novel evidence on the classification properties of extrastriatal signal. Finally, dopamine imaging has an outstanding potential to detect neurodegeneration at the premotor stage, including REM-sleep behavior disorder and olfactory loss. Therefore, inclusion of subjects at an early stage for clinical trials can largely benefit from a validated in vivo biomarker such as presynaptic dopamine pathways PET/SPECT assessment.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Division of Neurorehabilitation, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Umberto Nencha
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre R Burkhard
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
77
|
Anderson FL, Biggs KE, Rankin BE, Havrda MC. NLRP3 inflammasome in neurodegenerative disease. Transl Res 2023; 252:21-33. [PMID: 35952982 PMCID: PMC10614656 DOI: 10.1016/j.trsl.2022.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/14/2023]
Abstract
Neurodegenerative diseases are characterized by a dysregulated neuro-glial microenvironment, culminating in functional deficits resulting from neuronal cell death. Inflammation is a hallmark of the neurodegenerative microenvironment and despite a critical role in tissue homeostasis, increasing evidence suggests that chronic inflammatory insult can contribute to progressive neuronal loss. Inflammation has been studied in the context of neurodegenerative disorders for decades but few anti-inflammatory treatments have advanced to clinical use. This is likely due to the related challenges of predicting and mitigating off-target effects impacting the normal immune response while detecting inflammatory signatures that are specific to the progression of neurological disorders. Inflammasomes are pro-inflammatory cytosolic pattern recognition receptors functioning in the innate immune system. Compelling pre-clinical data has prompted an intense interest in the role of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in neurodegenerative disease. NLRP3 is typically inactive but can respond to sterile triggers commonly associated with neurodegenerative disorders including protein misfolding and aggregation, mitochondrial and oxidative stress, and exposure to disease-associated environmental toxicants. Clear evidence of enhanced NLRP3 inflammasome activity in common neurodegenerative diseases has coincided with rapid advancement of novel small molecule therapeutics making the NLRP3 inflammasome an attractive target for near-term interventional studies. In this review, we highlight evidence from model systems and patients indicating inflammasome activity in neurodegenerative disease associated with the NLRP3 inflammasome's ability to recognize pathologic forms of amyloid-β, tau, and α-synuclein. We discuss inflammasome-driven pyroptotic processes highlighting the potential utility of evaluating extracellular inflammasome-related proteins in the context of biomarker discovery. We complete the report by pointing out gaps in our understanding of intracellular modifiers of inflammasome activity and mechanisms regulating the resolution of inflammasome activation. The literature review and perspectives provide a conceptual platform for continued analysis of inflammation in neurodegenerative diseases through the study of inflammasomes and pyroptosis, mechanisms of inflammation and cell death now recognized to function in multiple highly prevalent neurological disorders.
Collapse
Affiliation(s)
- Faith L Anderson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Karl E Biggs
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Brynn E Rankin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire.
| |
Collapse
|
78
|
Xiong Z, Tian Y, Wang X, Wei K, Bi Y. Gravity matters for the neural representations of action semantics. Cereb Cortex 2023:6995384. [PMID: 36682884 DOI: 10.1093/cercor/bhad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
The dynamic relationship between the neural representation of action word semantics and specific sensorimotor experience remains controversial. Here, we temporarily altered human subjects' sensorimotor experience in a 15-day head-down tilt bed rest setting, a ground-based analog of microgravity that disproportionally affects sensorimotor experiences of the lower limbs, and examined whether such effector-dependent activity deprivation specifically affected the neural processes of comprehending verbs of lower-limb actions (e.g. to kick) relative to upper-limb ones (e.g. to pinch). Using functional magnetic resonance imaging, we compared the multivoxel neural patterns for such action words prior to and after bed rest. We found an effector-specific (lower vs. upper limb) experience modulation in subcortical sensorimotor-related and anterior temporal regions. The neural action semantic representations in other effector-specific verb semantic regions (e.g. left lateral posterior temporal cortex) and motor execution regions were robust against such experience alterations. These effector-specific, sensorimotor-experience-sensitive and experience-independent patterns of verb neural representation highlight the multidimensional and dynamic nature of semantic neural representation, and the broad influence of microgravity (hence gravity) environment on cognition.
Collapse
Affiliation(s)
- Ziyi Xiong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Yu Tian
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China.,School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
| | - Xiaosha Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Kunlin Wei
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China.,Beijing Key Laboratory of Behavior and Mental Health, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
79
|
Correa BH, Moreira CR, Hildebrand ME, Vieira LB. The Role of Voltage-Gated Calcium Channels in Basal Ganglia Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:183-201. [PMID: 35339179 PMCID: PMC10190140 DOI: 10.2174/1570159x20666220327211156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Calcium (Ca2+) plays a central role in regulating many cellular processes and influences cell survival. Several mechanisms can disrupt Ca2+ homeostasis to trigger cell death, including oxidative stress, mitochondrial damage, excitotoxicity, neuroinflammation, autophagy, and apoptosis. Voltage-gated Ca2+ channels (VGCCs) act as the main source of Ca2+ entry into electrically excitable cells, such as neurons, and they are also expressed in glial cells such as astrocytes and oligodendrocytes. The dysregulation of VGCC activity has been reported in both Parkinson's disease (PD) and Huntington's (HD). PD and HD are progressive neurodegenerative disorders (NDs) of the basal ganglia characterized by motor impairment as well as cognitive and psychiatric dysfunctions. This review will examine the putative role of neuronal VGCCs in the pathogenesis and treatment of central movement disorders, focusing on PD and HD. The link between basal ganglia disorders and VGCC physiology will provide a framework for understanding the neurodegenerative processes that occur in PD and HD, as well as a possible path towards identifying new therapeutic targets for the treatment of these debilitating disorders.
