51
|
Mineralization of the herbicide swep by a two-strain consortium and characterization of a new amidase for hydrolyzing swep. Microb Cell Fact 2020; 19:4. [PMID: 31910844 PMCID: PMC6945715 DOI: 10.1186/s12934-020-1276-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Swep is an excellent carbamate herbicide that kills weeds by interfering with metabolic processes and inhibiting cell division at the growth point. Due to the large amount of use, swep residues in soil and water not only cause environmental pollution but also accumulate through the food chain, ultimately pose a threat to human health. This herbicide is degraded in soil mainly by microbial activity, but no studies on the biotransformation of swep have been reported. RESULTS In this study, a consortium consisting of two bacterial strains, Comamonas sp. SWP-3 and Alicycliphilus sp. PH-34, was enriched from a contaminated soil sample and shown to be capable of mineralizing swep. Swep was first transformed by Comamonas sp. SWP-3 to the intermediate 3,4-dichloroaniline (3,4-DCA), after which 3,4-DCA was mineralized by Alicycliphilus sp. PH-34. An amidase gene, designated as ppa, responsible for the transformation of swep into 3,4-DCA was cloned from strain SWP-3. The expressed Ppa protein efficiently hydrolyzed swep and a number of other structural analogues, such as propanil, chlorpropham and propham. Ppa shared less than 50% identity with previously reported arylamidases and displayed maximal activity at 30 °C and pH 8.6. Gly449 and Val266 were confirmed by sequential error prone PCR to be the key catalytic sites for Ppa in the conversion of swep. CONCLUSIONS These results provide additional microbial resources for the potential remediation of swep-contaminated sites and add new insights into the catalytic mechanism of amidase in the hydrolysis of swep.
Collapse
|
52
|
Liang B, Yun H, Kong D, Ding Y, Li X, Vangnai AS, Wang A. Bioaugmentation of triclocarban and its dechlorinated congeners contaminated soil with functional degraders and the bacterial community response. ENVIRONMENTAL RESEARCH 2020; 180:108840. [PMID: 31654905 DOI: 10.1016/j.envres.2019.108840] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Partial removal of haloaromatic antimicrobial triclocarban (TCC) during wastewater treatment caused the final introduction of residual TCC into soils. Bioaugmentation has been proposed for the biodegradation of TCC and its dechlorinated congeners 4,4'-dichlorocarbanilide (DCC) and carbanilide (NCC) in soil. The isolated TCC-degrading strain Ochrobactrum sp. TCC-2 and chloroanilines-degrading strain Diaphorobacter sp. LD72 were used to study the removal efficiency of TCC, DCC and NCC mixture and their chloroanilines intermediates, respectively. The potential degradation competition between TCC and its dechlorinated congeners, and the response of bacterial community during the bioremediation were also investigated. The biodegradation of DCC and TCC was significantly enhanced for soil with inoculums compared with sterilized and natural soils. Chloroanilines products could also be effectively removed. For the degradation of combined substrates in the aqueous medium, NCC had negative effect on the degradation of TCC and DCC, while TCC and DCC negatively influenced each other. The bioaugmentation with two degraders obviously changed the phylogenetic composition and function of indigenous soil microbiome. Importantly, the inoculated degraders could be maintained, suggesting their adaptability and potential application in bioaugmentation for such recalcitrant contaminants. This study offers new insights into the enhanced bioremediation of TCC and its dechlorinated congeners contaminated soils by the bioaugmentation of functional degraders and the structure and function response of the indigenous soil microbiome to the bioremediation process.
Collapse
Affiliation(s)
- Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Deyong Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Yangcheng Ding
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, 730000, Gansu, China
| | - Alisa S Vangnai
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
53
|
Hong X, Zhao Y, Zhuang R, Liu J, Guo G, Chen J, Yao Y. Bioremediation of tetracycline antibiotics-contaminated soil by bioaugmentation. RSC Adv 2020; 10:33086-33102. [PMID: 35694106 PMCID: PMC9122622 DOI: 10.1039/d0ra04705h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/16/2020] [Indexed: 12/03/2022] Open
Abstract
Bioaugmentation using specific microbial strains or consortia was deemed to be a useful bioremediation technology for increasing bioremediation efficiency. The present study confirmed the effectiveness and feasibility of bioaugmentation capability of the bacterium BC immobilized on sugarcane bagasse (SCB) for degradation of tetracycline antibiotics (TCAs) in soil. It was found that an inoculation dose of 15% (v/w), 28–43 °C, slightly acidic pH (4.5–6.5), and the addition of oxytetracycline (OTC, from 80 mg kg−1 to 160 mg kg−1) favored the bioaugmentation capability of the bacterium BC, indicating its strong tolerance to high temperature, pH, and high substrate concentrations. Moreover, SCB-immobilized bacterium BC system exhibited strong tolerance to heavy metal ions, such as Pb2+ and Cd2+, and could fit into the simulated soil environment very well. In addition, the bioaugmentation and metabolism of the co-culture with various microbes was a complicated process, and was closely related to various species of bacteria. Finally, in the dual-substrate co-biodegradation system, the presence of TC at low concentrations contributed to substantial biomass growth but simultaneously led to a decline in OTC biodegradation efficiency by the SCB-immobilized bacterium BC. As the total antibiotic concentration was increased, the OTC degradation efficiency decreased gradually, while the TC degradation efficiency still exhibited a slow rise tendency. Moreover, the TC was preferentially consumed and degraded by continuous introduction of OTC into the system during the bioremediation treatment. Therefore, we propose that the SCB-immobilized bacterium BC exhibits great potential in the bioremediation of TCAs-contaminated environments. Bioaugmentation using specific microbial strains or consortia was deemed to be a useful bioremediation technology for increasing bioremediation efficiency.![]()
Collapse
Affiliation(s)
- Xiaxiao Hong
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Yuechun Zhao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Rudong Zhuang
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Jiaying Liu
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Guantian Guo
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Jinman Chen
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| | - Yingming Yao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou
- PR China
| |
Collapse
|
54
|
Pandey D, Patel SKS, Singh R, Kumar P, Thakur V, Chand D. Solvent-Tolerant Acyltransferase from Bacillus sp. APB-6: Purification and Characterization. Indian J Microbiol 2019; 59:500-507. [PMID: 31762514 DOI: 10.1007/s12088-019-00836-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/26/2019] [Indexed: 12/15/2022] Open
Abstract
Amidase from Bacillus sp. APB-6 with very good acyltransferase activity was purified to homogeneity with a purification fold of 3.68 and 53.20% enzyme yield. The purified protein's subunit molecular mass was determined approximately 42 kDa. Hyperactivity of the enzyme was observed at pH 7.5 (150 mM, potassium-phosphate buffer) and 50 °C of incubation. An enhancement in activity up to 42% was recorded with ethylenediaminetetraacetic acid and dithiothreitol. The kinetic parameter K m values for substrates: acetamide and hydroxylamine-hydrochloride were 73.0 and 153 mM, respectively. Further, the V max for acyltransferase activity was 1667 U/mg of protein and the K i for acetamide was calculated as 37.0 mM. The enzyme showed tolerance to various organic solvents (10%, v/v) and worked well in the biphasic reaction medium. The acyltransferase activity in presence of solvents i.e. biphasic medium may prove highly favorable for the transformation of hydrophobic amides, which otherwise is not possible in simple aqueous phase.
