51
|
Zhang J, Ma G, Bi X, Zhao X, Li J, Zhang Y, Gao Z, Li Y, Miao Y. Achieving advanced nitrogen removal and excess sludge treatment via single nitritation/anammox-fermentation combined system. BIORESOURCE TECHNOLOGY 2023; 387:129550. [PMID: 37495158 DOI: 10.1016/j.biortech.2023.129550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
The feasibility of treating wastewater and excess sludge via simultaneous nitritation, anammox, denitrification and fermentation (SNADF) was investigated in three parallel sequencing batch reactors (SBRs). SBR2 and SBR3 received exogenous nitrification-denitrification sludge and thermal hydrolysis sludge, respectively. Nitrogen removal efficiencies of 92.8 ± 5.9%, 94.6 ± 4.1%, 93.4 ± 4.8% were achieved in SBR1, SBR2, and SBR3, respectively (influent ammonium: 56.0-74.0 mg N/L), with low observed sludge yield of 0.02-0.15, -0.06-0.11, -0.17-0.05 kg mixed liquor suspended solids (MLSS)/kg chemical oxygen demand (COD). Anammox bacterial abundances increased from 3.6 × 109 ± 2.8 × 108 to 8.1 × 109 ± 2.3 × 108, 1.5 × 1010 ± 1.1 × 108, and 1.4 × 1010 ± 2.9 × 108 copies/L in SBR1-SBR3, respectively. The abundances of Nitrosomonas, genes (amo, hao) for partial nitrification, and narGHI genes (nitrate → nitrite) in dominant partial denitrifying bacteria (Candidatus Competibacter) were higher in SBR2 and SBR3 than that in SBR1. These results suggested that adding excess sludge promoted sludge reduction, nitrite production and anammox bacterial enrichment. The SNADF system could treat excess sludge, meanwhile, achieve advanced nitrogen removal.
Collapse
Affiliation(s)
- Jianhua Zhang
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao 266520, PR China
| | - Guocheng Ma
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xuejun Bi
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao 266520, PR China
| | - Xinchao Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiawen Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yu Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zhongxiu Gao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao 266520, PR China
| | - Yitong Li
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao 266520, PR China
| | - Yuanyuan Miao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, Qingdao University of Technology, Qingdao 266520, PR China; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
52
|
Su Y, Du R, Wang J, Li X, Zhang Q, Xue X, Peng Y. Pilot-scale demonstration of self-enrichment of anammox bacteria in a two-stage nitrification-denitrification suspended sludge system treating municipal wastewater under extremely low nitrogen loading rate. BIORESOURCE TECHNOLOGY 2023; 387:129693. [PMID: 37598806 DOI: 10.1016/j.biortech.2023.129693] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
In suspended sludge system, efficient enrichment and retention of anammox bacteria are crucial obstacles in mainstream wastewater treatment by anammox process. In this study, anammox bacteria was self-enriched in a pilot-scale suspended sludge system of two-stage nitrification-denitrification process serving municipal wastewater treatment. With the low ammonia (NH4+-N) of 9.3 mg/L, nitrate (NO3--N) of 15.6 mg/L and COD/NO3--N of 2.2 under extremely low nitrogen loading rate of 0.012 kg N/m3/d, anammox activity bloomed after its abundance increasing from 5.9 × 107 to 4.6 × 109 copies/g dry sludge. Significant NH4+-N removal was occurred and maintained stably in the denitrification reactor with anammox bacteria accounting for 1.13%, even under temperature decreasing to 20.0℃. The adequately anoxic environment, efficient retention with the static settlement, and NO2- production via NO3- reduction provided favorable environment for anammox bacteria. This study demonstrated the feasibility and great potential in mainstream anammox application without seeding specific sludge.
