51
|
Banazadeh A, Nieman R, Goli M, Peng W, Hussein A, Bursal E, Lischka H, Mechref Y. Characterization of glycan isomers using magnetic carbon nanoparticles as a MALDI co-matrix. RSC Adv 2019; 9:20137-20148. [PMID: 31316759 PMCID: PMC6625494 DOI: 10.1039/c9ra02337b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix-assisted laser desorption ionization-in source decay (MALDI-ISD) analysis is a useful technique in the structural analysis of glycans. Our recent publication demonstrated that magnetic carbon nanoparticles (MCNPs), used as a MALDI co-matrix, significantly enhanced ISD efficiency for glycomic analysis by MALDI-TOF. In this study, MCNPs were used for the structural study of isomeric glycans. Results from the standard glycans confirmed easy distinction of positional and linkage isomers without the need for further derivatization of glycan molecules. Extensive glycosidic and cross-ring fragmented ions provided different fragment patterns for various glycan isomers. Core- and branch-fucosylated isomers were distinguished by several unique ions, and pseudo-MS3 data were used to recognize the fucosylated branch. Although no diagnostic fragment ion was observed for 2,3- and 2,6-linked sialic acid isomers, their MALDI-ISD patterns were found to be significantly different (P < 0.05). Furthermore, the method introduced in this study could not only be used for the identification of glycan isomers but has also proved effective for the isomeric structural confirmation of gangliosides. GD1a and GD1b gangliosides were easily distinguished by the diagnostic ion originated from GD1a, produced by Z4αZ2β cleavages. Moreover, liquid chromatography coupled with MALDI-TOF was applied to analyze N-glycan isomers derived from a pooled human blood serum sample, providing an alternative method of isomeric glycomic analysis of biological specimens.
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
| | - Ahmed Hussein
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
- Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, 21526, Egypt
| | - Ercan Bursal
- Department of Nursing, School of Health, Mus Alparslan University, Mus, Turkey
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
52
|
Yang C, Lee HK, Zhang Y, Jiang LL, Chen ZF, Chung ACK, Cai Z. In Situ Detection and Imaging of PFOS in Mouse Kidney by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry. Anal Chem 2019; 91:8783-8788. [DOI: 10.1021/acs.analchem.9b00711] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chunxue Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hin Kiu Lee
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Li-Long Jiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhi-Feng Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Arthur Chi Kong Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
53
|
Kim MJ, Yun TG, Noh JY, Park JM, Kang MJ, Pyun JC. Synergistic Effect of the Heterostructure of Au Nanoislands on TiO 2 Nanowires for Efficient Ionization in Laser Desorption/Ionization Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20509-20520. [PMID: 31074270 DOI: 10.1021/acsami.9b03386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A combination nanostructured matrix with metal Au nanoislands and semiconductor TiO2 nanowires is presented to enhance both desorption and ionization efficiency in laser desorption/ionization (LDI) mass spectrometry. The heterostructure of Au nanoislands on TiO2 nanowires was fabricated via (1) TiO2 nanowire synthesis through a modified wet-corrosion method and (2) Au nanoisland formation through thermal annealing of a sputtered Au layer on the TiO2 nanowires. Herein, the synergistic effect of this heterostructure for highly efficient ion production was experimentally elucidated in terms of the formation of high temperature on the surface of Au and the creation of a Schottky barrier at the Au-TiO2 interface. Finally, four types of immunosuppressors were analyzed to demonstrate the improved ionization performance of the heterostructure for LDI mass spectrometry.
Collapse
Affiliation(s)
- Moon-Ju Kim
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 120-749 , Korea
| | - Tae Gyeong Yun
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 120-749 , Korea
| | - Joo-Yoon Noh
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 120-749 , Korea
| | - Jong-Min Park
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 120-749 , Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST) , Seoul 136-791 , Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering , Yonsei University , 134 Shinchon-dong , Seodaemun-gu, Seoul 120-749 , Korea
| |
Collapse
|
54
|
Yang S, Mu L, Feng R, Kong X. Selection of Internal Standards for Quantitative Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis Based on Correlation Coefficients. ACS OMEGA 2019; 4:8249-8254. [PMID: 31459912 PMCID: PMC6648383 DOI: 10.1021/acsomega.9b00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has shown its great success in the qualitative analysis of a wide range of organic and biological molecules. However, its application in quantitative analysis is still limited by the difficulty in the availability of isotope-labeled internal standards. The present work investigates the relationship between the correlation coefficient of the peak intensities of analyte and candidate internal standard ions and the linearity of possible quantitative analysis. Based on the two analyte examples, ciprofloxacin and substance P, the results show that the performance of the selected nonisotope-labeled internal standard is greatly related to the correlation coefficient. A high positive correlation coefficient (>0.7) between the ions of analyte and candidate standard can result in a good linearity (R 2 > 0.98) and vice versa. The results provide a new way to select nonisotope-labeled internal standards for MALDI analysis and thus can be potentially applied in the rapid quantitative mass spectrometry.
Collapse
Affiliation(s)
- Shumei Yang
- The State Key Laboratory of Elemento-Organic Chemistry, Collage of
Chemistry and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Lei Mu
- The State Key Laboratory of Elemento-Organic Chemistry, Collage of
Chemistry and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Ruxia Feng
- The State Key Laboratory of Elemento-Organic Chemistry, Collage of
Chemistry and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Xianglei Kong
- The State Key Laboratory of Elemento-Organic Chemistry, Collage of
Chemistry and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
55
|
Hamdi A, Enjalbal C, Drobecq H, Boukherroub R, Melnyk O, Ezzaouia H, Coffinier Y. Fast and facile preparation of nanostructured silicon surfaces for laser desorption/ionization mass spectrometry of small compounds. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:66-74. [PMID: 30048019 DOI: 10.1002/rcm.8245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Many important biological processes rely on specific biomarkers (such as metabolites, drugs, proteins or peptides, carbohydrates, lipids, ...) that need to be monitored in various fluids (blood, plasma, urine, cell cultures, tissue homogenates, …). Although mass spectrometry (MS) hyphenated to liquid chromatography (LC) is widely accepted as a 'gold-standard' method for identifying such synthetic chemicals or biological products, their robust fast sensitive detection from complex matrices still constitutes a highly challenging matter. METHODS In order to circumvent the constraints intrinsic to LC/MS technology in terms of prior sample treatment, analysis time and overall method development to optimize ionization efficiency affecting the detection threshold, we investigated laser desorption/ionization mass spectrometry (LDI-MS) by directly depositing the sample under study onto cheap inert nanostructures made of silicon to perform straightforward sensitive and rapid screening of targeted low mass biomarkers on a conventional MALDI platform. RESULTS The investigated silicon nanostructures were found to act as very efficient ion-promoting surfaces exhibiting high performance for the detection of different classes of organic compounds, including glutathione, glucose, peptides and antibiotics. Achieving such broad detection was compulsory to develop a SALDI-MS-based pre-screening tool. CONCLUSIONS The key contribution of the described analytical strategy consists of designing inert surfaces that are fast (minute preparation) and cheap to produce, easy to handle and able to detect small organic compounds in matrix-free LDI-MS prerequisite for biomarkers pre-screening from body fluids without the recourse of any separation step.
