51
|
Johnson A, Karimi A, Luedtke NW. Enzymatic Incorporation of a Coumarin–Guanine Base Pair. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aaron Johnson
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Ashkan Karimi
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Nathan W. Luedtke
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
52
|
Shanmugasundaram M, Senthilvelan A, Kore AR. C-5 Substituted Pyrimidine Nucleotides/Nucleosides: Recent Progress in Synthesis, Functionalization, and Applications. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190809124310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chemistry of C5 substituted pyrimidine nucleotide serves as a versatile molecular
biology probe for the incorporation of DNA/RNA that has been involved in various
molecular biology applications such as gene expression, chromosome, and mRNA
fluorescence in situ hybridization (FISH) experiment, mutation detection on arrays and
microarrays, in situ RT-PCR, and PCR. In addition to C5 substituted pyrimidine nucleotide,
C5 substituted pyrimidine nucleoside displays a broad spectrum of biological applications
such as antibacterial, antiviral and anticancer activities. This review focusses on
the recent development in the synthesis of aminoallyl pyrimidine nucleotide, aminopropargyl
pyrimidine nucleotide, fluorescent probes containing C5 substituted pyrimidine nucleotide,
2′-deoxycytidine nucleoside containing vinylsulfonamide and acrylamide modification,
C5 alkenyl, C5 alkynyl, and C5 aryl pyrimidine nucleosides through palladium-catalyzed reaction,
pyrimidine nucleoside containing triazole moiety through Click reaction, 5-isoxazol-3-yl-pyrimidine nucleoside,
C5 azide modified pyrimidine nucleoside, 2′-deoxycytidine nucleotide containing photocleavable moiety,
and uridine nucleoside containing germane and their biological applications are outlined.
Collapse
Affiliation(s)
- Muthian Shanmugasundaram
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, TX 78744-1832, United States
| | - Annamalai Senthilvelan
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, TX 78744-1832, United States
| | - Anilkumar R. Kore
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, TX 78744-1832, United States
| |
Collapse
|
53
|
Nikoomanzar A, Vallejo D, Chaput JC. Elucidating the Determinants of Polymerase Specificity by Microfluidic-Based Deep Mutational Scanning. ACS Synth Biol 2019; 8:1421-1429. [PMID: 31081325 DOI: 10.1021/acssynbio.9b00104] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Engineering polymerases to synthesize artificial genetic polymers with unique backbone structures is limited by a general lack of understanding about the structural determinants that govern substrate specificity. Here, we report a high-throughput microfluidic-based approach for mapping sequence-function relationships that combines droplet-based optical polymerase sorting with deep mutational scanning. We applied this strategy to map the finger subdomain of a replicative DNA polymerase isolated from Thermococcus kodakarensis (Kod). The enrichment profile provides an unbiased view of the ability of each mutant to synthesize threose nucleic acid, which was used as a model non-natural genetic polymer. From a single round of sorting, we discovered two cases of positive epistasis and demonstrate the near inversion of substrate specificity from a double mutant variant. This effort indicates that polymerase specificity may be governed by a small number of highly specific residues that can be elucidated by deep mutational scanning without the need for iterative rounds of directed evolution.
Collapse
Affiliation(s)
- Ali Nikoomanzar
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| | - Derek Vallejo
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| | - John C Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3958 , United States
| |
Collapse
|
54
|
Hocek M. Enzymatic Synthesis of Base-Functionalized Nucleic Acids for Sensing, Cross-linking, and Modulation of Protein-DNA Binding and Transcription. Acc Chem Res 2019; 52:1730-1737. [PMID: 31181911 DOI: 10.1021/acs.accounts.9b00195] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-DNA interactions are important in replication, transcription, repair, as well as epigenetic modifications of DNA, which involve methylation and demethylation of DNA resulting in regulation of gene expression. Understanding of these processes and chemical tools for studying and perhaps even modulating them could be of great relevance and importance not only in chemical biology but also in real diagnostics and treatment of diseases. In the past decade, we have been working on development of synthesis of base-modified 2'-deoxyribo- or ribonucleoside triphosphates (dNTPs or NTPs) and their use in enzymatic synthesis of modified nucleic acids using DNA or RNA polymerases. These synthetic and enzymatic methods are briefly summarized with focus on recent development and outlining of scope, limitations, and further challenges. The main focus of this Account is on applications of base-modified nucleic acids in sensing of protein-DNA interactions, in covalent cross-linking to DNA-binding proteins ,and in modulation of protein-DNA binding and transcription. Several environment-sensitive fluorescent nucleotides were incorporated to DNA probes which responded to protein binding by light-up, changing of color, or lifetime of fluorescence. Using a cyclodextrin-peptide transporter, fluorescent nucleotides can be transported through the cell membrane and incorporated to genomic DNA. Several dNTPs bearing reactive groups (i.e., vinylsulfonamide or chloroacetamide) were used for polymerase synthesis of DNA reactive probes which cross-link to Cys, His, or Lys in peptides or proteins. An attractive challenge is to use DNA modifications and bioorthogonal reactions in the major groove of DNA for modulation and switching of protein-DNA interactions. We have systematically explored the influence of major-groove modifications on recognition and cleavage of DNA by restriction endonucleases and constructed simple chemical switches of DNA cleavage. Systematic study of the influence of major-groove modifications on transcription with bacterial RNA polymerases revealed not only that some modified bases are tolerated, but also that the presence of 5-hydroxymethyluracil or -cytosine can even enhance the transcription (350 or 250% compared to native DNA). Based on these results, we have constructed the first chemical switch of transcription based on photocaging of hydroxymethylpyrimidines in DNA by 2-nitrobenzyl protection (transcription off), photochemical deprotection of the DNA (transcription on), and enzymatic phosphorylation (only for 5-hydroxymethyluracil, transcription off). Although it has been so far demonstrated only in vitro, it is the proof-of-principle first step toward chemical epigenetics.
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
55
|
Finke A, Schneider A, Spreng A, Leist M, Niemeyer CM, Marx A. Functionalized DNA Hydrogels Produced by Polymerase-Catalyzed Incorporation of Non-Natural Nucleotides as a Surface Coating for Cell Culture Applications. Adv Healthc Mater 2019; 8:e1900080. [PMID: 30861332 DOI: 10.1002/adhm.201900080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 12/17/2022]
Abstract
Cells from most mammalian tissues require an extracellular matrix (ECM) for attachment and proper functioning. In vitro cell cultures therefore must be supplied with an ECM that satisfies both the biological needs of cells used and the technical demands of the experimental setup. The latter include matrix functionalization for cell attachment, favorable microscopic properties, and affordable production costs. Here, modified DNA materials are therefore developed as an ECM mimic. The material is prepared by chemical cross-linking of commonly available salmon sperm DNA. To render the material cell-compatible, it is enzymatically modified by DNA polymerase I to provide versatile attachment points for peptides, proteins, or antibodies via a modular strategy. Different cells specifically attach to the material, even from mixed populations. They can be mildly released for further cell studies by DNase I-mediated digestion of the DNA material. Additionally, neural stem cells not only attach and survive on the material but also differentiate to a neural lineage when prompted. Furthermore, the DNA material can be employed to capture and retain cells under flow conditions. The simple preparation of the DNA material and its wide scope of applications open new perspectives for various cell study challenges and medical applications.