Collapse
Affiliation(s)
- Yunlong Su
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Jiao Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaofei Xue
- Beijing Enterprises Water Group (China) Investment Limited, Beijing 100102, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
53
|
Chen J, Zhang X, Zhou L, Zhu Z, Wu Z, Zhang K, Wang Y, Ju T, Ji X, Jin D, Wu P, Zhang X. Metagenomics insights into high-rate nitrogen removal from municipal wastewater by integrated nitrification, partial denitrification and Anammox at an extremely short hydraulic retention time. BIORESOURCE TECHNOLOGY 2023; 387:129606. [PMID: 37572889 DOI: 10.1016/j.biortech.2023.129606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
To achieve high-rate nitrogen removal in municipal wastewater treatment through anaerobic ammonia oxidation (Anammox), the nitrification, partial denitrification, and Anammox processes were integrated by a step-feed strategy. An exceptional nitrogen removal load of 0.224 kg N/(m3·d) was achieved by gradient-reducing the hydraulic retention time (HRT) to 5 h. Metagenomic analysis demonstrated that Nitrosospira could express all genes encoding ammonia oxidation under low nitrogen and dissolved oxygen conditions (less than 0.5 mg/L), enabling complete nitrification. With the short of HRT, the relative abundance of Thauera increased from 2.8 % to 6.4 %. Frequent substrate exchanges at such extremely short HRT facilitated enhanced synergistic interactions among Nitrosospira, Thauera, and Candidatus Brocadia. These findings provide a comprehensive understanding of the utilization of Anammox combined processes for high-speed nitrogen removal in municipal wastewater treatment and the microbial interactions involved.
Collapse
Affiliation(s)
- Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Ting Ju
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xu Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Da Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road,Suzhou 215009, China.
| | - Xingxing Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
54
|
Ahmad HA, Ahmad S, Gao L, Ismail S, Wang Z, El-Baz A, Ni SQ. Multi-omics analysis revealed the selective enrichment of partial denitrifying bacteria for the stable coupling of partial-denitrification and anammox process under the influence of low strength magnetic field. WATER RESEARCH 2023; 245:120619. [PMID: 37716295 DOI: 10.1016/j.watres.2023.120619] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/27/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The microbial consortium involving anaerobic ammonium oxidation (anammox) and partial denitrification (PD), known as PD-anammox, is an emerging energy-efficient and lower carbon nitrogen removal process from wastewater. However, maintaining a stable PD process by locking nitrate reduction until nitrite was challenging. This study established the first stable connection of anammox with constant nitrite generation by PD bacteria under a low-strength (1.3 mT) magnetic field (MF). When the nitrogen loading rate was 1.81 kg-N/m3/d, the nitrogen removal efficiency of the control reactor (R1) was 75%, lower than that of the experimental reactor (R2), which was 85%. The expression of Thauera and Zoogloea, potential PD bacteria was substantially lower in R1 (5.75% and 1.21%, respectively) than in R2 (10.25 and 6.61%, respectively), according to a meta-transcriptomic analysis. At the same time, the mRNA expression of anammox genera Candidatus Brocadia and Candidatus Kuenenia was 33.53% and 3.83% in R1 and 22.86% and 1.87% in R2. Moreover, carbon and nitrogen metabolism pathways were more abundant under the influence of low-strength MF. The selective enrichment of PD bacteria can be attributed to the increased expression of carbon metabolic pathways like the citrate cycle, glycolysis/gluconeogenesis, and pyruvate metabolism. Interestingly, the control reactor was dominated by a hydroxylamine-dependent anammox process while a low-strength MF-enhanced nitric-oxide-dependent anammox process. For successful anammox-centered nitrogen removal from wastewater, this study demonstrated that low-strength MF is a convenient and applicable technique to lock the nitrate reduction until nitrite.