Collapse
Affiliation(s)
- Abderrahmane Hamdi
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652, Villeneuve d'Ascq, France
- Laboratory of Semi-conductors, Nano-structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050, Hammam-Lif, Tunisia
- Faculty of Science of Bizerte, University of Carthage, 7021, Zarzouna, Tunisia
| | - Christine Enjalbal
- Univ. Montpellier, Institut des Biomolécules Max Mousseron, Place Eugène Bataillon, 34095, Montpellier, France
| | - Hervé Drobecq
- Institut de biologie de Lille, UMR CNRS 8160, 59000, Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652, Villeneuve d'Ascq, France
| | - Oleg Melnyk
- Institut de biologie de Lille, UMR CNRS 8160, 59000, Lille, France
| | - Hatem Ezzaouia
- Laboratory of Semi-conductors, Nano-structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050, Hammam-Lif, Tunisia
| | - Yannick Coffinier
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652, Villeneuve d'Ascq, France
| |
Collapse
|
56
|
Hu K, Lv Y, Ye F, Chen T, Zhao S. Boric-Acid-Functionalized Covalent Organic Framework for Specific Enrichment and Direct Detection of cis-Diol-Containing Compounds by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal Chem 2019; 91:6353-6362. [PMID: 30999744 DOI: 10.1021/acs.analchem.9b01376] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Design and synthesis of a novel matrix that serves as highly selective adsorption material are significant for the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis of small molecules in complicated biosamples. In this work, we presented a facile one-pot strategy for the synthesis of boric-acid-functionalized covalent organic frameworks (B-COFs) by using 2,4,6-trihydroxy-1,3,5-benzenetrialdehyde, benzidine, and 4-aminophenyl-boronic acid as ligands. Compared with bare COFs, the B-COFs have similar crystallinity, specific surface, and well-developed pore structure. The surface area and average pore size of B-COFs were 238.0 m2/g and 1.2 nm, respectively. The resulting material was used as an adsorbent for selective enrichment of cis-diol-containing compounds based on an affinity reaction between phenylboronic acid and cis-diol. Using luteolin, riboflavin, and pyrocatechol as model analytes, the enrichment ability of B-COFs as a matrix was examined by MALDI-TOF MS assay, and its high selectivity against target analytes was obtained in the presence of 100 times more anti-nonspecific compounds than that even in the complicated biosample. The limits of detection for luteolin, riboflavin, and pyrocatechol were as low as fg/mL with B-COF enrichment. The B-COFs were further employed and validated for specific enrichment and direct detection of target analytes with complex samples such as human serum, milk, and Capsicum samples. Large surface area, numerous boric-acid active sites, and super stability make B-COFs with high enrichment capacity, high selectivity and sensitivity, satisfying reproducibility, and excellent applicability in MALDI-TOF MS assays.
Collapse
Affiliation(s)
- Kun Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Yuanxia Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Fanggui Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Tao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| |
Collapse
|
57
|
Huang S, Ye N, Chen G, Ou R, Huang Y, Zhu F, Shen J, Ouyang G. A robust and homogeneous porous poly(3,4-ethylenedioxythiophene)/graphene thin film for high-efficiency laser desorption/ionization analysis of estrogens in biological samples. Talanta 2019; 195:290-297. [PMID: 30625545 DOI: 10.1016/j.talanta.2018.11.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 01/22/2023]
Abstract
Herein, a robust and homogeneous porous poly(3,4-ethylenedioxythiophene)/graphene (PEDOT/graphene) thin film surface-assisted laser desorption/ionization (SALDI) functional platform was prepared through a rapid and facile in-situ photopolymerization method. The graphene-embedded PEDOT skeleton well circumvented the aggregation-related problems in the traditional carbon-based SALDI method which combined with time-of-flight mass spectrometer (TOF MS). As a result, the reproducibility and quantitative capacity of the SALDI platform were significantly improved. Furthermore, the highly efficient adsorption performance of the PEDOT/graphene thin film was demonstrated in terms of in vitro and in vivo solid-phase microextraction (SPME) extraction. It showed that porous morphology with abundant graphene doping favored the adsorption and enrichment of target analytes. Owing to the excellent adsorption capability of the PEDOT/graphene thin film and the inherent strong laser absorption ability of graphene, expected SALDI effect (3-13 times higher than the commercial nanomaterial-assisted LDI plate) and quantitative analysis (linear range 0.5-100 μg L-1) of the PEDOT/graphene functional surfaces were achieved. As for the real-world applications, we deployed the PEDOT/graphene thin film SALDI platform for the analysis of five estrogens in biological samples at microliter-volume level, without tedious sample preparation procedures. Satisfactory recoveries ranging from 60.6% to 99.0% were obtained. The present study suggested that the graphene-embedded PEDOT skeleton with porous morphology would be developed as promising coating for the adsorption of analytes of interest. Additionally, the combination of PEDOT with graphene not only expanded the application fields of PEDOT, but also offered an efficient strategy for preparing homogeneous functional surfaces to realize the quantitative analysis in SALDI method.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Ruoheng Ou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingwen Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
58
|
Jiang Y, Sun J, Huang X, Shi H, Xiong C, Nie Z. Direct identification of forensic body fluids by MALDI-MS. Analyst 2019; 144:7017-7023. [DOI: 10.1039/c9an01385g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid identification of human body fluids is meaningful for forensic casework.
Collapse
Affiliation(s)
- Yuming Jiang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| | - Jie Sun
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| | - Xi Huang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| | - Huixia Shi
- Institute of Forensic Science
- Ministry of Public Security P.R.C
- Beijing 100038
- China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
59
|
Du J, Zhu Q, Teng F, Wang Y, Lu N. Ag nanoparticles/ZnO nanorods for highly sensitive detection of small molecules with laser desorption/ionization mass spectrometry. Talanta 2019; 192:79-85. [DOI: 10.1016/j.talanta.2018.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 12/30/2022]
|
60
|
Xu Q, Tian R, Lu C, Li H. Monodispersed Ag Nanoparticle in Layered Double Hydroxides as Matrix for Laser Desorption/Ionization Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44751-44759. [PMID: 30512921 DOI: 10.1021/acsami.8b17051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) in the low-molecular-weight (LMW) range is a long-standing challenge because of the fragments from the matrix and the heterogeneity of the matrix-analyte crystals. In this work, a homogeneous film with the monodispersed Ag nanoparticles (Ag NPs) in the confined interlayer of layered double hydroxides (LDHs) has been achieved. The Ag NPs with advantageous optical absorption could realize the energy capture and transfer process, and LDHs with abundant hydroxyl groups are beneficial for the deprotonated reaction. Therefore, the as-prepared film exhibited interference-free deprotonated signals in negative-ion mode with high ionization efficiency. The uniform matrix-analyte spots were constructed through the homogeneous assembly process, contributing to the high reproducibility for both the liquid and gaseous samples. Good linearities were successfully realized in the range from 0.1 μM to 1.0 mM for glucose with the relative standard deviation (RSD) of 3.8%, and 0.2-2.0 mM with the average RSD of 4.5% for psoralen samples, respectively. It is believed that the proposed matrix could exhibit competitive advantages for MALDI detection in the LMW region, which may provide new insight into development for MALDI mass detection.