Collapse
Affiliation(s)
- Deepak Pandey
- 1Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sanjay K S Patel
- 2Department of Biotechnology, Himachal Pradesh University, Shimla, HP 171005 India
| | - Rajendra Singh
- 2Department of Biotechnology, Himachal Pradesh University, Shimla, HP 171005 India
| | - Pradeep Kumar
- 3Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, HP 173229 India
| | - Vikram Thakur
- 2Department of Biotechnology, Himachal Pradesh University, Shimla, HP 171005 India
| | - Duni Chand
- 2Department of Biotechnology, Himachal Pradesh University, Shimla, HP 171005 India
| |
Collapse
|
55
|
Li J, Wachemo AC, Yuan H, Zuo X, Li X. Natural freezing-thawing pretreatment of corn stalk for enhancing anaerobic digestion performance. BIORESOURCE TECHNOLOGY 2019; 288:121518. [PMID: 31174084 DOI: 10.1016/j.biortech.2019.121518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Natural freezing-thawing (NFT) was proposed as a low energy input and alternative pretreatment method for high biomethane production from corn stalk (CS) by anaerobic digestion (AD). The CS was pretreated by freezing-thawing in winter season using different pretreatment time periods (7d, 14d, 21d and 28d) and solid-to-liquid ratios (1:2, 1:4, 1:6, 1:8 and 1:10). The results showed that CS pretreated for 21d coupled with a solid-to-liquid ratio of 1:6 achieved the best result among all pretreatment conditions. In this case, the biomethane yield and VS removal rate of CS reached the highest values of 253 mL·gvs-1 and 58.6%, respectively, which were 40.5% and 27.4% higher than that of the untreated. It was also found that the predominant bacterial and archaeal at genus level in AD were Clostridium_sensu_stricto_1 (36.1%) and Methanobacterium (54.0%), respectively. This study provided that NFT is a simple pretreatment strategy for efficient AD bioconversion of CS to biomethane.
Collapse
Affiliation(s)
- Juan Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Akiber Chufo Wachemo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China; Department of Water Supply and Environmental Engineering, Arba Minch University, P.O. Box 21, Arba, Ethiopia
| | - Hairong Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Xiaoyu Zuo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Xiujin Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
56
|
1H-1,2,4-Triazole biodegradation by newly isolated Raoultella sp.: A novel biodegradation pathway. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
57
|
Feng NX, Yu J, Xiang L, Yu LY, Zhao HM, Mo CH, Li YW, Cai QY, Wong MH, Li QX. Co-metabolic degradation of the antibiotic ciprofloxacin by the enriched bacterial consortium XG and its bacterial community composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:41-51. [PMID: 30772572 DOI: 10.1016/j.scitotenv.2019.01.322] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Ciprofloxacin is a broad spectral and highly refractory antibiotic. It is an emerging pollutant. This study aimed to utilise co-metabolism as a means to degrade ciprofloxacin by a bacterial consortium. The stable bacterial consortium XG capable of efficiently degrading ciprofloxacin was successfully established through successive acclimation of indigenous microorganisms. The consortium XG was primarily consisted of Achromobacter, Bacillus, Lactococcus, Ochrobactrum, and Enterococcus as well as at least other five minor genera. A novel strain YJ17 with CIP-degrading ability was isolated from the consortium and identified as Ochrobactrum sp. The consortium XG utilised amino acids, carbohydrates, and carboxylic acids at a rate approximately 16.6-243-fold greater than the other carbon substrates, but only slow utilisation of ciprofloxacin as a sole carbon source. Ciprofloxacin can be co-metabolized along with many carbon sources, attaining degradation rates up to 63%. Glycyl-l-glutamic acid, d-cellobiose, and itaconic acid are among the substrates most favourable for co-metabolism. The metabolites of ciprofloxacin were identified by LC-QTOF-MS. Co-metabolic degradation of ciprofloxacin by consortium XG led to the removal of essential functional groups from parent compound, thus resulting in formation of metabolites with less bioactive potency. Finally, a possible biochemical pathway for the degradation of ciprofloxacin was proposed. Consortium XG possesses high potential for bioremediation of ciprofloxacin-contaminated environments in the presence of a co-substrate.
