51
|
Guo D, Liu Y, Ji H, Wang CC, Chen B, Shen C, Li F, Wang Y, Lu P, Liu W. Silicate-Enhanced Heterogeneous Flow-Through Electro-Fenton System Using Iron Oxides under Nanoconfinement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4045-4053. [PMID: 33625227 DOI: 10.1021/acs.est.1c00349] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a silicate-enhanced flow-through electro-Fenton system with a nanoconfined catalyst was rationally designed and demonstrated for the highly efficient, rapid, and selective degradation of antibiotic tetracycline. The key active component of this system is the Fe2O3 nanoparticle filled carbon nanotube (Fe2O3-in-CNT) filter. Under an electric field, this composite filter enabled in situ H2O2 generation, which was converted to reactive oxygen species accompanied by the redox cycling of Fe3+/Fe2+. The presence of the silicate electrolyte significantly boosted the H2O2 yield by preventing the O-O bond dissociation of the adsorbed OOH*. Compared with the surface coated Fe2O3 on the CNT (Fe2O3-out-CNT) filter, the Fe2O3-in-CNT filter demonstrated 1.65 times higher kL value toward the degradation of the antibiotic tetracycline. Electron paramagnetic resonance and radical quenching tests synergistically verified that the dominant radical species was the 1O2 or HO· in the confined Fe2O3-in-CNT or unconfined Fe2O3-out-CNT system, respectively. The flow-through configuration offered improved tetracycline degradation kinetics, which was 5.1 times higher (at flow rate of 1.5 mL min-1) than that of a conventional batch reactor. Liquid chromatography-mass spectrometry measurements and theoretical calculations suggested reduced toxicity of fragments of tetracycline formed. This study provides a novel strategy by integrating state-of-the-art material science, Fenton chemistry, and microfiltration technology for environmental remediation.
Collapse
Affiliation(s)
- Dongli Guo
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Haodong Ji
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yongxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ping Lu
- Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
52
|
Alayande AB, Goh K, Son M, Kim CM, Chae KJ, Kang Y, Jang J, Kim IS, Yang E. Recent Progress in One- and Two-Dimensional Nanomaterial-Based Electro-Responsive Membranes: Versatile and Smart Applications from Fouling Mitigation to Tuning Mass Transport. MEMBRANES 2020; 11:5. [PMID: 33375122 PMCID: PMC7822182 DOI: 10.3390/membranes11010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Membrane technologies are playing an ever-important role in the field of water treatment since water reuse and desalination were put in place as alternative water resources to alleviate the global water crisis. Recently, membranes are becoming more versatile and powerful with upgraded electroconductive capabilities, owing to the development of novel materials (e.g., carbon nanotubes and graphene) with dual properties for assembling into membranes and exerting electrochemical activities. Novel nanomaterial-based electrically responsive membranes have been employed with promising results for mitigating membrane fouling, enhancing membrane separation performance and self-cleaning ability, controlling membrane wettability, etc. In this article, recent progress in novel-nanomaterial-based electrically responsive membranes for application in the field of water purification are provided. Thereafter, several critical drawbacks and future outlooks are discussed.
Collapse
Affiliation(s)
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore;
| | - Moon Son
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea;
| | - Chang-Min Kim
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), Gyeonggi-do 2066, Korea;
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Korea;
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan 49112, Korea
| | - Yesol Kang
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Jaewon Jang
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - In S. Kim
- Global Desalination Research Center (GDRC), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do 53064, Korea
| |
Collapse
|
53
|
Liu Y, Gao G, Vecitis CD. Prospects of an Electroactive Carbon Nanotube Membrane toward Environmental Applications. Acc Chem Res 2020; 53:2892-2902. [PMID: 33170634 DOI: 10.1021/acs.accounts.0c00544] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rapid population growth and industrialization have driven the emergence of advanced electrochemical and membrane technologies for environmental and energy applications. Electrochemical processes have potential for chemical transformations, chloralkali disinfection, and energy storage. Membrane separations have potential for gas, fluid, and chemical purification. Electrochemical and membrane technologies are often used additively in the same unit process, e.g., the chloroalkali process where a membrane is used to separate cathodic and anodic products from scavenging each other. However, to access the maximal potential requires intimate hybridization of the two technologies into an electroactive membrane. The combination of the two discrete technologies results in a range of synergisms such as reduced footprint, increased processing kinetics, reduced fouling, and increased energy efficiency.Due to their high specific surface area, excellent electric conductivity, and desirable robustness, 1D carbon nanotubes (CNTs) hold promise for many applications over a range of industry sectors such as a base material for electrodes and membranes. Importantly, CNT morphology and surface chemistry can be rationally modified and fine-tuning of these CNT physicochemical properties can enhance their functionality toward practical applications. The CNT 1D form allows assembly of a stable thin-film fibrous network by a variety of facile techniques. These CNT networks have pore sizes in the range of 10-500 nm (dpore ∼ 6-8dCNT) and thicknesses of 10-200 μm, both similar to those of classical polymer membranes, thus allowing for straightforward incorporation into commercial membrane devices modified for electroactivity inclusion.In this Account, CNTs and their composites are used as model electroactive porous materials to exemplify the design strategies and environmental applications of emerging electroactive membrane technology. The Account begins with a brief summary of the electroactive membrane design principles and flow processes developed by our groups. After the methodology section, a detailed discussion is provided on the underlying physical-chemical mechanisms that govern the electroactive membrane technology. Then we summarize our findings on the rational design of several flow-through electrochemical CNT filtration systems focused on either anodic oxidation reactions or cathodic reduction reactions. Subsequently, we discuss a recently discovered electrochemical valence-state-regulation strategy that is capable to detoxify and sequester heavy metal ions. Finally, we conclude the Account with our perspectives toward future development of the electroactive membrane technology.