Collapse
Affiliation(s)
- Qi Xu
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Rui Tian
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Haifang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
61
|
Ding F, Qian Y, Deng Z, Zhang J, Zhou Y, Yang L, Wang F, Wang J, Zhou Z, Shen J. Size-selected silver nanoparticles for MALDI-TOF mass spectrometry of amyloid-beta peptides. NANOSCALE 2018; 10:22044-22054. [PMID: 30452045 DOI: 10.1039/c8nr07921h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is one of the most efficient mass spectrometric techniques for the analysis of high-molecular-weight compounds with superior selectivity and sensitivity. Common MALDI matrices are low molecular weight (LMW) organics and will therefore produce a large amount of matrix-related ion peaks, which limits the use of MALDI-MS for the detection of LMW molecules. A major breakthrough of this limitation was made by the introduction of surface assisted desorption/ionization techniques, with graphite particles firstly as the matrix, followed by expansion into other types of nanoparticles or nanostructures. However, previous studies failed to address well the optimum size and concentration of Ag NPs to be used as the MALDI matrix. In this study, to explore and compare the efficiency of different sized silver nanoparticles (Ag NPs) as the MALDI matrix for the detection of LMW molecules, three different sized Ag NPs (2.8 ± 1.0, 12.8 ± 3.2 and 44.2 ± 5.0 nm) have been successfully developed as the MALDI time-of-flight MS (MALDI-TOF MS) matrix and amyloid-beta (Aβ) peptides, crucially involved in Alzheimer's disease and a variety of cancers, were chosen as an example of LMW molecules in our MALDI-TOF MS analysis with Ag NPs as matrices. The results showed size-selected MS signals with the smallest (2.8 ± 1.0 nm) Ag NP matrix producing the highest spectral intensities, when compared with other larger sized Ag NP matrices and conventional matrices such as SA and DHB. Furthermore, the optimal concentrations for different sized Ag NPs as matrices were determined as follows: 0.125 nM (2.8 ± 1.0 nm Ag NPs), 0.0625 nM (12.8 ± 3.2 nm Ag NPs), and 0.03125 nM (44.2 ± 5.0 nm Ag NPs), respectively. These results not only corroborated that Ag NPs could act as a very suitable matrix to assist in the desorption/ionization of LMW molecules but also revealed size-selected mass spectrometry signals with smaller Ag NPs as the MALDI matrix bearing more advantages than their larger counterparts. These novel findings paved the way for wider applications of MALDI-MS using Ag NPs as matrices for the analysis of LMW molecules.
Collapse
Affiliation(s)
- Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Chang YJ, Yang SS, Yu X, Zhang H, Shang W, Gu ZY. Ultrahigh efficient laser desorption ionization of saccharides by Ti-based metal-organic frameworks nanosheets. Anal Chim Acta 2018; 1032:91-98. [DOI: 10.1016/j.aca.2018.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
|
63
|
Zhao H, Li Y, Wang J, Cheng M, Zhao Z, Zhang H, Wang C, Wang J, Qiao Y, Wang J. Dual-Ion-Mode MALDI MS Detection of Small Molecules with the O-P,N-Doped Carbon/Graphene Matrix. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37732-37742. [PMID: 30296378 DOI: 10.1021/acsami.8b14643] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is challenging to realize a dual-ion mode of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detecting small molecules. Herein, graphene coated by porous amorphous carbon with P-O surface group and codoped by phosphorus and nitrogen (O-P,N-C/G) was synthesized from an aerogel formed by phytic acid, polyaniline, and electrochemically exfoliated graphene. The carbon material synthesized has the feature of large surface area (583 m2/g), good electrical conductivity, strong UV absorption, heteroatom doping, and surface functional groups suitable for laser- induced desorption/ionization. It was employed as a novel matrix suitable for both positive-ion and negative-ion modes in MALDI-TOF MS for the analysis of various small molecules including amino acids, small peptides, saccharides, drugs, and environmental pollutants, significantly outperforming control materials and a traditional CHCA (α-cyano-4-hydroxycinnamic acid) or 2,5-dihydroxybenzoic (DHB) matrix. Remarkably, the detection limit of the anticancer drugs (5-fluorouracil and ellagic acid) reaches 50 pmol. In addition, nice MALDI-TOF MS images can be mapped to detect mixed amino acids corresponding to homogeneous distribution of ion intensity. The monosaccharides and disaccharides can be distinguished by using the new matrix. Last but not least, it can be used to quantitatively detect glucose in human serum and soft drinks (glucose/fructose, 203.1 mM) without adding standards.
Collapse
Affiliation(s)
- Huifang Zhao
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yanqiu Li
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
| | - Jie Wang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Miao Cheng
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zheng Zhao
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Huinian Zhang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Congwei Wang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
| | - Junying Wang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
| | - Yan Qiao
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
| | - Junzhong Wang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
| |
Collapse
|
64
|
Wu E, Feng K, Shi R, Lv R, Ouyang F, Li SSC, Zhong J, Liu J. Hybrid CuCoO-GO enables ultrasensitive detection of antibiotics with enhanced laser desorption/ionization at nano-interfaces. Chem Sci 2018; 10:257-267. [PMID: 30713636 PMCID: PMC6333240 DOI: 10.1039/c8sc03692f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/05/2018] [Indexed: 01/21/2023] Open
Abstract
The soaring concerns globally on antibiotic overuse have made calls for the development of rapid and sensitive detection methods urgent. Here we report that the hybrid CuCoO-GO matrix allows for sensitive detection of various antibiotics in combination with MALDI TOF MS. The new matrix is composed of few-layered GO nanosheets decorated with CuCoO nanoparticles with an average size of 10 nm, and exhibits excellent aqueous suspensibility. Accurate quantitation of the sulfonamide antibiotics in milk samples have been demonstrated using a CuCoO-GO matrix and a stable isotope (C13)-labeled analyte as the internal standard. Our experiments have achieved lower limits of detection (LOD) by several hundred fold for the detection of a panel of representative antibiotics, in comparison with the literature reports. Both intrabacterial and extrabacterial residual antibiotics can be sensitively detected with our method. We have further investigated the molecular mechanism of the enhanced desorption/ionization efficiency by the CuCoO-GO matrix with synchrotron radiation techniques for the first time. This work provides a sensitive matrix enabling MALDI-TOF MS to be applied in small molecular analysis, but also presents a distinct perspective on the mechanism behind the material functions.