Collapse
Affiliation(s)
- Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiao Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Le-Yi Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
58
|
Ma X, Qi M, Li Z, Zhao Y, Yan P, Liang B, Wang A. Characterization of an efficient chloramphenicol-mineralizing bacterial consortium. CHEMOSPHERE 2019; 222:149-155. [PMID: 30703654 DOI: 10.1016/j.chemosphere.2019.01.131] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/25/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Obtaining efficient antibiotic-mineralizing consortium or pure cultures is a central issue for the deep elimination of antibiotic-contaminated environments. However, the antibiotic chloramphenicol (CAP) mineralizing consortium has not yet been reported. In this study, an efficient CAP-mineralizing consortium was successfully obtained with municipal activated sludge as the initial inoculum. This consortium is capable of aerobically subsisting on CAP as the sole carbon, nitrogen and energy sources and completely degrading 50 mg L-1 CAP within 24 h. After 5 d, 71.50 ± 2.63% of CAP was mineralized and Cl- recovery efficiency was 90.80 ± 7.34%. Interestingly, the CAP degradation efficiency obviously decreased to 18.22 ± 3.52% within 12 h with co-metabolic carbon source glucose. p-nitrobenzoic acid (p-NBA) was identified as an intermediate product during CAP biodegradation. The consortium is also able to utilize p-NBA as the sole carbon and nitrogen sources and almost completely degrade 25 mg L-1p-NBA within 24 h. Microbial community analysis indicated that the dominant genera in the CAP-mineralizing consortium all belong to Proteobacteria (especially Sphingobium with the relative abundance over 63%), and most bacteria could degrade aromatics including p-NBA, suggesting these genera involved in the upstream and downstream pathway of CAP degradation. Although the acclimated consortium has been successively passaged 152 times, the microbial community structure and core genera were not obviously changed, which was consistent with the stable CAP degradation efficiency observed under different generations. This is the first report that the acclimated consortium is able to mineralize CAP through an oxidative pathway with p-NBA as an intermediate product.
Collapse
Affiliation(s)
- Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Youkang Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peisheng Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
59
|
Shao S, Hu Y, Cheng J, Chen Y. Action of oxytetracycline (OTC) degrading bacterium and its application in Moving Bed Biofilm Reactor (MBBR) for aquaculture wastewater pre-treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:833-842. [PMID: 30660977 DOI: 10.1016/j.ecoenv.2019.01.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
In this study, the characteristics of biodegradation of oxytetracycline (OTC) by strain Ochrobactrum sp. KSS10 were studied under various environmental conditions, including initial OTC concentrations, variable temperature, initial pH, and diverse carbon sources. The capability of this bacterial strain for performing simultaneous OTC degradation and nitrate reduction was also explored under aerobic conditions. An OTC degradation ratio of 63.33% and a nitrate removal ratio of 98.64% were obtained within 96 h. In addition, removal of OTC and ammonia from synthetic aquaculture wastewater by a Moving Bed Biofilm Reactor (MBBR) and changes in the resistant genes of microbial communities were also investigated. The results demonstrated that the strain KSS10 was the dominant contributor in OTC and ammonia removal in the MBBR chamber. It removed almost all ammonia and approximately 76.42% of OTC. The abundances of genes tetL, tetX and intI1 were reduced by the MBBR, but the abundance of tetG and tetM were increased due to horizontal and vertical gene transfers. Such a result can potentially be used by the strain KSS10 for removing antibiotics and nitrogen from aquaculture wastewater during pre-treatment.
Collapse
Affiliation(s)
- Sicheng Shao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
60
|
Sun L, Gao X, Chen W, Huang K, Bai N, Lyu W, Liu H. Characterization of the Propham Biodegradation Pathway in Starkeya sp. Strain YW6 and Cloning of a Novel Amidase Gene mmH. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4193-4199. [PMID: 30864436 DOI: 10.1021/acs.jafc.8b06928] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We previously isolated a monocrotophos-degrading strain Starkeya sp. YW6, which could also degrade propham. Here, we show that strain YW6 metabolizes propham via a pathway in which propham is initially hydrolyzed to aniline and then converted to catechol, which is then oxidized via an ortho-cleavage pathway. The novel amidase gene mmH was cloned from strain YW6 and expressed in Escherichia coli BL21(DE3). MmH, which exhibits aryl acylamidase activity, was purified for enzymatic analysis. Bioinformatic analysis confirmed that MmH belongs to the amidase signature (AS) enzyme family and shares 26-50% identity with several AS family members. MmH (molecular mass of 53 kDa) was most active at 40 °C and pH 8.0 and showed high activity toward propham, with Kcat and Km values of 33.4 s-1 and 16.9 μM, respectively. These characteristics make MmH suitable for novel amide biosynthesis and environmental remediation.