Collapse
Affiliation(s)
- Bernardo H.M. Correa
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Roberto Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Luciene Bruno Vieira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
80
|
Cristini J, Parwanta Z, De las Heras B, Medina-Rincon A, Paquette C, Doyon J, Dagher A, Steib S, Roig M. Motor Memory Consolidation Deficits in Parkinson's Disease: A Systematic Review with Meta-Analysis. JOURNAL OF PARKINSON'S DISEASE 2023; 13:865-892. [PMID: 37458048 PMCID: PMC10578244 DOI: 10.3233/jpd-230038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The ability to encode and consolidate motor memories is essential for persons with Parkinson's disease (PD), who usually experience a progressive loss of motor function. Deficits in memory encoding, usually expressed as poorer rates of skill improvement during motor practice, have been reported in these patients. Whether motor memory consolidation (i.e., motor skill retention) is also impaired is unknown. OBJECTIVE To determine whether motor memory consolidation is impaired in PD compared to neurologically intact individuals. METHODS We conducted a pre-registered systematic review (PROSPERO: CRD42020222433) following PRISMA guidelines that included 46 studies. RESULTS Meta-analyses revealed that persons with PD have deficits in retaining motor skills (SMD = -0.17; 95% CI = -0.32, -0.02; p = 0.0225). However, these deficits are task-specific, affecting sensory motor (SMD = -0.31; 95% CI -0.47, -0.15; p = 0.0002) and visuomotor adaptation (SMD = -1.55; 95% CI = -2.32, -0.79; p = 0.0001) tasks, but not sequential fine motor (SMD = 0.17; 95% CI = -0.05, 0.39; p = 0.1292) and gross motor tasks (SMD = 0.04; 95% CI = -0.25, 0.33; p = 0.7771). Importantly, deficits became non-significant when augmented feedback during practice was provided, and additional motor practice sessions reduced deficits in sensory motor tasks. Meta-regression analyses confirmed that deficits were independent of performance during encoding, as well as disease duration and severity. CONCLUSION Our results align with the neurodegenerative models of PD progression and motor learning frameworks and emphasize the importance of developing targeted interventions to enhance motor memory consolidation in PD.
Collapse
Affiliation(s)
- Jacopo Cristini
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Zohra Parwanta
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Bernat De las Heras
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Almudena Medina-Rincon
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- Grupo de investigación iPhysio, San Jorge University, Zaragoza, Aragón, Spain
- Department of Physiotherapy, San Jorge University, Zaragoza, Aragón, Spain
| | - Caroline Paquette
- Department of Kinesiology & Physical Education, McGill University, Montreal, QC,Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Julien Doyon
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Simon Steib
- Department of Human Movement, Training and Active Aging, Institute of Sports and Sports Sciences, Heidelberg University, Heidelberg, Germany
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
81
|
Li H, Jia X, Chen M, Jia X, Yang Q. Sex Differences in Brain Structure in de novo Parkinson's Disease: A Cross-Sectional and Longitudinal Neuroimaging Study. JOURNAL OF PARKINSON'S DISEASE 2023; 13:785-795. [PMID: 37248914 PMCID: PMC10473079 DOI: 10.3233/jpd-225125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Parkinson's disease (PD) varies in occurrence, presentation, and severity between males and females. However, the sex effects on the patterns of brain structure, cross-sectionally and longitudinally, are still unclear. OBJECTIVE We aimed to compare sex differences in brain features cross-sectionally and longitudinally using grey matter volume (GMV) and cortical thickness in a large sample of newly diagnosed drug-naive PD patients. METHODS Cognitive assessments and structural MR images of 262 PD patients (171 males) and 113 healthy controls (68 males) were selected from the Parkinson's Progression Markers Initiative. Of these, 97 PD patients (66 males) completed 12- and 24-month follow-up examinations. After regressing out the expected effects of age and sex, brain maps of GMV and cortical thickness were compared using two-sample t tests cross-sectionally and were compared using repeated measurement analyses of variance longitudinally. RESULTS At baseline, male PD patients exhibited a greater extent of brain atrophy and cortical thickness reduction than females, which mainly occurred in the cerebellum, frontal lobe, parietal lobe, and temporal lobe. At follow-up, female and male PD patients showed similar dynamics of disease progression, as both groups declined over time while the females maintained the advantage. The cortical thickness of the right precentral gyrus at baseline was negatively associated with the longitudinal changes of motor function in male PD patients. CONCLUSION The current findings might demonstrate sex effect in neuroanatomy during the course of PD, provide new insights into the neurodegenerative process, and facilitate the development of more effective sex-specific therapeutic strategies.
Collapse
Affiliation(s)
- Hui Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xuejia Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Min Chen
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiuqin Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Lab of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Lab of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beijing, China
| |
Collapse
|
82
|
Rayff da Silva P, de Andrade JC, de Sousa NF, Portela ACR, Oliveira Pires HF, Remígio MCRB, da Nóbrega Alves D, de Andrade HHN, Dias AL, Salvadori MGDSS, de Oliveira Golzio AMF, de Castro RD, Scotti MT, Felipe CFB, de Almeida RN, Scotti L. Computational Studies Applied to Linalool and Citronellal Derivatives Against Alzheimer's and Parkinson's Disorders: A Review with Experimental Approach. Curr Neuropharmacol 2023; 21:842-866. [PMID: 36809939 PMCID: PMC10227923 DOI: 10.2174/1570159x21666230221123059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's and Parkinson's are neurodegenerative disorders that affect a great number of people around the world, seriously compromising the quality of life of individuals, due to motor and cognitive damage. In these diseases, pharmacological treatment is used only to alleviate symptoms. This emphasizes the need to discover alternative molecules for use in prevention. Using Molecular Docking, this review aimed to evaluate the anti-Alzheimer's and anti-Parkinson's activity of linalool and citronellal, as well as their derivatives. Before performing Molecular Docking simulations, the compounds' pharmacokinetic characteristics were evaluated. For Molecular Docking, 7 chemical compounds derived from citronellal, and 10 compounds derived from linalool, and molecular targets involved in Alzheimer's and Parkinson's pathophysiology were selected. According to the Lipinski rules, the compounds under study presented good oral absorption and bioavailability. For toxicity, some tissue irritability was observed. For Parkinson-related targets, the citronellal and linalool derived compounds revealed excellent energetic affinity for α-Synuclein, Adenosine Receptors, Monoamine Oxidase (MAO), and Dopamine D1 receptor proteins. For Alzheimer disease targets, only linalool and its derivatives presented promise against BACE enzyme activity. The compounds studied presented high probability of modulatory activity against the disease targets under study, and are potential candidates for future drugs.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Anne Caroline Ribeiro Portela
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Maria Caroline Rodrigues Bezerra Remígio
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Danielle da Nóbrega Alves
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Humberto Hugo Nunes de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | | | - Ricardo Dias de Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Marcus T. Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|