Collapse
Affiliation(s)
- Enhui Wu
- Institute of Functional Nano and Soft Materials (FUNSOM) , Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices , Joint International Research Laboratory of Carbon-based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu Province 215123 , China . ;
| | - Kun Feng
- Institute of Functional Nano and Soft Materials (FUNSOM) , Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices , Joint International Research Laboratory of Carbon-based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu Province 215123 , China . ;
| | - Rui Shi
- Institute of Functional Nano and Soft Materials (FUNSOM) , Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices , Joint International Research Laboratory of Carbon-based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu Province 215123 , China . ;
| | - Rui Lv
- Institute of Functional Nano and Soft Materials (FUNSOM) , Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices , Joint International Research Laboratory of Carbon-based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu Province 215123 , China . ;
| | - Fuzhong Ouyang
- Institute of Functional Nano and Soft Materials (FUNSOM) , Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices , Joint International Research Laboratory of Carbon-based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu Province 215123 , China . ;
| | - Shawn S C Li
- Department of Biochemistry , Western University , London , Ontario N6A 5C1 , Canada
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials (FUNSOM) , Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices , Joint International Research Laboratory of Carbon-based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu Province 215123 , China . ;
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) , Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices , Joint International Research Laboratory of Carbon-based Functional Materials and Devices , Soochow University , Suzhou , Jiangsu Province 215123 , China . ;
| |
Collapse
|
65
|
Lin Z, Cai Z. Negative ion laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules by using nanostructured substrate as matrices. MASS SPECTROMETRY REVIEWS 2018; 37:681-696. [PMID: 29509966 DOI: 10.1002/mas.21558] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/08/2017] [Indexed: 06/08/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an excellent analytical technique for rapid and sensitive analysis of macromolecules such as polymers and proteins. However, the main drawback of MALDI-TOF MS is its difficulty to detect small molecules with mass below 700 Da because of the intensive interference from MALDI matrix in the low mass region. In recent years there has been considerable interest in developing matrix-free laser desorption/ionization by using nanostructured substrates to substitute the conventional organic matrices, which is often referred as surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS). Despite these attractive features, most of the current SALDI-TOF MS for the analysis of small molecules employ positive ion mode, which is subjected to produce multiple alkali metal adducts, and thus increases the complexity of the analysis. Different from the complicated adducts produced in positive ion mode, mass spectra obtained in negative ion mode are featured by deprotonated ion peaks without matrix interference, which simplifies the interpretation of mass spectra and detection of unknown. In this review, we critically survey recent advances in nanostructured substrates for negative ion LDI-TOF MS analysis of small molecules in the last 5 years. Special emphasis is placed on the preparation of the nanostructured substrates and the results achieved in negative ion SALDI-MS. In addition, a variety of promising applications including environmental, biological, and clinical analysis are introduced. The ionization mechanism of negative ionization is briefly discussed.
Collapse
Affiliation(s)
- Zian Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian, P.R. China
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, P.R. China
| | - Zongwei Cai
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, P.R. China
| |
Collapse
|
66
|
Banazadeh A, Peng W, Veillon L, Mechref Y. Carbon Nanoparticles and Graphene Nanosheets as MALDI Matrices in Glycomics: a New Approach to Improve Glycan Profiling in Biological Samples. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1892-1900. [PMID: 29916086 PMCID: PMC6298861 DOI: 10.1007/s13361-018-1985-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 05/15/2023]
Abstract
Glycomics continues to be a highly dynamic and interesting research area due to the need to comprehensively understand the biological attributes of glycosylation in many important biological functions such as the immune response, cell development, cell differentiation/adhesion, and host-pathogen interactions. Although matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) has proven to be suitable for glycomic profiling studies, there is a need for improved sensitivity in the detection of native glycans, which ionize inefficiently. In this study, we investigated the efficiencies of graphene nanosheets (GNs) and carbon nanoparticles (CNPs) as MALDI matrices and co-matrices in glycan profiling. Our results indicated an enhancement of signal intensity by several orders of magnitude upon using GNs and CNPs in MALDI analysis of N-glycans derived from a variety of biological samples. Interestingly, increasing the amounts of CNPs and GNs improved not only the signal intensities but also prompted in-source decay (ISD) fragmentations, which produced extensive glycosidic and cross-ring cleavages. Our results indicated that the extent of ISD fragmentation could be modulated by CNP and GN concentrations, to obtain MS2 and pseudo-MS3 spectra. The results for glycan profiling in high salt solutions confirmed high salt-tolerance capacities for both CNPs and GNs. Finally, the results showed that by using CNPs and GNs as co-matrices, DHB crystal formation was more homogeneous which improved shot-to-shot reproducibility and sensitivity. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
67
|
Lin Z, Wu J, Dong Y, Xie P, Zhang Y, Cai Z. Nitrogen and Sulfur Co-doped Carbon-Dot-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Imaging for Profiling Bisphenol S Distribution in Mouse Tissues. Anal Chem 2018; 90:10872-10880. [DOI: 10.1021/acs.analchem.8b02362] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jie Wu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yongqiang Dong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Peisi Xie
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, Hong Kong SAR, P. R. China
| | - Yanhao Zhang
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, Hong Kong SAR, P. R. China
| | - Zongwei Cai
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, Hong Kong SAR, P. R. China
| |
Collapse
|
68
|
Tsao CW, Lin YJ, Chen PY, Yang YL, Tan SH. Nanoscale silicon surface-assisted laser desorption/ionization mass spectrometry: environment stability and activation by simple vacuum oven desiccation. Analyst 2018; 141:4973-81. [PMID: 27315049 DOI: 10.1039/c6an00659k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanoscale silicon surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is an emerging matrix-free, highly sensitive MS analysis method. An important challenge in using nanoscale silicon SALDI-MS analysis is the aging and stability of silicon after storage in various environments. No proper nanoscale silicon SALDI-MS activation procedure has been reported to solve this issue. This study investigated the sensitivity, wettability, and surface oxidation behavior of nanoscale silicon surface SALDI-MS in a room, an inert gas atmosphere, and a vacuum environment. A simple vacuum oven desiccation was proposed to activate the SALDI-MS surface, and the limit of detection was further enhanced 1000 times to a 500 attomole level using this approach. The long-term stability and desorption/ionization mechanism were also investigated.
Collapse
Affiliation(s)
- Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, No. 300, Zhongda Rd., Taoyuan, Taiwan.
| | - Yuan-Jing Lin
- Department of Mechanical Engineering, National Central University, No. 300, Zhongda Rd., Taoyuan, Taiwan.
| | - Pi-Yu Chen
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Road, Taipei, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Road, Taipei, Taiwan
| | - Say Hwa Tan
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Brisbane, Australia
| |
Collapse
|
69
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
70
|
Zhao Y, Tang M, Liao Q, Li Z, Li H, Xi K, Tan L, Zhang M, Xu D, Chen HY. Disposable MoS 2-Arrayed MALDI MS Chip for High-Throughput and Rapid Quantification of Sulfonamides in Multiple Real Samples. ACS Sens 2018; 3:806-814. [PMID: 29578331 DOI: 10.1021/acssensors.8b00051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, we demonstrate, for the first time, the development of a disposable MoS2-arrayed matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) chip combined with an immunoaffinity enrichment method for high-throughput, rapid, and simultaneous quantitation of multiple sulfonamides (SAs). The disposable MALDI MS chip was designed and fabricated by MoS2 array formation on a commercial indium tin oxide (ITO) glass slide. A series of SAs were analyzed, and clear deprotonated signals were obtained in negative-ion mode. Compared with MoS2-arrayed commercial steel plate, the prepared MALDI MS chip exhibited comparable LDI efficiency, providing a good alternative and disposable substrate for MALDI MS analysis. Furthermore, internal standard (IS) was previously deposited onto the MoS2 array to simplify the experimental process for MALDI MS quantitation. 96 sample spots could be analyzed within 10 min in one single chip to perform quantitative analysis, recovery studies, and real foodstuff detection. Upon targeted extraction and enrichment by antibody conjugated magnetic beads, five SAs were quantitatively determined by the IS-first method with the linear range of 0.5-10 ng/mL ( R2 > 0.990). Good recoveries and repeatability were obtained for spiked pork, egg, and milk samples. SAs in several real foodstuffs were successfully identified and quantified. The developed method may provide a promising tool for the routine analysis of antibiotic residues in real samples.