Collapse
Affiliation(s)
- Lina Sun
- Eco-Environmental Protection Research Institute , Shanghai Academy of Agricultural Sciences , Shanghai 201403 , People's Republic of China
- Shanghai Engineering Research Center of Low-Carbon Agriculture (SERCLA) , Shanghai 201403 , People's Republic of China
| | - Xinhua Gao
- Eco-Environmental Protection Research Institute , Shanghai Academy of Agricultural Sciences , Shanghai 201403 , People's Republic of China
- Environmental Protection Monitoring Station of Shanghai , Shanghai 201403 , People's Republic of China
| | - Wei Chen
- Eco-Environmental Protection Research Institute , Shanghai Academy of Agricultural Sciences , Shanghai 201403 , People's Republic of China
- Shanghai Key Laboratory of Horticultural Technology , Shanghai 201403 , People's Republic of China
| | - Kaihua Huang
- Eco-Environmental Protection Research Institute , Shanghai Academy of Agricultural Sciences , Shanghai 201403 , People's Republic of China
- Environmental Protection Monitoring Station of Shanghai , Shanghai 201403 , People's Republic of China
| | - Naling Bai
- Eco-Environmental Protection Research Institute , Shanghai Academy of Agricultural Sciences , Shanghai 201403 , People's Republic of China
- Shanghai Agricultural Environment and Farmland Conservation Experiment Station of Ministry of Agriculture , Shanghai 201403 , People's Republic of China
| | - Weiguang Lyu
- Eco-Environmental Protection Research Institute , Shanghai Academy of Agricultural Sciences , Shanghai 201403 , People's Republic of China
- Shanghai Engineering Research Center of Low-Carbon Agriculture (SERCLA) , Shanghai 201403 , People's Republic of China
- Shanghai Agricultural Environment and Farmland Conservation Experiment Station of Ministry of Agriculture , Shanghai 201403 , People's Republic of China
| | - Hongming Liu
- Institute of Molecular Biology and Biotechnology , Anhui Normal University , Wuhu , Anhui 241000 , People's Republic of China
| |
Collapse
|
61
|
Thelusmond JR, Strathmann TJ, Cupples AM. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1138-1149. [PMID: 30677881 DOI: 10.1016/j.scitotenv.2018.12.145] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are released into the environment due to their poor removal during wastewater treatment. Agricultural soils subject to irrigation with wastewater effluent and biosolids application are possible reservoirs for these chemicals. This study examined the impact of the pharmaceutical carbamazepine (CBZ), and the antimicrobial agents triclocarban (TCC) and triclosan (TCS) on four soil microbial communities using shotgun sequencing (HiSeq Illumina) with the overall aim of determining possible degraders as well as the functional genes related to general xenobiotic degradation. The biodegradation of CBZ and TCC was slow, with ≤50% decrease during the 80-day incubation period. In contrast, TCS biodegradation was rapid, with ~80% removal in 25 days. For each chemical, when all four soils were considered together, between three and ten phylotypes (from multiple phyla) were more abundant in the soil samples compared to the live controls. The genera of a number of previously reported CBZ, TCC or TCS degrading isolates were present; Rhodococcus (CBZ), Streptomyces (CBZ), Pseudomonas (CBZ, TCC, TCS), Sphingomonas (TCC, TCS), Methylobacillus (TCS) and Stenotrophomonas (TCS) were among the most abundant (chemical previously reported to be degraded is shown in parenthesis). From the analysis of xenobiotic degrading pathways, genes from five KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthology pathways were the most dominant, including those associated with aminobenzoate, benzoate (most common), chlorocyclohexane/chlorobenzene, dioxin and nitrotoluene biodegradation. Several phylotypes including Bradyrhizobium, Mycobacterium, Rhodopseudomonas, Pseudomonas, Cupriavidus, and Streptomyces were common genera associated with these pathways. Overall, the data suggest several phylotypes are likely involved in the biodegradation of these PPCPs with Pseudomonas being an important genus.
Collapse
Affiliation(s)
- Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
62
|
Zhao Y, Bai Y, Guo Q, Li Z, Qi M, Ma X, Wang H, Kong D, Wang A, Liang B. Bioremediation of contaminated urban river sediment with methanol stimulation: Metabolic processes accompanied with microbial community changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:649-657. [PMID: 30759590 DOI: 10.1016/j.scitotenv.2018.10.396] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/28/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
The intense pollution of urban river sediments with rapid urbanization has attracted considerable attention. Complex contaminated sediments urgently need to be remediated to conserve the ecological functions of impacted rivers. This study investigated the effect of using methanol as a co-substrate on the stimulation of the indigenous microbial consortium to enhance the bioremediation of petroleum hydrocarbons (PHs) and polycyclic aromatic hydrocarbons (PAHs) in an urban river sediment. After 65 days of treatment, the PAHs degradation efficiencies in the sediment adding methanol were 4.87%-40.3% higher than the control. The removal rate constant of C31 was 0.0749 d-1 with 100 mM of supplied methanol, while the corresponding rate was 0.0399 d-1 in the control. Four-ring PAHs were effectively removed at a degradation efficiency of 65%-69.8%, increased by 43.3% compared with the control. Sulfate reduction and methanogenesis activity were detected, and methane-producing archaea (such as Methanomethylovorans, with a relative abundance of 25.87%-58.53%) and the sulfate-reducing bacteria (SRB, such as Desulfobulbus and Desulfobacca) were enriched. In addition, the chemolithoautotrophic sulfur-oxidizing bacteria (SOB, such as Sulfuricurvum, with a relative abundance of 34%-39.2%) were predominant after the depletion of total organic carbon (TOC), and markedly positively correlated with the PHs and PAHs degradation efficiencies (P < 0.01). The SRB and SOB populations participated in the sulfur cycle, which was associated with PHs and PAHs degradation. Other potential functional bacteria (such as Dechloromonas) were also obviously enriched and significantly positively correlated with the TOC concentration after methanol injection (P < 0.001). This study provides a new insight into the succession of the indigenous microbial community with methanol as a co-substrate for the enhanced bioremediation of complexly contaminated urban river sediments.