Collapse
Affiliation(s)
- Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Linjie Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Sherif Ismail
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Zhibin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Amro El-Baz
- Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
55
|
Zhang M, Liu J, Liang J, Fan Y, Gu X, Wu J. Response of nitrite accumulation, sludge characteristic and microbial transition to carbon source during the partial denitrification (PD) process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:165043. [PMID: 37355114 DOI: 10.1016/j.scitotenv.2023.165043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
Partial denitrification (PD, nitrate (NO3--N) → nitrite (NO2--N)) as a novel pathway for NO2--N production has been widely concerned, but the specific conditions for highly efficient and stable nitrite maintenance are not yet fully understood. In this study, the effects of carbon sources (acetate, R1; propionate, R2; glucose, R3) on NO2--N accumulation was discussed without seeding PD sludge and the mechanism analysis related to sludge characteristic and microbial evolution were elucidated. The optimal NO2--N, nitrate-to-nitrite transformation ratio (NTR) and nitrite removal efficiency (NRE) reached up to 32.10 mg/L, 98.01 %, and 86.95 % in R1. However, due to the complex metabolic pathway of glucose, the peak time of NO2--N production delayed from 30 min to 60 min. The sludge particle size decreased from 154.2 μm (R1), 130.8 μm (R2) to 112.6 μm (R3) with the increasing extracellular polymeric substances (EPS) from 80.75-85.44 mg/gVSS, 82.68-92.75 mg/gVSS to 106.31-110.25 mg/gVSS, where the ratio of proteins/polysaccharides (PN/PS) was proved to be closely associated with NO2--N generation. For the microbial evolution, Saccharimonadales (70.42 %) dominated the glucose system, while Bacillus (7.42-21.63 %) and Terrimonas (4.24-5.71 %) were the main contributors for NO2--N accumulation in the acetate and propionate systems. The achievement of PD showed many advantages of lower carbon demand, minimal sludge production, lesser greenhouse gas emission and prominent nutrient removal, offering an economically and technically attractive alternative for NO3--N containing wastewater treatment.
Collapse
Affiliation(s)
- Miao Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jingbu Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jiayin Liang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yajun Fan
- Yangzhou Polytechnic Institute, Yangzhou 225127, PR China
| | - Xiaodan Gu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jun Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
56
|
Xu R, Cui H, Fan F, Zhang M, Yuan S, Wang D, Gan Z, Yu Z, Wang C, Meng F. Combination of Sequencing Batch Operation and A/O Process to Achieve Partial Mainstream Anammox: Pilot-Scale Demonstration and Microbial Ecological Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13887-13900. [PMID: 37667485 DOI: 10.1021/acs.est.3c03022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In this study, sequencing batch operation was successfully combined with a pilot-scale anaerobic biofilm-modified anaerobic/aerobic membrane bioreactor to achieve anaerobic ammonium oxidation (anammox) without inoculation of anammox aggregates for municipal wastewater treatment. Both total nitrogen and phosphorus removal efficiencies of the reactor reached up to 80% in the 250-day operation, with effluent concentrations of 4.95 mg-N/L and 0.48 mg-P/L. In situ enrichment of anammox bacteria with a maximum relative abundance of 7.86% was observed in the anaerobic biofilm, contributing to 18.81% of nitrogen removal, with denitrification being the primary removal pathway (38.41%). Denitrifying phosphorus removal (DPR) (40.54%) and aerobic phosphorus uptake (48.40%) played comparable roles in phosphorus removal. Metagenomic sequencing results showed that the biofilm contained significantly lower abundances of NO-reducing functional genes than the bulk sludge (p < 0.01), favoring anammox catabolism in the former. Interactions between the anammox bacteria and flanking community were dominated by cooperation behaviors (e.g., nitrite supply, amino acids/vitamins exchange) in the anaerobic biofilm community network. Moreover, the hydrolytic/fermentative bacteria and endogenous heterotrophic bacteria (Dechloromonas, Candidatus competibacter) were substantially enriched under sequencing batch operation, which could alleviate the inhibition of anammox bacteria by complex organics. Overall, this study provides a feasible and promising strategy for substantially enriching anammox bacteria and achieving partial mainstream anammox as well as DPR.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hongcan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
