51
|
Chen JQ, Zhou GN, Ding RR, Li Q, Zhao HQ, Mu Y. Ferrous ion enhanced Fenton-like degradation of emerging contaminants by sulfidated nanosized zero-valent iron with pH insensitivity. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132229. [PMID: 37549576 DOI: 10.1016/j.jhazmat.2023.132229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
In this study, the performance and mechanism of the integrated sulfidated nanosized zero-valent iron and ferrous ions (S-nZVI/Fe2+) system for oxygen activation to remove emerging contaminants (ECs) were comprehensively explored. The S-nZVI/Fe2+ system exhibited a 2.4-8.2 times of increase in the pseudo-first order kinetic rate constant for the oxidative degradation of various ECs compared to the S-nZVI system under aerobic conditions, whereas negligible removal was observed in both nZVI and nZVI/Fe2+ systems. Moreover, remarkable EC mineralization efficiency and benign detoxification capacity were also demonstrated in the S-nZVI/Fe2+ system. We revealed that dosing Fe2+ promoted the corrosion of S-nZVI by maintaining an acidic solution pH, which was conducive to O2 activation by dissolved Fe2+ and surface-absorbed Fe(II) to produce •OH. Furthermore, the generation of H* was enhanced for the further reduction of Fe(III) and H2O2 to Fe(II) and •O2-, resulting in the improvement of consecutive single-electron O2 activation for •OH production. Additionally, bisphenol A (BPA) degradation by S-nZVI/Fe2+ was positively correlated with the S-nZVI dosage, with an optimum S/Fe molar ratio of 0.15. The Fenton-like degradation process by S-nZVI/Fe2+ was pH-insensitive, indicating its robust performance over a wide pH range. This study provides valuable insights for the practical implementation of nZVI-based technology in achieving high-efficiency removal of ECs from water.
Collapse
Affiliation(s)
- Jia-Qi Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Guan-Nan Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| | - Rong-Rong Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Qi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Han-Qing Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
52
|
Cai H, Du X, Lin Z, Tao X, Zou M, Liu J, Zhang L, Dang Z, Lu G. Enhanced arsenic(III) sequestration via sulfidated zero-valent iron in aerobic conditions: Adsorption and oxidation coupling processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132190. [PMID: 37536156 DOI: 10.1016/j.jhazmat.2023.132190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Sulfidated zero-valent iron (S-ZVI) has shown significant potential for the removal of arsenic(III). However, little attention has been paid to the mechanism of As(III) sequestration enhancement and how the phase transformation for S-ZVI strengthens this process in aerobic conditions. In this work, sulfidated ZVI was created by ball-milling (S-ZVIbm) and liquid-mixing (S-ZVIlm) of ZVI with elemental sulfur(S0) to investigate the performance and mechanisms of As(III) sequestration in air-saturated water. Sulfidation was found to significantly enhance the As(III) removal rate constant, which was 2.8 ∼ 6.7 times (S-ZVIbm) and 3.1 ∼ 17.1 times (S-ZVIlm) higher than that without sulfidation. FeS was identified as the predominant sulfur species in the S-ZVI samples using S K-edge XANES spectra. The enhanced electron transfer and ZVI corrosion after sulfidation were verified via electrochemical tests. XANES and Mössbauer spectra suggested that lepidocrocite(γ-FeOOH) was the predominant corrosion product generated on the ZVI surface with the presence of oxygen, and DFT calculations further confirmed the improved performance of γ-FeOOH for As(III) sequestration. Besides, As(III) oxidation occurred dominantly on the heterogeneous surface rather than in solution, and the As(III) sequestration pathway of adsorption followed by oxidation was proposed. This study provides new insight into the enhanced As(III) sequestration by S-ZVI in aerobic conditions.
Collapse
Affiliation(s)
- Haiming Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ziting Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Jingyong Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
53
|
Cheng Y, Dong H, Hao T. From liquid to solid: A novel approach for utilizing sulfate reduction effluent through phase transition - Effluent-induced nanoscale zerovalent iron sulfidation. BIORESOURCE TECHNOLOGY 2023; 385:129440. [PMID: 37399956 DOI: 10.1016/j.biortech.2023.129440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This study investigated the use of sulfate reduction effluent (SR-effluent) to induce sulfidation on nanoscale zerovalent iron (nZVI). SR-effluent-modified nZVI achieved a 100% improvement in Cr(VI) removal from simulated groundwater, a result comparable to cases where other, more typical sulfur precursors (Na2S2O4, Na2S2O3, Na2S, K2S6, and S0) were used. Through a structural equation model analysis, amendment of nanoparticles' agglomeration (standardized path coefficient (std. path coeff.) = -0.449, p < 0.05) and hydrophobicity (std. path coeff. = 0.100, p < 0.05) and direct reaction between iron-sulfur compounds and Cr(VI) (std. path coeff. ranged from -0.195 to 0.322, p < 0.05) were primarily contributing to sulfidation-induced Cr(VI) removal enhancement. Regarding the property improvement of nZVI, the SR-effluent's corrosion radius played a crucial role in tuning the content and distribution of the iron-sulfur compounds based on the core-shell structure of the nZVI and the redox processes at the aqueous-solid interface.
Collapse
Affiliation(s)
- Yujun Cheng
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China.
| |
Collapse
|
54
|
Chen A, Huang Y, Liu H. Fabrication of Chitin microspheres supported sulfidated nano zerovalent iron and their performance in Cr (VI) removal. CHEMOSPHERE 2023; 338:139609. [PMID: 37482322 DOI: 10.1016/j.chemosphere.2023.139609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Sulfidated nanoscale zerovalent iron (S-nZVI) has been extensively studied for the reductive removal of Cr(VI), but its applicability is limited by agglomeration and unexpected efficiency reduction. In this study, chitin microsphere supported sulfidated nanoscale zero-valent iron (S-nZVI@Chi-M) was prepared by in-situ one-step reduction method and used to remove Cr(VI) from water. Compared to chitin and chitosan powder, Chi-M with nanofibrous structure and large surface area performed best in stabilizing S-nZVI with a Fe0 loading content of 3.01 wt%. The S-nZVI particles were homogeneously distributed on the surface of Chi-M, effectively avoiding agglomeration. Compared with bare nanoparticles and supported nZVI, S-nZVI@Chi-M showed significantly enhanced Cr(VI) removal capacity (924.5 mg Cr(VI) for per gram of effective Fe0). The influences of sulfidation degree, dosages, initial Cr(VI) concentration, pH, DO, humic acid and typical ions on Cr(VI) removal kinetics were further studied. S-nZVI@Chi-M could be recycled for at least 4 times with acceptable reactivity. The mechanism investigation results indicated that the Cr(VI) removal was a complex process of reduction, adsorption and co-precipitation under the synergistic effect of Chi-M and S-nZVI. This work provides new ideas for the continuous fabrication of highly reactive nanoparticles, hopefully expanding the application scope of biomass resources in pollution remediation.
Collapse
Affiliation(s)
- Aikui Chen
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| | - Yao Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| | - Hui Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| |
Collapse
|
55
|
Gao F, Zhang M, Ahmad S, Guo J, Shi Y, Yang X, Tang J. Tetrabromobisphenol A transformation by biochar supported post-sulfidated nanoscale zero-valent iron: Mechanistic insights from shell control and solvent kinetic isotope effects. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132028. [PMID: 37459757 DOI: 10.1016/j.jhazmat.2023.132028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023]
Abstract
Post-sulfidated nanoscale zero-valent iron with a controlled FeSX shell thickness deposited on biochar (S-nZVI/BC) was synthesized to degrade tetrabromobisphenol A (TBBPA). Detailed characterizations revealed that the increasing sulfidation degree altered shell thickness/morphology, S content/speciation/distribution, hydrophobicity, and electron transfer capacity. Meanwhile, the BC improved electron transfer capacity and hydrophobicity and inhibited the surface oxidation of S-nZVI. These properties endowed S-nZVI/BC with highly reactive (∼8.9-13.2 times) and selective (∼58.4-228.9 times) over nZVI/BC in TBBPA transformation. BC modification improved the reactivity and selectivity of S-nZVI by 1.77 and 1.96 times, respectively. The difference of S-nZVI/BC in reactivity was related to hydrophobicity and electron transfer, particularly FeSX shell thickness and morphology. Optimal shell thickness of ∼32 nm allowed the maximum association between Fe0 core and exterior FeSX, resulting in superior reactivity. A thicker shell with abundant networks increased the roughness but decreased the surface area and electron transfer. The higher [S/Fe]surface and [S/Fe]particle were conducive to the selectivity, and [S/Fe]particle was more influential than [S/Fe]surface on selectivity upon similar hydrophobicity. The solvent kinetic isotope effects (SKIEs) exhibited that increasing [S/Fe]dose tuned the relative contributions of atomic H and electron in TBBPA debromination but failed to alter the dominant debromination pathway (i.e., direct electron transfer) in (S)-nZVI/BC systems. Mechanism of electron transfer rather than atomic H contributed to higher selectivity. This work demonstrated that S-nZVI/BC was a prospective material for the remediation of TBBPA-contaminated groundwater.