Collapse
Affiliation(s)
- Alexander Finke
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of Konstanz Universitätsstraße 10 78464 Konstanz Germany
| | - Ann‐Kathrin Schneider
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann‐von‐Helmholtz‐Platz D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Anna‐Sophie Spreng
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of Konstanz Universitätsstraße 10 78464 Konstanz Germany
| | - Marcel Leist
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of Konstanz Universitätsstraße 10 78464 Konstanz Germany
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann‐von‐Helmholtz‐Platz D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Andreas Marx
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of Konstanz Universitätsstraße 10 78464 Konstanz Germany
| |
Collapse
|
56
|
Kropp HM, Diederichs K, Marx A. The Structure of an Archaeal B-Family DNA Polymerase in Complex with a Chemically Modified Nucleotide. Angew Chem Int Ed Engl 2019; 58:5457-5461. [PMID: 30761722 DOI: 10.1002/anie.201900315] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Archaeal B-family DNA polymerases (DNA pols) are the driving force of cutting-edge biotechnological applications like next-generation sequencing. The acceptance of chemically modified nucleotides by DNA pols is key to these technologies. Until now, no structural data have been available for these DNA pols in complex with modified substrates, which could build the basis for understanding interactions between the enzyme and the chemically modified nucleotide and for the further development of next-generation nucleotides. For the first time, we crystallized an exonuclease-deficient variant of the wild-type B-family KOD DNA pol with a modified nucleotide in a closed, ternary complex. We also crystalized the A-family DNA pol KlenTaq with the same nucleotide. The reported structural data reveal how the protein and the DNA modulate two distinct conformations of the appended moiety in the A- and B-family DNA pols and how these influence the processing of the modified nucleotide. Overall, this study provides first insight into the interplay between B-family DNA pols and relevant modified substrates.
Collapse
Affiliation(s)
- Heike M Kropp
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 7857, Konstanz, Germany
| | - Kay Diederichs
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 7857, Konstanz, Germany
| |
Collapse
|
57
|
Milisavljevič N, Perlíková P, Pohl R, Hocek M. Enzymatic synthesis of base-modified RNA by T7 RNA polymerase. A systematic study and comparison of 5-substituted pyrimidine and 7-substituted 7-deazapurine nucleoside triphosphates as substrates. Org Biomol Chem 2019; 16:5800-5807. [PMID: 30063056 DOI: 10.1039/c8ob01498a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We synthesized a small library of eighteen 5-substituted pyrimidine or 7-substituted 7-deazapurine nucleoside triphosphates bearing methyl, ethynyl, phenyl, benzofuryl or dibenzofuryl groups through cross-coupling reactions of nucleosides followed by triphosphorylation or through direct cross-coupling reactions of halogenated nucleoside triphosphates. We systematically studied the influence of the modification on the efficiency of T7 RNA polymerase catalyzed synthesis of modified RNA and found that modified ATP, UTP and CTP analogues bearing smaller modifications were good substrates and building blocks for the RNA synthesis even in difficult sequences incorporating multiple modified nucleotides. Bulky dibenzofuryl derivatives of ATP and GTP were not substrates for the RNA polymerase. In the case of modified GTP analogues, a modified procedure using a special promoter and GMP as initiator needed to be used to obtain efficient RNA synthesis. The T7 RNA polymerase synthesis of modified RNA can be very efficiently used for synthesis of modified RNA but the method has constraints in the sequence of the first three nucleotides of the transcript, which must contain a non-modified G in the +1 position.
Collapse
Affiliation(s)
- Nemanja Milisavljevič
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic.
| | | | | | | |
Collapse
|
58
|
Kropp HM, Diederichs K, Marx A. Struktur einer archaealen B‐Familien‐DNA‐Polymerase in Komplex mit einem chemisch modifizierten Nukleotid. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Heike M. Kropp
- Fachbereich Chemie und Konstanz Research School Chemical BiologyUniversität Konstanz Universitätsstraße 10 7857 Konstanz Deutschland
| | - Kay Diederichs
- Fachbereich Biologie und Konstanz Research School Chemical BiologyUniversität Konstanz Universitätsstraße 10 78457 Konstanz Deutschland
| | - Andreas Marx
- Fachbereich Chemie und Konstanz Research School Chemical BiologyUniversität Konstanz Universitätsstraße 10 7857 Konstanz Deutschland
| |
Collapse
|
59
|
Boháčová S, Ludvíková L, Poštová Slavětínská L, Vaníková Z, Klán P, Hocek M. Protected 5-(hydroxymethyl)uracil nucleotides bearing visible-light photocleavable groups as building blocks for polymerase synthesis of photocaged DNA. Org Biomol Chem 2019; 16:1527-1535. [PMID: 29431832 DOI: 10.1039/c8ob00160j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleosides, nucleotides and 2'-deoxyribonucleoside triphosphates (dNTPs) containing 5-(hydroxymethyl)uracil protected with photocleavable groups (2-nitrobenzyl-, 6-nitropiperonyl or 9-anthrylmethyl) were prepared and tested as building blocks for the polymerase synthesis of photocaged oligonucleotides and DNA. Photodeprotection (photorelease) reactions were studied in detail on model nucleoside monophosphates and their photoreaction quantum yields were determined. Photocaged dNTPs were then tested and used as substrates for DNA polymerases in primer extension or PCR. DNA probes containing photocaged or free 5-hydroxymethylU in the recognition sequence of restriction endonucleases were prepared and used for the study of photorelease of caged DNA by UV or visible light at different wavelengths. The nitropiperonyl-protected nucleotide was found to be a superior building block because the corresponding dNTP is a good substrate for DNA polymerases, and the protecting group is efficiently cleavable by irradiation by UV or visible light (up to 425 nm).
Collapse
Affiliation(s)
- Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic.
| | | | | | | | | | | |
Collapse
|
60
|
Vichier-Guerre S, Dugué L, Pochet S. 2'-Deoxyribonucleoside 5'-triphosphates bearing 4-phenyl and 4-pyrimidinyl imidazoles as DNA polymerase substrates. Org Biomol Chem 2019; 17:290-301. [PMID: 30543241 DOI: 10.1039/c8ob02464b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We developed a versatile access to a series of 4-substituted imidazole 2'-deoxynucleoside triphosphate bearing functionalized phenyl or pyrimidinyl rings. 4-Iodo-1H-imidazole was enzymatically converted into the corresponding 2'-deoxynucleoside, which was then chemically derived into its 5'-triphosphate, followed by 4-arylation via Suzuki-Miyaura coupling using (hetero)arylboronic acids. Both KF (exo-) and Deep Vent (exo-) DNA polymerases incorporated these modified nucleotides in primer-extension assays, adenine being the preferred pairing partner in the template. The 4-(3-aminophenyl)imidazole derivative (3APh) was the most efficiently inserted opposite A by KF (exo-) with only a 37-fold lower efficiency (Vmax/KM) than that of the correct dTTP. No further extension occurred after the incorporation of a single aryl-imidazole nucleotide. Interestingly, the aryl-imidazole dNTPs were found to undergo successive incorporation by calf thymus terminal deoxynucleotidyl transferase with different tailing efficiencies among this series and with a marked preference for 2APyr polymerization.