57
|
Li B, Godfrey BJ, RedCorn R, Wang Z, Goel R, Winkler MKH. Simultaneous anaerobic carbon and nitrogen removal from primary municipal wastewater with hydrogel encapsulated anaerobic digestion sludge and AOA-anammox coated hollow fiber membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163696. [PMID: 37100124 DOI: 10.1016/j.scitotenv.2023.163696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
In this study, a one-stage continuous-flow membrane-hydrogel reactor integrating both partial nitritation-anammox (PN-anammox) and anaerobic digestion (AD) was designed and operated for simultaneous autotrophic nitrogen (N) and anaerobic carbon (C) removal from mainstream municipal wastewater. In the reactor, a synthetic biofilm consisting of anammox biomass and pure culture ammonia oxidizing archaea (AOA) were coated onto and maintained on a counter-diffusion hollow fiber membrane to autotrophically remove nitrogen. Anaerobic digestion sludge was encapsulated in hydrogel beads and placed in the reactor to anaerobically remove COD. During the pilot operation at three operating temperature (25, 16 and 10 °C), the membrane-hydrogel reactor demonstrated stable anaerobic COD removal (76.2 ± 15.5 %) and membrane fouling was successfully suppressed allowing a relatively stable PN-anammox process. The reactor demonstrated good nitrogen removal efficiency, with an overall removal efficiency of 95.8 ± 5.0 % for NH4+-N and 78.9 ± 13.2 % for total inorganic nitrogen (TIN) during the entire pilot operation. Reducing the temperature to 10 °C caused a temporary reduction in nitrogen removal performance and abundances of AOA and anammox. However, the reactor and microbes demonstrated the ability to adapt to the low temperature spontaneously with recovered nitrogen removal performance and microbial abundances. Methanogens in hydrogel beads and AOA and anammox on the membrane were observed in the reactor by qPCR and 16S sequencing across all operational temperatures.
Collapse
Affiliation(s)
- Bo Li
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98105, USA.
| | - Bruce J Godfrey
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98105, USA
| | - Raymond RedCorn
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98105, USA
| | - Zhiwu Wang
- Virginia Polytechnic Institute and State University, Department of Biological Systems Engineering, 1230 Washington St. SW, VA 24061, Blacksburg, VA 20147, USA
| | - Ramesh Goel
- The University of Utah, Department of Civil & Environmental Engineering, 110 S. Central Campus Drive, 2000MCE, Salt Lake City, UT 84112, USA
| | - Mari-K H Winkler
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98105, USA
| |
Collapse
|
58
|
Gong S, Qin Y, Zheng S, Lu T, Yang X, Zeng M, Zhou H, Chen J, Huang W. The rapid start-up of CANON process through adding partial nitration sludge to ANAMMOX system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117821. [PMID: 37001425 DOI: 10.1016/j.jenvman.2023.117821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/11/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to start up the completely autotrophic nitrogen removal over nitrite (CANON) process after adding partial nitration (PN) sludge to the ANAMMOX reactor, so as to help the rapid start-up and stable operation of the CANON process in practical engineering applications. There were three steps in the research: cultivating the PN sludge, building a reliable ANAMMMOX system, and finally starting and running the CANON process. The PN sludge was successfully cultivated in less than 45 days with around 90% nitrite accumulation rate. The ANAMMOX reactor enriched a significant quantity of red granular sludge within 70 days, achieving the maximum nitrogen removal rate of 1.74 kg/(m3·d). Eventually, the CANON reactor was started up successfully, which achieved 95.08% of average ammonium removal efficiency and 84.51% of average total nitrogen removal efficiency in 60 days. The residual recalcitrant nitrite-oxidizing bacteria in the CANON process was successfully inhibited by intermittent aeration and 12 mg/L free ammonia in UASB reactor. Besides, Candidatus Kuenenia, Candidatus Brocadia and Nitrosomonas were the main functional microorganisms involved in the CANON process.