Collapse
Affiliation(s)
- Feilong Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shakeel Ahmad
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiaming Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinghao Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinzuo Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; National Engineering Laboratory for Site Remediation Technologies, China.
| |
Collapse
|
56
|
Min Y, Mei SC, Pan XQ, Chen JJ, Yu HQ, Xiong Y. Mimicking reductive dehalogenases for efficient electrocatalytic water dechlorination. Nat Commun 2023; 14:5134. [PMID: 37612275 PMCID: PMC10447495 DOI: 10.1038/s41467-023-40906-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Electrochemical technology is a robust approach to removing toxic and persistent chlorinated organic pollutants from water; however, it remains a challenge to design electrocatalysts with high activity and selectivity as elaborately as natural reductive dehalogenases. Here we report the design of high-performance electrocatalysts toward water dechlorination by mimicking the binding pocket configuration and catalytic center of reductive dehalogenases. Specifically, our designed electrocatalyst is an assembled heterostructure by sandwiching a molecular catalyst into the interlayers of two-dimensional graphene oxide. The electrocatalyst exhibits excellent dechlorination performance, which enhances reduction of intermediate dichloroacetic acid by 7.8 folds against that without sandwich configuration and can selectively generate monochloro-groups from trichloro-groups. Molecular simulations suggest that the sandwiched inner space plays an essential role in tuning solvation shell, altering protonation state and facilitating carbon-chlorine bond cleavage. This work demonstrates the concept of mimicking natural reductive dehalogenases toward the sustainable treatment of organohalogen-contaminated water and wastewater.
Collapse
Affiliation(s)
- Yuan Min
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shu-Chuan Mei
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao-Qiang Pan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie-Jie Chen
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
57
|
Boparai HK, El-Sharnouby O, O'Carroll DM. Catalytic dechlorination of 1,2-DCA in nano Cu 0-borohydride system: effects of Cu 0/Cu n+ ratio, surface poisoning, and regeneration of Cu 0 sites. Sci Rep 2023; 13:11883. [PMID: 37482593 PMCID: PMC10363550 DOI: 10.1038/s41598-023-38678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Aqueous-phase catalyzed reduction of organic contaminants via zerovalent copper nanoparticles (nCu0), coupled with borohydride (hydrogen donor), has shown promising results. So far, the research on nCu0 as a remedial treatment has focused mainly on contaminant removal efficiencies and degradation mechanisms. Our study has examined the effects of Cu0/Cun+ ratio, surface poisoning (presence of chloride, sulfides, humic acid (HA)), and regeneration of Cu0 sites on catalytic dechlorination of aqueous-phase 1,2-dichloroethane (1,2-DCA) via nCu0-borohydride. Scanning electron microscopy confirmed the nano size and quasi-spherical shape of nCu0 particles. X-ray diffraction confirmed the presence of Cu0 and Cu2O and x-ray photoelectron spectroscopy also provided the Cu0/Cun+ ratios. Reactivity experiments showed that nCu0 was incapable of utilizing H2 from borohydride left over during nCu0 synthesis and, hence, additional borohydride was essential for 1,2-DCA dechlorination. Washing the nCu0 particles improved their Cu0/Cun+ ratio (1.27) and 92% 1,2-DCA was removed in 7 h with kobs = 0.345 h-1 as compared to only 44% by unwashed nCu0 (0.158 h-1) with Cu0/Cun+ ratio of 0.59, in the presence of borohydride. The presence of chloride (1000-2000 mg L-1), sulfides (0.4-4 mg L-1), and HA (10-30 mg L-1) suppressed 1,2-DCA dechlorination; which was improved by additional borohydride probably via regeneration of Cu0 sites. Coating the particles decreased their catalytic dechlorination efficiency. 85-90% of the removed 1,2-DCA was recovered as chloride. Chloroethane and ethane were main dechlorination products indicating hydrogenolysis as the major pathway. Our results imply that synthesis parameters and groundwater solutes control nCu0 catalytic activity by altering its physico-chemical properties. Thus, these factors should be considered to develop an efficient remedial design for practical applications of nCu0-borohydride.
Collapse
Affiliation(s)
- Hardiljeet Kaur Boparai
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd, London, ON, N6A 5B8, Canada
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, ON, M5S 1A4, Canada
| | - Omneya El-Sharnouby
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd, London, ON, N6A 5B8, Canada
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Water Research Laboratory, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
58
|
Lin Z, Xu J, Zhu A, He C, Wang C, Zheng C. Physicochemical Effects of Sulfur Precursors on Sulfidated Amorphous Zero-Valent Iron and Its Enhanced Mechanisms for Cr(VI) Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37368460 DOI: 10.1021/acs.langmuir.3c01037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Amorphous zerovalent iron (AZVI) has gained considerable attention due to its remarkable reactivity, but there is limited research on sulfidated amorphous zerovalent iron (SAZVI) and the influence of different sulfur precursors on its reactivity remains unclear. In this study, SAZVI materials with an amorphous structure were synthesized using various sulfur precursors, resulting in significantly increased specific surface area and hydrophobicity compared to AZVI. The Cr(VI) removal efficiency of SAZVI-Na2S, which exhibited the most negative free corrosion potential (-0.82 V) and strongest electron transfer ability, was up to 8.5 times higher than that of AZVI. Correlation analysis revealed that the water contact angle (r = 0.87), free corrosion potential (r = -0.92), and surface Fe(II) proportion (r = 0.98) of the SAZVI samples played crucial roles in Cr(VI) removal. Furthermore, the enhanced elimination ability of SAZVI-Na2S was analyzed, primarily attributed to the adsorption of Cr(VI) by the FeSx shell, followed by the rapid release of internal electrons to reduce Cr(VI) to Cr(III). This process ultimately led to the precipitation of FeCr2O4 and Cr2S3 on the surface of SAZVI-Na2S, resulting in their removal from the water. This study provides insights into the influence of sulfur precursors on the reactivity of SAZVI and offers a new strategy for designing highly active AZVI for efficient Cr(VI) removal.
Collapse
Affiliation(s)
- Zishen Lin
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Aibin Zhu
- Institute of Robotics & Intelligent Systems, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chi He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | | | - Chunli Zheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
- Shaanxi Qingling Chunchuang Environmental Protection Industry Technology Co., Ltd, Xi'an 710049, PR China
| |
Collapse
|
59
|
Ren S, Luo Z, Pan Y, Ling C, Yu L, Yin K. Distinctive adsorption and desorption behaviors of temporal and post-treatment heavy metals by iron nanoparticles in the presence of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163141. [PMID: 36990234 DOI: 10.1016/j.scitotenv.2023.163141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
There are increasing concerns about microplastic (MP) pollution in the natural environment. Consequently, numerous physicochemical and toxicological studies have been conducted on the effects of MPs. However, few studies have concerned the potential impact of MPs on contaminated site remediation. We herein investigated the influence of MPs on the temporary and post heavy metal removal by iron nanoparticles, including pristine and sulfurized nano zero-valent irons (nZVI and S-nZVI). MPs inhibited adsorption of most heavy metals during the treatment of iron nanoparticles, and facilitated their desorption, such as Pb (II) from nZVI and Zn (II) from S-nZVI. However, such effects presented by MPs was usually less than those by dissolved oxygen (DO). Most desorption cases are irrelevant to the reduced formats of heavy metals involving redox reactions, such as Cu (I) or Cr (III), suggesting that the influence of MPs on metals are limited to those binding with iron nanoparticles through surface complexation or electrostatic interaction. As another common factor, natural organic matter (NOM) had almost no influence on the heavy metal desorption. These insights shed lights for enhanced remediation of heavy metals by nZVI/S-NZVI in the presence of MPs.
Collapse
Affiliation(s)
- Shuhan Ren
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Zhenyi Luo
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yuwei Pan
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Chen Ling
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Ke Yin
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
60
|
Gong L, Chen J, Hu Y, He K, Bylaska EJ, Tratnyek PG, He F. Degradation of Chloroform by Zerovalent Iron: Effects of Mechanochemical Sulfidation and Nitridation on the Kinetics and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37339398 DOI: 10.1021/acs.est.3c02039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Chloroform (CF) is a widely used chemical reagent and disinfectant and a probable human carcinogen. The extensive literature on halocarbon reduction with zerovalent iron (ZVI) shows that transformation of CF is slow, even with nano, bimetallic, sulfidated, and other modified forms of ZVI. In this study, an alternative method of ZVI modification─involving simultaneous sulfidation and nitridation through mechanochemical ball milling─was developed and shown to give improved degradation of CF (i.e., higher degradation rate and inhibited H2 evolution reaction). The composite material (denoted as S-N(C)-ZVI) gave synergistic effects of nitridation and sulfidation on CF degradation. A complete chemical reaction network (CRN) analysis of CF degradation suggests that O-nucleophile-mediated transformation pathways may be the main route for the formation of the terminal nonchlorinated products (formate, CO, and glycolic polymers) that have been used to explain the undetected products needed for mass balance. Material characterizations of the ZVI recovered after batch experiments showed that sulfidation and nitridation promoted the formation of Fe3O4 on the S-N(C)-ZVI particles, and the effect of aging on CF degradation rates was minor for S-N(C)-ZVI. The synergistic benefits of sulfidation and nitridation on CF degradation were also observed in experiments performed with groundwater.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingting Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yao Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kai He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Eric J Bylaska
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
61
|
Hu C, Chen M, Wang L, Ding Y, Li Q, Li X, Deng J. Dual promoted ciprofloxacin degradation by Fe 0/PS system with ascorbic acid and pre-magnetization. CHEMOSPHERE 2023:139202. [PMID: 37331661 DOI: 10.1016/j.chemosphere.2023.139202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
As a widely used and hard-to-degrade pharmaceuticals and personal care product (PPCP), ciprofloxacin (CIP) was frequently found in water environment and the detected concentration was gradually increased. Although zero-valent iron (ZVI) has been shown to be effective in destroying refractory organic pollutants, the practical application and sustained catalytic performance is not satisfactory. Herein, introduction of ascorbic acid (AA) and employment of pre-magnetized Fe0 was achieved to maintain a high-concentration of Fe2+ during persulfate (PS) activation. Pre-Fe0/PS/AA system presented the best performance for CIP degradation, achieving almost complete elimination of 5 mg/L CIP within 40 min in the reaction conditions of 0.2 g/L pre-Fe0,0.05 mM AA and 0.2 mM PS. The CIP degradation retarded as excess pre-Fe0 and AA were added, therefore, the optimum dosages of pre-Fe0 and AA were determined to be 0.2 g/L and 0.05 mM, respectively. The CIP degradation gradually decreased as the initial pH increased from 3.05 to 11.03. The presence of Cl-, HCO3-, Al3+, Cu2+ and humic acid significantly influenced the performance of CIP removal, while Zn2+, Mg2+, Mn2+, and NO3- slightly affected the CIP degradation. Combined with the results of HPLC analysis and previous literature, several possible degradation pathways of CIP were proposed.