Collapse
Affiliation(s)
- Sophie Vichier-Guerre
- Unité de Chimie et Biocatalyse, Institut Pasteur, CNRS, UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
61
|
Backhouse OJ, Thacker JCR, Popelier PLA. A Re-evaluation of Factors Controlling the Nature of Complementary Hydrogen-Bonded Networks. Chemphyschem 2019; 20:555-564. [DOI: 10.1002/cphc.201801180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Oliver J. Backhouse
- Manchester Institute of Biotechnology (MIB); 131 Princess Street Manchester M1 7DN Great Britain
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL Great Britain
- Department of Physics; King's College London, Strand; London WC2R 2LS Great Britain
| | - Joseph C. R. Thacker
- Manchester Institute of Biotechnology (MIB); 131 Princess Street Manchester M1 7DN Great Britain
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL Great Britain
| | - Paul L. A. Popelier
- Manchester Institute of Biotechnology (MIB); 131 Princess Street Manchester M1 7DN Great Britain
- School of Chemistry; University of Manchester; Oxford Road Manchester M13 9PL Great Britain
| |
Collapse
|
62
|
Sarac I, Hollenstein M. Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids. Chembiochem 2019; 20:860-871. [PMID: 30451377 DOI: 10.1002/cbic.201800658] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Indexed: 12/26/2022]
Abstract
The terminal deoxynucleotidyl transferase (TdT) belongs to the X family of DNA polymerases. This unusual polymerase catalyzes the template-independent addition of random nucleotides on 3'-overhangs during V(D)J recombination. The biological function and intrinsic biochemical properties of the TdT have spurred the development of numerous oligonucleotide-based tools and methods, especially if combined with modified nucleoside triphosphates. Herein, we summarize the different applications stemming from the incorporation of modified nucleotides by the TdT. The structural, mechanistic, and biochemical properties of this polymerase are also discussed.
Collapse
Affiliation(s)
- Ivo Sarac
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
63
|
Welter M, Marx A. Preparation and Application of Enzyme-Nucleotide Conjugates. ACTA ACUST UNITED AC 2019; 10:49-71. [PMID: 30040238 DOI: 10.1002/cpch.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this unit the preparation and application of enzyme-nucleotide conjugates is depicted. First, a modified nucleoside triphosphate is synthesized bearing a long and flexible linker equipped with a thiol group. The nucleotide is then reacted with maleimide-activated horseradish peroxidase to yield an enzyme-nucleotide conjugate, which due to the long linker, can be used as a substrate by DNA polymerases in primer extension reactions. Finally, an assay based on these findings is described that provides a fast and easy nucleic acid detection and genotyping platform. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Moritz Welter
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
64
|
Zeng H, Mondal M, Song R, Zhang J, Xia B, Liu M, Zhu C, He B, Gao YQ, Yi C. Unnatural Cytosine Bases Recognized as Thymines by DNA Polymerases by the Formation of the Watson-Crick Geometry. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hu Zeng
- School of Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| | - Manas Mondal
- Institute of Theoretical and Computational Chemistry; College of Chemistry and Molecular Engineering and Biomedical Pioneering Innovation Center; Peking University; Beijing 100871 China
| | - Ruyi Song
- Institute of Theoretical and Computational Chemistry; College of Chemistry and Molecular Engineering and Biomedical Pioneering Innovation Center; Peking University; Beijing 100871 China
| | - Jun Zhang
- Institute of Theoretical and Computational Chemistry; College of Chemistry and Molecular Engineering and Biomedical Pioneering Innovation Center; Peking University; Beijing 100871 China
| | - Bo Xia
- School of Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| | - Menghao Liu
- School of Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| | - Chenxu Zhu
- School of Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| | - Bo He
- School of Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| | - Yi Qin Gao
- Institute of Theoretical and Computational Chemistry; College of Chemistry and Molecular Engineering and Biomedical Pioneering Innovation Center; Peking University; Beijing 100871 China
| | - Chengqi Yi
- School of Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| |
Collapse
|
65
|
Lapa SA, Romashova KS, Spitsyn MA, Shershov VE, Kuznetsova VE, Guseinov TO, Zasedateleva OA, Radko SP, Timofeev EN, Lisitsa AV, Chudinov AV. Preparation of Modified Combinatorial DNA Libraries via Emulsion PCR with Subsequent Strand Separation. Mol Biol 2018. [DOI: 10.1134/s0026893318060110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Zeng H, Mondal M, Song R, Zhang J, Xia B, Liu M, Zhu C, He B, Gao YQ, Yi C. Unnatural Cytosine Bases Recognized as Thymines by DNA Polymerases by the Formation of the Watson-Crick Geometry. Angew Chem Int Ed Engl 2018; 58:130-133. [DOI: 10.1002/anie.201807845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/25/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Hu Zeng
- School of Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| | - Manas Mondal
- Institute of Theoretical and Computational Chemistry; College of Chemistry and Molecular Engineering and Biomedical Pioneering Innovation Center; Peking University; Beijing 100871 China
| | - Ruyi Song
- Institute of Theoretical and Computational Chemistry; College of Chemistry and Molecular Engineering and Biomedical Pioneering Innovation Center; Peking University; Beijing 100871 China
| | - Jun Zhang
- Institute of Theoretical and Computational Chemistry; College of Chemistry and Molecular Engineering and Biomedical Pioneering Innovation Center; Peking University; Beijing 100871 China
| | - Bo Xia
- School of Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| | - Menghao Liu
- School of Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| | - Chenxu Zhu
- School of Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| | - Bo He
- School of Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| | - Yi Qin Gao
- Institute of Theoretical and Computational Chemistry; College of Chemistry and Molecular Engineering and Biomedical Pioneering Innovation Center; Peking University; Beijing 100871 China
| | - Chengqi Yi
- School of Life Sciences; Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering and Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| |
Collapse
|
67
|
Röthlisberger P, Levi-Acobas F, Sarac I, Ricoux R, Mahy JP, Herdewijn P, Marlière P, Hollenstein M. Incorporation of a minimal nucleotide into DNA. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
68
|
Güixens-Gallardo P, Zawada Z, Matyašovský J, Dziuba D, Pohl R, Kraus T, Hocek M. Brightly Fluorescent 2′-Deoxyribonucleoside Triphosphates Bearing Methylated Bodipy Fluorophore for in Cellulo Incorporation to DNA, Imaging, and Flow Cytometry. Bioconjug Chem 2018; 29:3906-3912. [DOI: 10.1021/acs.bioconjchem.8b00721] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Zbigniew Zawada
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
69
|
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Elisa Donati
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| |
Collapse
|
70
|
Matyašovský J, Pohl R, Hocek M. 2-Allyl- and Propargylamino-dATPs for Site-Specific Enzymatic Introduction of a Single Modification in the Minor Groove of DNA. Chemistry 2018; 24:14938-14941. [PMID: 30074286 PMCID: PMC6221035 DOI: 10.1002/chem.201803973] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 12/15/2022]
Abstract
A series of 2-alkylamino-2'-deoxyadenosine triphosphates (dATP) was prepared and found to be substrates for the Therminator DNA polymerase, which incorporated only one modified nucleotide into the primer. Using a template encoding for two consecutive adenines, conditions were found for incorporation of either one or two modified nucleotides. In all cases, addition of a mixture of natural dNTPs led to primer extension resulting in site-specific single modification of DNA in the minor groove. The allylamino-substituted DNA was used for the thiol-ene addition, whereas the propargylamino-DNA for the CuAAC click reaction was used to label the DNA with a fluorescent dye in the minor groove. The approach was used to construct FRET probes for detection of oligonucleotides.