83
|
Santoro M, Fadda P, Klephan KJ, Hull C, Teismann P, Platt B, Riedel G. Neurochemical, histological, and behavioral profiling of the acute, sub-acute, and chronic MPTP mouse model of Parkinson's disease. J Neurochem 2023; 164:121-142. [PMID: 36184945 PMCID: PMC10098710 DOI: 10.1111/jnc.15699] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) is a heterogeneous multi-systemic disorder unique to humans characterized by motor and non-motor symptoms. Preclinical experimental models of PD present limitations and inconsistent neurochemical, histological, and behavioral readouts. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD is the most common in vivo screening platform for novel drug therapies; nonetheless, behavioral endpoints yielded amongst laboratories are often discordant and inconclusive. In this study, we characterized neurochemically, histologically, and behaviorally three different MPTP mouse models of PD to identify translational traits reminiscent of PD symptomatology. MPTP was intraperitoneally (i.p.) administered in three different regimens: (i) acute-four injections of 20 mg/kg of MPTP every 2 h; (ii) sub-acute-one daily injection of 30 mg/kg of MPTP for 5 consecutive days; and (iii) chronic-one daily injection of 4 mg/kg of MPTP for 28 consecutive days. A series of behavioral tests were conducted to assess motor and non-motor behavioral changes including anxiety, endurance, gait, motor deficits, cognitive impairment, circadian rhythm and food consumption. Impairments in balance and gait were confirmed in the chronic and acute models, respectively, with the latter showing significant correlation with lesion size. The sub-acute model, by contrast, presented with generalized hyperactivity. Both, motor and non-motor changes were identified in the acute and sub-acute regime where habituation to a novel environment was significantly reduced. Moreover, we report increased water and food intake across all three models. Overall, the acute model displayed the most severe lesion size, while across the three models striatal dopamine content (DA) did not correlate with the behavioral performance. The present study demonstrates that detection of behavioral changes following MPTP exposure is challenging and does not correlate with the dopaminergic lesion extent.
Collapse
Affiliation(s)
- Matteo Santoro
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
- Present address:
Department of Neurosurgery, School of MedicineStanford UniversityPalo AltoCaliforniaUSA
| | - Paola Fadda
- Department of NeuroscienceUniversity of CagliariCagliariItaly
| | - Katie J. Klephan
- Newcastle UniversitySchool of Biomedical, Nutritional, and Sport SciencesNewcastle upon TyneUK
- Present address:
AccuRXLondonLondonUK
| | - Claire Hull
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Peter Teismann
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Bettina Platt
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Gernot Riedel
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
84
|
Artigas NR, Dutra ACL, Soares NM, Pereira GM, Leotti VB, Krimberg JS, Pagnussat ADS, Rieder CRDM. Depressive symptoms and axial motor disorders in individuals with Parkinson's disease: a cross-sectional study. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:1126-1133. [PMID: 36577411 PMCID: PMC9797277 DOI: 10.1055/s-0042-1758444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Depression is an important nonmotor symptom of Parkinson's disease (PD) and has been associated with the motor symptoms in these individuals. OBJECTIVES To determine whether there are relationships between depressive symptoms and abnormalities in axial postural alignment and axial motor deficits, especially postural instability, and trunk rigidity in PD. METHODS In this cross-sectional study, 65 individuals were evaluated using the Beck Depression Inventory-II (BDI-II) for the analysis of depressive symptoms and underwent a postural assessment of head, trunk, and hip sagittal alignment through computerized photogrammetry. The MDS-UPDRS was used to assess clinical aspects of PD, the Trunk Mobility Scale was used to assess axial rigidity, and the MiniBESTest to assess balance. To determine the relationship between depressive symptoms and postural alignment, multiple linear regression analysis was performed. RESULTS The participants with depressive symptoms had more severe motor deficits as well as greater trunk rigidity and worse postural instability (p < 0.05). When the postural angles were compared between men and women using Student's t-test, it was found that men had greater flexion angles of the head (p = 0.003) and trunk (p = 0.017). Using multiple linear regression analysis corrected for the age and sex of the participants, we verified that the anterior trunk inclination was significantly larger in the PD population with depressive symptoms (R2 = 0.453, β = 0.116, and p = 0.045). CONCLUSION PD individuals with depressive symptoms have more severe flexed trunk posture, mainly in older men. Additionally, more severe depressive symptoms are associated with worsening postural instability, trunk rigidity and motor deficits in this population.
Collapse
Affiliation(s)
- Nathalie Ribeiro Artigas
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brazil.,Address for correspondence Nathalie Ribeiro Artigas
| | - Ana Carolina Leonardi Dutra
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brazil.
| | - Nayron Medeiros Soares
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brazil.
| | - Gabriela Magalhães Pereira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brazil.
| | - Vanessa Bielefeldt Leotti
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Epidemiologia, Departamento de Estatística, Porto Alegre RS, Brazil.
| | - Julia Schneider Krimberg
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brazil.,Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Vida e da Saúde, Porto Alegre RS, Brazil.
| | - Aline de Souza Pagnussat
- Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre RS, Brazil.
| | - Carlos Roberto de Mello Rieder
- Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre RS, Brazil.,Universidade Federal de Ciências da Saúde de Porto Alegre, Departamento de Clínica Médica, Divisão de Neurologia, Porto Alegre RS, Brazil.
| |
Collapse
|
85
|
Obsessive-compulsive symptoms are negatively correlated with motor severity in patients with generalized dystonia. Sci Rep 2022; 12:20350. [PMID: 36437372 PMCID: PMC9701695 DOI: 10.1038/s41598-022-24826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
We aimed to clarify the correlations between motor symptoms and obsessive-compulsive symptoms and between the volumes of basal ganglia components and obsessive-compulsive symptoms. We retrospectively included 14 patients with medically intractable, moderate and severe generalized dystonia. The Burke-Fahn-Marsden Dystonia Rating Scale and Maudsley Obsessional Compulsive Inventory were used to evaluate the severity of dystonia and obsessive-compulsive symptoms, respectively. Patients with generalized dystonia were divided into two groups; patients whose Maudsley Obsessional Compulsive Inventory score was lower than 13 (Group 1) and 13 or more (Group 2). Additionally, the total Maudsley Obsessional Compulsive Inventory scores in patients with dystonia were significantly higher than normal volunteers' scores (p = 0.025). Unexpectedly, Group 2 (high Maudsley Obsessional Compulsive Inventory scores) showed milder motor symptoms than Group 1 (low Maudsley Obsessional Compulsive Inventory scores) (p = 0.016). "Checking" rituals had a strong and significant negative correlation with the Burke-Fahn-Marsden Dystonia Rating Scale (ρ = - 0.71, p = 0.024) and a strong positive correlation with the volumes of both sides of the nucleus accumbens (right: ρ = 0.72, p = 0.023; left: ρ = 0.70, p = 0.034). Our results may provide insights into the pathogenesis of obsessive-compulsive disorder and dystonia.