Collapse
Affiliation(s)
- Yaju Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Minmin Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Qiaobo Liao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Zhoumin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Kai Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Li Tan
- Jiangsu Institute for Food and Drug Control, Nanjing 210008, P.R. China
| | - Mei Zhang
- Jiangsu Institute for Food and Drug Control, Nanjing 210008, P.R. China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
71
|
In situ detecting changes in membrane lipid phenotypes of macrophages cultured in different cancer microenvironments using mass spectrometry. Anal Chim Acta 2018; 1026:101-108. [PMID: 29852985 DOI: 10.1016/j.aca.2018.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/16/2022]
Abstract
Macrophages, the important cells of immune system, have exhibited distinct gene phenotypes with diverse functions in different microenvironments. In the present study, macrophages RAW264.7 (M0 macrophages) and lipopolysaccharide (LPS) plus interferon gamma (INF-γ)-treated M0 macrophages (M1 macrophages) were cultured in different lung cell-derived culture supernatants (CSs) as imitative tumor microenvironments. The lipids (mainly from cell membrane) of intact macrophages were in situ detected by matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry. Approximately 300 of small molecules were observed in negative ion mode. Partial least square-discriminant analysis (PLS-DA) suggested that two types of the macrophages have different membrane lipid phenotypes. Changes in the levels of phosphatidylethanolamine PE(16:1/18:0), PE(18:1/18:0), PE(36:2), PE-Cer(d36:1), and PE(P-16:0/18:1) were closely associated with membrane phenotypes of macrophages. The heatmap also revealed that directional induction to classically activated macrophages (M1 macrophages) in vitro had greater impact on the membrane lipid phenotypes of macrophages than different lung cell-derived CSs. The results are consistent with the data obtained by biological technologies.
Collapse
|
72
|
Ling L, Li Y, Wang S, Guo L, Xiao C, Chen X, Guo X. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:704-710. [PMID: 29349714 DOI: 10.1007/s13361-017-1881-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H]-) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ling Ling
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ying Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Sheng Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Liming Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
73
|
Silver nanoparticles as matrix for MALDI FTICR MS profiling and imaging of diverse lipids in brain. Talanta 2018; 179:624-631. [DOI: 10.1016/j.talanta.2017.11.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022]
|
74
|
Zhang R, Qin Q, Liu B, Qiao L. TiO2-Assisted Laser Desorption/Ionization Mass Spectrometry for Rapid Profiling of Candidate Metabolite Biomarkers from Antimicrobial-Resistant Bacteria. Anal Chem 2018; 90:3863-3870. [PMID: 29461808 DOI: 10.1021/acs.analchem.7b04565] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rutan Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Qin Qin
- The Second Military Medical University, Changhai Hospital, Shanghai 200433, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
75
|
Kim JY, Seo ES, Lim HJ, Kim H, Park JW, Shin HH, Lim DK, Moon DW. Nanomaterials and continuous wave laser-based efficient desorption for atmospheric pressure mass spectrometric imaging of live hippocampal tissue slices. RSC Adv 2018; 8:8021-8025. [PMID: 35541999 PMCID: PMC9078475 DOI: 10.1039/c8ra00038g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/12/2018] [Indexed: 02/04/2023] Open
Abstract
Micrometer-resolution mass spectrometric imaging of live hippocampal tissue is achieved with a highly efficient desorption of biomolecules using a 532 nm continuous wave laser and gold nanoparticles or graphene oxide as an energy transporter, which enables clear identification of the distributions of monoacylglycerol, adenine, cholesterol, sphingosine and ceramide. Micrometer-resolution mass spectrometric imaging of live hippocampal tissue is achieved with a highly efficient desorption of biomolecules using a 532 nm continuous wave laser and gold nanoparticles or graphene oxide as an energy transporter.![]()
Collapse
Affiliation(s)
- Jae Young Kim
- Department of New Biology
- Daegu Gyeongbuk Institute of Science and Technology (DGIST)
- Daegu
- Republic of Korea
| | - Eun Seok Seo
- Department of New Biology
- Daegu Gyeongbuk Institute of Science and Technology (DGIST)
- Daegu
- Republic of Korea
| | - Hee Jin Lim
- Department of New Biology
- Daegu Gyeongbuk Institute of Science and Technology (DGIST)
- Daegu
- Republic of Korea
| | - Hyunmin Kim
- Companion Diagnostics and Medical Technology Research Group
- Daegu Gyeongbuk Institute of Science and Technology (DGIST)
- Daegu
- Republic of Korea
| | - Ji-Won Park
- Graduate School of Analytical Science and Technology (GRAST)
- Chungnam National University
- Daejeon
- Republic of Korea
| | - Hyeon Ho Shin
- KU-KIST Graduate School of Converging Science and Technology
- Korea University
- Seoul
- Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology
- Korea University
- Seoul
- Republic of Korea
| | - Dae Won Moon
- Department of New Biology
- Daegu Gyeongbuk Institute of Science and Technology (DGIST)
- Daegu
- Republic of Korea
| |
Collapse
|
76
|
Liu H, Zhou Y, Wang J, Xiong C, Xue J, Zhan L, Nie Z. N-Phenyl-2-naphthylamine as a Novel MALDI Matrix for Analysis and in Situ Imaging of Small Molecules. Anal Chem 2017; 90:729-736. [PMID: 29172460 DOI: 10.1021/acs.analchem.7b02710] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Due to its strong ultraviolet absorption, low background interference in the small molecular range, and salt tolerance capacity, N-phenyl-2-naphthylamine (PNA) was developed as a novel matrix in the present study for analysis and imaging of small molecules by matrix-assisted laser desorption/ionization mass spectrometry time-of-fight (MALDI-TOF MS). The newly developed matrix displayed good performance in analysis of a wide range of small-molecule metabolites including free fatty acids, amino acids, peptides, antioxidants, and phospholipids. In addition, PNA-assisted LDI MS imaging of small molecules in brain tissue of rats subjected to middle cerebral artery occlusion (MCAO) revealed unique distributions and changes of 89 small-molecule metabolites including amino acids, antioxidants, free fatty acids, phospholipids, and sphingolipids in brain tissue 24 h postsurgery. Fifty-nine of the altered metabolites were identified, and all the changed metabolites were subject to relative quantitation and statistical analysis. The newly developed matrix has great potential application in the field of biomedical research.
Collapse
Affiliation(s)
- Huihui Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Yueming Zhou
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China.,College of Chemistry, Biology and Material Sciences, East China University of Technology , Nanchang 330013, China
| | - Jiyun Wang
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Caiqiao Xiong
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Jinjuan Xue
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Lingpeng Zhan
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Zongxiu Nie
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China.,National Center for Mass Spectrometry in Beijing , Beijing 100190, China
| |
Collapse
|
77
|
Shi R, Dai X, Li W, Lu F, Liu Y, Qu H, Li H, Chen Q, Tian H, Wu E, Wang Y, Zhou R, Lee ST, Lifshitz Y, Kang Z, Liu J. Hydroxyl-Group-Dominated Graphite Dots Reshape Laser Desorption/Ionization Mass Spectrometry for Small Biomolecular Analysis and Imaging. ACS NANO 2017; 11:9500-9513. [PMID: 28850220 DOI: 10.1021/acsnano.7b05328] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small molecules play critical roles in life science, yet their facile detection and imaging in physiological or pathological settings remain a challenge. Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) is a powerful tool for molecular analysis. However, conventional organic matrices (CHCA, DHB, etc.) used in assisting analyte ionization suffer from intensive background noise in the mass region below m/z 700, which hinders MALDI MS applications for small-molecule detection. Here, we report that a hydroxyl-group-dominated graphite dot (GD) matrix overcomes limitations of conventional matrices and allows MALDI MS to be used in fast and high-throughput analysis of small biomolecules. GDs exhibit extremely low background noise and ultrahigh sensitivity (with limit of detection <1 fmol) in MALDI MS. This approach allows identification of complex oligosaccharides, detection of low-molecular-weight components in traditional Chinese herbs, and facile analysis of puerarin and its metabolites in serum without purification. Moreover, we show that the GDs provide an effective matrix for the direct imaging or spatiotemporal mapping of small molecules and their metabolites (m/z < 700) simultaneously at the suborgan tissue level. Density functional theory calculations further provide the mechanistic basis of GDs as an effective MALDI matrix in both the positive-ion and negative-ion modes. Collectively, our work uncovered a useful matrix which reshapes MALDI MS technology for a wide range of applications in biology and medicine.