Collapse
Affiliation(s)
- Chenkai Hu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Minjie Chen
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Lei Wang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yuzhe Ding
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen 361005, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
| |
Collapse
|
62
|
Zhang X, Sun H, Shi Y, Ling C, Li M, Liang C, Jia F, Liu X, Zhang L, Ai Z. Oxalated zero valent iron enables highly efficient heterogeneous Fenton reaction by self-adapting pH and accelerating proton cycle. WATER RESEARCH 2023; 235:119828. [PMID: 36905733 DOI: 10.1016/j.watres.2023.119828] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Heterogeneous Fenton reactions of zero-valent iron (ZVI) requires the sufficient release of Fe(II) to catalyze the H2O2 decomposition. However, the rate-limiting step of proton transfer through the passivation layer of ZVI restricted the Fe(II) release via Fe0 core corrosion. Herein we modified the shell of ZVI with highly proton-conductive FeC2O4·2H2O by ball-milling (OA-ZVIbm), and demonstrated its high heterogeneous Fenton performance of thiamphenicol (TAP) removal, with 500 times enhancement of the rate constant. More importantly, the OA-ZVIbm/H2O2 showed little attenuation of the Fenton activity during 13 successive cycles, and was applicable across a wide pH range of 3.5-9.5. Interestingly, the OA-ZVIbm/H2O2 reaction showed pH self-adapting ability, which initially reduced and then sustained the solution pH in the range of 3.5-5.2. The abundant intrinsic surface Fe(II) of OA-ZVIbm (45.54% vs. 27.52% in ZVIbm, according to Fe 2p XPS profiles) was oxidized by H2O2 and hydrolyzed to generate protons, and the FeC2O4·2H2O shell favored the fast transfer of protons to inner Fe0, therefore, the consumption-regeneration cycle of protons were accelerated to drove the production of Fe(II) for Fenton reactions, demonstrated by the more prominent H2 evolution and nearly 100% H2O2 decomposition by OA-ZVIbm. Furthermore, the FeC2O4·2H2O shell was stable and slightly decreased from 1.9% to 1.7% after the Fenton reaction. This study clarified the significance of proton transfer on the reactivity of ZVI, and provided an efficient strategy to achieve the highly efficient and robust heterogeneous Fenton reaction of ZVI for pollution control.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Cancan Ling
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Chuan Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiao Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
63
|
Xu Z, Sun M, Xu X, Cao X, Ippolito JA, Mohanty SK, Ni BJ, Xu S, Tsang DCW. Electron donation of Fe-Mn biochar for chromium(VI) immobilization: Key roles of embedded zero-valent iron clusters within iron-manganese oxide. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131632. [PMID: 37210785 DOI: 10.1016/j.jhazmat.2023.131632] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/29/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
The dense surface passivation layer on zero-valent iron (ZVI) restricts its efficiency for water decontamination, causing a poor economy and waste of resources. Herein, we found that the ZVI on Fe-Mn biochar could afford a high electron-donating efficiency for the Cr(VI) reduction and immobilization. Over 78.0% of Fe in the Fe-Mn biochar was used for the Cr(VI) reduction and immobilization, i.e., 56.2 - 161.7 times higher than the commercial ZVI (0.5%) and modified ZVI (0.9 -1.3%), indicating that the unique ZVI species in Fe-Mn biochar offered an outstanding Fe utilization efficiency. We proposed that oxygen atoms in the FeO in the FeMnO2 precursor were removed during pyrolysis with biochar while the MnO skeleton was preserved, forming the embedded ZVI clusters within Fe-Mn oxide. The unique structure inhibited the formation of the Fe-Cr complex on Fe(0), which would facilitate the electron transfer between core Fe(0) and Cr(VI). Moreover, the surface FeMnO2 inhibited the diffusion of Fe and facilitated its affinity with pollutants, thus supporting higher efficiency for pollutant immobilization. The preserved performance of Fe-Mn biochar was proved in industrial wastewater and after long-term oxidation process, and the economic benefit was evaluated. This work provides a new approach for developing active ZVI-based materials with high Fe utilization efficiency and economics for water pollution control.
Collapse
Affiliation(s)
- Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mingzhe Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - James A Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, United States
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California Los Angeles, United States
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Shuguang Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
64
|
Dai Y, Dong Y, Duan L, Zhang B, Wang S, Zhao S. Unraveling the neglected role of elemental sulfur in chromate removal by sulfidated microscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131025. [PMID: 36801721 DOI: 10.1016/j.jhazmat.2023.131025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Elemental sulfur (S0), as an oxidation product of low-valent sulfur, is widely believed to inhibit the reactivity of sulfidated zero-valent iron (S-ZVI). However, this study found that the Cr(VI) removal and recyclability of S-ZVI with S0 as the dominant sulfur species were superior to those FeS or iron polysulfides (FeSx, x > 1) dominated ones. The more S0 directly mixed with ZVI, the better Cr(VI) removal obtained. This was ascribed to the formation of micro-galvanic cells, the semiconductor properties of cyclo-octasulfur S0 with sulfur atom substituted by Fe2+, and the in situ generations of highly reactive iron monosulfide (FeSaq) or polysulfides precursors (FeSx,aq). The Cr(VI) sequestration of FeSx,aq was 1.2-2 times that of FeSaq, and the reaction rate of amorphous iron sulfides (FexSy) in the removal of Cr(VI) by S-ZVI was 8- and 66-fold faster than that of crystalline FexSy and micron ZVI, respectively. The interaction of S0 with ZVI required direct contact and needed to overcome the spatial barrier caused by FexSy formation. These findings reveal the role of S0 in Cr(VI) removal by S-ZVI and guide the future development of in situ sulfidation technologies to utilize the highly reactive FexSy precursors for field remediation.
Collapse
Affiliation(s)
- Yinshun Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yamin Dong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Liangfeng Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
65
|
Wang Y, Jiang W, Tang Y, Liu Z, Qin Q, Xu Y. Biochar-supported sulfurized nanoscale zero-valent iron facilitates extensive dechlorination and rapid removal of 2,4,6-Trichlorophenol in aqueous solution. CHEMOSPHERE 2023; 332:138835. [PMID: 37142104 DOI: 10.1016/j.chemosphere.2023.138835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
Nanoscale zero-valent iron (NZVI) has been widely used in rapid remediation of contaminants. However, several obstacles such as aggregation and surface passivation hampered NZVI from further application. In this study, sulfurized nanoscale-zero valent iron supported by biochar (BC-SNZVI) was successfully synthesized and utilized for highly efficient 2,4,6-Trichlorophenol (2,4,6-TCP) dechlorination in aqueous solution. SEM-EDS analysis revealed the even distribution of SNZVI on the surface of BC. FTIR, XRD, XPS and N2 Brunauer-Emmett-Teller (BET) adsorption analyses were carried out to characterize the materials. Results showed that BC-SNZVI with S/Fe molar ratio of 0.088, Na2S2O3 as sulfurization agent, and pre-sulfurization as the sulfurization strategy exhibited the superior performance for 2,4,6-TCP removal. The overall removal of 2,4,6-TCP was well described with the pseudo-first-order kinetics (R2 > 0.9), and the observed kinetics constant Kobs was 0.083 min-1 with BC-SNZVI, which was one order of magnitude higher than that of BC-NZVI (0.0092 min-1) and SNZVI (0.0042 min-1), and two orders of magnitude higher than that of NZVI (0.00092 min-1). Moreover, the removal efficiency of 2,4,6-TCP reached 99.5% by BC-SNZVI with dosage of 0.5 g·L-1, initial 2,4,6-TCP concentration of 30 mg·L-1 and initial solution pH of 3 within 180 min. The removal of 2,4,6-TCP by BC-SNZVI was acid-promoted and the removal efficiencies of 2,4,6-TCP decreased with the increase of initial 2,4,6-TCP concentrations. Furthermore, more extensive dechlorination of 2,4,6-TCP was achieved with BC-SNZVI and complete dechlorination product phenol became predominant. The facilitation of sulfur for Fe0 utilization and electron distribution in the presence of biochar remarkably enhanced the dechlorination performance of BC-SNZVI for 2,4,6-TCP. These findings provide insights into BC-SNZVI as an alternative engineering carbon based NZVI material for treating chlorinated phenols.