Collapse
|
86
|
Salahi S, Mousavi MA, Azizi G, Hossein-Khannazer N, Vosough M. Stem Cell-based and Advanced Therapeutic Modalities for Parkinson's Disease: A Risk-effectiveness Patient-centered Analysis. Curr Neuropharmacol 2022; 20:2320-2345. [PMID: 35105291 PMCID: PMC9890289 DOI: 10.2174/1570159x20666220201100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Treatment of Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, is currently considered a challenging issue since it causes substantial disability, poor quality of life, and mortality. Despite remarkable progress in advanced conventional therapeutic interventions, the global burden of the disease has nearly doubled, prompting us to assess the riskeffectiveness of different treatment modalities. Each protocol could be considered as the best alternative treatment depending on the patient's situation. Prescription of levodopa, the most effective available medicine for this disorder, has been associated with many complications, i.e., multiple episodes of "off-time" and treatment resistance. Other medications, which are typically used in combination with levodopa, may have several adverse effects as well. As a result, the therapies that are more in line with human physiology and make the least interference with other pathways are worth investigating. On the other hand, remaining and persistent symptoms after therapy and the lack of effective response to the conventional approaches have raised expectations towards innovative alternative approaches, such as stem cell-based therapy. It is critical to not overlook the unexplored side effects of innovative approaches due to the limited number of research. In this review, we aimed to compare the efficacy and risk of advanced therapies with innovative cell-based and stemcell- based modalities in PD patients. This paper recapitulated the underlying factors/conditions, which could lead us to more practical and established therapeutic outcomes with more advantages and few complications. It could be an initial step to reconsider the therapeutic blueprint for patients with Parkinson's disease.
Collapse
Affiliation(s)
- Sarvenaz Salahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
87
|
Lai J, Cai Y, Yang L, Xia M, Cheng X, Chen Y. Effects of Baduanjin exercise on motor function, balance and gait in Parkinson's disease: a systematic review and meta-analysis. BMJ Open 2022; 12:e067280. [PMID: 36379643 PMCID: PMC9668024 DOI: 10.1136/bmjopen-2022-067280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study aims to systematically evaluate the effects of Baduanjin on motor function, balance and gait in patients with Parkinson's disease (PD). DESIGN Systematic review and meta-analysis. STUDY SELECTION All eligible randomised controlled trials (RCTs) published in the English and Chinese language were included. DATA SOURCES Ten electronic databases were systematically searched, from inception to 17 March 2022: PubMed, Web of Science, Cochrane Library, Embase, EBSCOhost, OVID, SinoMed, China National Knowledge Infrastructure, Wanfang Data and China Science Journal Database (VIP). REVIEW METHODS Methodological quality assessment and meta-analysis were performed for the included studies using the Cochrane Review Manager V.5.4 software. RESULTS Ten RCTs with 804 participants were included. The results revealed the following: (1) Baduanjin significantly improved the motor function of patients with PD, based on the Unified Parkinson's Disease Rating Scale Part III (mean difference, MD -5.37, 95% CI -8.96 to -1.78, p=0.003) and Fugl-Meyer Assessment of Lower Extremity (MD 5.39, 95% CI 2.71 to 8.07, p<0.0001); (2) Baduanjin significantly improved the ability of balance of patients with PD, based on the Berg Balance Scale (MD 4.40, 95% CI 3.08 to 5.73, p<0.00001); (3) Baduanjin significantly improved the gait of patients with PD, based on the 6 min walk distance (MD 21.62, 95% CI 11.14 to 32.10, p<0.0001). After the further subgroup and sensitivity analyses, the heterogeneity was identified to be potentially due to the different degrees of disease severity in patients with PD and the difference in Baduanjin intervention durations. CONCLUSIONS The analysis of this systematic evaluation indicates that Baduanjin might have a positive effect in improving the motor function, balance and gait of patients with PD. However, due to the quantity and clinical heterogeneity limitations of the included studies, this conclusion still warrants more high-quality and multicentre RCTs for further verification.
Collapse
Affiliation(s)
- Jinghui Lai
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Yangfan Cai
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Liyan Yang
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Min Xia
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Xi Cheng
- Rehabilitation Hospital affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian, China
| | - Ying Chen
- Chinese Medicine, Fujian Agriculture and Forestry University Hospital, Fuzhou, Fujian, China
| |
Collapse
|
88
|
Jawad Ul Hasnain M, Amin F, Ghani A, Ahmad S, Rahman Z, Aslam T, Pervez MT. Structural and Functional Impact of Damaging Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) on Human VPS35 Protein Using Computational Approaches. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3715-3724. [PMID: 34613918 DOI: 10.1109/tcbb.2021.3118054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Parkinson's disease is the second most common progressive neurodegenerative movement disorder. Mutations in retromer complex subunit and VPS35 represent the second most common cause of late-onset familial Parkinson's disease. The mutation in VPS35 can disrupt the normal protein functions resulting in Parkinson's disease. The aim of this study was the identification of deleterious missense Single Nucleotide Polymorphisms (nsSNPs) and their structural and functional impact on the VPS35 protein. In this study, several insilico tools were used to identify deleterious and disease-associated nsSNPs. 3D structure of VPS35 protein was constructed through MODELLER 9.2, normalized using FOLDX, and evaluated through RAMPAGE and ERRAT whereas, FOLDX was used for mutagenesis. 25 ligands were obtained from literature and docked using PyRx 0.8 software. Based on the binding affinity, five ligands i.e., PG4, MSE, GOL, EDO, and CAF were further analyzed. Molecular Dynamic simulation analysis was performed using GROMACS 5.1.4, where temperature, pressure, density, RMSD, RMSF, Rg, and SASA graphs were analyzed. The results showed that the mutations Y67H, R524W, and D620N had a structural and functional impact on the VPS35 protein. The current findings will help in appropriate drug design against the disease caused by these mutations in a large population using in-vitro study.