Collapse
Affiliation(s)
- Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620 China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092 China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
54
|
Li M, Zuo K, Liang S, Xiao K, Liang P, Wang X, Huang X. Electrically Tuning Ultrafiltration Behavior for Efficient Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11536-11545. [PMID: 32841015 DOI: 10.1021/acs.est.0c02441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conventional ultrafiltration (UF) technology suffers from membrane fouling and limited separation performance. This work demonstrates a novel electrical tuning strategy to improve the separation efficiency of the UF process. An electrically enhanced UF (EUF) system with two sets of oppositely placed membrane-electrode modules was set up. A series of multicycle treatment experiments were conducted to reveal the performance and tuning mechanism of the EUF system. The applied electrical tuning operation brought about an up to 68% reduction of average transmembrane pressure increasing rate (Rp), indicating a strong capability in inhibiting membrane fouling. This fouling reduction can be mainly ascribed to the applied electrophoretic force, changes in solution chemistry, and generation of peroxide, which repulses foulants away from the membrane, hampers foulant adsorption owing to enhanced electrostatic repulsion, and degrades foulants, respectively. The 1.2 V voltage was identified as an effective voltage for stably inhibiting membrane fouling. Besides, the electrical tuning operation led to an up to ∼32% increase in foulant retention rate (φ) owing to both non-Faradaic effects (including electrosorption and electrophoretic repulsion) and Faradaic oxidative degradation. Moreover, the electrical tuning operation allowed a remarkable desalination capability with a significantly higher desalination rate and an up to ∼43% greater salt adsorption capacity as compared with a conventional capacitive deionization process. Additionally, the EUF system achieved a good performance in removing heavy metals (Ag, Cu, Pb, Se, and Sb). The overall enhanced EUF performance suggests promising prospects for practical applications.
Collapse
Affiliation(s)
- Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, P. R. China
| | - Kuichang Zuo
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, P. R. China
| | - Shuai Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, P. R. China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
55
|
Guo D, Liu Y. Singlet Oxygen-Mediated Electrochemical Filter for Selective and Rapid Degradation of Organic Compounds. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dongli Guo
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
56
|
Sun Q, Aguila B, Song Y, Ma S. Tailored Porous Organic Polymers for Task-Specific Water Purification. Acc Chem Res 2020; 53:812-821. [PMID: 32281372 DOI: 10.1021/acs.accounts.0c00007] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Industrial Revolution has resulted in social and economic improvements, but unfortunately, with the development of manufacturing and mining, water sources have been pervaded with contaminants, putting Earth's freshwater supply in peril. Therefore, the segregation of pollutants-such as radionuclides, heavy metals, and oil spills-from water streams, has become a pertinent problem. Attempts have been made to extract these pollutants through chemical precipitation, sorbents, and membranes. The limitations of the current remediation methods, including the generation of a considerable volume of chemical sludge as well as low uptake capacity and/or selectivity, actuate the need for materials innovation. These insufficiencies have provoked our interest in the exploration of porous organic polymers (POPs) for water treatment. This category of porous material has been at the forefront of materials research due to its modular nature, i.e., its tunable functionality and tailorable porosity. Compared to other materials, the practicality of POPs comes from their purely organic composition, which lends to their stability and ease of synthesis. The potential of using POPs as a design platform for solid extractors is closely associated with the ease with which their pore space can be functionalized with high densities of strong adsorption sites, resulting in a material that retains its robustness while providing specified interactions depending on the contaminant of choice.POPs raise opportunities to improve current or enable new technologies to achieve safer water. In this Account, we describe some of our efforts toward the exploitation of the unique properties of POPs for improving water purification by answering key questions and proposing research opportunities. The design strategies and principles involved for functionalizing POPs include the following: increasing the density and flexibility of the chelator to enhance their cooperation, introducing the secondary sphere modifiers to reinforce the primary binding, and enforcing the orientation of the ligands in the pore channel to increase the accessibility and cooperation of the functionalities. For each strategy, we first describe its chemical basis, followed by presenting examples that convey the underlying concepts, giving rise to functional materials that are beyond the traditional ones, as demonstrated by radionuclide sequestration, heavy metal decontamination, and oil-spill cleanup. Our endeavors to explore the applicability of POPs to deal with these high-priority contaminants are expected to impact personal consumer water purifiers, industrial wastewater management systems, and nuclear waste management. In our view, more exciting will be new applications and new examples of the functionalization strategies made by creatively merging the strategies mentioned above, enabling increasingly selective binding and efficiency and ultimately promoting POPs for practical applications to enhance water security.
