51
|
Feng D, Li X, Wang Z. Comparison of omniphobic membranes and Janus membranes with a dense hydrophilic surface layer for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
52
|
Santoro S, Avci AH, Politano A, Curcio E. The advent of thermoplasmonic membrane distillation. Chem Soc Rev 2022; 51:6087-6125. [PMID: 35789347 DOI: 10.1039/d0cs00097c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Freshwater scarcity is a vital societal challenge related to climate change, population pressure, and agricultural and industrial demands. Therefore, sustainable desalination/purification of salty/contaminated water for human uses is particularly relevant. Membrane distillation is an emerging hybrid thermal-membrane technology with the potential to overcome the drawbacks of conventional desalination by a synergic exploitation of the water-energy nexus. Although membrane distillation is considered a green technology, efficient heat management remains a critical concern affecting the cost of the process and hindering its viability at large scale. A multidisciplinary approach that involves materials chemistry, physical chemistry, chemical engineering, and materials and polymer science is required to solve this problem. The combination of solar energy with membrane distillation is considered a potentially feasible low-cost approach for providing high-quality freshwater with a low carbon footprint. In particular, recent discoveries about efficient light-to-heat conversion in nanomaterials have opened unprecedented perspectives for the implementation of sunlight-based renewable energy in membrane distillation. The integration of nanofillers enabling photothermal effects into membranes has been demonstrated to be able to significantly enhance the energy efficiency without impacting on economic costs. Here, we provide a comprehensive overview on the state of the art, the opportunities, open challenges and pitfalls of the emerging field of solar-driven membrane distillation. We also assess the peculiar physicochemical properties and synthesis scalability of photothermal materials, as well as the strategies for their integration into polymeric nanocomposite membranes enabling efficient light-to-heat conversion and freshwater.
Collapse
Affiliation(s)
- Sergio Santoro
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Ahmet H Avci
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy.
| | - Efrem Curcio
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| |
Collapse
|
53
|
Liu Y, Zhao Y, Jiang N, Cheng W, Lu D, Zhang T. Separate Reclamation of Oil and Surfactant from Oil-in-Water Emulsion with a CO 2-Responsive Material. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9651-9660. [PMID: 35724242 DOI: 10.1021/acs.est.1c08149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oil-in-water (O/W) emulsion is one type of oily wastewater produced by many industries. The treatment of and resource recovery from O/W emulsions are very challenging. Unlike bulk or floating oil, which can be successfully abstracted from wastewater by hydrophobic/oleophilic materials, the abstraction of emulsified oil is not easy because of its highly hydrophilic surface composed of dense surfactants. Separate reclamation of miscible oil and surfactant through a green approach is even more difficult. Here, we report that a CO2-responsive material can abstract emulsified oil and demulsify the oil droplets. Moreover, it can release the abstracted oil and surfactant separately. This material exhibited a very high adsorption capacity for emulsified oil (14 g g-1). Upon switching the surface wettability of the material under CO2 or synthetic flue gas sparging, coalesced oil was reclaimed while the surfactant was retained inside the pores. The hydrophobic character of the material was retrieved when CO2 was purged with nitrogen sparging or air heating. Then, the surfactant was reclaimed by elution with diluted alkali/ethanol. Oil and surfactant were thus separately reclaimed from the O/W emulsion. High rates of oil removal, oil recovery, and surfactant recovery were maintained during repeated adsorption/desorption operations. This work provides a potentially sustainable and green way for O/W emulsion treatment and resource recovery.