Collapse
Affiliation(s)
- Youkang Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiu Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Deyong Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Shenyang Academy of Environmental Sciences, Shenyang 110167, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
63
|
Liang B, Ma J, Cai W, Li Z, Liu W, Qi M, Zhao Y, Ma X, Deng Y, Wang A, Zhou J. Response of chloramphenicol-reducing biocathode resistome to continuous electrical stimulation. WATER RESEARCH 2019; 148:398-406. [PMID: 30399554 DOI: 10.1016/j.watres.2018.10.073] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/21/2018] [Accepted: 10/25/2018] [Indexed: 05/20/2023]
Abstract
Understanding the fate of overall antibiotic resistance genes (ARGs) during the biological treatment of antibiotic containing wastewater is a central issue for the water ecological safety assessment. Although the microbial electrode-respiration based biotransformation process could significantly detoxify some antibiotic contaminants, e.g. chloramphenicol (CAP), the response of CAP-reducing biocathode microbiome and resistome to continuous electrical stimulation, especially ARGs network interactions, are poorly understood. Here, using highthroughput functional gene array (GeoChip v4.6) and Illumina 16S rRNA gene MiSeq sequencing, the structure, composition, diversity and network interactions of CAP-reducing biocathode microbiome and resistome in response to continuous electrical stimulation were investigated. Our results indicate that the CAP bioelectroreduction process could significantly accelerate the elimination of antibacterial activity of CAP during CAP-containing wastewater treatment compared to the pure bioreduction process. Continuous electrical stimulation could obviously alter both the microbiome and resistome structures and consistently decrease the phylogenetic, functional and overall ARGs diversity and network complexity within the CAP-reducing biofilms. The relative abundances of overall ARGs and specific CAP resistance related major facilitator superfamily (MFS) transporter genes were significantly negatively correlated with the reduction efficiency of CAP to inactive antibacterial product AMCl (partially dechlorinated aromatic amine), which may reduce the ecological risk associated with the evolution of multidrug-resistant bacteria and ARGs during antibiotic-containing wastewater treatment process. This study offers new insights into the response of an antibiotic reducing biocathode resistome to continuous electrical stimulation and provides useful information on the assessment of overall ARGs risk for the bioelectrochemical treatment of antibiotic contaminants.
Collapse
Affiliation(s)
- Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jincai Ma
- College of Environment and Resources, Jilin University, Changchun, 130021, China
| | - Weiwei Cai
- School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Youkang Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| |
Collapse
|
64
|
Zhang L, Hang P, Hu Q, Chen XL, Zhou XY, Chen K, Jiang JD. Degradation of Phenylurea Herbicides by a Novel Bacterial Consortium Containing Synergistically Catabolic Species and Functionally Complementary Hydrolases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12479-12489. [PMID: 30407808 DOI: 10.1021/acs.jafc.8b03703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phenylurea herbicides (PHs) are frequently detected as major water contaminants in areas where there is extensive use. In this study, Diaphorobacter sp. strain LR2014-1, which initially hydrolyzes linuron to 3,4-dichloroanaline, and Achromobacter sp. strain ANB-1, which further mineralizes the produced aniline derivatives, were isolated from a linuron-mineralizing consortium despite being present at low abundance in the community. The synergistic catabolism of linuron by the consortium containing these two strains resulted in more efficient catabolism of linuron and growth of both strains. Strain LR2014-1 harbors two evolutionary divergent hydrolases from the amidohydrolase superfamily Phh and the amidase superfamily TccA2, which functioned complementarily in the hydrolysis of various types of PHs, including linuron ( N-methoxy- N-methyl-substituted), diuron, chlorotoluron, fluomethuron ( N, N-dimethyl-substituted), and siduron. These findings show that a bacterial consortium can contain catabolically synergistic species for PH mineralization, and one strain could harbor functionally complementary hydrolases for a broadened substrate range.
Collapse
Affiliation(s)
- Long Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Ping Hang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Qiang Hu
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Xiao-Long Chen
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Xi-Yi Zhou
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , 210095 Nanjing , China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
65
|
Thelusmond JR, Kawka E, Strathmann TJ, Cupples AM. Diclofenac, carbamazepine and triclocarban biodegradation in agricultural soils and the microorganisms and metabolic pathways affected. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1393-1410. [PMID: 30021306 DOI: 10.1016/j.scitotenv.2018.05.403] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 04/15/2023]
Abstract
The incomplete elimination of pharmaceuticals and personal care products (PPCPs) during wastewater treatment has resulted in their detection in the environment. PPCP biodegradation is a potential removal mechanism; however, the microorganisms and pathways involved in soils are generally unknown. Here, the biodegradation of diclofenac (DCF), carbamazepine (CBZ) and triclocarban (TCC) in four agricultural soils at concentrations typically detected in soils and biosolids (50 ng g-1) was examined. Rapid DCF removal (<7 days) was observed under aerobic conditions, but only limited biodegradation was noted under other redox conditions. CBZ and TCC degradation under aerobic conditions was slow (half-lives of 128-241 days and 165-190 days for CBZ and TCC). Phylotypes in the Proteobacteria, Gemmatimonadales and Actinobacteria were significantly more abundant during DCF biodegradation compared to the controls (no DCF). For CBZ, those in the Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicrobia were enriched compared to the controls. Actinobacteria and Proteobacteria were also enriched during TCC biodegradation. Such differences could indicate these microorganisms are associated with the biodegradation of these compounds, as they appear to be benefiting from their removal. The impact of these PPCPs on the KEGG pathways associated with metabolism was also examined. Four pathways were positively impacted during DCF biodegradation (propanoate, lysine, fatty acid & benzoate metabolism). These pathways are likely common in soils, explaining the rapid removal of DCF. There was limited impact of CBZ on the metabolic pathways. TCC removal was linked to genes associated with the degradation of simple and complex substrates. The results indicate even low concentrations of PPCPs significantly affect soil communities. The recalcitrant nature of TCC and CBZ suggests soils receiving biosolids could accumulate these chemicals, representing risks concerning crop uptake.