Collapse
Affiliation(s)
- Qi Sun
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Briana Aguila
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yanpei Song
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Shengqian Ma
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
57
|
|
58
|
Ma C, Yi C, Li F, Shen C, Wang Z, Sand W, Liu Y. Mitigation of Membrane Fouling Using an Electroactive Polyether Sulfone Membrane. MEMBRANES 2020; 10:membranes10020021. [PMID: 32019206 PMCID: PMC7074576 DOI: 10.3390/membranes10020021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/13/2023]
Abstract
Membrane fouling is the bottleneck limiting the wide application of membrane processes. Herein, we adopted an electroactive polyether sulfone (PES) membrane capable of mitigating fouling by various negatively charged foulants. To evaluate anti-fouling performance and the underlying mechanism of this electroactive PES membrane, three types of model foulants were selected rationally (e.g., bovine serum albumin (BSA) and sodium alginate (SA) as non-migratory foulants, yeast as a proliferative foulant and emulsified oil as a spreadable foulant). Water flux and total organic carbon (TOC) removal efficiency in the filtering process of various foulants were tested under an electric field. Results suggest that under electrochemical assistance, the electroactive PES membrane has an enhanced anti-fouling efficacy. Furthermore, a low electrical field was also effective in mitigating the membrane fouling caused by a mixture of various foulants (containing BSA, SA, yeast and emulsified oil). This result can be attributed to the presence of electrostatic repulsion, which keeps foulants away from the membrane surface. Thereby it hinders the formation of a cake layer and mitigates membrane pore blocking. This work implies that an electrochemical control might provide a promising way to mitigate membrane fouling.
Collapse
Affiliation(s)
- Chunyan Ma
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
| | - Chao Yi
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Institute of Biosciences, Freiberg University of Mining and Technology, 09599 Freiberg, Germany
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (C.M.); (C.Y.); (F.L.); (C.S.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China;
- Correspondence: ; Tel.: +86-21-6779-8752
| |
Collapse
|
59
|
Li J, Wang R, Su Z, Ma X, Jiang X. Multifunctional Polymer Sponge with Molecule Recognition: Facile Mechanic Induced Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14920-14928. [PMID: 31657577 DOI: 10.1021/acs.langmuir.9b02857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymer sponges with molecular recognition provide a facile approach to water purification and industrial separation with easy operation, but its fabrication is still challenging because some critical issues of selective adsorption, high mechanical strength, and easy collection/re-use are difficult to be achieved in one material. Here, inspired by natural sponges, novel multifunctional polymer sponges were developed which were fabricated by ice-templating with multifunctional amine polyethylenimine and diepoxide cross-linker poly(ethylene glycol) diglycidyl ether for highly efficient harvesting of dyes and simultaneous pure water recovery both in mechanic pressing and filtration processes. The as-prepared sponge (SP-1) was further modified by poly(caffeic acid) through a simple dipping-cross-linking process to obtain the hybrid polymer sponge (SP-2), which showed higher compressive strength than SP-1. These sponges possessed a cross-linked three-dimensional macroporous structure with quick water absorbing properties over ten times of their own weight within 20 s directed by capillary. The adsorption behavior of the obtained polymer sponges to 11 hydrophilic dyes was studied in detail by mechanic induced separation. All these polymer sponges exhibited a high selective adsorption to hydrophilic dyes in water. For example, SP-1 has high adsorption capacity over 150 μmol/g to erythrosin B, which is 20 times higher than that of calcein. With the modified poly(caffeic acid) layer, SP-2 exhibited different adsorption properties for methylene blue (180 μmol/g) to SP-1 (∼0 μmol/g), indicating that the tailorable structures of the sponge can regulate their selectivity to guest molecules. Based on the unique recognition to guest molecules, the methodology of dynamic separation of the dye's mixture in water was demonstrated by using these sponges through mechanical pressing or fast filtration, which provides a facile alternative with easy operation for water purification.
Collapse
Affiliation(s)
- Jin Li
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Ruiqing Wang
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zhilong Su
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|