Collapse
Affiliation(s)
- Ya Liu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunfeng Zhao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Ning Jiang
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Cheng
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Zhang
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
54
|
Tao Z, Liu C, He Q, Chang H, Ma J. Detection and treatment of organic matters in hydraulic fracturing wastewater from shale gas extraction: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153887. [PMID: 35181355 DOI: 10.1016/j.scitotenv.2022.153887] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Although shale gas has shown promising potential to alleviate energy crisis as a clean energy resource, more attention has been paid to the harmful environmental impacts during exploitation. It is a critical issue for the management of shale gas wastewater (SGW), especially the organic compounds. This review focuses on analytical methods and corresponding treatment technologies targeting organic matters in SGW. Firstly, detailed information about specific shale-derived organics and related organic compounds in SGW were overviewed. Secondly, the state-of-the art analytical methods for detecting organics in SGW were summarized. The gas chromatography paired with mass spectrometry was the most commonly used technique. Thirdly, relevant treatment technologies for SGW organic matters were systematically explored. Forward osmosis and membrane distillation ranked the top two most frequently used treatment processes. Moreover, quantitative analyses on the removal of general and single organic compounds by treatment technologies were conducted. Finally, challenges for the analytical methods and treatment technologies of organic matters in SGW were addressed. The lack of effective trace organic detection techniques and high cost of treatment technologies are the urgent problems to be solved. Advances in the extraction, detection, identification and disposal of trace organic matters are critical to address the issues.
Collapse
Affiliation(s)
- Zhen Tao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
55
|
Xu D, Zhu Z, Tan G, Xue X, Li J. Mechanism insight into gypsum scaling of differently wettable membrane surfaces with antiscalants in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
56
|
Liu J, Wang Y, Li S, Li Z, Liu X, Li W. Insights into the wetting phenomenon induced by scaling of calcium sulfate in membrane distillation. WATER RESEARCH 2022; 216:118282. [PMID: 35320768 DOI: 10.1016/j.watres.2022.118282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Development of water/wastewater treatment based on membrane distillation (MD) suffers from the drawback that the hydrophobic membrane could be wetted for various reasons. Despite significant efforts, there is uncertainty in addressing the wetting induced by scaling of calcium sulfate, which is ubiquitous and recalcitrant in MD processes. This study made the first attempt to analyze the interplay between the growing crystals and the porous structures in the framework of Stoney's equation. Optical coherence tomography (OCT) was exploited to measure the membrane shift, whereby the scaling-induced deformation was correlated with the variation in stress created in the crystal-containing layer. Along with the stress analysis, the OCT-based characterization was combined with conventional approaches to ascertain the dependence of the scaling-induced wetting on the rate of concentrating the crystallizing species when arriving at a high degree of supersaturation in the feed. This study would refine the physical picture for better understanding crystal-membrane interactions that result in not only the wetting phenomenon but also the irreversible damage of membrane structures, thereby lending itself to the development of strategies for MD-based applications with improved efficiency.
Collapse
Affiliation(s)
- Jie Liu
- School of Environment, Harbin Institute of Technology, P. R. China; School of Environmental Science and Engineering, Southern University of Science and Technology, P. R. China
| | - Yewei Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, P. R. China
| | - Shengzhe Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, P. R. China
| | - Zhuo Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, P. R. China
| | - Xin Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, P. R. China
| | - Weiyi Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, P. R. China.
| |
Collapse
|
57
|
Sun L, Zhang R, Hu L, Chen X, Lu X, Li Z. Hydrophobic and Rapid-Response Sensor Inks: Array-Based Fingerprinting of Perfumes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27339-27346. [PMID: 35642335 DOI: 10.1021/acsami.2c03081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Counterfeited perfumes mixed with inexpensive additives for commercial purposes pose a great threat to cosmetic market competition and human health. Herein, a 24-element, solid-state colorimetric sensor array employing chemo-responsive dye inks for accurate discrimination of a variety of fragrance bases and "sniffing out" real perfumes from adulterated samples was first reported. The physiochemical robustness and gas response kinetics of the sensor array were optimized with the streamlined design of the channel geometry and hydrophobic modification of the sensor substrate. A unique and distinguishable color change profile was obtained within 2 min exposure of diluted vapor that enabled clear fingerprinting of chemically similar perfume samples. Four commercial perfume products were successfully distinguished and categorized according to their similarity to relevant perfume bases using chemometric methods including hierarchical clustering and principal component analysis. The sensor array also allows the discrimination of ethanol-diluted fragrance bases from the pristine sample, revealing its potential for quality assurance of perfumes and other cosmetics. Such easy-to-use, disposable, and miniaturized chemical sensing detectors therefore prove exceptionally valuable for fast analysis of luxuries such as perfumes and other industrial products with complex chemical compositions.