Collapse
Affiliation(s)
- Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Wei Jiang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Zheming Liu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
66
|
Li L, Jin H, Luo N, Niu H, Cai Y, Cao D, Zhang S. Sulfurized nano zero-valent iron prepared via different methods: Effect of stability and types of surface corrosion products on removal of 2,4,6-trichlorophenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114864. [PMID: 37011511 DOI: 10.1016/j.ecoenv.2023.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Sulfurization improves the stability and activity of nano zero-valent iron (nZVI). The sulfurized nZVI (S-nZVI) were prepared with ball milling, vacuum chemical vapor deposition (CVD) and liquid-phase reduction techniques and the corresponding products were the mixture of FeS2 and nZVI (nZVI/FeS2), well-defined core-shell structure (FeSx@Fe) or seriously oxidized (S-nZVI(aq)), respectively. All these materials were applied to eliminate 2,4,6-trichlorophenol (TCP) from water. The removal of TCP was irrelevant with the structure of S-nZVI. Both nZVI/FeS2 and FeSx@Fe showed remarkable performance for the degradation of TCP. S-nZVI(aq) possessed poor mineralization efficiency to TCP due to its bad crystallinity degree and severe leaching of Fe ions, which retarded the affinity of TCP. Desorption and quenching experiments suggested that TCP removal by nZVI and S-nZVI was based on surface adsorption and subsequent direct reduction by Fe0, oxidation by in-situ produced ROS and polymerization on the surface of these materials. In the reaction process, the corrosion products of these materials transformed into crystalline Fe3O4 and α/β-FeOOH, which enhanced the stability of nZVI and S-nZVI materials and was conductive to the electron transferring from Fe0 to TCP and strong affinity of TCP onto Fe or FeSx phases. All these were contributed to high performance of nZVI and sulfurized nZVI in removal and minerazilation of TCP in continuous recycle test.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry and Materials Science, Ludong University, Yantai, Shandong Province 264025, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiwen Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Life Science, North China University of Science and Technology, Tangshan, Hebei Province 063210, China
| | - Na Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang Province 310013, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shengxiao Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, Shandong Province 264025, China.
| |
Collapse
|
67
|
Dai Y, Du W, Jiang C, Wu W, Dong Y, Duan L, Sun S, Zhang B, Zhao S. Enhanced reductive degradation of chloramphenicol by sulfidated microscale zero-valent iron: Sulfur-induced mechanism, competitive kinetics, and new transformation pathway. WATER RESEARCH 2023; 233:119743. [PMID: 36827765 DOI: 10.1016/j.watres.2023.119743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/15/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Crystalline iron sulfide (FeSx, i.e., FeS or FeS2) minerals as sulfur sources were used to prepare the mechanochemically sulfidated microscale zero-valent iron ((FeSx+ZVI)bm). Metastable FeS and FeS2 precursors were generated via aqueous coprecipitation and applied to fabricate FeSx@ZVI samples. (FeSx+ZVI)bm and FeSx@ZVI exhibited better chloramphenicol (CAP) degradation than ZVI due to the increase in specific surface areas, the decrease of electrochemical impedance, the formation of galvanic cells, and sulfur-induced pitting and local acidity. (FeSx+ZVI)bm had better CAP removal capacity than FeSx@ZVI under different S/Fe molar ratios, initial pH, and oxygen conditions. At the same time, FeSx@ZVI showed better electron utilization under oxic conditions, related to their Fe0 and sulfur spatial distribution. Nitro reduction and dechlorination of CAP by (FeSx+ZVI)bm produced nitroso, azoxy, amine, and monodechlorination products, while dechlorination was not involved in the degradation process of CAP by FeSx@ZVI. A new transformation pathway of nitroso-CAP to amine-CAP mediated by azoxy products is proposed via coupling a chain decay multispecies model and DFT calculations. The larger competitive reaction rates among O2, CAP, and its degradation products was determined by their lower LUMO energy. The contribution of direct electron transfer to nitro reduction was greater than that of atomic hydrogen, but the opposite was true for dechlorination. FeSx@ZVI had a larger DET contribution than (FeSx+ZVI)bm, and FeS2 promoted the DET contribution better than FeS. Toxicity assessment indicated that the rapid transformation of nitroso and azoxy products was crucial for eliminating the biotoxicity of CAP.
Collapse
Affiliation(s)
- Yinshun Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Weiyu Du
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Chao Jiang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Wanqi Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yamin Dong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Liangfeng Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shiwen Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3 × 5, Canada
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
68
|
Liu Y, Qiao J, Sun Y. Enhanced immobilization of lead, cadmium, and arsenic in smelter-contaminated soil by sulfidated zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130783. [PMID: 36696773 DOI: 10.1016/j.jhazmat.2023.130783] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/17/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Soils contaminated with multiple heavy metal(loid)s (HMs) such as lead (Pb), cadmium (Cd), and arsenic (As) are of great concern in many countries. In this study, taking three lead-zinc smelter soils, the performance of sulfidated zero-valent iron (S-ZVI) toward Pb, Cd, and As immobilization was systemically investigated. Results showed that more than 88% of water-extractable Pb and Cd could be immobilized and transformed into reducible, oxidizable, and/or reducible forms by S-ZVI within 3 h, whereas only 3-56% of them could be immobilized by unsulfidated ZVI even after 72 h. Meanwhile, the phytoavailability of the tested HMs could be effectively reduced by 79% after S-ZVI amendment. More importantly, anoxic/oxic incubation tests revealed that the dissolved concentrations of HMs were much lower in S-ZVI-treated soils than in the untreated or unmodified ZVI-treated soils. Speciation analysis further suggested that unmodified ZVI seemed to reduce the long-term soil stability by changing the residual HMs species to mild-acid soluble and/or reducible ones. In contrast, S-ZVI could effectively alleviate the remobilization of HMs under the changeover of soil redox environments. All these findings indicate that S-ZVI may be a promising amendment for the immobilization of Pb, Cd, and As in smelter-contaminated soil.
Collapse
Affiliation(s)
- Yang Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yuankui Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
69
|
Li T, Teng Y, Li X, Luo S, Xiu Z, Wang H, Sun H. Sulfidated microscale zero-valent iron/reduced graphene oxide composite (S-mZVI/rGO) for enhanced degradation of trichloroethylene: The role of hydrogen spillover. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130657. [PMID: 36580785 DOI: 10.1016/j.jhazmat.2022.130657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Atomic hydrogen (H*) has long been thought to play an important role in the dechlorination of trichloroethylene (TCE) by carbon-supported zero-valent iron (ZVI), which offers an alternative pathway for TCE dechlorination. Herein, we demonstrate that the reductive dechlorination of TCE by sulfidated microscale ZVI (S-mZVI) can be further enhanced by promoting the formation of H* through the introduction of reduced graphene oxide (rGO). The completely degradation of 10 mg/L TCE can be achieved by S-mZVI/rGO within 24 h, which was 3.3 times faster than that of S-mZVI. The change in the distribution of TCE degradation products over time suggests that the introduction of rGO leads to a change in the dechlorination pathway. The percentage of ethane in the final products of TCE degradation by S-mZVI/rGO was 34.3 %, while that of S-mZVI was only 21.9 %. The electrochemical tests confirmed the occurrence of hydrogen spillover in the S-mZVI/rGO composite, which promoted the reductive dechlorination of TCE by H*. Although the S-mZVI/rGO composite had stronger hydrogen evolution propensity than S-mZVI, the S-mZVI/rGO composite still exhibited higher electron utilization efficiency than S-mZVI thanks to the increased utilization of hydrogen.
Collapse
Affiliation(s)
- Tielong Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yaxin Teng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiao Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuangjiang Luo
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongming Xiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haitao Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
70
|
Yin X, Hua H, Dyer J, Landis R, Fennell D, Axe L. Degradation of chlorinated solvents with reactive iron minerals in subsurface sediments from redox transition zones. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130470. [PMID: 36493644 DOI: 10.1016/j.jhazmat.2022.130470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Reactive iron (Fe) mineral coatings found in subsurface reduction-oxidation transition zones (RTZs) contribute to the attenuation of contaminants. An 18.3-m anoxic core was collected from the site, where constituents of concern (COCs) in groundwater included chlorinated solvents. Reactive Fe mineral coatings were found to be abundant in the RTZs. This research focused on evaluating reaction kinetics with anoxic sediments bearing ferrous mineral nano-coatings spiked with either tetrachloroethylene (PCE), trichloroethylene (TCE), or 1,4-dichlorobenzene (1,4-DCB). Reaction kinetics with RTZ sediments followed pseudo-first-order reactions for the three contaminants with 90% degradation achieved in less than 39 days. The second-order rate constants for the three COCs ranged from 6.20 × 10-4 to 1.73 × 10-3 Lg-1h-1 with pyrite (FeS2), 4.97 × 10-5 to 1.24 × 10-3 Lg-1h-1with mackinawite (FeS), 1.25 × 10-4 to 1.89 × 10-4 Lg-1h-1 with siderite (FeCO3), and 1.79 × 10-4 to 1.10 × 10-3 Lg-1h-1 with magnetite (Fe3O4). For these three chlorinated solvents, the trend for the rate constants followed: Fe(II) sulfide minerals > magnetite > siderite. The high reactivity of Fe mineral coatings is hypothesized to be due to the large surface areas of the nano-mineral coatings. As a result, these surfaces are expected to play an important role in the attenuation of chlorinated solvents in contaminated subsurface environments.
Collapse
Affiliation(s)
- Xin Yin
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07032, USA
| | - Han Hua
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07032, USA; Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - James Dyer
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | | | - Donna Fennell
- Rutgers University, Department of Environmental Sciences, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Lisa Axe
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technzhaology, Newark, NJ 07032, USA.
| |
Collapse
|
71
|
Gao F, Zhang M, Zhang W, Ahmad S, Wang L, Tang J. Synthesis of carboxymethyl cellulose stabilized sulfidated nanoscale zero-valent iron (CMC-S-nZVI) for enhanced reduction of nitrobenzene. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
72
|
Gong L, Zhang L. Oxyanion-modified zero valent iron with excellent pollutant removal performance. Chem Commun (Camb) 2023; 59:2081-2089. [PMID: 36723230 DOI: 10.1039/d2cc06814a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxyanion-modified zero valent iron (OM-ZVI), including oxyanion-modified microscale ZVI (OM-mZVI) and nanoscale zero valent iron (OM-nZVI), has attracted growing interest in recent years for their excellent pollutant removal performance. This feature article summarizes the recent progress of OM-ZVI materials, including their synthesis, characterization, enhanced pollutant removal performance, and structure-property relationships. Generally, OM-ZVI could be synthesized with wet chemical and mechanochemical (ball-milling) methods and then characterized with state-of-the-art characterization techniques (e.g., X-ray-based spectroscopy, electron microscopy) to reveal their structure and physicochemical properties. We found that phosphate modification could form iron-phosphate on the nZVI surface, facilitating Cr(VI) removal, while the phosphorylation process could induce tensile hoop stress to produce numerous radial nanocracks in the structurally-dense spherical nZVI for enhanced Ni(II) removal via a boosted Kirkendall effect. Oxalate modification could trigger electron delocalization to increase electron cloud density and surface-bound Fe(II) of mZVI for enhanced Cr(VI) removal, while oxalated mZVI exhibited more efficient Cr(VI) removal performance via an in situ formed FeC2O4·2H2O shell of high proton conductivity, favoring Cr(VI) reduction. Differently, the mechanochemical treatment of mZVI with B2O3 could exert tensile strain on it through interstitial boron doping, thereby promoting the release and transfer of electrons from its Fe(0) core to its iron oxide shell for dramatic Cr(VI) reduction. This article aims to demonstrate the potential of OM-ZVI for pollution control and environmental remediation.