Collapse
Affiliation(s)
- Siyuan Gong
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Shaohong Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Tiansheng Lu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Xiangjing Yang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Ming Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Hongen Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Jiannv Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Weichan Huang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| |
Collapse
|
59
|
Zhu Z, Zhang X, Zhou L, Wu Z, Zhang K, Ruth G, Wu P. Highly efficient and robust treatment of low C/N actual domestic sewage via integrated fermentation, partial-nitrification, partial-denitrification and anammox (IFPNDA). BIORESOURCE TECHNOLOGY 2023; 384:129347. [PMID: 37336460 DOI: 10.1016/j.biortech.2023.129347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
For achieving efficient and robust treatment of domestic sewage with C/N around 2.8, this study innovatively developed an integrated fermentation, partial-nitrification, partial-denitrification and anammox (IFPNDA) process based on the Anaerobic Baffled Reactor and Continuous-flow Stirred Tank Reactor (ABR-CSTR) bioreactor. Desirable N-removal efficiency of 87.5 ± 2.1% was obtained without external organics, correspondingly effluent total nitrogen (TN) concentration reached 6.1 ± 0.7 mg/L. The N-removal stability was greatly facilitated by the effective linkage between partial nitrification (PN) process and partial denitrification (PD) process in emergency. Highly enriched hydrolytic bacteria (6.9%) and acidogenic bacteria (5.7%) in A1, especially Comamonas (2.8%) and Longilinea (3.5%), induced the significant increase of volatile fatty acids (VFAs) in domestic sewage. Thauera (6.1%) in A2 and Nitrosomonas (5.4%) in A3 acted as the dominant flora of nitrite supplies for anammox in IFPNDA process. Candidatus_Brocadia (2.4%) dominated the advanced nitrogen removal. The IFPNDA process exhibited much potential for achieving energy neutrality during wastewater treatment.
Collapse
Affiliation(s)
- Zixuan Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiqiang Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Kangyu Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guerra Ruth
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
60
|
Cao S, Lan Y, Du R, Peng Y. Robustness and stability of acetate-driven partial denitrification (PD) in response to high COD/NO 3--N. CHEMOSPHERE 2023; 322:138213. [PMID: 36822519 DOI: 10.1016/j.chemosphere.2023.138213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Partial Denitrification (PD) producing nitrite for anammox may face the issue of relatively high chemical oxygen demand (COD) loading (i.e., COD/NO3--N) due to real wastewater being changed in substrate concentration and flowrate. In this study, three PD systems (R1, R2, R3) with sodium acetate providing electrons were developed to investigate the influence of the relatively high COD/NO3--N ratios (4.0, 6.0, and 8.0) on NO2--N production and the subsequent recoverability. It was found that a relatively high NO2--N production with nitrate-to-nitrite transformation ratio (NTR) of 74.0% could be still obtained despite COD/NO3--N even improving to 8.0 under limited reaction time (10 min) with small nitrate remaining. However, a deteriorated nitrite production was observed with sufficient reaction time (15 min) with NTR being lowered to 19.2%. Delightedly, when reducing influent COD/NO3--N to a normal level of 3.0, PD with high nitrite production was rapidly achieved after suffering from a relatively high COD/NO3--N (4.0-8.0) for 130 cycles. Besides, it was found the relatively high COD/NO3--N had a minor influence on the recoverability of PD, as evidenced by the close NTRs. Microbial analysis revealed the relative abundance of PD functional bacteria, Thauera, decreased under high COD/NO3--N, while it is still highly dominated in the systems, varying from 75.1% in R1 to 62.8% in R3 after around 110-cycles recovery. Furthermore, it appeared that the high pH (9.1-9.2) induced by sodium acetate also likely played a role in maintaining the excellent PD. Overall, this study demonstrated the robustness and stability of acetate-driven PD in response to high COD/NO3--N, further informing the technological superiority of PD in supplying stable and efficient nitrite, which provided solid technical support to apply it with anammox for high-efficient N removal.