Collapse
|
89
|
Ratajska AM, Scott BM, Lopez FV, Kenney LE, Foote KD, Okun MS, Price C, Bowers D. Differential contributions of depression, apathy, and anxiety to neuropsychological performance in Parkinson's disease versus essential tremor. J Clin Exp Neuropsychol 2022; 44:651-664. [PMID: 36600515 PMCID: PMC10013508 DOI: 10.1080/13803395.2022.2157796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Mood symptoms are common features of Parkinson's disease (PD) and essential tremor (ET) and have been linked to worse cognition. The goals of the present study were to compare the severity of anxiety, apathy, and depressive symptoms in PD, ET, and healthy controls (HC) and to examine differential relationships between mood and cognition. METHOD Older adults with idiopathic PD (N = 448), ET (N = 128), or HC (N = 136) completed a multi-domain neuropsychological assessment consisting of memory, executive function, and attention/working memory domains. Participants also completed self-reported mood measures. Between-group differences in mood and cognition were assessed, and hierarchical regression models were conducted to examine relationships between mood and cognition in each group. RESULTS Relative to the HC group, the PD and ET groups reported more mood symptoms and scored lower across all cognitive measures. There were no differences between the two movement disorder groups. Mood variables explained 3.9-13.7% of the total variance in cognitive domains, varying by disease group. For PD, apathy was the only unique predictor of executive function (β = -.114, p = .05), and trait anxiety was the only unique predictor of attention/working memory (β = -.188, p < .05). For ET, there were no unique predictors, though the overall models significantly predicted performance in the executive function and attention/working memory domains. CONCLUSIONS In a large cohort of ET and PD, we observed that the two groups had similar self-reported mood symptoms. Mood symptoms were differentially associated with cognition in PD versus ET. In PD, increased apathy was associated with worse executive function and higher trait anxiety predicted worse attention/working memory. For ET, there were no unique predictors, though the overall mood symptom severity was related to cognition. Our study highlights the importance of considering the relationship between mood and neuropsychological performance in individuals with movement disorders.
Collapse
Affiliation(s)
- Adrianna M. Ratajska
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| | - Bonnie M. Scott
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Francesca V. Lopez
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| | - Lauren E. Kenney
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| | - Kelly D. Foote
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL
| | - Catherine Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL
| |
Collapse
|
90
|
David FJ, Rivera YM, Entezar TK, Arora R, Drane QH, Munoz MJ, Rosenow JM, Sani SB, Pal GD, Verhagen-Metman L, Corcos DM. Encoding type, medication, and deep brain stimulation differentially affect memory-guided sequential reaching movements in Parkinson's disease. Front Neurol 2022; 13:980935. [PMID: 36324383 PMCID: PMC9618698 DOI: 10.3389/fneur.2022.980935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Memory-guided movements, vital to daily activities, are especially impaired in Parkinson's disease (PD). However, studies examining the effects of how information is encoded in memory and the effects of common treatments of PD, such as medication and subthalamic nucleus deep brain stimulation (STN-DBS), on memory-guided movements are uncommon and their findings are equivocal. We designed two memory-guided sequential reaching tasks, peripheral-vision or proprioception encoded, to investigate the effects of encoding type (peripheral-vision vs. proprioception), medication (on- vs. off-), STN-DBS (on- vs. off-, while off-medication), and compared STN-DBS vs. medication on reaching amplitude, error, and velocity. We collected data from 16 (analyzed n = 7) participants with PD, pre- and post-STN-DBS surgery, and 17 (analyzed n = 14) healthy controls. We had four important findings. First, encoding type differentially affected reaching performance: peripheral-vision reaches were faster and more accurate. Also, encoding type differentially affected reaching deficits in PD compared to healthy controls: peripheral-vision reaches manifested larger deficits in amplitude. Second, the effect of medication depended on encoding type: medication had no effect on amplitude, but reduced error for both encoding types, and increased velocity only during peripheral-vision encoding. Third, the effect of STN-DBS depended on encoding type: STN-DBS increased amplitude for both encoding types, increased error during proprioception encoding, and increased velocity for both encoding types. Fourth, STN-DBS was superior to medication with respect to increasing amplitude and velocity, whereas medication was superior to STN-DBS with respect to reducing error. We discuss our findings in the context of the previous literature and consider mechanisms for the differential effects of medication and STN-DBS.
Collapse
Affiliation(s)
- Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yessenia M. Rivera
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tara K. Entezar
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
| | - Rishabh Arora
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Quentin H. Drane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sepehr B. Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Gian D. Pal
- Department of Neurology, Rutgers University, New Brunswick, NJ, United States
| | - Leonard Verhagen-Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
91
|
Lauritano A, Cipollone I, Verde R, Kalkan H, Moriello C, Iannotti FA, Di Marzo V, Piscitelli F. The endocannabinoidome mediator N-oleoylglycine is a novel protective agent against 1-methyl-4-phenyl-pyridinium-induced neurotoxicity. Front Aging Neurosci 2022; 14:926634. [PMID: 36313013 PMCID: PMC9614236 DOI: 10.3389/fnagi.2022.926634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
N-oleoylglycine (OlGly) is a lipid mediator that belongs to the expanded version of the endocannabinoid (eCB) system, the endocannabinoidome (eCBome), which has recently gained increasing attention from the scientific community for its protective effects in a mouse model of mild traumatic brain injury. However, the effects of OlGly on cellular models of Parkinson’s disease (PD) have not yet been investigated, whilst other lipoaminoacids have been reported to have beneficial effects. Moreover, the protective effects of OlGly seem to be mediated by direct activation of proliferator-activated receptor alpha (PPARα), which has already been investigated as a therapeutic target for PD. Therefore, this study aims to investigate the possible protective effects of OlGly in an in vitro model obtained by treating the neuroblastoma cell line, SH-SY5Y (both differentiated and not) with 1-methyl-4-phenyl-pyridinium (MPP+), which mimics some cellular aspects of a PD-like phenotype, in the presence or absence of the PPARα antagonist, GW6471. Our data show that MPP+ increases mRNA levels of PPARα in both non differentiated and differentiated cells. Using assays to assess cell metabolic activity, cell proliferation, and pro-inflammatory markers, we observed that OlGly (1 nM), both as treatment (1 h) and pre-treatment (4 h), is able to protect against neuronal damage induced by 24 h MPP+ exposure through PPARα. Moreover, using a targeted lipidomics approach, we demonstrate that OlGly exerts its effects also through the modulation of the eCBome. Finally, treatment with OlGly was able also to reduce increased IL-1β induced by MPP+ in differentiated cells. In conclusion, our results suggest that OlGly could be a promising therapeutic agent for the treatment of MPP+-induced neurotoxicity.