Collapse
Affiliation(s)
- Ján Matyašovský
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
71
|
Balintová J, Welter M, Marx A. Antibody-nucleotide conjugate as a substrate for DNA polymerases. Chem Sci 2018; 9:7122-7125. [PMID: 30310633 PMCID: PMC6137436 DOI: 10.1039/c8sc01839a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/18/2018] [Indexed: 01/04/2023] Open
Abstract
Here we report on the development of an antibody-modified nucleotide and its sequence-selective incorporation into nascent DNA catalysed by DNA polymerases. Although the modification of the nucleotide is several orders of magnitude larger than the natural dNTP substrate and even exceeds the size of the DNA polymerase, it is well accepted by the enzyme. Moreover, the recognition of the antibody is not abolished by the conjugation but can be recognized by a secondary antibody that is conjugated to a signal-generating enzyme (i.e., horse radish peroxidase). This product can thus be exploited for a colorimetric read-out of nucleotide incorporation by the naked eye that allows detection of DNA as low as 10 amol. In future, assays like the one described herein might allow nucleic acid diagnostics at single nucleotide resolution without any laboratory equipment.
Collapse
Affiliation(s)
- J Balintová
- Department of Chemistry , University of Konstanz , Universitätsstrasse 10 , 78457 Konstanz , Germany .
| | - M Welter
- Department of Chemistry , University of Konstanz , Universitätsstrasse 10 , 78457 Konstanz , Germany .
| | - A Marx
- Department of Chemistry , University of Konstanz , Universitätsstrasse 10 , 78457 Konstanz , Germany .
| |
Collapse
|
72
|
Snapshots of a modified nucleotide moving through the confines of a DNA polymerase. Proc Natl Acad Sci U S A 2018; 115:9992-9997. [PMID: 30224478 PMCID: PMC6176618 DOI: 10.1073/pnas.1811518115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite being evolved to process the four canonical nucleotides, DNA polymerases are known to incorporate and extend from modified nucleotides, which is the key to numerous core biotechnology applications. The structural basis for postincorporation elongation remained elusive. We successfully crystallized KlenTaq DNA polymerase in six complexes, providing high-resolution snapshots of the modification “moving” from the 3′ terminus upstream to the sixth nucleotide in the primer strand. Combining these data with quantum mechanics/molecular mechanics calculations and biochemical studies elucidates how the enzyme and the modified substrate mutually modulate their conformations without compromising the enzyme’s activity. This highlights the unexpected plasticity of the system as origin of the broad substrate properties of the DNA polymerase and guide for the design of improved systems. DNA polymerases have evolved to process the four canonical nucleotides accurately. Nevertheless, these enzymes are also known to process modified nucleotides, which is the key to numerous core biotechnology applications. Processing of modified nucleotides includes incorporation of the modified nucleotide and postincorporation elongation to proceed with the synthesis of the nascent DNA strand. The structural basis for postincorporation elongation is currently unknown. We addressed this issue and successfully crystallized KlenTaq DNA polymerase in six closed ternary complexes containing the enzyme, the modified DNA substrate, and the incoming nucleotide. Each structure shows a high-resolution snapshot of the elongation of a modified primer, where the modification “moves” from the 3′-primer terminus upstream to the sixth nucleotide in the primer strand. Combining these data with quantum mechanics/molecular mechanics calculations and biochemical studies elucidates how the enzyme and the modified substrate mutually modulate their conformations without compromising the enzyme’s activity significantly. The study highlights the plasticity of the system as origin of the broad substrate properties of DNA polymerases and facilitates the design of improved systems.
Collapse
|
73
|
Whitfield CJ, Little RC, Khan K, Ijiro K, Connolly BA, Tuite EM, Pike AR. Self-Priming Enzymatic Fabrication of Multiply Modified DNA. Chemistry 2018; 24:15267-15274. [PMID: 29931815 DOI: 10.1002/chem.201801976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/19/2018] [Indexed: 12/15/2022]
Abstract
The self-priming synthesis of multiply modified DNA by the extension of repeating unit duplex "oligoseeds" provides a source of versatile DNA. Sterically-demanding nucleotides 5-Br-dUTP, 7-deaza-7-I-dATP, 6-S-dGTP, 5-I-dCTP as well as 5-(octadiynyl)-dCTP were incorporated into two extending oligoseeds; [GATC]5 /[GATC]5 and [A4 G]4 /[CT4 ]4 . The products contained modifications on one or both strands of DNA, demonstrating their recognition by the polymerase as both template (reading) and substrate (writing). Nucleobase modifications that lie in the major groove were reliably read and written by the polymerase during the extension reaction, even when bulky or in contiguous sequences. Repeat sequence DNA over 500 bp long, bearing four different modified units was produced by this method. The number, position and type of modification, as well as the overall length of the DNA can be controlled to yield designer DNA that offers sequence-determined sites for further chemical adaptations, targeted small molecule binding studies, or sensing and sequencing applications.
Collapse
Affiliation(s)
- Colette J Whitfield
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Rachel C Little
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kasid Khan
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Bernard A Connolly
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Eimer M Tuite
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Andrew R Pike
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
74
|
Milo A, Pérez Temprano MH. Highlights from the 53rd EUCHEM conference on stereochemistry, Bürgenstock, Switzerland, May 2018. Chem Commun (Camb) 2018; 54:10014-10020. [PMID: 30152490 DOI: 10.1039/c8cc90368a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When we first heard of the Bürgenstock conference it was described as a guarded meeting in a remote location, undisturbed by modern diversions, with mysterious customs and a secret handshake. All of these rumors turned out to be completely true. We arrived at an undisclosed location and three young men, who knew our names upon sight, greeted us and gave us an agenda in which we discovered the identity of the speakers, moderators and other participants. We then had a few moments to bask in their glory before being treated to a delicious dose of chemistry. During the banquet, before the first lecture, this year's president, Prof. Ilan Marek, gave the opening address from a balcony reserved only for these meetings, rumors hold that it stands vacant all year in anticipation. He mentioned several of the traditions of the meeting, which we are not allowed to share of course, and described the joy of putting together this year's exciting program with the help of an exceptional organizing committee that included Prof. Cristina Nevado, Prof. Christian Bochet, Dr Fabrice Gallou and Dr Alain De Mesmaeker. He also introduced this year's guest of honor, Prof. Yitzhak Apeloig, and wished the best luck to the current Vice President and future President, Prof. Véronique Gouverneur, not only for preparing the 54th Bürgenstock Conference, but also with her duty this year, maintaining the good weather for the whole week. Although the official title of the conference is the EUCHEM conference on stereochemistry, the topics covered span a broad range of cutting edge chemical transformations and insights, which can appeal to anyone working in chemistry and its interfaces with other disciplines. We will briefly describe each of the talks following one of our favorite citable quotes from these inspiring speakers.
Collapse
Affiliation(s)
- Anat Milo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | |
Collapse
|
75
|
Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv Drug Deliv Rev 2018; 134:3-21. [PMID: 29626546 DOI: 10.1016/j.addr.2018.04.007] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of tightly binding to specific targets. These functional nucleic acids are obtained by an in vitro Darwinian evolution method coined SELEX (Systematic Evolution of Ligands by EXponential enrichment). Compared to their proteinaceous counterparts, aptamers offer a number of advantages including a low immunogenicity, a relative ease of large-scale synthesis at affordable costs with little or no batch-to-batch variation, physical stability, and facile chemical modification. These alluring properties have propelled aptamers into the forefront of numerous practical applications such as the development of therapeutic and diagnostic agents as well as the construction of biosensing platforms. However, commercial success of aptamers still proceeds at a weak pace. The main factors responsible for this delay are the susceptibility of aptamers to degradation by nucleases, their rapid renal filtration, suboptimal thermal stability, and the lack of functional group diversity. Here, we describe the different chemical methods available to mitigate these shortcomings. Particularly, we describe the chemical post-SELEX processing of aptamers to include functional groups as well as the inclusion of modified nucleoside triphosphates into the SELEX protocol. These methods will be illustrated with successful examples of chemically modified aptamers used as drug delivery systems, in therapeutic applications, and as biosensing devices.