Collapse
Affiliation(s)
- Li Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. .,Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
73
|
Fan B, Li X, Zhu F, Wang J, Gong Z, Shao S, Wang X, Zhu C, Zhou D, Gao S. Anti-passivation ability of sulfidated microscale zero valent iron and its application for 1,1,2,2-tetrachloroethane degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130194. [PMID: 36270192 DOI: 10.1016/j.jhazmat.2022.130194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The performance of sulfidated zero valent iron (ZVI) for the degradation of chlorinated hydrocarbons under aerobic conditions remains unclear. In this study, sulfidated microscale ZVI (S-mZVI) was prepared for 1,1,2,2-tetrachloroethane (TeCA) degradation under aerobic conditions. Compared with mZVI, S-mZVI showed excellent passivation resistance during the degradation of TeCA and its hydrolysis/reduction products. This was probably because the existence of FeSx shell (FeS/FeS2/FeSn) protected the internal ZVI core from passivation. Though the outer layer of FeSx shell could be oxidized to FeSn and Fe2(SO4)3 as the reaction proceeded, the inner layer remained stable, which maintained the fast electron transfer capability of S-mZVI. The high temperature could enhance the degradation of TeCA, without compromising the anti-passivation and reusability of S-mZVI. Even after the fifth cycle, S-mZVI could still efficiently degrade 90% of TeCA within 24 h. Furthermore, it was found that the degradation of TeCA and its reduction products (e.g., dichloroethylene (DCE)) by S-mZVI relied on direct electron transfer and hydrogen radical (H•), respectively, which might explain the lower levels of toxic DCE in the S-mZVI system. This study provides valuable information for the practical application of S-mZVI in the treatment of wastewater containing halogenated hydrocarbons under ambient conditions.
Collapse
Affiliation(s)
- Bo Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoshuai Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Jiahao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
74
|
Zhang S, Wang T, Guo X, Chen S, Wang L. Adsorption and reduction of trichloroethylene by sulfidated nanoscale zerovalent iron (S-nZVI) supported by Mg(OH) 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14240-14252. [PMID: 36149563 DOI: 10.1007/s11356-022-23195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Sulfidated nanoscale zerovalent iron (S-nZVI) supported on a flower spherical Mg(OH)2 with different Mg/Fe ration were successfully synthesized. The synthesized materials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The results showed that S-nZVI particles were well dispersed on the petals of the flower spherical Mg(OH)2. The influence of factors, including the initial solution pH, Mg/Fe, S/Fe were studied. The trichloroethylene (TCE) adsorption data on Mg(OH)2 and S-nZVI @Mg(OH)2 fit well to a Langmuir isotherm model, and the maximum adsorption of S-nZVI @Mg(OH)2 was 253.55 mg/g, which was 2.6-fold of S-nZVI. Meanwhile, the S-nZVI @Mg(OH)2 composite expanded the pH selection range of S-nZVI from 2 to 11. Cycling experiments showed that removal rate was 58.3% for the 5th cycle. TCE removal was due to synergistic action of reduction coupled with adsorption. During this process, 65.43% of total remove TCE from ion chromatography data was reduced and 34.57% of total remove TCE was adsorbed finally. At the same time, adsorption favors reduction. These observations indicated that the S-nZVI @Mg(OH)2 can be considered as potential adsorbents to remove TCE for environment remediation.
Collapse
Affiliation(s)
- Shubin Zhang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University (SSPU), Shanghai, 201209, People's Republic of China
| | - Tianxiao Wang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University (SSPU), Shanghai, 201209, People's Republic of China
| | - Xin Guo
- School of Resources and Environmental Engineering, Shanghai Polytechnic University (SSPU), Shanghai, 201209, People's Republic of China
| | - Shengwen Chen
- School of Resources and Environmental Engineering, Shanghai Polytechnic University (SSPU), Shanghai, 201209, People's Republic of China.
| | - Lijun Wang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University (SSPU), Shanghai, 201209, People's Republic of China
| |
Collapse
|
75
|
Wang X, Xin J, Yuan M, Zhao F, Wang L. Coupled microscale zero valent iron-autotrophic hydrogen bacteria dechlorination system is not always superior to its standalone counterparts: A sustainable remediation perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159364. [PMID: 36228794 DOI: 10.1016/j.scitotenv.2022.159364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The coupling of microscale zero-valent iron with autotrophic hydrogen bacteria (mZVI-AHB) are often believed to show greater potential than the single abiotic or biotic systems in remediating chlorinated aliphatic hydrocarbon-contaminated groundwater. However, our understanding of the remediation performance of this system under real field conditions, especially by incorporating the concept of sustainable remediation, remains limited. In this study, the performances of the mZVI, H2-AHB, and mZVI-AHB systems in dechlorinating groundwater containing complex electron acceptors were compared by evaluating their removal efficiency (RE), reaction products, and electron efficiency (EE), using trichloroethylene (TCE) as the target contaminant and NO3- and SO42- as the coexisting natural electron acceptors. Ultimately, which of these systems had TCE removal superiority was dependent on the coexisting electron acceptor. mZVI-AHB and mZVI resulted in more complete dechlorination, whereas H2-AHB exhibited higher N2 selectivity in reducing NO3-. Regardless of the coexisting electron acceptor, the mZVI-alone system showed the highest EE. Finally, the sustainability concerns and applicability of the three systems were evaluated on the basis of their TCE RE, complete dechlorination ratio, N2 selectivity, EE, and cost, which were integrated into a comparison of overall benefits. Our findings provide comprehensive and insightful information on the factors that determine remediation scheme selection in real practice.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fang Zhao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Litao Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
76
|
Brumovský M, Micić V, Oborná J, Filip J, Hofmann T, Tunega D. Iron nitride nanoparticles for rapid dechlorination of mixed chlorinated ethene contamination. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129988. [PMID: 36155299 DOI: 10.1016/j.jhazmat.2022.129988] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Sulfidation and, more recently, nitriding have been recognized as promising modifications to enhance the selectivity of nanoscale zero-valent iron (nZVI) particles for trichloroethene (TCE). Herein, we investigated the performance of iron nitride (FexN) nanoparticles in the removal of a broader range of chlorinated ethenes (CEs), including tetrachloroethene (PCE), cis-1,2-dichloroethene (cis-DCE), and their mixture with TCE, and compared it to the performance of sulfidated nZVI (S-nZVI) prepared from the same precursor nZVI. Two distinct types of iron nitride (FexN) nanoparticles, containing γ'-Fe4N and ε-Fe2-3N phases, exhibited substantially higher PCE and cis-DCE dechlorination rates compared to S-nZVI. A similar effect was observed with a CE mixture, which was completely dechlorinated by both types of FexN nanoparticles within 10 days, whereas S-nZVI was able to remove only about half of the amount, most of which being TCE. Density functional theory calculations further revealed that the cleavage of the first C-Cl bond was the rate-limiting step for all CEs dechlorinated on the γ'-Fe4N(001) surface, with the reaction barriers of PCE and cis-DCE being 29.9, and 40.8 kJ mol-1, respectively. FexN nanoparticles proved to be highly effective in the remediation of PCE, cis-DCE, and mixed CE contamination.
Collapse
Affiliation(s)
- Miroslav Brumovský
- University of Natural Resources and Life Sciences, Vienna, Department of Forest, and Soil Sciences, Institute of Soil Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria; Department of Environmental Geosciences (EDGE), Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090 Vienna, Austria; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
| | - Vesna Micić
- Department of Environmental Geosciences (EDGE), Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090 Vienna, Austria
| | - Jana Oborná
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Jan Filip
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Thilo Hofmann
- Department of Environmental Geosciences (EDGE), Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090 Vienna, Austria
| | - Daniel Tunega
- University of Natural Resources and Life Sciences, Vienna, Department of Forest, and Soil Sciences, Institute of Soil Research, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| |
Collapse
|
77
|
Zhang J, Yu H, Xu W, Shi H, Hu X, Xu J, Lou L. Adsorption-reduction coupling mechanism and reductive species during efficient florfenicol removal by modified biochar supported sulfidized nanoscale zerovalent iron. ENVIRONMENTAL RESEARCH 2023; 216:114782. [PMID: 36395864 DOI: 10.1016/j.envres.2022.114782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Sulfidized nanoscale zerovalent iron (S-nZVI) was a promising material for degrading halogenated contaminants, but the easy aggregation limits its application for in-situ groundwater remediation. Hence, S-nZVI was decorated onto modified biochar (mBC) to obtain better dispersity and reactivity with florfenicol (FF), a widely used antibiotic. Uniform dispersion of S-nZVI particles were achieved on the mBC with plentiful oxygen-containing functional groups and negative surface charge. Thus, the removal rate of FF by S-nZVI@mBC was 2.5 and 3.1 times higher than that by S-nZVI and S-nZVI@BC, respectively. Adsorption and dechlorination of FF showed synergistic effect under appropriate mBC addition (e.g., C/Fe mass ratio = 1:3, 1:1), probably due to the enrichment of FF facilitates its reduction. In contrast, the contact between FF and S-nZVI could be hindered under more mBC addition, significantly decrease the reduction rate of FF and the reduction capacity of per unit Fe0. In addition, sulfur dose altered the surface species of surface Fe and S, and removal rates of FF correlated well with surface reductive species, i.e., FeS (r = 0.90, p < 0.05) and Fe0 (r = 0.98, p < 0.01). These mechanistic insights indicate the importance of rational design for biochar supported S-nZVI, which can lead to more efficient FF degradation.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Hao Yu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Weijian Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Hongyu Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Xiaohong Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Jiang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310020, China.