Collapse
Affiliation(s)
- Anna Lauritano
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Irene Cipollone
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Hilal Kalkan
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Claudia Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Québec City, QC, Canada
- *Correspondence: Vincenzo Di Marzo,
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, NA, Italy
- Fabiana Piscitelli,
| |
Collapse
|
92
|
Tang CX, Chen J, Shao KQ, Liu YH, Zhou XY, Ma CC, Liu MT, Shi MY, Kambey PA, Wang W, Ayanlaja AA, Liu YF, Xu W, Chen G, Wu J, Li X, Gao DS. Blunt dopamine transmission due to decreased GDNF in the PFC evokes cognitive impairment in Parkinson's disease. Neural Regen Res 2022; 18:1107-1117. [PMID: 36255000 PMCID: PMC9827775 DOI: 10.4103/1673-5374.355816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson's disease. However, there have not been any studies conducted on the potential relationship between glial cell line-derived neurotrophic factor and cognitive performance in Parkinson's disease. We first performed a retrospective case-control study at the Affiliated Hospital of Xuzhou Medical University between September 2018 and January 2020 and found that a decreased serum level of glial cell line-derived neurotrophic factor was a risk factor for cognitive disorders in patients with Parkinson's disease. We then established a mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and analyzed the potential relationships among glial cell line-derived neurotrophic factor in the prefrontal cortex, dopamine transmission, and cognitive function. Our results showed that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex weakened dopamine release and transmission by upregulating the presynaptic membrane expression of the dopamine transporter, which led to the loss and primitivization of dendritic spines of pyramidal neurons and cognitive impairment. In addition, magnetic resonance imaging data showed that the long-term lack of glial cell line-derived neurotrophic factor reduced the connectivity between the prefrontal cortex and other brain regions, and exogenous glial cell line-derived neurotrophic factor significantly improved this connectivity. These findings suggested that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex leads to neuroplastic degeneration at the level of synaptic connections and circuits, which results in cognitive impairment in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Chuan-Xi Tang
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jing Chen
- Experinental Teaching Center of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Kai-Quan Shao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ye-Hao Liu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiao-Yu Zhou
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Department of Neurology, Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, Jiangsu Province, China
| | - Cheng-Cheng Ma
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Meng-Ting Liu
- Department of Rehabilitation, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ming-Yu Shi
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Wang
- Department of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Abiola Abdulrahman Ayanlaja
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yi-Fang Liu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Xu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jiao Wu
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue Li
- Department of Nursing Care, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Dian-Shuai Gao
- Department of Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Dian-Shuai Gao, .
| |
Collapse
|
93
|
D'Amico R, Impellizzeri D, Genovese T, Fusco R, Peritore AF, Crupi R, Interdonato L, Franco G, Marino Y, Arangia A, Gugliandolo E, Cuzzocrea S, Di Paola R, Siracusa R, Cordaro M. Açai Berry Mitigates Parkinson's Disease Progression Showing Dopaminergic Neuroprotection via Nrf2-HO1 Pathways. Mol Neurobiol 2022; 59:6519-6533. [PMID: 35970975 PMCID: PMC9463222 DOI: 10.1007/s12035-022-02982-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
The current pharmacological treatment for Parkinson's disease (PD) is focused on symptom alleviation rather than disease prevention. In this study, we look at a new strategy to neuroprotection that focuses on nutrition, by a supplementation with Açai berry in an experimental models of PD. Daily orally supplementation with Açai berry dissolved in saline at the dose of 500 mg/kg considerably reduced motor and non-motor symptom and neuronal cell death of the dopaminergic tract induced by 4 injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, Açai berry administration reduced α-synuclein aggregation in neurons, enhanced tyrosine hydroxylase and dopamine transporter activities, and avoided dopamine depletion. Moreover, Açai berry administration was able to reduce astrogliosis and microgliosis as well as neuronal death. Its beneficial effects could be due to its bioactive phytochemical components that are able to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2) by counteracting the oxidative stress and neuroinflammation that are the basis of this neurodegenerative disease.
Collapse
Affiliation(s)
- Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell'Annunziata, 98168, Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Gianluca Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell'Annunziata, 98168, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy.
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell'Annunziata, 98168, Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| |
Collapse
|
94
|
Khan I, Preeti K, Fernandes V, Khatri DK, Singh SB. Role of MicroRNAs, Aptamers in Neuroinflammation and Neurodegenerative Disorders. Cell Mol Neurobiol 2022; 42:2075-2095. [PMID: 33934227 PMCID: PMC11421650 DOI: 10.1007/s10571-021-01093-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Exploring the microRNAs and aptamers for their therapeutic role as biological drugs has expanded the horizon of its applicability against various human diseases, explicitly targeting the genetic materials. RNA-based therapeutics are widely being explored for the treatment and diagnosis of multiple diseases, including neurodegenerative disorders (NDD). Latter includes microRNA, aptamers, ribozymes, and small interfering RNAs (siRNAs), which control the gene expression mainly at the transcriptional strata. One RNA transcript translates into different protein types; hence, therapies targeted at the transcriptional sphere may have prominent and more extensive effects than alternative therapeutics. Unlike conventional gene therapy, RNAs, upon delivery, can either altogether abolish or alter the synthesis of the protein of interest, therefore, regulating their activities in a controlled and diverse manner. NDDs like Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, Prion disease, and others are characterized by deposition of misfolded protein such as amyloid-ß, tau, α-synuclein, huntingtin and prion proteins. Neuroinflammation, one of the perquisites for neurodegeneration, is induced during neurodegenerative pathogenesis. In this review, we discuss microRNAs and aptamers' role as two different RNA-based approaches for their unique ability to regulate protein production at the transcription level, hence offering many advantages over other biologicals. The microRNA acts either by alleviating the malfunctioning RNA expression or by working as a replacement to lost microRNA. On the contrary, aptamer act as a chemical antibody and forms an aptamer-target complex.