Collapse
Affiliation(s)
| | | | | | - Fang Lu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine , Beijing 100029, China
| | | | - Huihua Qu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine , Beijing 100029, China
| | | | - Qiongyang Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | - He Tian
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang Province 310027, China
| | | | - Yong Wang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University , Shenzhen, Guangdong Province 518060, China
| | - Ruhong Zhou
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| | | | - Yeshayahu Lifshitz
- Department of Materials Science and Engineering, Technion Israel Institute of Technology , Haifa 3200003, Israel
| | | | | |
Collapse
|
78
|
Huang S, Xu J, Tao X, Chen X, Zhu F, Wang Y, Jiang R, Ouyang G. Fabrication of polyaniline/silver composite coating as a dual-functional platform for microextraction and matrix-free laser desorption/ionization. Talanta 2017; 172:155-161. [DOI: 10.1016/j.talanta.2017.05.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 12/14/2022]
|
79
|
Kim YK, Wang LS, Landis R, Kim CS, Vachet RW, Rotello VM. A layer-by-layer assembled MoS 2 thin film as an efficient platform for laser desorption/ionization mass spectrometry analysis of small molecules. NANOSCALE 2017; 9:10854-10860. [PMID: 28730210 PMCID: PMC5572770 DOI: 10.1039/c7nr02949g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A chip-based platform for laser desorption/ionization mass spectrometry (LDI-MS) analysis of small molecules was developed by utilizing layer-by-layer (LBL) assembly of MoS2 nanoflakes and polyallylamine on an arbitrary substrate. The LDI-MS efficiency of small molecules on MoS2 films increased as a function of LBL assembly cycles until reaching a saturation point. The optimized MoS2 nanoflake film exhibits high LDI-MS efficiency, salt tolerance, reusability and uniform ionic signal distribution, and its performance was further enhanced by surface modification with perfluoroalkanes mimicking a clathrate nanostructure.
Collapse
Affiliation(s)
- Young-Kwan Kim
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Liu H, Li X, Wang M, Chen X, Su X. A redox-modulated fluorescent strategy for the highly sensitive detection of metabolites by using graphene quantum dots. Anal Chim Acta 2017; 990:150-156. [PMID: 29029738 DOI: 10.1016/j.aca.2017.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 11/28/2022]
Abstract
In this paper, a redox-modulated fluorescent strategy based on the transformation of Fe2+/Fe3+ couple and enzymatic reaction for rapid monitoring glucose and uric acid using graphene quantum dots (GQDs) as fluorescent probe was developed. Hydrogen peroxide (H2O2) can be produced by the enzymatic reaction of a series of metabolites, such as glucose and uric acid. In the presence of hydrogen peroxide, Fe2+ can be oxidized and converted to Fe3+, which have a significant quenching difference in the fluorescence of graphene quantum dots (GQDs). Thus, a sensitive and label-free biosensor for the detection of uric acid and glucose was developed. Under the optimized experimental conditions, the fluorescence intensity was linearly correlated with the concentration of uric acid and glucose in the range of 0.1-45 μmolL-1 and 0.1-30 μmolL-1 with a detection limit of 0.026 μmolL-1and 0.021 μmolL-1, respectively. The proposed method was applied to the determination of uric acid and glucose in human serum samples with satisfactory results, which had potential application to detect metabolites associated with H2O2 release.
Collapse
Affiliation(s)
- Hua Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Mengke Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xueqian Chen
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
81
|
Hosu IS, Sobaszek M, Ficek M, Bogdanowicz R, Drobecq H, Boussekey L, Barras A, Melnyk O, Boukherroub R, Coffinier Y. Carbon nanowalls: a new versatile graphene based interface for the laser desorption/ionization-mass spectrometry detection of small compounds in real samples. NANOSCALE 2017; 9:9701-9715. [PMID: 28675223 DOI: 10.1039/c7nr01069a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Carbon nanowalls, vertically aligned graphene nanosheets, attract attention owing to their tunable band gap, high conductivity, high mechanical robustness, high optical absorbance and other remarkable properties. In this paper, we report for the first time the use of hydrophobic boron-doped carbon nanowalls (CNWs) for laser desorption/ionization of small compounds and their subsequent detection by mass spectrometry (LDI-MS). The proposed method offers sensitive detection of various small molecules in the absence of an organic matrix. The CNWs were grown by microwave plasma enhanced chemical vapor deposition (MW-PECVD), using a boron-carbon gas flow ratio of 1200 in H2/CH4 plasma, on silicon <100> wafer. The hydrophobicity of the surface offers a straightforward MS sample deposition, consisting of drop casting solutions of analytes and drying in air. Limits of detection in the picomolar and femtomolar ranges (25 fmol μL-1 for neurotensin) were achieved for different types of compounds (fatty acids, lipids, metabolites, saccharides and peptides) having clinical or food industry applications. This rapid and sensitive procedure can also be used for quantitative measurements without internal standards with RSDs <19%, as in the case of glucose in aqueous solutions (LOD = 0.32 ± 0.02 pmol), blood serum or soft drinks. Moreover, melamine (63 ± 8.19 ng μL-1), a toxic compound, together with creatinine and paracetamol, was detected in urine samples, while lecithin was detected in food supplements.