Collapse
Affiliation(s)
- Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Emily Kawka
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
66
|
Liu T, Luo J, Meng X, Yang L, Liang B, Liu M, Liu C, Wang A, Liu X, Pei Y, Yuan J, Crittenden J. Electrocatalytic dechlorination of halogenated antibiotics via synergistic effect of chlorine-cobalt bond and atomic H. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:294-301. [PMID: 29990817 DOI: 10.1016/j.jhazmat.2018.06.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Although noble metal electrocatalysts are highly efficient in the dehalogenation of halogenated antibiotics, the prohibitive cost hinders their practical applications. In this study, a cobalt-phosphorous/oxide (CoP/O) composite prepared via a one-step electrodeposition was for the first time applied in electroreductive dechlorination of halogenated antibiotics (HA), including chloramphenicol (CAP), florfenicol (FLO) and thiamphenicol (TAP). CoP/O had a higher FLO dechlorination efficiency (91%) than Pd/C (69.3%) (t = 60 min, C0 = 20 mg L-1, applied voltage of -1.2 V vs. saturated calomel electrode (SCE)). Furthermore, the dechlorination efficiencies of CoP/O for CAP and TAP reached to 98.7 and 74.2%, respectively. The electron spin resonance and in situ Raman characterizations confirmed that atomic H* was produced via the CoP and the formation of CoCl bonds occurred on the CoO in CoP/O. The CoCl bond formation could trap HA molecules onto CoP/O and weaken the CCl bond strength. The synergistic effect of H* attack and CoCl bond was responsible for the high dechlorination efficiency. This study offers new insights into the interface mechanism of electroreductive dehalogenation process, and shows a great potential for the remediation of halogenated antibiotics contaminated wastewater.
Collapse
Affiliation(s)
- Tian Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Jinming Luo
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA 30332, United States
| | - Xiaoyang Meng
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA 30332, United States
| | - Liming Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Meijun Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xia Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Jili Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - John Crittenden
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA 30332, United States
| |
Collapse
|
67
|
Jiang WL, Xia X, Han JL, Ding YC, Haider MR, Wang AJ. Graphene Modified Electro-Fenton Catalytic Membrane for in Situ Degradation of Antibiotic Florfenicol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9972-9982. [PMID: 30067345 DOI: 10.1021/acs.est.8b01894] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The removal of low-concentration antibiotics from water to alleviate the potential threat of antibiotic-resistant bacteria and genes calls for the development of advanced treatment technologies with high efficiency. In this study, a novel graphene modified electro-Fenton (e-Fenton) catalytic membrane (EFCM) was fabricated for in situ degradation of low-concentration antibiotic florfenicol. The removal efficiency was 90%, much higher than that of electrochemical filtration (50%) and single filtration process (27%). This demonstrated that EFCM acted not only as a cathode for e-Fenton oxidation process in a continuous mode but also as a membrane barrier to concentrate and enhance the mass transfer of florfenicol, which increased its oxidation chances. The removal rate of florfenicol by EFCM was much higher (10.2 ± 0.1 mg m-2 h-1) than single filtration (2.5 ± 0.1 mg m-2 h-1) or batch e-Fenton processes (4.3 ± 0.05 mg m-2 h-1). Long-term operation and fouling experiment further demonstrated the durability and antifouling property of EFCM. Four main degradation pathways of florfenicol were proposed by tracking the degradation byproducts. The above results highlighted the feasibility of this integrated membrane catalysis process for advanced water purification.
Collapse
Affiliation(s)
- Wen-Li Jiang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Xue Xia
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Jing-Long Han
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Yang-Cheng Ding
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Muhammad Rizwan Haider
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin , 150090 , China
| |
Collapse
|
68
|
Wu H, Shen J, Jiang X, Liu X, Sun X, Li J, Han W, Mu Y, Wang L. Bioaugmentation potential of a newly isolated strain Sphingomonas sp. NJUST37 for the treatment of wastewater containing highly toxic and recalcitrant tricyclazole. BIORESOURCE TECHNOLOGY 2018; 264:98-105. [PMID: 29793119 DOI: 10.1016/j.biortech.2018.05.071] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
In order to develop an effective bioaugmentation strategy for the removal of highly toxic and recalcitrant tricyclazole from wastewater, a tricyclazole degrading strain was firstly successfully isolated and identified as Sphingomonas sp. NJUST37. In batch reactors, 100 mg L-1 tricyclazole could be completely removed within 102 h, which was accompanied by significant biomass increase, TOC and COD removal, as well as toxicity reduction. Chromatography analysis and density functional theory simulation indicated that monooxygenation occurred firstly, followed by triazole ring cleavage, decyanation reaction, hydration reaction, deamination, dihydroxylation and final mineralization reaction. Tricyclazole biodegradation condition by NJUST37 was optimized in terms of temperature, pH, tricyclazole concentration and additional carbon and nitrogen sources. After the inoculation of NJUST37 into a pilot-scale powdered activated carbon treatment tank treating real fungicide wastewater, tricyclazole removal efficiency increased to higher than 90%, demonstrating the great potential of NJUST37 for bioaugmentation particularly on tricyclazole biodegradation in practice.
Collapse
Affiliation(s)
- Haobo Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaodong Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
69
|
A Novel Degradation Mechanism for Pyridine Derivatives in Alcaligenes faecalis JQ135. Appl Environ Microbiol 2018; 84:AEM.00910-18. [PMID: 29802182 DOI: 10.1128/aem.00910-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
5-Hydroxypicolinic acid (5HPA), a natural pyridine derivative, is microbially degraded in the environment. However, the physiological, biochemical, and genetic foundations of 5HPA metabolism remain unknown. In this study, an operon (hpa), responsible for 5HPA degradation, was cloned from Alcaligenes faecalis JQ135. HpaM was a monocomponent flavin adenine dinucleotide (FAD)-dependent monooxygenase and shared low identity (only 28 to 31%) with reported monooxygenases. HpaM catalyzed the ortho decarboxylative hydroxylation of 5HPA, generating 2,5-dihydroxypyridine (2,5DHP). The monooxygenase activity of HpaM was FAD and NADH dependent. The apparent Km values of HpaM for 5HPA and NADH were 45.4 μM and 37.8 μM, respectively. The genes hpaX, hpaD, and hpaF were found to encode 2,5DHP dioxygenase, N-formylmaleamic acid deformylase, and maleamate amidohydrolase, respectively; however, the three genes were not essential for 5HPA degradation in A. faecalis JQ135. Furthermore, the gene maiA, which encodes a maleic acid cis-trans isomerase, was essential for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135, indicating that it might be a key gene in the metabolism of pyridine derivatives. The genes and proteins identified in this study showed a novel degradation mechanism of pyridine derivatives.IMPORTANCE Unlike the benzene ring, the uneven distribution of the electron density of the pyridine ring influences the positional reactivity and interaction with enzymes; e.g., the ortho and para oxidations are more difficult than the meta oxidations. Hydroxylation is an important oxidation process for the pyridine derivative metabolism. In previous reports, the ortho hydroxylations of pyridine derivatives were catalyzed by multicomponent molybdenum-containing monooxygenases, while the meta hydroxylations were catalyzed by monocomponent FAD-dependent monooxygenases. This study identified the new monocomponent FAD-dependent monooxygenase HpaM that catalyzed the ortho decarboxylative hydroxylation of 5HPA. In addition, we found that the maiA gene coding for maleic acid cis-trans isomerase was pivotal for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135. This study provides novel insights into the microbial metabolism of pyridine derivatives.