Collapse
Affiliation(s)
- Islauddin Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
95
|
Which type of mind-body exercise is most effective in improving functional performance and quality of life in patients with Parkinson's disease? A systematic review with network meta-analysis. Acta Neurol Belg 2022; 122:1433-1446. [PMID: 36056269 DOI: 10.1007/s13760-022-02070-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/15/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Several studies have investigated the effect of mind-body exercise (MBE) on functional performance and health-related quality of life (HRQoL) in Parkinson's disease (PD), but it is still very difficult for clinicians to make informed decision on the best mind-body exercise for PD. PURPOSE We analyzed the relative efficacy of MBE (yoga, Tai-Chi, Pilates, Qigong, and dance) in improving functional performance and HRQoL in patients with PD. METHODS A systematic review of randomized controlled trials (RCTs) was performed using network meta-analysis (NMA), searching the following databases: Cochrane, Web of Science, and PubMed using specific keywords until December 28, 2021, assessing the effects of MBE on functional performance and HRQoL in patients with PD. RESULTS This review included 60 RCTs with 2037 participants. A ranking of MBE for modifying various aspects of functional performance and HRQoL was achieved. Pairwise NMA showed Pilates to be the most effective in improving functional mobility (MD: - 3.81; 95% CI (- 1.55, - 6.07) and balance performance (SMD: 2.83; 95% CI (1.87, 3.78). Yoga (MD: - 5.95; 95% CI (- 8.73, - 3.16) and dance (MD: - 5.87; 95% CI (- 8.73, - 3.01) to be the most effective in improving motor function, whereas Qigong (MD: 0.32; 95% CI (0.00, 0.64) was most effective in improving gait speed. Considering HRQoL, dance was found to be the most effective (SMD: - 0.36; 95% CI (- 0.70, -0.01). CONCLUSION MBE should be considered an effective strategy for improving functional performance and HRQoL in patients with PD. The most effective MBE intervention varied with the functional performance domain. Dance was an effective exercise for improving HRQoL among people with PD. PROSPERO REGISTRATION ID CRD42022301030.
Collapse
|
96
|
Mao H, Zhang Y, Zou M, Lv S, Zou J, Huang Y, Zhang M, Zhao Z, Huang P. The interplay between small vessel disease and Parkinson disease pathology: A longitudinal study. Eur J Radiol 2022; 154:110441. [PMID: 35907289 DOI: 10.1016/j.ejrad.2022.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 07/09/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cerebral small vessel disease (SVD) related brain changes have been found associated with various clinical symptoms of Parkinson disease (PD). On the other hand, PD pathology and treatment may also accelerate SVD progression. OBJECTIVE The aim of this study is to explore the interplay between SVD and PD pathology using longitudinal dataset. METHODS We screened 66 healthy controls (HCs) and 114 patients from the Parkinson Progression Markers Initiative (PPMI) database. The peak width of skeletonized mean diffusivity (PSMD) was quantified from diffusion tensor images to reflect vascular pathologies at baseline and 24 months follow-up, and dopamine transporter (DAT) imaging data was used to represent the extent of dopaminergic neuronal degeneration at the same point time. We compared the PSMD between PD patients and HCs, and analyzed whether PSMD and DAT availability could predict each other's progression using multiple regression analyses in PD patients. RESULTS PSMD at baseline had no significant difference between the HCs and patients with PD (P = 0.169). Higher baseline PSMD was associated with less DAT reduction in the caudate (β = 0.216, P = 0.029), but not the putamen (β = 0.058, P = 0.552) in PD patients. Baseline caudate and putamen DAT availability had no significant association with PSMD progression (β = -0.006, P = 0.950; β = 0.017, P = 0.860, respectively). CONCLUSIONS Mild SVD might slow down PD pathology progression, while the effect of PD pathology on the progression of SVD was not significant.
Collapse
Affiliation(s)
- Haijia Mao
- Department of Radiology, Shaoxing people's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Yao Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyue Zou
- Department of Radiology, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Sangying Lv
- Department of Radiology, Shaoxing people's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jiajun Zou
- Department of Radiology, Shaoxing people's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Ya'nan Huang
- Department of Radiology, Shaoxing people's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing people's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
97
|
Terriza M, Navarro J, Retuerta I, Alfageme N, San-Segundo R, Kontaxakis G, Garcia-Martin E, Marijuan PC, Panetsos F. Use of Laughter for the Detection of Parkinson's Disease: Feasibility Study for Clinical Decision Support Systems, Based on Speech Recognition and Automatic Classification Techniques. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10884. [PMID: 36078600 PMCID: PMC9518165 DOI: 10.3390/ijerph191710884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disorder which affects over 10 million people worldwide. Early detection and correct evaluation of the disease is critical for appropriate medication and to slow the advance of the symptoms. In this scenario, it is critical to develop clinical decision support systems contributing to an early, efficient, and reliable diagnosis of this illness. In this paper we present a feasibility study for a clinical decision support system for the diagnosis of PD based on the acoustic characteristics of laughter. Our decision support system is based on laugh analysis with speech recognition methods and automatic classification techniques. We evaluated different cepstral coefficients to identify laugh characteristics of healthy and ill subjects combined with machine learning classification models. The decision support system reached 83% accuracy rate with an AUC value of 0.86 for PD-healthy laughs classification in a database of 20,000 samples randomly generated from a pool of 120 laughs from healthy and PD subjects. Laughter could be employed for the efficient and reliable detection of PD; such a detection system can be achieved using speech recognition and automatic classification techniques; a clinical decision support system can be built using the above techniques. Significance: PD clinical decision support systems for the early detection of the disease will help to improve the efficiency of available and upcoming therapeutic treatments which, in turn, would improve life conditions of the affected people and would decrease costs and efforts in public and private healthcare systems.