Collapse
Affiliation(s)
- I S Hosu
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Ho YN, Shu LJ, Yang YL. Imaging mass spectrometry for metabolites: technical progress, multimodal imaging, and biological interactions. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28488813 DOI: 10.1002/wsbm.1387] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/24/2017] [Accepted: 02/28/2017] [Indexed: 12/19/2022]
Abstract
Imaging mass spectrometry (IMS) allows the study of the spatial distribution of small molecules in biological samples. IMS is able to identify and quantify chemicals in situ from whole tissue sections to single cells. Both vacuum mass spectrometry (MS) and ambient MS systems have advanced considerably over the last decade; however, some limitations are still hard to surmount. Sample pretreatment, matrix or solvent choices, and instrument improvement are the key factors that determine the successful application of IMS to different samples and analytes. IMS with innovative MS analyzers, powerful MS spectrum databases, and analysis tools can efficiently dereplicate, identify, and quantify natural products. Moreover, multimodal imaging systems and multiple MS-based systems provide additional structural, chemical, and morphological information and are applied as complementary tools to explore new fields. IMS has been applied to reveal interactions between living organisms at molecular level. Recently, IMS has helped solve many previously unidentifiable relations between bacteria, fungi, plants, animals, and insects. Other significant interactions on the chemical level can also be resolved using expanding IMS techniques. WIREs Syst Biol Med 2017, 9:e1387. doi: 10.1002/wsbm.1387 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ying-Ning Ho
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Lin-Jie Shu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
83
|
Wu Q, Chu JL, Rubakhin SS, Gillette MU, Sweedler JV. Dopamine-modified TiO 2 monolith-assisted LDI MS imaging for simultaneous localization of small metabolites and lipids in mouse brain tissue with enhanced detection selectivity and sensitivity. Chem Sci 2017; 8:3926-3938. [PMID: 28553535 PMCID: PMC5433501 DOI: 10.1039/c7sc00937b] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 12/03/2022] Open
Abstract
Localization of metabolites using multiplexed mass spectrometry imaging (MSI) provides important chemical information for biological research. In contrast to matrix-assisted laser desorption/ionization (MALDI), TiO2-assisted laser desorption/ionization (LDI) for MSI improves detection of low molecular mass metabolites (<500 Da) by reducing matrix background. However, the low UV absorption of TiO2 nanoparticles and their ester hydrolysis catalytic activity hinder the detection of phospholipids and many low-abundance molecules. To address these challenges, we evaluated and optimized the material morphology and composition of TiO2. Dopamine (DA) was found to be an efficient ligand for TiO2, resulting in increased UV light absorption, higher surface pH, and formation of monolithic TiO2-DA structures. The sub-micron scale and higher surface pH of the TiO2 particle sizes led to improved detection of phospholipid signals. Compared to unmodified TiO2 sub-micron particles, the DA-modified TiO2 monolith led to 10- to 30-fold increases in the signal-to-noise ratios of a number of compound peaks. The TiO2-DA monolith-assisted LDI MSI approach has higher selectivity and sensitivity for Lewis basic compounds, such as fatty acids, cholesterols, ceramides, diacylglycerols, and phosphatidylethanolamine, when analyzed in positive mode, than traditional MALDI MS. Using this new method, over 100 molecules, including amino acids, alkaloids, free fatty acids, peptides, and lipids, were localized in mouse brain sections. By comparing the presence and localization of those molecules in young and old mouse brains, the approach demonstrated good performance in the determination of aging-related neurochemical changes in the brain.
Collapse
Affiliation(s)
- Qian Wu
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA .
- Beckman Institute , University of Illinois at Urbana-Champaign , 405 N. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA
| | - James L Chu
- Department of Cell and Developmental Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , USA
| | - Stanislav S Rubakhin
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA .
- Beckman Institute , University of Illinois at Urbana-Champaign , 405 N. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA
| | - Martha U Gillette
- Department of Cell and Developmental Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , USA
- Beckman Institute , University of Illinois at Urbana-Champaign , 405 N. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA
| | - Jonathan V Sweedler
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 S. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA .
- Beckman Institute , University of Illinois at Urbana-Champaign , 405 N. Mathews Ave, 63-5 , Urbana , Illinois 61801 , USA
| |
Collapse
|
84
|
Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules. NANOMATERIALS 2017; 7:nano7040087. [PMID: 28430138 PMCID: PMC5408179 DOI: 10.3390/nano7040087] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds.
Collapse
|
85
|
Mechanisms of Nanophase-Induced Desorption in LDI-MS. A Short Review. NANOMATERIALS 2017; 7:nano7040075. [PMID: 28368330 PMCID: PMC5408167 DOI: 10.3390/nano7040075] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/26/2022]
Abstract
Nanomaterials are frequently used in laser desorption ionization mass spectrometry (LDI-MS) as DI enhancers, providing excellent figures of merit for the analysis of low molecular weight organic molecules. In recent years, literature on this topic has benefited from several studies assessing the fundamental aspects of the ion desorption efficiency and the internal energy transfer, in the case of model analytes. Several different parameters have been investigated, including the intrinsic chemical and physical properties of the nanophase (chemical composition, thermal conductivity, photo-absorption efficiency, specific heat capacity, phase transition point, explosion threshold, etc.), along with morphological parameters such as the nanophase size, shape, and interparticle distance. Other aspects, such as the composition, roughness and defects of the substrate supporting the LDI-active nanophases, the nanophase binding affinity towards the target analyte, the role of water molecules, have been taken into account as well. Readers interested in nanoparticle based LDI-MS sub-techniques (SALDI-, SELDI-, NALDI- MS) will find here a concise overview of the recent findings in the specialized field of fundamental and mechanistic studies, shading light on the desorption ionization phenomena responsible of the outperforming MS data offered by these techniques.
Collapse
|
86
|
Zhou D, Guo S, Zhang M, Liu Y, Chen T, Li Z. Mass spectrometry imaging of small molecules in biological tissues using graphene oxide as a matrix. Anal Chim Acta 2017; 962:52-59. [DOI: 10.1016/j.aca.2017.01.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/09/2017] [Accepted: 01/15/2017] [Indexed: 12/18/2022]
|
87
|
Han G, Zeng Q, Jiang Z, Xing T, Huang C, Li Y. MIL-101(Cr) as matrix for sensitive detection of quercetin by matrix-assisted laser desorption/ionization mass spectrometry. Talanta 2017; 164:355-361. [DOI: 10.1016/j.talanta.2016.11.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 01/25/2023]
|
88
|
Zhang Z, He M, Liu L, Xiong X, Fang X, Xu W. Electro-kinetic assisted electrospray ionization for enhanced complex sample analysis. Talanta 2017; 164:45-51. [DOI: 10.1016/j.talanta.2016.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023]
|
89
|
Marsico ALM, Duncan B, Landis RF, Tonga GY, Rotello VM, Vachet RW. Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Biomolecules Using Gold Nanoparticles, Matrix, and the Coffee Ring Effect. Anal Chem 2017; 89:3009-3014. [PMID: 28193006 DOI: 10.1021/acs.analchem.6b04538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nanomaterials have been extensively used as alternate matrices to minimize the low molecular weight interferences observed in typical MALDI but such nanomaterials typically do not improve the spot-to-spot variability that is commonly seen. In this work, we demonstrate that nanoparticles and low matrix concentrations (<2.5 mg/mL) can be used to homogeneously concentrate analytes into a narrow ring by taking advantage of the "coffee ring" effect. Concentration of the samples in this way leads to enhanced signals when compared to conventional MALDI, with higher m/z analytes being enhanced to the greatest extent. Moreover, the ionization suppression often observed in samples with high salt concentrations can be overcome by preparing samples in this way. The ring that is formed is readily visible, allowing the laser to be focused only on spots that contain analyte. The coffee-ring effect represents a new mode by which nanomaterials can be used to enhance the MALDI-based detection of biomolecules.
Collapse
Affiliation(s)
- Alyssa L M Marsico
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Ryan F Landis
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Gulen Yesilbag Tonga
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
90
|
Wang J, Sun J, Wang J, Liu H, Xue J, Nie Z. Hexagonal boron nitride nanosheets as a multifunctional background-free matrix to detect small molecules and complicated samples by MALDI mass spectrometry. Chem Commun (Camb) 2017; 53:8114-8117. [DOI: 10.1039/c7cc02957h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
h-BN nanosheets were applied as a background-free matrix for the analysis and imaging of small molecules and as an adsorbent to enrich samples.