Collapse
Affiliation(s)
- Linlin Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Ruohan Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Luoyu Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Xiaofeng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Xiaohui Lu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
58
|
Membrane distillation treatment of landfill leachate: Characteristics and mechanism of membrane fouling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
59
|
Mérai L, Deák Á, Dékány I, Janovák L. Fundamentals and utilization of solid/ liquid phase boundary interactions on functional surfaces. Adv Colloid Interface Sci 2022; 303:102657. [PMID: 35364433 DOI: 10.1016/j.cis.2022.102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
The affinity of macroscopic solid surfaces or dispersed nano- and bioparticles towards liquids plays a key role in many areas from fluid transport to interactions of the cells with phase boundaries. Forces between solid interfaces in water become especially important when the surface texture or particles are in the colloidal size range. Although, solid-liquid interactions are still prioritized subjects of materials science and therefore are extensively studied, the related literature still lacks in conclusive approaches, which involve as much information on fundamental aspects as on recent experimental findings related to influencing the wetting and other wetting-related properties and applications of different surfaces. The aim of this review is to fill this gap by shedding light on the mechanism-of-action and design principles of different, state-of-the-art functional macroscopic surfaces, ranging from self-cleaning, photoreactive or antimicrobial coatings to emulsion separation membranes, as these surfaces are gaining distinguished attention during the ongoing global environmental and epidemic crises. As there are increasing numbers of examples for stimulus-responsive surfaces and their interactions with liquids in the literature, as well, this overview also covers different external stimulus-responsive systems, regarding their mechanistic principles and application possibilities.
Collapse
|
60
|
Li H, Feng H, Li M, Zhang X. Engineering a covalently constructed superomniphobic membrane for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
61
|
Han M, Zhao R, Shi J, Li X, He D, Liu L, Han L. Membrane Distillation Hybrid Peroxydisulfate Activation toward Mitigating the Membrane Wetting by Sodium Dodecyl Sulfate. MEMBRANES 2022; 12:membranes12020164. [PMID: 35207085 PMCID: PMC8875670 DOI: 10.3390/membranes12020164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023]
Abstract
The fouling/wetting of hydrophobic membrane caused by organic substances with low-surface energy substantially limits the development of the membrane distillation (MD) process. The sulfate radical (SO4 ·−)-based advanced oxidation process (AOP) has been a promising technology to degrade organics in wastewater treatment, and peroxydisulfate (PDS) could be efficiently activated by heat. Thus, a hybrid process of MD-AOP via PDS activated by a hot feed was hypothesized to mitigate membrane fouling/wetting. Experiments dealing with sodium dodecyl sulfate (SDS) containing a salty solution via two commercial membranes (PVDF and PTFE) were performed, and varying membrane wetting extents in the coupling process were discussed at different PDS concentrations and feed temperatures. Our results demonstrated permeate flux decline and a rise in conductivity due to membrane wetting by SDS, which was efficiently alleviated in the hybrid process rather than the standalone MD process. Moreover, such a mitigation was enhanced by a higher PDS concentration up to 5 mM and higher feed temperature. In addition, qualitative characterization on membrane coupons wetted by SDS was successfully performed using electrochemical impedance spectroscopy (EIS). The EIS results implied both types of hydrophobic membranes were protected from losing their hydrophobicity in the presence of PDS activation, agreeing with our initial hypothesis. This work could provide insight into future fouling/wetting control strategies for hydrophobic membranes and facilitate the development of an MD process.
Collapse
Affiliation(s)
- Minyuan Han
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (M.H.); (R.Z.)
| | - Ruixue Zhao
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (M.H.); (R.Z.)
| | - Jianchao Shi
- School of Civil Engineering, Yantai University, Yantai 264005, China;
| | - Xiaobo Li
- Animal Husbandry Service of Chongqing, Chongqing 401121, China; (X.L.); (D.H.)
| | - Daoling He
- Animal Husbandry Service of Chongqing, Chongqing 401121, China; (X.L.); (D.H.)
| | - Lang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (M.H.); (R.Z.)