Collapse
|
76
|
Gu R, Oweida T, Yingling YG, Chilkoti A, Zauscher S. Enzymatic Synthesis of Nucleobase-Modified Single-Stranded DNA Offers Tunable Resistance to Nuclease Degradation. Biomacromolecules 2018; 19:3525-3535. [PMID: 30011192 DOI: 10.1021/acs.biomac.8b00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We synthesized long, nucleobase-modified, single-stranded DNA (ssDNA) using terminal deoxynucleotidyl transferase (TdT) enzymatic polymerization. Specifically, we investigated the effect of unnatural nucleobase size and incorporation density on ssDNA resistance to exo- and endonuclease degradation. We discovered that increasing the size and density of unnatural nucleobases enhances ssDNA resistance to degradation in the presence of exonuclease I, DNase I, and human serum. We also studied the mechanism of this resistance enhancement using molecular dynamics simulations. Our results show that the presence of unnatural nucleobases in ssDNA decreases local chain flexibility and hampers nuclease access to the ssDNA backbone, which hinders nuclease binding to ssDNA and slows its degradation. Our discoveries suggest that incorporating nucleobase-modified nucleotides into ssDNA, using enzymatic polymerization, is an easy and efficient strategy to prolong and tune the half-life of DNA-based materials in nucleases-containing environments.
Collapse
Affiliation(s)
| | - Thomas Oweida
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | | | | |
Collapse
|
77
|
Flamme M, Clarke E, Gasser G, Hollenstein M. Applications of Ruthenium Complexes Covalently Linked to Nucleic Acid Derivatives. Molecules 2018; 23:E1515. [PMID: 29932443 PMCID: PMC6099586 DOI: 10.3390/molecules23071515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
Oligonucleotides are biopolymers that can be easily modified at various locations. Thereby, the attachment of metal complexes to nucleic acid derivatives has emerged as a common pathway to improve the understanding of biological processes or to steer oligonucleotides towards novel applications such as electron transfer or the construction of nanomaterials. Among the different metal complexes coupled to oligonucleotides, ruthenium complexes, have been extensively studied due to their remarkable properties. The resulting DNA-ruthenium bioconjugates have already demonstrated their potency in numerous applications. Consequently, this review focuses on the recent synthetic methods developed for the preparation of ruthenium complexes covalently linked to oligonucleotides. In addition, the usefulness of such conjugates will be highlighted and their applications from nanotechnologies to therapeutic purposes will be discussed.
Collapse
Affiliation(s)
- Marie Flamme
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Emma Clarke
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
78
|
Krömer M, Bártová K, Raindlová V, Hocek M. Synthesis of Dihydroxyalkynyl and Dihydroxyalkyl Nucleotides as Building Blocks or Precursors for Introduction of Diol or Aldehyde Groups to DNA for Bioconjugations. Chemistry 2018; 24:11890-11894. [PMID: 29790604 DOI: 10.1002/chem.201802282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 01/18/2023]
Abstract
(3,4-Dihydroxybut-1-ynyl)uracil, -cytosine and -7-deazaadenine 2'-deoxyribonucleoside triphosphates (dNTPs) were prepared by direct aqueous Sonogashira cross-coupling of halogenated dNTPs with dihydroxybut-1-yne and converted to 3,4-dihydroxybutyl dNTPs through catalytic hydrogenation. Sodium periodate oxidative cleavage of dihydroxybutyl-dUTP gave the desired aliphatic aldehyde-linked dUTP, whereas the oxidative cleavage of the corresponding deazaadenine dNTP gave a cyclic aminal. All dihydroxyalkyl or -alkynyl dNTPs and the formylethyl-dUTP were good substrates for DNA polymerases and were used for synthesis of diol- or aldehyde-linked DNA. The aldehyde linked DNA was used for the labelling or bioconjugations through hydrazone formation or reductive aminations.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
79
|
Olszewska A, Pohl R, Hocek M. Trifluoroacetophenone-Linked Nucleotides and DNA for Studying of DNA-Protein Interactions by 19F NMR Spectroscopy. J Org Chem 2018; 82:11431-11439. [PMID: 28991457 DOI: 10.1021/acs.joc.7b01920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of 7-[4-(trifluoroacetyl)phenyl]-7-deazaadenine and -7-deazaguanine as well as 5-substituted uracil and cytosine 2'-deoxyribonucleosides and mono- and triphosphates were synthesized through aqueous Suzuki-Miyaura crosscoupling of halogenated nucleosides or nucleotides with 4-(trifluoroacetyl)phenylboronic acid. The modified nucleoside triphosphates were good substrates for DNA polymerases applicable in primer extension or PCR synthesis of modified oligonucleotides or DNA. Attempted cross-linking with a serine-containing protein did not proceed, however the trifluoroacetophenone group was a sensitive probe for the study of DNA-protein interactions by 19F NMR.
Collapse
Affiliation(s)
- Agata Olszewska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo namesti 2, 160 00 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo namesti 2, 160 00 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo namesti 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 12843 Prague 2, Czech Republic
| |
Collapse
|
80
|
Panattoni A, Pohl R, Hocek M. Flexible Alkyne-Linked Thymidine Phosphoramidites and Triphosphates for Chemical or Polymerase Synthesis and Fast Postsynthetic DNA Functionalization through Copper-Catalyzed Alkyne–Azide 1,3-Dipolar Cycloaddition. Org Lett 2018; 20:3962-3965. [DOI: 10.1021/acs.orglett.8b01533] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Panattoni
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
81
|
Ghosh K, Perlíková P, Havlíček V, Yang C, Pohl R, Tloušťová E, Hodek J, Gurská S, Džubák P, Hajdúch M, Hocek M. Isomeric Naphtho-Fused 7-Deazapurine Nucleosides and Nucleotides: Synthesis, Biological Activity, Photophysical Properties and Enzymatic Incorporation to Nucleic Acids. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ketaki Ghosh
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 CZ-16610 Prague 6 Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 CZ-16610 Prague 6 Czech Republic
| | - Vojtěch Havlíček
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 CZ-16610 Prague 6 Czech Republic
- Department of Organic Chemistry; Faculty of Science; Charles University in Prague; Hlavova 8 CZ-12843 Prague 2 Czech Republic
| | - Chao Yang
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 CZ-16610 Prague 6 Czech Republic
- Department of Organic Chemistry; Faculty of Science; Charles University in Prague; Hlavova 8 CZ-12843 Prague 2 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 CZ-16610 Prague 6 Czech Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 CZ-16610 Prague 6 Czech Republic
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 CZ-16610 Prague 6 Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine; Palacky University and University Hospital in Olomouc; Faculty of Medicine and Dentistry; Hněvotínská 5 CZ-775 15 Olomouc Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine; Palacky University and University Hospital in Olomouc; Faculty of Medicine and Dentistry; Hněvotínská 5 CZ-775 15 Olomouc Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine; Palacky University and University Hospital in Olomouc; Faculty of Medicine and Dentistry; Hněvotínská 5 CZ-775 15 Olomouc Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 CZ-16610 Prague 6 Czech Republic
- Department of Organic Chemistry; Faculty of Science; Charles University in Prague; Hlavova 8 CZ-12843 Prague 2 Czech Republic
| |
Collapse
|
82
|
Röthlisberger P, Levi-Acobas F, Sarac I, Baron B, England P, Marlière P, Herdewijn P, Hollenstein M. Facile immobilization of DNA using an enzymatic his-tag mimic. Chem Commun (Camb) 2018; 53:13031-13034. [PMID: 29164188 DOI: 10.1039/c7cc07207d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Methods for immobilization of DNA on solid supports are in high demand. Herein, we present a generally applicable enzymatic method for the immobilization of DNA without any prior chemical derivatization. This strategy relies on the homopolymerization of the modified triphosphate dImTP by the TdT. The resulting enzymatic his-tag mimic ensures binding of DNA on Ni-NTA agarose. The usefulness of this method is highlighted by the immobilization of functional nucleic acids without impairing their specific activities.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Mei H, Chaput JC. Expanding the chemical diversity of TNA with tUTP derivatives that are substrates for a TNA polymerase. Chem Commun (Camb) 2018; 54:1237-1240. [PMID: 29340357 DOI: 10.1039/c7cc09130c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expanding the chemical diversity of threose nucleic acid (TNA) beyond the natural bases would enable the development of TNA polymers with enhanced physicochemical properties. Here, we describe a versatile approach for increasing the chemical diversity of TNA using 5-alkynyl-modified α-l-threofuranosyl uridine triphosphates that are substrates for a TNA polymerase.