Collapse
Affiliation(s)
- Jianing Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| | - Jie Sun
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| | - Jiyun Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| | - Jinjuan Xue
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory for Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- the Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
91
|
Li J, Liu J, Liu Z, Tan Y, Liu X, Wang F. Water-soluble Au nanoclusters for multiplexed mass spectrometry imaging. Chem Commun (Camb) 2017; 53:12688-12691. [DOI: 10.1039/c7cc07484k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homogeneous Au nanoclusters were utilized for enhancing the detection sensitivity and lateral resolution of multiplexed mass spectrometry imaging due to their high ultraviolet adsorption, high water solubility, and high biocompatibility.
Collapse
Affiliation(s)
- Jinan Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Jing Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| | - Yuan Tan
- University of Chinese Academy of Sciences
- Beijing 100049
- China
- State Key Laboratory of Catalysis, iChEM, Gold Catalysis Research Center
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS)
| | - Xiaoyan Liu
- State Key Laboratory of Catalysis, iChEM, Gold Catalysis Research Center
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS)
- Dalian 116023
- China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences (CAS)
- Dalian 116023
| |
Collapse
|
92
|
Yang L, Liu D, Cui G, Xie Y. Cu2+1O/graphene nanosheets supported on three dimensional copper foam for sensitive and efficient non-enzymatic detection of glucose. RSC Adv 2017. [DOI: 10.1039/c7ra02011b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three dimensional copper foam/Cu2+1O/graphene nanosheets for sensitive and efficient non-enzymatic detection of glucose.
Collapse
Affiliation(s)
- Liang Yang
- Institute of New Energy Science and Engineering
- School of Energy and Power Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Daoping Liu
- Institute of New Energy Science and Engineering
- School of Energy and Power Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Guomin Cui
- Institute of New Energy Science and Engineering
- School of Energy and Power Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Yingming Xie
- Institute of New Energy Science and Engineering
- School of Energy and Power Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
93
|
MoS2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chim Acta 2016; 937:87-95. [DOI: 10.1016/j.aca.2016.06.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/14/2016] [Accepted: 06/18/2016] [Indexed: 11/21/2022]
|
94
|
Li Y, Wang J, Zhan L, Wleklinski M, Wang J, Xiong C, Liu H, Zhou Y, Nie Z. The bridge between thin layer chromatography-mass spectrometry and high-performance liquid chromatography-mass spectrometry: The realization of liquid thin layer chromatography-mass spectrometry. J Chromatogr A 2016; 1460:181-9. [DOI: 10.1016/j.chroma.2016.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
|
95
|
Black phosphorus-assisted laser desorption ionization mass spectrometry for the determination of low-molecular-weight compounds in biofluids. Anal Bioanal Chem 2016; 408:6223-33. [DOI: 10.1007/s00216-016-9737-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
|
96
|
Chen Y, Gao D, Bai H, Liu H, Lin S, Jiang Y. Carbon Dots and 9AA as a Binary Matrix for the Detection of Small Molecules by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1227-1235. [PMID: 27075876 DOI: 10.1007/s13361-016-1396-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R(2) > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yongli Chen
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Graduate School at Shenzhen, Peking University, Shenzhen, 518055, China
| | - Dan Gao
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| | - Hangrui Bai
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Hongxia Liu
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Key Laboratory of Metabolomics at Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Shuo Lin
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Graduate School at Shenzhen, Peking University, Shenzhen, 518055, China
| | - Yuyang Jiang
- National and Local United Engineering Laboratory for Personalized Antitumor Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
97
|
Kiss A, Hopfgartner G. Laser-based methods for the analysis of low molecular weight compounds in biological matrices. Methods 2016; 104:142-53. [DOI: 10.1016/j.ymeth.2016.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/28/2016] [Accepted: 04/13/2016] [Indexed: 01/26/2023] Open
|
98
|
|
99
|
Lu W, Li Y, Li R, Shuang S, Dong C, Cai Z. Facile Synthesis of N-Doped Carbon Dots as a New Matrix for Detection of Hydroxy-Polycyclic Aromatic Hydrocarbons by Negative-Ion Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12976-12984. [PMID: 27180617 DOI: 10.1021/acsami.6b01510] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
N-doping carbon dots (N-CDs) were prepared by microwave-assisted pyrolysis of dl-malic acid and ethanolamine as precursors. The material served as an excellent matrix for the detection of the environmental pollutants hydroxy-polycyclic aromatic hydrocarbons (OH-PAHs) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in negative ion mode. The obtained N-CDs exhibited good UV absorption capacity and favorable solubility. The use of the N-CDs matrix exhibited low matrix background interference and was beneficial to improve the signal response due to the specific π-conjugated polyaromatic structure and the doping of nitrogen atoms. The developed method was found to have good reproducibility and sensitivity. The N-CDs as a new matrix also were employed for the detection of OH-PAHs in real PM2.5 samples. The mass concentrations of Σ-hydroxy-pyrene, Σ-dihydroxy-anthraquinone, and Σ-dihydroxy-benzo(a)pyrene on the collected PM2.5 samples ranged from 0.125 to 0.136 ng/m(3), 0.039 to 0.052 ng/m(3), and 0.053 to 0.072 ng/m(3), respectively. This work extends the application field of N-CDs and provides a good candidate of matrix for MALDI-TOF MS detection of environmental pollutants.
Collapse
Affiliation(s)
- Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, China
| | - Yong Li
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, China
| | - Ruijin Li
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, China
| | - Zongwei Cai
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, China
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, China
| |
Collapse
|
100
|
Huang L, Tang X, Zhang W, Jiang R, Chen D, Zhang J, Zhong H. Imaging of Endogenous Metabolites of Plant Leaves by Mass Spectrometry Based on Laser Activated Electron Tunneling. Sci Rep 2016; 6:24164. [PMID: 27053227 PMCID: PMC4823709 DOI: 10.1038/srep24164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 03/22/2016] [Indexed: 02/06/2023] Open
Abstract
A new mass spectrometric imaging approach based on laser activated electron tunneling (LAET) was described and applied to analysis of endogenous metabolites of plant leaves. LAET is an electron-directed soft ionization technique. Compressed thin films of semiconductor nanoparticles of bismuth cobalt zinc oxide were placed on the sample plate for proof-of-principle demonstration because they can not only absorb ultraviolet laser but also have high electron mobility. Upon laser irradiation, electrons are excited from valence bands to conduction bands. With appropriate kinetic energies, photoexcited electrons can tunnel away from the barrier and eventually be captured by charge deficient atoms present in neutral molecules. Resultant unpaired electron subsequently initiates specific chemical bond cleavage and generates ions that can be detected in negative ion mode of the mass spectrometer. LAET avoids the co-crystallization process of routinely used organic matrix materials with analyzes in MALDI (matrix assisted-laser desorption ionization) analysis. Thus uneven distribution of crystals with different sizes and shapes as well as background peaks in the low mass range resulting from matrix molecules is eliminated. Advantages of LAET imaging technique include not only improved spatial resolution but also photoelectron capture dissociation which produces predictable fragment ions.
Collapse
Affiliation(s)
- Lulu Huang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xuemei Tang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Wenyang Zhang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Ruowei Jiang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Disong Chen
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Juan Zhang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Hongying Zhong
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|