Collapse
Affiliation(s)
- Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China; College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing, 100124, China
| | - Yu Lan
- College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing, 100124, China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
61
|
Cui H, Zhang L, Zhang Q, Li X, Peng Y, Wang C. Enhancing nitrogen removal of carbon-limited municipal wastewater in step-feed biofilm batch reactor through integration of anammox. BIORESOURCE TECHNOLOGY 2023; 381:129091. [PMID: 37105262 DOI: 10.1016/j.biortech.2023.129091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023]
Abstract
The biological nitrogen removal of municipal wastewater was successfully improved by integrating anammox in a step-feed sequencing biofilm batch reactor. Despite fluctuating influent carbon to nitrogen ratio (1.9-5.1) and decreasing temperature (24.1-16.3 ℃), nitrogen removal efficiency of 95.9 ± 1.4 % and nitrogen removal rate of 0.23 ± 0.02 kg N/(m3·d) were successfully maintained without requirement of external carbon sources. The advanced removal performance was mainly attributed to the enhanced anammox. Anammox bacteria presented a high relative abundance (42.9% in biofilms, 1.5% in flocs) and anammox activity was as high as 5.42 ± 0.12 mg N/(g volatile suspended solids·h). Further analysis suggested that flexible control of influent organic and ammonium through step-feeding could provide multiple substrate supply for anammox reaction, potentially resulting in stable combination of anammox with hybrid-nitrite-shunt processes. Overall, this study provides a promising anammox-related application with simple-control step-feed strategy for enhanced and stable nitrogen removal from carbon-limited municipal wastewater.
Collapse
Affiliation(s)
- Huihui Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Chuanxin Wang
- Guangdong Shouhui Lantian Engineering and Technology Co., Ltd., Units 01 and 04, 5/F, Xingguang Yingjing Commercial Center, 117 Shuiyin Road, Yuexiu District, Guangzhou, PR China
| |
Collapse
|
62
|
Cao S, Koch K, Duan H, Wells GF, Ye L, Zhao Y, Du R. In a quest for high-efficiency mainstream partial nitritation-anammox (PN/A) implementation: One-stage or two-stage? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163540. [PMID: 37086997 DOI: 10.1016/j.scitotenv.2023.163540] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Partial nitritation-anammox (PN/A) process is known as an energy-efficient technology for wastewater nitrogen removal, which possesses a great potential to bring wastewater treatment plants close to energy neutrality with reduced carbon footprint. To achieve this goal, various PN/A processes implemented in a single reactor configuration (one-stage system) or two separately dedicated reactors configurations (two-stage system) were explored over the past decades. Nevertheless, large-scale implementation of these PN/A processes for low-strength municipal wastewater treatment has a long way to go owing to the low efficiency and effectiveness in nitrogen removal. In this work, we provided a comprehensive analysis of one-stage and two-stage PN/A processes with a focus on evaluating their engineering application potential towards mainstream implementation. The difficulty for nitrite-oxidizing bacteria (NOB) out-selection was revealed as the critical operational challenge to achieve the desired effluent quality. Additionally, the operational strategies of low oxygen commonly adopted in one-stage systems for NOB suppression and facilitating anammox bacteria growth results in a low nitrogen removal rate (NRR). Introducing denitrification into anammox system was found to be necessary to improve the nitrogen removal efficiency (NRE) by reducing the produced nitrate with in-situ utilizing the organics from wastewater itself. However, this may lead to part of organics oxidized with additional oxygen consumed in one-stage system, further compromising the NRR. By applying a relatively high dissolved oxygen in PN reactor with residual ammonium control, and followed by a granules-based anammox reactor feeding with a small portion of raw municipal wastewater, it appeared that two-stage system could achieve a good effluent quality as well as a high NRR. In contrast to the widely studied one-stage system, this work provided a unique perspective that more effort should be devoted to developing a two-stage PN/A process to evaluate its application potential of high efficiency and economic benefits towards mainstream implementation.