| |
Collapse
|
78
|
He K, Sun R, Yang D, Wang S, Shu J, Wan W, Pan Y, Qin F, He F, Liang L. Effect of sulfidation on nitrobenzene removal from groundwater by microscale zero-valent iron: Insights into reactivity, reaction sites and removal pathways. CHEMOSPHERE 2023; 310:136819. [PMID: 36241117 DOI: 10.1016/j.chemosphere.2022.136819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
While it has been recognized that sulfidation can effectively improve the reactivity of microscale zero valent iron (mZVI), there is limited understanding of nitrobenzene (ArNO2) removal by sulfidated mZVI. To understand the reduction capacity and pathway of ArNO2 by sulfidated mZVI, ball-milling sulfidated mZVI (S-mZVIbm) with different S/Fe molar ratios (0-0.2) was used to conduct this experiment. The results showed that sulfidation could efficiently enhance ArNO2 removal under iron-limited and iron excess conditions, which was attributed to the presence of FeSx sites that could provide higher Fe(0) utilization efficiency and stronger passivation resisting for S-mZVIbm. The optimum ArNO2 reduction could be obtained by S-mZVIbm with S/Fe molar ratio at 0.1, which could completely transform ArNO2 to aniline (ArNH2) with a rate constant of 4.36 × 10-2 min-1 during 120-min reaction. FeSx phase could act as electron transfer sites for ArNO2 reduction and it could still be reserved in S-mZVIbm after reduction reaction. The product distribution indicated that sulfidation did not change the types of reduction products, while the removal of ArNO2 by S-mZVIbm was a step-by-step reduction progress along with the adsorption of ArNH2. In addition, a faster reduction of ArNO2 in groundwater/soil system further demonstrated the feasibility of S-mZVIbm in the real field remediation.
Collapse
Affiliation(s)
- Kai He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Rui Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dezhi Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuchen Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junjie Shu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wubo Wan
- Marine Food Engineering Technology Research Center of Hainan, Province, Hainan Tropical Ocean University, No.1 Yucai Road, Sanya, 572022, China
| | - Ying Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fengyang Qin
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Liyuan Liang
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
79
|
Chen J, Cheng X, Sheng G. Graphene oxide enhanced the reductive sequestration of UO22+, ReO4−, SeO42− and SeO32− by zero-valent iron: batch, column and mechanism investigations. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
80
|
Gong L, Zhang Z, Xia C, Zheng J, Gu Y, He F. A quantitative study of the effects of particle' properties and environmental conditions on the electron efficiency of Pd and sulfidated nanoscale zero-valent irons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158469. [PMID: 36058331 DOI: 10.1016/j.scitotenv.2022.158469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Electron efficiency (or electron selectivity, ɛe) is an important quantitative criterion for zero-valent iron treatment of organohalide contaminated groundwater. The aim of this quantitative study was the systematic exploration and comparison of the effects of the Pd/Fe and S/Fe molar ratios (i.e., [Pd/Fe] and [S/Fe]), trichloroethylene (TCE) concentrations ([TCE]), pH solution, aging time, and water matrices on the ɛe of Pd-nZVI and S-nZVI. To this end, we used TCE as a probe contaminant. The ɛe of Pd-nZVI increased and then decreased with [Pd/Fe], while that of S-nZVI increased with [S/Fe], as more hydrophobic FeS2 was formed on S-nZVI at higher [S/Fe]. The εe of S-nZVI and Pd-nZVI increased with increasing [TCE]. Specifically, the εe of S-nZVI and Pd-nZVI at [TCE] of 200 ppm increased by 24.9 % and 79.3 %, respectively, compared with that at [TCE] of 10 ppm. As the H2 evolution reaction (HER) was more sensitive to surface passivation than TCE dechlorination, the εe of S-nZVI and Pd-nZVI under alkaline conditions was higher than that under basic conditions, and increased by 11.7 % and 37.8 %, respectively, at pH 10 relative to that at pH 6. The εe also increased with the aging time of the S-nZVI and Pd-nZVI particles; the increase was by 27.2 % and 59.6 %, respectively, at aging time of 30 d compared with that of the fresh ones. The ɛe of both particles were higher in artificial groundwater (AGW) than in real groundwater (RGW). For all batch experiments, the εe of S-nZVI increased over the reaction time and tended to outperform that of Pd-nZVI, even though the εe of Pd-nZVI was higher than that of S-nZVI at the initial stage of TCE dechlorination, thereby justifying the longevity of S-nZVI.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zaizhi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenyun Xia
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yawei Gu
- School of Environmental Science and Engineering, Qilu University of Technology, Jinan, 250353, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
81
|
Li M, Ling L. Visualizing Dynamic Environmental Processes in Liquid at Nanoscale via Liquid-Phase Electron Microscopy. ACS NANO 2022; 16:15503-15511. [PMID: 35969015 DOI: 10.1021/acsnano.2c04246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visualizing the structure and processes in liquids at the nanoscale is essential for understanding the fundamental mechanisms and underlying processes of environmental research. Cutting-edge progress of in situ liquid-phase (scanning) transmission electron microscopy (LP-S/TEM) and inferred possible applications are highlighted as a more and more indispensable tool for visualization of dynamic environmental processes in this Perspective. Advancements in nanofabrication technology, high-speed imaging, comprehensive detectors, and spectroscopy analysis have made it increasingly convenient to use LP S/TEM, thus providing an approach for visualization of direct and insightful scientific information with the exciting possibility of solving an increasing number of tricky environmental problems. This includes evaluating the transformation fate and path of contamination, assessing toxicology of nanomaterials, simulating solid surface corrosion processes in the environment, and observing water pollution control processes. Distinct nanoscale or even atomic understanding of the reaction would provide dependable and precise identification and quantification of contaminants in dynamic processes, thus facilitating trouble-tracing of environmental problems with amplifying complexity.
Collapse
Affiliation(s)
- Meirong Li
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Lan Ling
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
82
|
Wang Z, Yang Z, Fagerlund F, Zhong H, Hu R, Niemi A, Illangasekare T, Chen YF. Pore-Scale Mechanisms of Solid Phase Emergence During DNAPL Remediation by Chemical Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11343-11353. [PMID: 35904865 DOI: 10.1021/acs.est.2c01311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In situ chemical oxidation (ISCO) has proven successful in the remediation of aquifers contaminated with dense nonaqueous phase liquids (DNAPLs). However, the treatment efficiency can often be hampered by the formation of solids or gas, reducing the contact between remediation agents and residual DNAPLs. To further improve the efficiency of ISCO, fundamental knowledge is needed about the complex multiphase flow and reactive transport processes as new solid and fluid phases emerge at the microscale. Here, via microfluidic experiments, we study the pore-scale dynamics of trichloroethylene degradation by permanganate. We visualize how the remediation evolves under the influence of solid phase emergence and explore the roles of injection rate, oxidant concentration, and stabilization supplement. Combining image processing, pressure analysis, and stoichiometry calculations, we provide comprehensive descriptions of the oxidant concentration-dependent growth patterns of the solid phase and their impact on the remediation efficiency. We further corroborate the stabilization mechanism provided by phosphate supplement, which is effective in inhibiting solid phase generation and thus highly beneficial for the oxidation remediation. This work elucidates the pore-scale mechanisms during remediation of chlorinated solvents with a particular context in the solid phase production and the associated effects, which is of general significance to understanding various processes in natural and engineered systems involving solid phase emergence or aggregation phenomena, such as groundwater and soil remediation.
Collapse
Affiliation(s)
- Zejun Wang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
- Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Zhibing Yang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
- Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Fritjof Fagerlund
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236 Uppsala, Sweden
| | - Hua Zhong
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Ran Hu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
- Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Auli Niemi
- Department of Earth Sciences, Uppsala University, Villavägen 16, SE-75236 Uppsala, Sweden
| | - Tissa Illangasekare
- Department of Civil and Environmental Engineering, Center for Experimental Study of Subsurface Environmental Processes, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Yi-Feng Chen
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
- Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
83
|
Sun P, Wang Z, An S, Zhao J, Yan Y, Zhang D, Wu Z, Shen B, Lyu H. Biochar-supported nZVI for the removal of Cr(VI) from soil and water: Advances in experimental research and engineering applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115211. [PMID: 35561491 DOI: 10.1016/j.jenvman.2022.115211] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Over the past decade, biochar-supported nZVI composites (nZVI/biochar) have been developed and applied to treat various pollutants due to their excellent physical and chemical properties, especially in the field of chromium (VI) removal. This paper reviewed the factors influencing the preparation and experiments of nZVI/biochar composites, optimization methods, column experimental studies and the mechanism of Cr(VI) removal. The results showed that the difference in raw materials and preparation temperature led to the difference in functional groups and electron transfer capabilities of nZVI/biochar materials. In the experimental process, pH and test temperature can affect the surface chemical properties of materials and involve the electron transfer efficiency. Elemental doping and microbial coupling can effectively improve the performance of nZVI/biochar composites. In conclusion, biochar can stabilize nZVI and enhance electron transfer in nZVI/biochar materials, enabling the composite materials to remove Cr(VI) efficiently. The study of column experiments provides a theoretical basis for applying nZVI/biochar composites in engineering. Finally, the future work prospects of nZVI/biochar composites for heavy metal removal are introduced, and the main challenges and further research directions are proposed.