Collapse
|
70
|
Zhao Y, Li Z, Ma J, Yun H, Qi M, Ma X, Wang H, Wang A, Liang B. Enhanced bioelectroremediation of a complexly contaminated river sediment through stimulating electroactive degraders with methanol supply. JOURNAL OF HAZARDOUS MATERIALS 2018; 349:168-176. [PMID: 29421353 DOI: 10.1016/j.jhazmat.2018.01.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Bioelectroremediation is an efficient, sustainable, and environment-friendly remediation technology for the complexly contaminated sediments. Although various recalcitrant pollutants could be degraded in the electrode district, the degradation efficiency was generally confined by the low total organic carbon (TOC) content in the sediment. How to enhance the electroactive degraders' activity and efficiency remain poorly understood. Here we investigated the bioeletroremediation of a complexly contaminated river sediment with low TOC in a cylindric sediment microbial fuel cell stimulated by methanol. After 200 days treatment, the degradation efficiencies of total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAH), and cycloalkenes (CYE) in the electrode district with methanol stimulation were 1.45-4.38 times higher compared with those in the non-electrode district without methanol stimulation. The overall electrode district communities were significantly positively correlated with the variables of the enhanced TPH, PAH, CYE and TOC degradation efficiencies (p < .01). The joint electrical and exogenous methanol stimulation selectively enriched electroactive degraders (Geobacter and Desulfobulbus) in the anode biofilms, and their proportion was markedly positively correlated with the characteristic and total pollutants degradation efficiencies (p < .001). This study offers a new insight into the response of key electroactive degraders to the joint stimulation process.
Collapse
Affiliation(s)
- Youkang Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jincai Ma
- College of Environment and Resources, Jilin University, Changchun, 130021, China
| | - Hui Yun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
71
|
Sipahutar MK, Piapukiew J, Vangnai AS. Efficiency of the formulated plant-growth promoting Pseudomonas fluorescens MC46 inoculant on triclocarban treatment in soil and its effect on Vigna radiata growth and soil enzyme activities. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:883-892. [PMID: 29190586 DOI: 10.1016/j.jhazmat.2017.11.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 05/03/2023]
Abstract
For bioaugmentation-based treatment of triclocarban (TCC), an emerging soil pollutant that is recalcitrant to biodegradation and phytotransformation, efficient TCC-degrading bacteria with an effective soil-delivering means are required. This work developed the formulated bacterial inoculant, and successfully demonstrated its TCC removal and detoxification performance in pot soil experiment with Vigna radiata plants. The soil bacterium Pseudomonas fluorescens MC46 was isolated as TCC-degrading, plant-growth promoting bacterium. The characterizations were conducted in vitro revealing that it could utilize TCC as a sole carbon source, and at a wide and higher concentration range from 1.6-31.6mgkg-1 than those previously reported, while the detoxification was assessed by cytogenotoxicity and phytotoxicity tests. The developed sawdust-based inoculant formula combined with molasses (5% w/w), and either PEG or CMC-starch blend (1% w/w) could maintain a 20-week shelf-life inoculant stability in terms of cell viability, and TCC-degrading activity. Bioaugmentation of the formulated inoculants into TCC-contaminated soil efficiently removed TCC up to 74-76% of the initial concentration, mitigated toxicity, restored plant growth and health, and enhanced soil enzyme activities. This work is the first to demonstrate potential application of the formulated plant-growth promoting bacterial inoculant for the treatment and detoxification of a persistent TCC contaminated in soil.
Collapse
Affiliation(s)
- Merry Krisdawati Sipahutar
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Biocatalyst and Environmental Biotechnology Research unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jittra Piapukiew
- Biocatalyst and Environmental Biotechnology Research unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Alisa S Vangnai
- Biocatalyst and Environmental Biotechnology Research unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
72
|
Wang Y, Wang D, Liu Y, Wang Q, Chen F, Yang Q, Li X, Zeng G, Li H. Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge. WATER RESEARCH 2017; 127:150-161. [PMID: 29045805 DOI: 10.1016/j.watres.2017.09.062] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Triclocarban (TCC), one typical antibacterial agent being widely used in various applications, was found to be present in waste activated sludge at significant levels. To date, however, its effect on anaerobic fermentation of sludge has not been investigated. This work therefore aims to fill this knowledge gap. Experimental results showed that when TCC content in sludge increased from 26.7 ± 5.3 to 520.5 ± 12.6 mg per kilogram total suspended solids, the maximum concentration of short-chain fatty acids (SCFA) increased from 32.6 ± 2.5 to 228.2 ± 3.6 (without pH control) and from 211.7 ± 2.4 to 378.3 ± 3.2 mg COD/g VSS (initial pH 10), respectively. The large promotion of acetic acid was found to be the major reason for the enhancement of total SCFA production. Although a significant level of TCC was degraded in the fermentation process, SCFA was neither produced from TCC nor affected by its major intermediates at the relevant levels. It was found that TCC facilitated solubilization, acidogenesis, acetogenesis, and homoacetogenesis processes but inhibited methanogenesis process. Microbial analysis revealed that the increase of TCC increased the microbial community diversity, the abundances of SCFA (especially acetic acid) producers, and the activities of key enzymes relevant to acetic acid production.