- Correspondence:
| |
Collapse
|
62
|
Shao S, Shi D, Hu J, Qing W, Li X, Li X, Ji B, Yang Z, Guo H, Tang CY. Unraveling the Kinetics and Mechanism of Surfactant-Induced Wetting in Membrane Distillation: An In Situ Observation with Optical Coherence Tomography. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:556-563. [PMID: 34928146 DOI: 10.1021/acs.est.1c05090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we performed a direct contact membrane distillation and successfully demonstrated the non-invasive imaging of surfactant-induced wetting using optical coherence tomography. This method enabled us to investigate the wetting kinetics, which was found to follow a "three-region" relationship between the wetting rate and surfactant concentration: the (i) nonwetted region, (ii) concentration-dependent region, and (iii) concentration-independent region at low, intermediate, and high surfactant concentrations, respectively. This wetting behavior was explained by the "autophilic effect", i.e., the wetting was caused by the transfer of surfactants from the water-vapor interface to the unwetted membrane and rendered this membrane hydrophilic, and then the wetting frontier moved forward under capillary forces. At region-(i), the surfactant concentration in the water-vapor interface (Clv) was too low to make the unwetted membrane sufficiently hydrophilic; thereby, the membrane could not be wetted. At region-(ii), due to the fast adsorption of the surfactant on the newly wetted membrane, the wetting rate was determined by the advection/diffusion of surfactants from the feed stream. Consequently, the wetting rate increased with the increases in the water flux and surfactant concentration. At region-(iii), the advection/diffusion provided excess surfactants for adsorption, and thus Clv reached its upper limit (maximum surface excess) and the wetting rate leveled off.
Collapse
Affiliation(s)
- Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Danting Shi
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Jiangshuai Hu
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Weihua Qing
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xue Li
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
63
|
Jia X, Li K, Wang B, Zhao Z, Hou D, Wang J. Membrane cleaning in membrane distillation of reverse osmosis concentrate generated in landfill leachate treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:244-256. [PMID: 35050880 DOI: 10.2166/wst.2021.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a thermally induced membrane separation process, membrane distillation (MD) has drawn more and more attention to the advantages of treating hypersaline wastewaters, especially the concentrate from the reverse osmosis (RO) process. One of the major obstacles in widespread MD application is the membrane fouling. We investigated the feasibility of direct contact membrane distillation (DCMD) for landfill leachate reverse osmosis concentrate (LFLRO) brine treatment and systematically assessed the efficiency of chemical cleaning for DCMD after processing LFLRO brine. The results showed that 80% water recovery rate was achieved when processing the LFLRO brine by DCMD, but membrane fouling occurred during the DCMD process, and manifested as the decreasing of permeate flux and the increasing of permeate conductivity. Analysis revealed that the serious flux reduction was primarily caused by the fouling layer, which consisted of organic matter and inorganic salts. Five cleaning methods were investigated for membrane cleaning, including hydrogen chloride (HCl)-sodium hydroxide (NaOH), ethylene diamine tetraacetic acid (EDTA)-NaOH, citric acid, sodium hypochlorite (NaClO) and sodium dodecyl sulphate (SDS) cleaning. Among the chemical cleaning methods investigated, the 3 wt.% SDS cleaning showed the best efficiency at recovering the performance of fouled membranes.
Collapse
Affiliation(s)
- Xiaolin Jia
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail: ; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuiling Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail:
| | - Baoqiang Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology, Beijing 100083, China
| | - ZhiChao Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail: ; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyin Hou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail: ; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China E-mail: ; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
64
|
Abstract
Water serves as an indispensable part of human life and production. On account of the overexploitation of traditional water sources, the demand for wastewater recycling is expanding rapidly. As a promising water treatment process, membrane distillation (MD) has been utilized in various wastewater treatments, such as desalination brine, textile wastewater, radioactive wastewater, and oily wastewater. This review summarized the investigation work applying MD in wastewater treatment, and the performance was comprehensively introduced. Moreover, the obstructions of industrialization, such as membrane fouling, membrane wetting, and high energy consumption, were discussed with the practical investigation. To cope with these problems, various strategies have been adopted to enhance MD performance, including coupling membrane processes and developing membranes with specific surface characteristics. In addition, the significance of nutrient recovery and waste heat utilization was indicated.