Collapse
Affiliation(s)
- Peng Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shengwei An
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jian Zhao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yichen Yan
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Daijie Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
84
|
Dai Y, Duan L, Dong Y, Zhao W, Zhao S. Elemental sulfur generated in situ from Fe(III) and sulfide promotes sulfidation of microscale zero-valent iron for superior Cr(VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129256. [PMID: 35739775 DOI: 10.1016/j.jhazmat.2022.129256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Herein, we compared the effect of different extra iron and sulfur precursors on the sulfidation efficiency, physicochemical properties, and reactivity of post-sulfidated microscale zero-valent iron (S-ZVI). S0@ZVI was synthesized from in situ S0 generated via reaction of Fe(III) with S2-, which resulted in 23-fold higher Cr(VI) removal compared with S0com/ZVI synthesized using commercial S0. The direct formation of FeSx film via reaction between S0 and ZVI played a crucial role in enhancing the removal of Cr(VI) by S0@ZVI, with 16- and 12-fold faster rates compared with FeS@ZVI and FeS2@ZVI prepared via precipitated reaction of Fe(II) with S2- and sulfur mixtures, respectively. The incorporated sulfur, sulfidation sequence, and sulfidation time determined the performance of S0@ZVI. A combination of batch experiments and kinetic models was used to determine the chemical composition of reduced Cr(VI) products. S0@ZVI immobilized Cr(VI) as Fe0.5Cr0.5(OH)3 via surface heterogeneous reactions, and partial Cr(VI) was homogeneously reduced to soluble Cr(acetate)3 or Fe0.75Cr0.25(OH)3(aq) by dissolved Fe(II). The insights gained from this study will facilitate the fabrication of highly reactive S-ZVI and elucidate the mechanism of Cr(VI) removal.
Collapse
Affiliation(s)
- Yinshun Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Liangfeng Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Yamin Dong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Wenjie Zhao
- Testing Center of Shandong Bureau, China Metallurgical Geology Bureau, Jinan, Shandong 250000, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
85
|
Cong Y, Shen L, Wang B, Cao J, Pan Z, Wang Z, Wang K, Li Q, Li X. Efficient removal of Cr(VI) at alkaline pHs by sulfite/iodide/UV: Mechanism and modeling. WATER RESEARCH 2022; 222:118919. [PMID: 35933816 DOI: 10.1016/j.watres.2022.118919] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Efficient removal of toxic hexavalent chromium (Cr(VI)) under alkaline conditions is still a challenge due to the relatively low reactivity of CrO42-. This study proposed a new sulfite/iodide/UV process to remove Cr(VI). The removal of Cr(VI) followed pseudo-zero-order kinetics at alkaline pHs, and was enhanced by sulfite and iodide with synergy. Compared with sulfite/UV, iodide in sulfite/iodide/UV showed about 40 times higher concentration-normalized enhancement for Cr(VI) removal, and reduced the requirement of sulfite ([S(IV)]0/[Cr(VI)]0 of about 2.1:1) by more than 90%. The Cr(VI) removal was accelerated by decreasing pH and by increasing temperature, and was slightly influenced by dissolved oxygen, carbonate, and humic acid. The process was still effective in real surface water and industrial wastewater. Mechanism and pathways of Cr(VI) removal were revealed by quenching experiments, competition kinetic analysis, product identification and quantification, and mass and electron balance. Both eaq- and SO3•- were responsible for Cr(VI) removal, making contributions of about 75% and 25%, respectively. When eaq- mainly reacted with Cr(VI), SO3•- participated in reduction of Cr(V) and Cr(IV) intermediates, with Cr(III), S2O62-, and SO42- as the final products. A model was developed to predict removal kinetics of Cr(VI), and well interpreted the roles of S(IV) and iodide in the process. This study sheds light on mechanism of Cr(VI) removal at alkaline pHs by kinetic modeling, and thus advances the applicability of this promising process for water decontamination.
Collapse
Affiliation(s)
- Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lidong Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Baimei Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianlai Cao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zixuan Pan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ziyu Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kai Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qiangbiao Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
86
|
Ling C, Wu S, Han J, Dong T, Zhu C, Li X, Xu L, Zhang Y, Zhou M, Pan Y. Sulfide-modified zero-valent iron activated periodate for sulfadiazine removal: Performance and dominant routine of reactive species production. WATER RESEARCH 2022; 220:118676. [PMID: 35640509 DOI: 10.1016/j.watres.2022.118676] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
In this work, sulfide-modified zero-valent iron (S-Fe0) was used to activate periodate (IO4-, PI) for sulfadiazine (SDZ) removal. 60 μM SDZ could be completely removed within only 1 min by S-Fe0/PI process. Compared with other oxidants including H2O2, peroxymonosulfate (PMS), peroxydisulfate (PDS), S-Fe0 activated PI exhibited better performance for SDZ removal but with lower Fe leaching. Compared with Fe0/PI process, S-Fe0/PI process could reduce more than 80% Fe0 and PI dosage. Inorganic ions and nature organic matters had negligible effect on SDZ removal in S-Fe0/PI system inducing its good SDZ removal efficiency in natural fresh water. 80.2% SDZ still could be removed within 2 min after 7th run. S-Fe0/PI process also exhibited 2.5 - 20.1 folds enhancement for various pollutants removal compared with Fe0/PI process. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electrochemical tests, and density functional theory (DFT) calculation were conducted to confirm the presence of sulfurs could enhance the reactivity of S-Fe0 thus increased the efficiency of PI activation for antibiotics removal. Electron paramagnetic resonance spectroscopy (EPR) tests, radical quenching experiments, quantitative detection and DFT calculation were performed to illustrate the role of multiple reactive species in SDZ removal and the dominant pathway of multiple reactive species production. IO3·, ·OH, O2-·, 1O2, FeIV, and SO4·- all participated in SDZ removal. ·OH played the major role in SDZ removal and the dominant routine of ·OH production was IO4- → O2-· → H2O2 → ·OH. Meanwhile, S-Fe0/PI process could efficiently mineralize SDZ and reduce the toxicity. Comparison with other PI activation approaches and SDZ treatment techniques further demonstrated S-Fe0 was an efficient catalyst for PI activation and present study process was a promising approach for antibiotics removal.
Collapse
Affiliation(s)
- Chen Ling
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Wu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Tailu Dong
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Changqing Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiuwen Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
87
|
Han P, Xie J, Qin X, Yang X, Zhao Y. Experimental study on in situ remediation of Cr(VI) contaminated groundwater by sulfidated micron zero valent iron stabilized with xanthan gum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154422. [PMID: 35276162 DOI: 10.1016/j.scitotenv.2022.154422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Micron zero valent iron (mZVI) was an underground remediation material, which had great application potential to replace nano zero valent iron (nZVI) from the perspective of economic and health benefits. However, mZVI was highly prone to gravitational settling, which limited its wide application for in situ remediation of contaminated groundwater. This paper was devoted to develop an efficient and economical groundwater remediation material based on mZVI, which should possess excellent stability, reactivity, and transportability. Thereby xanthan gum (XG) stabilized and Na2S2O4 sulfidated mZVI (XG-S-mZVI) was synthesized and characterized with SEM, XRD, XPS, and FTIR techniques. In terms of stability, the adsorbed XG and the dispersed XG worked together to resist the sedimentation of S-mZVI. In terms of reactivity, sulfidation enhanced the electron transfer rate and electron selectivity of XG-S-mZVI, thereby improved the reactivity of XG-S-mZVI. The hexavalent chromium (Cr(VI)) removal rate constant by XG-S-mZVI was determined to be 832.4 times than bare mZVI. In terms of transportability, the transportability of XG-S-mZVI was greatly improved (~80 cm in coarse sand and ~50 cm in medium sand). Straining was the main mechanism of XG-S-mZVI retention in porous media. XG-S-mZVI in situ reactive zone (XG-S-mZVI-IRZ) was only suitable to the media with a grain size larger than 0.25 mm. This study could provide theoretical support and guidance for the implementation of IRZ technology based on mZVI.
Collapse
Affiliation(s)
- Peiling Han
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Jiayin Xie
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Xueming Qin
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Xinru Yang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China.
| |
Collapse
|
88
|
Mangayayam MC, Perez JPH, Alonso-de-Linaje V, Dideriksen K, Benning LG, Tobler DJ. Sulfidation extent of nanoscale zerovalent iron controls selectivity and reactivity with mixed chlorinated hydrocarbons in natural groundwater. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128534. [PMID: 35259697 DOI: 10.1016/j.jhazmat.2022.128534] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/25/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Sulfidated nanoscale zerovalent iron (S-nZVI) exhibits low anoxic oxidation and high reactivity towards many chlorinated hydrocarbons (CHCs). However, nothing is known about S-nZVI reactivity once exposed to complex CHC mixtures, a common feature of CHC plumes in the environment. Here, three S-nZVI materials with varying iron sulfide (mackinawite, FeSm) shell thickness and crystallinity were exposed to groundwater containing a complex mixture of chlorinated ethenes, ethanes, and methanes. CHC removal trends yielded pseudo-first order rate constants (kobs) that decreased in the order: trichloroethene > trans-dicloroethene > 1,1-dichlorethene > trichloromethane > tetrachloroethene > cis-dichloroethene > 1,1,2-trichloroethane, for all S-nZVI materials. These kobs trends showed no correlation with CHC reduction potentials based on their lowest unoccupied molecular orbital energies (ELUMO) but absolute values were affected by the FeSm shell thickness and crystallinity. In comparison, nZVI reacted with the same CHCs groundwater, yielded kobs that linearly correlated with CHC ELUMO values (R2 = 0.94) and that were lower than S-nZVI kobs. The CHC selectivity induced by sulfidation treatment is explained by FeSm surface sites having specific binding affinities towards some CHCs, while others require access to the metallic iron core. These new insights help advance S-nZVI synthesis strategies to fit specific CHC treatment scenarios.