Collapse
Affiliation(s)
- Hui Mei
- Departments of Pharmaceutical Sciences, Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3958, USA.
| | | |
Collapse
|
84
|
Wang Y, Ng N, Liu E, Lam CH, Perrin DM. Systematic study of constraints imposed by modified nucleoside triphosphates with protein-like side chains for use in in vitro selection. Org Biomol Chem 2018; 15:610-618. [PMID: 27942671 DOI: 10.1039/c6ob02335e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Successful selection of modified DNAzymes depends on the potential for modified nucleoside triphosphates (dNTPs) to replace their unmodified counterparts in enzyme catalyzed primer extension reactions and, once incorporated, to serve as template bases for information transfer prior to PCR amplification. To date, the most densely modified DNAzymes have been selected from three modified dNTPs: 8-histaminyl-deoxyadenosine (dAimTP), 5-guanidinoallyl-deoxyuridine (dUgaTP), and 5-aminoallyl-deoxycytidine (dCaaTP) to provide several RNA-cleaving DNAzymes with greatly enhanced rate constants compared to unmodified counterparts. Here we report biophysical and enzymatic properties of these three modified nucleosides in the context of specific oligonucleotide sequences to understand how these three modified nucleobases function in combinatorial selection. The base-pairing abilities of oligonucleotides bearing one or three modified nucleosides were investigated by thermal denaturation studies and as templates for enzymatic polymerization with both modified and unmodified dNTPs. While we address certain shortcomings in the use of modified dNTPs, we also provide key evidence of faithful incorporation and enzymatic read-out, which strongly supports their continued use in in vitro selection.
Collapse
Affiliation(s)
- Yajun Wang
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| | - Nicole Ng
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| | - Erkai Liu
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| | - Curtis H Lam
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| | - David M Perrin
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, BC, V6T-1Z1 Canada.
| |
Collapse
|
85
|
Simonova A, Havran L, Pohl R, Fojta M, Hocek M. Phenothiazine-linked nucleosides and nucleotides for redox labelling of DNA. Org Biomol Chem 2018; 15:6984-6996. [PMID: 28792547 DOI: 10.1039/c7ob01439b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleosides and 2'-deoxyribonucleoside triphosphates (dNTPs) bearing phenothiazine (PT) attached to a nucleobase (cytosine or 7-deazaadenine) either directly or through an acetylene linker were prepared through Suzuki or Sonogashira cross-coupling and triphosphorylation, and were studied as building blocks for polymerase construction of modified DNA. The directly PT-substituted dNTPs were better substrates for polymerases than the alkyne-linked dNTPs but all of them were used in enzymatic synthesis of DNA using primer extension, nicking enzyme amplification, PCR or 3'-tail labelling by terminal deoxynucleotidyl transferase. The phenothiazine served as an oxidizable redox label (giving two analytically useful signals of oxidation on electrode) for nucleosides and DNA and was also used in orthogonal combination with previously developed benzofurazane or nitrophenyl labels for redox coding of DNA bases. Therefore, the title PT-linked dNTPs are useful additions to the portfolio of nucleotides for enzymatic synthesis of redox-labelled DNA for electrochemical analysis.
Collapse
Affiliation(s)
- Anna Simonova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
86
|
Botha F, Slavíčková M, Pohl R, Hocek M. Copper-mediated arylsulfanylations and arylselanylations of pyrimidine or 7-deazapurine nucleosides and nucleotides. Org Biomol Chem 2018; 14:10018-10022. [PMID: 27722411 DOI: 10.1039/c6ob01917j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The syntheses of 5-arylsulfanyl- or 5-arylselanylpyrimidine and 7-arylsulfanyl- or 7-arylselanyl-7-deazapurine nucleosides and nucleotides were developed by the Cu-mediated sulfanylations or selanylations of the corresponding 5-iodopyrimidine or 7-iodo-7-deazapurine nucleosides or nucleotides with diaryldisulfides or -diselenides. The reactions were also applicable for direct modifications of 2'-deoxycytidine triphosphate and the resulting 5-arylsulfanyl or 5-arylselanyl-dCTP served as substrates for the polymerase synthesis of modified DNA bearing arylsulfanyl or arylselanyl groups in the major groove.
Collapse
Affiliation(s)
- Filip Botha
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
| | - Michaela Slavíčková
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6, Czech Republic. and Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2, Czech Republic
| |
Collapse
|
87
|
Hollenstein M. DNA Synthesis by Primer Exchange Reaction Cascades. Chembiochem 2018; 19:422-424. [PMID: 29239531 DOI: 10.1002/cbic.201700639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 12/15/2022]
Abstract
Swap and extend: The autonomous synthesis of single-stranded DNA molecules of arbitrary size and sequence composition can easily be achieved by primer exchange reaction (PER) cascades, in which the sequential polymerase-mediated extension of DNA primers is guided by catalytic hairpins. This highlight illustrates the potential of this method for applications in DNA nanotechnology.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
88
|
Boháčová S, Vaníková Z, Poštová Slavětínská L, Hocek M. Protected 2′-deoxyribonucleoside triphosphate building blocks for the photocaging of epigenetic 5-(hydroxymethyl)cytosine in DNA. Org Biomol Chem 2018; 16:5427-5432. [DOI: 10.1039/c8ob01106k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
2′-Deoxyribonucleoside triphosphates containing 5-(hydroxymethyl)cytosine protected with photocleavable groups were prepared and studied as substrates for the enzymatic synthesis of DNA containing a photocaged epigenetic 5hmC base.