Collapse
|
65
|
Direct contact membrane distillation with softening Pre-treatment for effective reclaiming flue gas desulfurization wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Membranes for the Gas/Liquid Phase Separation at Elevated Temperatures: Characterization of the Liquid Entry Pressure. MEMBRANES 2021; 11:membranes11120907. [PMID: 34940408 PMCID: PMC8708230 DOI: 10.3390/membranes11120907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
Hydrophobic membranes were characterized at elevated temperatures. Pressure was applied at the feed and permeate side to ensure liquid phase conditions. Within this scope, the applicability of different polymeric and ceramic membranes in terms of liquid entry pressure was studied using water. The Visual Method and the Pressure Step Method were applied for the experimental investigation. The results show the Pressure Step Method to be an early detection method. The tests at higher pressure and temperature conditions using the Pressure Step Method revealed the temperature as being the main factor affecting the liquid entry pressure. Novel LEP data up to 120 °C and 2.5 bar were obtained, which broadens the application range of hydrophobic membranes.
Collapse
|
67
|
Comparison of calcium scaling in direct contact membrane distillation (DCMD) and nanofiltration (NF). J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
68
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
69
|
Shami Z, Amininasab SM, Katoorani SA, Gharloghi A, Delbina S. NaOH-Induced Fabrication of a Superhydrophilic and Underwater Superoleophobic Styrene-Acrylate Copolymer Filtration Membrane for Effective Separation of Emulsified Light Oil-Polluted Water Mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12304-12312. [PMID: 34644497 DOI: 10.1021/acs.langmuir.1c01692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oil-polluted water mixtures are difficult to separate, and thus, they are considered as a global challenge. A superior superhydrophilic and low-adhesive underwater superoleophobic styrene-acrylate copolymer filtration membrane is constructed using a salt (NaOH)-induced phase-inversion approach. The as-fabricated filtration membrane provides a hierarchical-structured surface morphology and three-dimensional high density open-rough porous geometry with a special chemical composition including highly accessible hydrophilic -COO- agents, which all are of great importance for long-term usage of immiscible/emulsified (light) oil-polluted wastewater separation. The separation is performed with a high efficiency and a high flux under either a gravity-driven force or a small applied pressure of 0.1 bar. The filtration membrane indicates an excellent anti-fouling property and is easily recycled during multiple cycles. The outstanding performance of the filtration membrane in separating oil-polluted water mixtures and the cost-effective synthetic approach as well as commercially scaled-up initial materials all highlight its potential for practical applications.
Collapse
Affiliation(s)
- Zahed Shami
- Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Daneshgah Street, Sanandaj 66177-15175, Iran
| | - Seyed Mojtaba Amininasab
- Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Daneshgah Street, Sanandaj 66177-15175, Iran
| | - Seyed Adib Katoorani
- Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Daneshgah Street, Sanandaj 66177-15175, Iran
| | - Atefeh Gharloghi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Daneshgah Street, Sanandaj 66177-15175, Iran
| | - Somayeh Delbina
- Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Daneshgah Street, Sanandaj 66177-15175, Iran
| |
Collapse
|
70
|
Feng D, Chen Y, Wang Z, Lin S. Janus Membrane with a Dense Hydrophilic Surface Layer for Robust Fouling and Wetting Resistance in Membrane Distillation: New Insights into Wetting Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14156-14164. [PMID: 34597031 DOI: 10.1021/acs.est.1c04443] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although membrane distillation (MD) has been identified as a promising technology to treat hypersaline wastewaters, its practical applications face two prominent challenges: membrane wetting and fouling. Herein, we report a facile and scalable approach for fabricating a Janus MD membrane comprising a dense polyvinyl alcohol (PVA) surface layer and a hydrophobic polyvinylidene fluoride (PVDF) membrane substrate. By testing the Janus membrane in direct contact MD experiments using feeds containing a sodium dodecyl sulfate (SDS) surfactant or/and mineral oil, we demonstrated that the dense Janus membrane can simultaneously resist wetting and fouling. This method represents the simplest approach to date for fabricating MD membranes with simultaneous wetting and fouling resistance. Importantly, we also unveil the mechanism of wetting resistance by measuring the breakthrough pressure and surfactant permeation (through the PVA layer) and found that wetting resistance imparted by a dense hydrophilic layer is attributable to capillary pressure. This new insight will potentially change the paradigm of fabricating wetting-resistant membranes and enable robust applications of MD and other membrane contactor processes facing challenges of pore wetting or/and membrane fouling.