Collapse
Affiliation(s)
- Miguel Terriza
- Neuro-Computing & Neuro-Robotics Research Group, Complutense University of Madrid, 28040 Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Jorge Navarro
- Department of Economic Structure, CASETEM Research Group, Faculty of Economy, University of Zaragoza, 50009 Zaragoza, Spain
| | - Irene Retuerta
- Independent Researchers, Affiliated to Bioinformation and Systems Biology Group, Aragon Health Sciences Institute (IACS-IIS Aragon), 50009 Zaragoza, Spain
| | - Nuria Alfageme
- Neuro-Computing & Neuro-Robotics Research Group, Complutense University of Madrid, 28040 Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Ruben San-Segundo
- Speech Technology Group, Information Processing and Telecommunications Center, 28040 Madrid, Spain
| | - George Kontaxakis
- Biomedical Image Technologies Group, Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, 50009 Zaragoza, Spain
| | - Pedro C. Marijuan
- Independent Researchers, Affiliated to Bioinformation and Systems Biology Group, Aragon Health Sciences Institute (IACS-IIS Aragon), 50009 Zaragoza, Spain
| | - Fivos Panetsos
- Neuro-Computing & Neuro-Robotics Research Group, Complutense University of Madrid, 28040 Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
98
|
Martins-Pinge MC, de Jager L, de Campos BH, Bezerra LO, Turini PG, Pinge-Filho P. Nitric Oxide Involvement in Cardiovascular Dysfunctions of Parkinson Disease. Front Pharmacol 2022; 13:898797. [PMID: 35899105 PMCID: PMC9309809 DOI: 10.3389/fphar.2022.898797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra, causing motor changes. In addition to motor symptoms, non-motor dysfunctions such as psychological, sensory and autonomic disorders are recorded. Manifestations related to the autonomic nervous system include the cardiovascular system, as postural hypotension, postprandial hypotension, and low blood pressure. One of the mediators involved is the nitric oxide (NO). In addition to the known roles such as vasodilator, neuromodulator, NO acts as an important mediator of the immune response, increasing the inflammatory response provoked by PD in central nervous system. The use of non-specific NOS inhibitors attenuated the neurodegenerative response in animal models of PD. However, the mechanisms by which NO contributes to neurodegeneration are still not well understood. The literature suggest that the contribution of NO occurs through its interaction with superoxides, products of oxidative stress, and blocking of the mitochondrial respiratory chain, resulting in neuronal death. Most studies involving Parkinsonism models have evaluated brain NO concentrations, with little data available on its peripheral action. Considering that studies that evaluated the involvement of NO in the neurodegeneration in PD, through NOS inhibitors administration, showed neuroprotection in rats, it has prompted new studies to assess the participation of NOS isoforms in cardiovascular changes induced by parkinsonism, and thus to envision new targets for the treatment of cardiovascular disorders in PD. The aim of this study was to conduct a literature review to assess available information on the involvement of nitric oxide (NO) in cardiovascular aspects of PD.
Collapse
Affiliation(s)
- Marli Cardoso Martins-Pinge
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina—UEL, Londrina, Brazil
- *Correspondence: Marli Cardoso Martins-Pinge,
| | - Lorena de Jager
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina—UEL, Londrina, Brazil
| | - Blenda Hyedra de Campos
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina—UEL, Londrina, Brazil
| | - Lorena Oliveira Bezerra
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina—UEL, Londrina, Brazil
| | - Pamela Giovana Turini
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina—UEL, Londrina, Brazil
| | - Phileno Pinge-Filho
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina- UEL, Londrina, Brazil
| |
Collapse
|
99
|
Jin C, Yang L, Qi S, Teng Y, Li C, Yao Y, Ruan X, Wei X. Structural Brain Network Abnormalities in Parkinson’s Disease With Freezing of Gait. Front Aging Neurosci 2022; 14:944925. [PMID: 35875794 PMCID: PMC9304752 DOI: 10.3389/fnagi.2022.944925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveDiffusion tensor imaging (DTI) studies have investigated white matter (WM) integrity abnormalities in Parkinson’s disease (PD). However, little is known about the topological changes in the brain network. This study aims to reveal these changes by comparing PD without freezing of gait (FOG) (PD FOG–), PD with FOG (PD FOG+), and healthy control (HC).Methods21 PD FOG+, 34 PD FOG-, and 23 HC were recruited, and DTI images were acquired. The graph theoretical analysis and network-based statistical method were used to calculate the topological parameters and assess connections.ResultsPD FOG+ showed a decreased normalized clustering coefficient, small-worldness, clustering coefficient, and increased local network efficiency compared with HCs. PD FOG+ showed decreased centrality, degree centrality, and nodal efficiency in the striatum, frontal gyrus, and supplementary motor area (SMA). PD FOG+ showed decreased connections in the frontal gyrus, cingulate gyrus, and caudate nucleus (CAU). The between centrality of the left SMA and left CAU was negatively correlated with FOG questionnaire scores.ConclusionThis study demonstrates that PD FOG+ exhibits disruption of global and local topological organization in structural brain networks, and the disrupted topological organization can be potential biomarkers in PD FOG+. These new findings may provide increasing insight into the pathophysiological mechanism of PD FOG+.
Collapse
Affiliation(s)
- Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Lei Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
- *Correspondence: Shouliang Qi,
| | - Yueyang Teng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Xiuhang Ruan
- Department of Radiology, School of Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, School of Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
100
|
Kouba T, Illner V, Rusz J. Study protocol for using a smartphone application to investigate speech biomarkers of Parkinson's disease and other synucleinopathies: SMARTSPEECH. BMJ Open 2022; 12:e059871. [PMID: 35772829 PMCID: PMC9247696 DOI: 10.1136/bmjopen-2021-059871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Early identification of Parkinson's disease (PD) in its prodromal stage has fundamental implications for the future development of neuroprotective therapies. However, no sufficiently accurate biomarkers of prodromal PD are currently available to facilitate early identification. The vocal assessment of patients with isolated rapid eye movement sleep behaviour disorder (iRBD) and PD appears to have intriguing potential as a diagnostic and progressive biomarker of PD and related synucleinopathies. METHODS AND ANALYSIS Speech patterns in the spontaneous speech of iRBD, early PD and control participants' voice calls will be collected from data acquired via a developed smartphone application over a period of 2 years. A significant increase in several aspects of PD-related speech disorders is expected, and is anticipated to reflect the underlying neurodegeneration processes. ETHICS AND DISSEMINATION The study has been approved by the Ethics Committee of the General University Hospital in Prague, Czech Republic and all the participants will provide written, informed consent prior to their inclusion in the research. The application satisfies the General Data Protection Regulation law requirements of the European Union. The study findings will be published in peer-reviewed journals and presented at international scientific conferences.
Collapse
Affiliation(s)
- Tomáš Kouba
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Vojtěch Illner
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jan Rusz
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| |
Collapse
|