Collapse
Affiliation(s)
- Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- CZ-16610 Prague 6
- Czech Republic
| | - Zuzana Vaníková
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- CZ-16610 Prague 6
- Czech Republic
- Department of Organic Chemistry
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- CZ-16610 Prague 6
- Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry
- Czech Academy of Sciences
- CZ-16610 Prague 6
- Czech Republic
- Department of Organic Chemistry
| |
Collapse
|
89
|
Chim N, Shi C, Sau SP, Nikoomanzar A, Chaput JC. Structural basis for TNA synthesis by an engineered TNA polymerase. Nat Commun 2017; 8:1810. [PMID: 29180809 PMCID: PMC5703726 DOI: 10.1038/s41467-017-02014-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/01/2017] [Indexed: 12/03/2022] Open
Abstract
Darwinian evolution experiments carried out on xeno-nucleic acid (XNA) polymers require engineered polymerases that can faithfully and efficiently copy genetic information back and forth between DNA and XNA. However, current XNA polymerases function with inferior activity relative to their natural counterparts. Here, we report five X-ray crystal structures that illustrate the pathway by which α-(l)-threofuranosyl nucleic acid (TNA) triphosphates are selected and extended in a template-dependent manner using a laboratory-evolved polymerase known as Kod-RI. Structural comparison of the apo, binary, open and closed ternary, and translocated product detail an ensemble of interactions and conformational changes required to promote TNA synthesis. Close inspection of the active site in the closed ternary structure reveals a sub-optimal binding geometry that explains the slow rate of catalysis. This key piece of information, which is missing for all naturally occurring archaeal DNA polymerases, provides a framework for engineering new TNA polymerase variants. The laboratory-evolved polymerase Kod-RI catalyzes α-L-threose nucleic acid (TNA) synthesis. Here, the authors present Kod-RI crystal structures that give insights into how TNA triphosphates are selected and extended in a template-dependent manner, which will help to engineer improved TNA polymerases for synthetic genetics applications.
Collapse
Affiliation(s)
- Nicholas Chim
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA
| | - Changhua Shi
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA
| | - Sujay P Sau
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA
| | - Ali Nikoomanzar
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA
| | - John C Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA.
| |
Collapse
|
90
|
Nikoomanzar A, Dunn MR, Chaput JC. Evaluating the Rate and Substrate Specificity of Laboratory Evolved XNA Polymerases. Anal Chem 2017; 89:12622-12625. [DOI: 10.1021/acs.analchem.7b03807] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ali Nikoomanzar
- Departments of Pharmaceutical Sciences,
Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - Matthew R. Dunn
- Departments of Pharmaceutical Sciences,
Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| | - John C. Chaput
- Departments of Pharmaceutical Sciences,
Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3958, United States
| |
Collapse
|
91
|
Schaich MA, Smith MR, Cloud AS, Holloran SM, Freudenthal BD. Structures of a DNA Polymerase Inserting Therapeutic Nucleotide Analogues. Chem Res Toxicol 2017; 30:1993-2001. [PMID: 28862449 PMCID: PMC6494084 DOI: 10.1021/acs.chemrestox.7b00173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Members of the nucleoside analogue class of cancer therapeutics compete with canonical nucleotides to disrupt numerous cellular processes, including nucleotide homeostasis, DNA and RNA synthesis, and nucleotide metabolism. Nucleoside analogues are triphosphorylated and subsequently inserted into genomic DNA, contributing to the efficacy of therapeutic nucleosides in multiple ways. In some cases, the altered base acts as a mutagen, altering the DNA sequence to promote cellular death; in others, insertion of the altered nucleotide triggers DNA repair pathways, which produce lethal levels of cytotoxic intermediates such as single and double stranded DNA breaks. As a prerequisite to many of these biological outcomes, the modified nucleotide must be accommodated in the DNA polymerase active site during nucleotide insertion. Currently, the molecular contacts that mediate DNA polymerase insertion of modified nucleotides remain unknown for multiple therapeutic compounds, despite decades of clinical use. To determine how modified bases are inserted into duplex DNA, we used mammalian DNA polymerase β (pol β) to visualize the structural conformations of four therapeutically relevant modified nucleotides, 6-thio-2'-deoxyguanosine-5'-triphosphate (6-TdGTP), 5-fluoro-2'-deoxyuridine-5'-triphosphate (5-FdUTP), 5-formyl-deoxycytosine-5'-triphosphate (5-FodCTP), and 5-formyl-deoxyuridine-5'-triphosphate (5-FodUTP). Together, the structures reveal a pattern in which the modified nucleotides utilize Watson-Crick base pairing interactions similar to that of unmodified nucleotides. The nucleotide modifications were consistently positioned in the major groove of duplex DNA, accommodated by an open cavity in pol β. These results provide novel information for the rational design of new therapeutic nucleoside analogues and a greater understanding of how modified nucleotides are tolerated by polymerases.
Collapse
Affiliation(s)
| | | | | | | | - Bret D. Freudenthal
- Corresponding Author 4015 Wahl Hall West, Laboratory of Genome Maintenance and Structural Biology, Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center Kansas City, Kansas 66160. Phone: 913-588-5560,
| |
Collapse
|
92
|
Recent progress in dissecting molecular recognition by DNA polymerases with non-native substrates. Curr Opin Chem Biol 2017; 41:43-49. [PMID: 29096323 DOI: 10.1016/j.cbpa.2017.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/05/2017] [Indexed: 11/22/2022]
Abstract
DNA polymerases must discriminate the correct Watson-Crick base pair-forming deoxynucleoside triphosphate (dNTP) substrate from three other dNTPs and additional triphosphates found in the cell. The rarity of misincorporations in vivo, then, belies the high tolerance for dNTP analogs observed in vitro. Advances over the last 10 years in single-molecule fluorescence and electronic detection of dNTP analog incorporation enable exploration of the mechanism and limits to base discrimination by DNA polymerases. Such studies reveal transient motions of DNA polymerase during substrate recognition and mutagenesis in the context of erroneous dNTP incorporation that can lead to evolution and genetic disease. Further improvements in time resolution and noise reduction of single-molecule studies will uncover deeper mechanistic understanding of this critical, first step in evolution.
Collapse
|
93
|
Balintová J, Simonova A, Białek-Pietras M, Olejniczak A, Lesnikowski ZJ, Hocek M. Carborane-linked 2'-deoxyuridine 5'-O-triphosphate as building block for polymerase synthesis of carborane-modified DNA. Bioorg Med Chem Lett 2017; 27:4786-4788. [PMID: 29017785 DOI: 10.1016/j.bmcl.2017.09.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/13/2017] [Accepted: 09/30/2017] [Indexed: 11/16/2022]
Abstract
5-[(p-Carborane-2-yl)ethynyl]-2'-deoxyuridine 5'-O-triphosphate was synthesized and used as a good substrate in enzymatic construction of carborane-modified DNA or oligonucleotides containing up to 21 carborane moieties in primer extension reactions by DNA polymerases.
Collapse
Affiliation(s)
- Jana Balintová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Anna Simonova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | - Magdalena Białek-Pietras
- Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Molecular Virology and Biological Chemistry, 106 Lodowa St., Lodz 93-232, Poland
| | - Agnieszka Olejniczak
- Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Molecular Virology and Biological Chemistry, 106 Lodowa St., Lodz 93-232, Poland
| | - Zbigniew J Lesnikowski
- Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Molecular Virology and Biological Chemistry, 106 Lodowa St., Lodz 93-232, Poland.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic.
| |
Collapse
|
94
|
Kong D, Yeung W, Hili R. In Vitro Selection of Diversely Functionalized Aptamers. J Am Chem Soc 2017; 139:13977-13980. [PMID: 28938065 DOI: 10.1021/jacs.7b07241] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We describe the application of T4 DNA ligase-catalyzed DNA templated oligonucleotide polymerization toward the evolution of a diversely functionalized nucleic acid aptamer for human α-thrombin. Using a 256-membered ANNNN comonomer library comprising 16 sublibraries modified with different functional groups, a highly functionalized aptamer for thrombin was raised with a dissociation constant of 1.6 nM. The aptamer was found to be selective for thrombin and required the modifications for binding affinity. This study demonstrates the most differentially functionalized nucleic acid aptamer discovered by in vitro selection and should enable the future exploration of functional group dependence during the evolution of nucleic acid polymer activity.