Collapse
Affiliation(s)
- Marco C Mangayayam
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Jeffrey Paulo H Perez
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Virginia Alonso-de-Linaje
- AECOM Environment Madrid, Spain; GIR-QUESCAT, Departamento de Quimica Inorgánica, Universidad de Salamanca, Salamanca, Spain
| | - Knud Dideriksen
- Geological Survey of Denmark & Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark
| | - Liane G Benning
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Dominique J Tobler
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
89
|
Lang Y, Yu Y, Zou H, Ye J, Zhang S. Performance and Mechanisms of Sulfidated Nanoscale Zero-Valent Iron Materials for Toxic TCE Removal from the Groundwater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106299. [PMID: 35627834 PMCID: PMC9142031 DOI: 10.3390/ijerph19106299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023]
Abstract
Trichloroethylene (TCE) is one of the most widely distributed pollutants in groundwater and poses serious risks to the environment and human health. In this study, sulfidated nanoscale zero-valent iron (S-nZVI) materials with different Fe/S molar ratios were synthesized by one-step methods. These materials degraded TCE in groundwater and followed a pathway that did not involve the production of toxic byproducts such as dichloroethenes (DCEs) and vinyl chloride (VC). The effects of sulfur content on TCE dechlorination by S-nZVI were thoroughly investigated in terms of TCE-removal efficiency, H2 evolution, and reaction rate. X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) characterizations confirmed Fe(0) levels in S-nZVI were larger than for zero-valent iron (nZVI). An Fe/S molar ratio of 10 provided the highest TCE-removal efficiencies. Compared with nZVI, the 24-h TCE removal efficiencies of S-nZVI (Fe/S = 10) increased from 30.2% to 92.6%, and the Fe(0) consumed during a side-reaction of H2 evolution dropped from 77.0% to 12.8%. This indicated the incorporation of sulfur effectively inhibited H2 evolution and allowed more Fe(0) to react with TCE. Moreover, the pseudo-first-order kinetic rate constants of S-nZVI materials increased by up to 485% compared to nZVI. In addition, a TCE degradation was proposed based on the variation of detected degradation products. Noting that acetylene, ethylene, and ethane were detected rather than DCEs and VC confirmed that TCE degradation followed β-elimination with acetylene as the intermediate. These results demonstrated that sulfide modification significantly enhanced nZVI performance for TCE degradation, minimized toxic-byproduct formation, and mitigated health risks. This work provides some insight into the remediation of chlorinated-organic-compound-contaminated groundwater and protection from secondary pollution during remediation by adjusting the degradation pathway.
Collapse
Affiliation(s)
- Yue Lang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China;
| | - Yanan Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (Y.Y.); (J.Y.); (S.Z.)
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China;
- Correspondence:
| | - Jiexu Ye
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (Y.Y.); (J.Y.); (S.Z.)
| | - Shihan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (Y.Y.); (J.Y.); (S.Z.)
| |
Collapse
|
90
|
Mo Y, Xu J, Zhu L. Molecular Structure and Sulfur Content Affect Reductive Dechlorination of Chlorinated Ethenes by Sulfidized Nanoscale Zerovalent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5808-5819. [PMID: 35442653 DOI: 10.1021/acs.est.2c00284] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sulfidized nanoscale zerovalent iron (SNZVI) with desirable properties and reactivity has recently emerged as a promising groundwater remediation agent. However, little information is available on how the molecular structure of chlorinated ethenes (CEs) affects their dechlorination by SNZVI or whether the sulfur content of SNZVI can alter their dechlorination pathway and reactivity. Here, we show that the reactivity (up to 30-fold) and selectivity (up to 70-fold) improvements of SNZVI (compared to NZVI) toward CEs depended on the chlorine number, chlorine position, and sulfur content. Low CEs (i.e., vinyl chloride and cis-1,2-dichloroethene) and high CEs (perchloroethene) tended to be dechlorinated by SNZVI primarily via atomic H and direct electron transfer, respectively, while SNZVI could efficiently and selectively dechlorinate trichloroethene and trans-1,2-dichloroethene via both pathways. Increasing the sulfidation degree of SNZVI suppressed its ability to produce atomic H but promoted electron transfer and thus altered the relative contributions of atomic H and electron transfer to the CE dechlorination, resulting in different reactivities and selectivities. These were indicated by the correlations of CE dechlorination rates and improvements with CE molecular descriptors, H2 evolution rates, and electron transfer indicators of SNZVI. These mechanistic insights indicate the importance of determining the structure-specific properties and reactivity of both SNZVI materials and their target contaminants and can lead to a more rational design of SNZVI for in situ groundwater remediation of various CEs.
Collapse
Affiliation(s)
- Yalan Mo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
91
|
Li W, Liang L, Li Y, Tian Y, Chen J, Chen S, Zhang J. Individual effects of different co-existing ions and polystyrene (PS) microplastics on the reactivity of sulfidated nanoscale zero-valent iron (S-nZVI) toward EDTA-chelated CdII removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
92
|
Liu Y, Qiao J, Sun Y, Guan X. Simultaneous Sequestration of Humic Acid-Complexed Pb(II), Zn(II), Cd(II), and As(V) by Sulfidated Zero-Valent Iron: Performance and Stability of Sequestration Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3127-3137. [PMID: 35174702 DOI: 10.1021/acs.est.1c07731] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heavy metal(loid)s (HMs) such as Pb(II), Zn(II), Cd(II), and As(V) are ubiquitously present in co-contaminated soil and shallow groundwater, where the humic acid (HA)-rich environments can significantly influence their sequestration. In this study, sulfidated zero-valent iron (S-ZVI) was found to be able to simultaneously sequestrate these HA-complexed HMs. Specially, the HA-complexed Pb(II), Zn(II), Cd(II), and As(V) could be completely removed by S-ZVI within 60 min, while only 35-50% of them could be sequestrated within 72 h by unsulfidated ZVI. Interestingly, different from the S-ZVI corrosion behavior, the kinetics of HM sequestration by S-ZVI consisted of an initial slow reaction stage (or a lag phase) and then a fairly rapid reaction process. Characterization results indicated that forming metal sulfides controlled the HM sequestration at the first stage, whereas the enhanced ZVI corrosion and thus-improved adsorption and/or coprecipitation by iron hydroxides governed the second stage. Both metal-oxygen and metal-sulfur bonds in the solid phase could be confirmed by X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis. Moreover, the transformation of S species from SO42-, SO32-, and S22- to S2- under reducing conditions could allow the sequestrated HMs to remain stable over a long period.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Yuankui Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
93
|
Yang S, Liu A, Liu J, Liu Z, Zhang W. Advance of Sulfidated Nanoscale Zero-Valent Iron: Synthesis, Properties and Environmental Application. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
94
|
Reischer M, Christensen AG, Weber K, Tobler DJ, Dideriksen K. A novel, direct-push approach for detecting sulfidated nanoparticulate zero valent iron (S-nZVI) in sediments using reactive and non-reactive fluorophores. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 243:103896. [PMID: 34695716 DOI: 10.1016/j.jconhyd.2021.103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Injection of microparticulate and nanoparticulate zero valent iron has become a regularly used method for groundwater remediation. Because of subsurface inhomogeneities, however, it is complicated to predict the ZVI transport in the subsurface, meaning that tools capable of determining its distribution after injection are highly useful. Here, we have developed a new direct-push based technique, which combines fluorescent and visible imaging, for detection of sulfidized nanoparticulate zero valent iron (S-nZVI) in the subsurface. Laboratory experiments show that the redox sensitive fluorophore riboflavin is rapidly reduced by S-nZVI within 200 s. Because the reduced riboflavin losses its green fluorescence, it can be used as S-nZVI sensitive indicator. Secondly, S-nZVI is black and tints light coloured sediment to a degree that allows detection in images. For quartz sand, 70 mg/kg of S-nZVI can be detected by visible imaging. Based on these results, a new direct-push probe (Dye-OIP) was designed based on Geoprobe's Optical Image Profiler (OIP), which was equipped with a fluorophore injection port below the OIP-unit. The injectant consisted of the redox active riboflavin mixed with the redox inactive fluorophore rhodamine WT, which fluoresces red and was used to verify that the mixture was indeed injected and detectable. Small scale experiments show that the fluorescence of this mixture in S-nZVI amended sand changes within 150 s from green with a hue of ~50 to red with a hue of ~30 when imaged with Dye-OIP. Tests of the Dye-OIP after a S-nZVI injection in a 1 m3 sized tank show that the tool could detect S-nZVI via fluorescence and visible imaging, when S-nZVI concentration was >0.2 mg per g dry sediment. Thus, these novel methods should be able to detect S-nZVI in the subsurface, without relying on infrastructure such as wells. Based on our results, the Dye-OIP could be further improved to make it suitable for regular use in the field.
Collapse
Affiliation(s)
- Markus Reischer
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; NIRAS A/S, Sortemosevej 19, 3450 Allerød, Denmark.
| | | | - Klaus Weber
- NIRAS A/S, Sortemosevej 19, 3450 Allerød, Denmark.
| | - Dominique J Tobler
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| | - Knud Dideriksen
- Geological Survey of Denmark & Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark.
| |
Collapse
|