Collapse
Affiliation(s)
- Yali Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Griffith School of Engineering & Centre for Clean Environment and Energy, Griffith University, QLD, Australia
| | - Fei Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
73
|
Ma Y, Li Z, Yuan M, Chen L, Zhou S. Isolation and identification of 3-bromocarbazole-degrading bacteria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:796-801. [PMID: 28949809 DOI: 10.1080/03601234.2017.1356163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, a bacterial strain, CH-1, capable of degrading 3-bromocarbazole (3-BCZ) was isolated from a polluted soil. Based on its physio-biochemical characteristics and 16S rRNA genes, strain CH-1 was identified as a Stenotrophomonas sp. Strain CH-1 was able to degrade 70% of 50 mg/L 3-BCZ within 8 d at pH 7.0 and 30°C in mineral salt medium (MSM). During the process, the main intermediate metabolite was identified as (2E, 4Z)-6-(2-amino-5-bromophenyl)-2-hydroxy-6-oxhexa-2, 4-dienoic by gas (2E, 4Z)-6-(2-amino-5-bromophenyl)-2-hydroxy-6-oxhexa-2,4-dienoic via gas chromatograph-mass spectrometry (GC-MS) analysis. The metabolite disappeared after 14 d, suggesting that the metabolite can also be degraded by strain CH-1. 3-BCZ is a new persistent organic pollutant. This is the first report of the biodegradation of 3-BCZ. The results indicated that strain CH-1 may be a promising bacterial candidate for the bioremediation of environments polluted with polyhalogenated carbazoles (PHCs).
Collapse
Affiliation(s)
- Yun Ma
- a Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment , Zhejiang University of Technology , Hangzhou , People's Republic of China
| | - Zhiwei Li
- a Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment , Zhejiang University of Technology , Hangzhou , People's Republic of China
| | - Mei Yuan
- a Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment , Zhejiang University of Technology , Hangzhou , People's Republic of China
| | - Linhua Chen
- b Environmental Science Research Institute of Taizhou City , Taizhou , China
| | - Shanshan Zhou
- a Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment , Zhejiang University of Technology , Hangzhou , People's Republic of China
| |
Collapse
|
74
|
Wen LL, Chen JX, Fang JY, Li A, Zhao HP. Effects of 1,1,1-Trichloroethane and Triclocarban on Reductive Dechlorination of Trichloroethene in a TCE-Reducing Culture. Front Microbiol 2017; 8:1439. [PMID: 28824572 PMCID: PMC5541058 DOI: 10.3389/fmicb.2017.01439] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/17/2017] [Indexed: 11/13/2022] Open
Abstract
Chlorinated compounds were generally present in the environment due to widespread use in the industry. A short-term study was performed to evaluate the effects of 1,1,1- trichloroethane (TCA) and triclocarban (TCC) on trichloroethene (TCE) removal in a reactor fed with lactate as the sole electron donor. Both TCA and TCC inhibited TCE reduction, but the TCC had a more pronounced effect compared to TCA. The TCE-reducing culture, which had never been exposed to TCA before, reductively dechlorinated TCA to 1,1-dichloroethane (DCA). Below 15 μM, TCA had little effect on the transformation of TCE to cis-dichloroethene (DCE); however, the reduction of cis-DCE and vinyl chloride (VC) were more sensitive to TCA, and ethene production was completely inhibited when the concentration of TCA was above 15 μM. In cultures amended with TCC, the reduction of TCE was severely affected, even at concentrations as low as 0.3 μM; all the cultures stalled at VC, and no ethene was detected. The cultures that fully transformed TCE to ethene contained 5.2–8.1% Dehalococcoides. Geobacter and Desulfovibrio, the bacteria capable of partially reducing TCE to DCE, were detected in all cultures, but both represented a larger proportion of the community in TCC-amended cultures. All cultures were dominated by Clostridium_sensu_stricto_7, a genus that belongs to Firmicutes with proportions ranging from 40.9% (in a high TCC (15 μM) culture) to 88.2%. Methanobacteria was detected at levels of 1.1–12.7%, except in cultures added with 15 and 30 μM TCA, in which they only accounted for ∼0.4%. This study implies further environmental factors needed to be considered in the successful bioremediation of TCE in contaminated sites.
Collapse
Affiliation(s)
- Li-Lian Wen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang UniversityHangzhou, China.,Zhejiang Provincial Key Laboratory of Water Pollution Control and Environmental Safety, Zhejiang UniversityHangzhou, China
| | - Jia-Xian Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang UniversityHangzhou, China.,Zhejiang Provincial Key Laboratory of Water Pollution Control and Environmental Safety, Zhejiang UniversityHangzhou, China
| | - Jia-Yi Fang
- College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Ang Li
- School of Environment, Harbin Institute of TechnologyHarbin, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang UniversityHangzhou, China.,Zhejiang Provincial Key Laboratory of Water Pollution Control and Environmental Safety, Zhejiang UniversityHangzhou, China
| |
Collapse
|
75
|
Yun H, Liang B, Kong D, Li Z, Qi G, Wang A. Enhanced Biotransformation of Triclocarban by Ochrobactrum sp. TCC-1 Under Anoxic Nitrate Respiration Conditions. Curr Microbiol 2017; 74:491-498. [DOI: 10.1007/s00284-017-1214-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/10/2017] [Indexed: 02/05/2023]
|