Collapse
Affiliation(s)
- Dehui Kong
- Department of Chemistry, University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| | - Wayland Yeung
- Department of Chemistry, University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| | - Ryan Hili
- Department of Chemistry, University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States.,Department Chemistry, York University , 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
95
|
Alenko A, Fleming AM, Burrows CJ. Reverse Transcription Past Products of Guanine Oxidation in RNA Leads to Insertion of A and C opposite 8-Oxo-7,8-dihydroguanine and A and G opposite 5-Guanidinohydantoin and Spiroiminodihydantoin Diastereomers. Biochemistry 2017; 56:5053-5064. [PMID: 28845978 DOI: 10.1021/acs.biochem.7b00730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species, both endogenous and exogenous, can damage nucleobases of RNA and DNA. Among the nucleobases, guanine has the lowest redox potential, making it a major target of oxidation. Although RNA is more prone to oxidation than DNA is, oxidation of guanine in RNA has been studied to a significantly lesser extent. One of the reasons for this is that many tools that were previously developed to study oxidation of DNA cannot be used on RNA. In the study presented here, the lack of a method for seeking sites of modification in RNA where oxidation occurs is addressed. For this purpose, reverse transcription of RNA containing major products of guanine oxidation was used. Extension of a DNA primer annealed to an RNA template containing 8-oxo-7,8-dihydroguanine (OG), 5-guanidinohydantoin (Gh), or the R and S diastereomers of spiroiminodihydantoin (Sp) was studied under standing start conditions. SuperScript III reverse transcriptase is capable of bypassing these lesions in RNA inserting predominantly A opposite OG, predominantly G opposite Gh, and almost an equal mixture of A and G opposite the Sp diastereomers. These data should allow RNA sequencing of guanine oxidation products by following characteristic mutation signatures formed by the reverse transcriptase during primer elongation past G oxidation sites in the template RNA strand.
Collapse
Affiliation(s)
- Anton Alenko
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
96
|
Wu WJ, Yang W, Tsai MD. How DNA polymerases catalyse replication and repair with contrasting fidelity. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0068] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
97
|
Chemical Modifications of Nucleic Acid Aptamers for Therapeutic Purposes. Int J Mol Sci 2017; 18:ijms18081683. [PMID: 28767098 PMCID: PMC5578073 DOI: 10.3390/ijms18081683] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 01/16/2023] Open
Abstract
Nucleic acid aptamers have minimal immunogenicity, high chemical synthesis production, low cost and high chemical stability when compared with antibodies. However, the susceptibility to nuclease degradation, rapid excretion through renal filtration and insufficient binding affinity hindered their development as drug candidates for therapeutic applications. In this review, we will discuss methods to conquer these challenges and highlight recent developments of chemical modifications and technological advances that may enable early aptamers to be translated into clinical therapeutics.
Collapse
|
98
|
Mass-spectrometry analysis of modifications at DNA termini induced by DNA polymerases. Sci Rep 2017; 7:6674. [PMID: 28751641 PMCID: PMC5532294 DOI: 10.1038/s41598-017-06136-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/01/2017] [Indexed: 12/27/2022] Open
Abstract
Non-natural nucleotide substrates are widely used in the enzymatic synthesis of modified DNA. The terminal activity of polymerases in the presence of modified nucleotides is an important, but poorly characterized, aspect of enzymatic DNA synthesis. Here, we studied different types of polymerase activity at sequence ends using extendable and non-extendable synthetic models in the presence of the Cy5-dUTP analog Y. In primer extension reactions with selected exonuclease-deficient polymerases, nucleotide Y appeared to be a preferential substrate for non-templated 3'-tailing, as determined by MALDI mass-spectrometry and gel-electrophoresis. This result was further confirmed by the 3'-tailing of a non-extendable hairpin oligonucleotide model. Additionally, DNA polymerases induce an exchange of the 3' terminal thymidine for a non-natural nucleotide via pyrophosphorolysis in the presence of inorganic pyrophosphate. In primer extension reactions, the proofreading polymerases Vent, Pfu, and Phusion did not support the synthesis of Y-modified primer strand. Nevertheless, Pfu and Phusion polymerases were shown to initiate terminal nucleotide exchange at the template. Unlike non-proofreading polymerases, these two enzymes recruit 3'-5' exonuclease functions to cleave the 3' terminal thymidine in the absence of pyrophosphate.
Collapse
|
99
|
Betz K, Kimoto M, Diederichs K, Hirao I, Marx A. Strukturelle Studie zur Erweiterung des genetischen Codes durch ein artifizielles Nucleobasenpaar. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Karin Betz
- Fachbereiche Chemie und Biologie und Konstanz Research School Chemical Biology Universität Konstanz Universitätsstraße 10 78464 Konstanz Deutschland
| | - Michiko Kimoto
- Institute of Bioengineering and Nanotechnology 31 Biopolis Way, The Nanos, #09-01 138669 Singapore Singapur
- RIKEN Center for Life Science Technologies 1–7 22 Suehiro-cho, Tsurumi-ku, Yokohama Kanagawa 230-0045 Japan
| | - Kay Diederichs
- Fachbereiche Chemie und Biologie und Konstanz Research School Chemical Biology Universität Konstanz Universitätsstraße 10 78464 Konstanz Deutschland
| | - Ichiro Hirao
- Institute of Bioengineering and Nanotechnology 31 Biopolis Way, The Nanos, #09-01 138669 Singapore Singapur
- RIKEN Center for Life Science Technologies 1–7 22 Suehiro-cho, Tsurumi-ku, Yokohama Kanagawa 230-0045 Japan
| | - Andreas Marx
- Fachbereiche Chemie und Biologie und Konstanz Research School Chemical Biology Universität Konstanz Universitätsstraße 10 78464 Konstanz Deutschland
| |
Collapse
|
100
|
Betz K, Kimoto M, Diederichs K, Hirao I, Marx A. Structural Basis for Expansion of the Genetic Alphabet with an Artificial Nucleobase Pair. Angew Chem Int Ed Engl 2017; 56:12000-12003. [DOI: 10.1002/anie.201704190] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Karin Betz
- Departments of Chemistry and Biology and Konstanz Research School Chemical Biology Universität Konstanz Universitätsstrasse 10 78464 Konstanz Germany
| | - Michiko Kimoto
- Institute of Bioengineering and Nanotechnology 31 Biopolis Way, The Nanos, #09-01 138669 Singapore Singapore
- RIKEN Center for Life Science Technologies 1–7 22 Suehiro-cho, Tsurumi-ku, Yokohama Kanagawa 230-0045 Japan
| | - Kay Diederichs
- Departments of Chemistry and Biology and Konstanz Research School Chemical Biology Universität Konstanz Universitätsstrasse 10 78464 Konstanz Germany
| | - Ichiro Hirao
- Institute of Bioengineering and Nanotechnology 31 Biopolis Way, The Nanos, #09-01 138669 Singapore Singapore
- RIKEN Center for Life Science Technologies 1–7 22 Suehiro-cho, Tsurumi-ku, Yokohama Kanagawa 230-0045 Japan
| | - Andreas Marx
- Departments of Chemistry and Biology and Konstanz Research School Chemical Biology Universität Konstanz Universitätsstrasse 10 78464 Konstanz Germany
| |
Collapse
|