Collapse
Affiliation(s)
- Dejun Feng
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanmiaoliang Chen
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Zhangxin Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|
71
|
Wong PW, Guo J, Khanzada NK, Yim VMW, Kyoungjin A. In-situ 3D fouling visualization of membrane distillation treating industrial textile wastewater by optical coherence tomography imaging. WATER RESEARCH 2021; 205:117668. [PMID: 34597989 DOI: 10.1016/j.watres.2021.117668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Membrane fouling, which is caused by the deposition of particles on the membrane surface or pores, reduces system performance in membrane distillation (MD) applications, resulting in increased operational costs, poor recovery, and system failure. Optical Coherence Tomography enables in-situ foulant monitoring in both 2D and 3D, however, the 2D images can only determine fouling layer thickness in severe fouling. Therefore, in this study, an advanced 3D imaging analysis technique using intensity range filters was proposed to quantify fouling layer formation during MD through the use of a single 3D image. This approach not only reduces computational power requirements, but also successfully separated the fouling layer from the membrane at the microscale. Thus, the thickness, fouling index, and fouling layer coverage can be evaluated in real time. To test this approach, Polyvinylidene fluoride (C-PVDF) and polytetrafluoroethylene (C-PTFE) membranes were used to treat a feed consisting of industrial textile wastewater. Thin and disperse foulants was observed on the C-PTFE, with a 22 µm thick fouling layer which could not be observed using 2D images after 24 h. Moreover, the C-PTFE demonstrated better antifouling ability than the C-PVDF as demonstrated by its lower fouling index, which was also supported by surface energy characterization. This work demonstrates the significant potential of 3D imagery in the long-term monitoring of membrane fouling process to improve membrane antifouling performance in MD applications, which can lead to lowered operational costs and improved system stability.
Collapse
Affiliation(s)
- Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong
| | - Jiaxin Guo
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong
| | - Vicki Man Wai Yim
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong
| | - Alicia Kyoungjin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue Kowloon, Hong Kong
| |
Collapse
|
72
|
Long X, Zhao G, Hu J, Zheng Y, Zhang J, Zuo Y, Jiao F. Cracked-earth-like titanium carbide MXene membranes with abundant hydroxyl groups for oil-in-water emulsion separation. J Colloid Interface Sci 2021; 607:378-388. [PMID: 34509112 DOI: 10.1016/j.jcis.2021.08.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
Membrane separation technology is one of the best methods to deal with wastewater released from oil spills and industrial wastewater. Therefore, we designed and prepared hydroxyl-rich titanium carbide MXene materials and filtered them onto a commercial polyvinylidene fluoride substrate membrane to obtain a cracked-earth-like MXene membrane with abundant hydroxyl groups and excellent underwater wettability. The underwater oil contact and sliding angles were approximately 157° and less than 3°, respectively. Moreover, the membrane effectively separated a variety of surfactant-stabilized stable emulsions with a high permeation flux of up to 6385 L m-2h-1 bar-1 and offered adequate performance after five cycles of the separation experiment. Additionally, the membrane exhibited remarkable resistance toward corrosive chemicals without any decrease in its underwater wettability performance. For example, the membrane was used to separate the emulsions containing alkali, salt, and acid. This study provides a new strategy to resolve the oily wastewater disposal problem by fabricating a cracked-earth-like MXene membrane with abundant hydroxyl groups.
Collapse
Affiliation(s)
- Xuan Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Guoqing Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jun Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Yijian Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jieyu Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Yi Zuo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Feipeng Jiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| |
Collapse
|
73
|
Gu BX, Liu ZZ, Zhang K, Ji YL, Zhou Y, Gao CJ. Biomimetic asymmetric structural polyamide OSN membranes fabricated via fluorinated polymeric networks regulated interfacial polymerization. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|