Collapse
Affiliation(s)
- Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing, 100124, China
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Haoran Duan
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Liu Ye
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yingfen Zhao
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany.
| |
Collapse
|
63
|
Liu Q, Li C, Fan J, Peng Y, Du R. Evaluation of sludge anaerobic fermentation driving partial denitrification capability: In view of kinetics and metagenomic mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163581. [PMID: 37086990 DOI: 10.1016/j.scitotenv.2023.163581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Partial denitrification (PD) provides a promising approach of efficient and stable nitrite (NO2--N) generation for annamox. In this study, the feasibility of short-term sludge anaerobic fermentation driving PD was evaluated. It was found that a higher NO2--N accumulation in nitrate (NO3--N) reduction was obtained with the 5-days fermented sludge compared to 8 and 15-days fermentation. Moreover, compared to acetate as carbon source, sludge fermentation products (SFPs) induced the higher NO2--N production with nitrate-to-nitrite transformation ratio (NTR) nearly 100 %. Denitrification activity of fermented sludge were obviously improved with SFPs as electron donor. Metagenomic analysis revealed that Thauera was the dominant bacteria, which was assumed to be the key contributor to PD performance by harboring the highest narGHI and napAB but much lower nirS and nirK. Under the conditions of SFPs and fermented sludge, Thauera was speculated to have higher resistance than other denitrifiers attributed to versatile carbon metabolic capabilities utilizing SFPs with the significantly improved genes for metabolism of complex organic carbon via glycolysis after anaerobic fermentation. A novel integration of sludge fermentation driving PD and anammox for mainstream wastewater treatment and sidestream polishing was proposed to offer a promising application with reduced commercial carbon source consumption and waste sludge reduction.
Collapse
Affiliation(s)
- Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
64
|
Hu Z, Liu T, Wang Z, Meng J, Zheng M. Toward Energy Neutrality: Novel Wastewater Treatment Incorporating Acidophilic Ammonia Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4522-4532. [PMID: 36897644 PMCID: PMC10035426 DOI: 10.1021/acs.est.2c06444] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/29/2023] [Accepted: 03/02/2023] [Indexed: 05/19/2023]
Abstract
Chemically enhanced primary treatment (CEPT) followed by partial nitritation and anammox (PN/A) and anaerobic digestion (AD) is a promising roadmap to achieve energy-neutral wastewater treatment. However, the acidification of wastewater caused by ferric hydrolysis in CEPT and how to achieve stable suppression of nitrite-oxidizing bacteria (NOB) in PN/A challenge this paradigm in practice. This study proposes a novel wastewater treatment scheme to overcome these challenges. Results showed that, by dosing FeCl3 at 50 mg Fe/L, the CEPT process removed 61.8% of COD and 90.1% of phosphate and reduced the alkalinity as well. Feeding by low alkalinity wastewater, stable nitrite accumulation was achieved in an aerobic reactor operated at pH 4.35 aided by a novel acid-tolerant ammonium-oxidizing bacteria (AOB), namely, Candidatus Nitrosoglobus. After polishing in a following anoxic reactor (anammox), a satisfactory effluent, containing COD at 41.9 ± 11.2 mg/L, total nitrogen at 5.1 ± 1.8 mg N/L, and phosphate at 0.3 ± 0.2 mg P/L, was achieved. Moreover, the stable performances of this integration were well maintained at an operating temperature of 12 °C, and 10 investigated micropollutants were removed from the wastewater. An energy balance assessment indicated that the integrated system could achieve energy self-sufficiency in domestic wastewater treatment.
Collapse
Affiliation(s)
- Zhetai Hu
- Australian
Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Tao Liu
- Australian
Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Zhiyao Wang
- Australian
Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia 4072, Queensland, Australia
| | - Jia Meng
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Min Zheng
- Australian
Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia 4072, Queensland, Australia
| |
Collapse
|
65
|
Ahmed SM, Rind S, Rani K. Systematic review: External carbon source for biological denitrification for wastewater. Biotechnol Bioeng 2023; 120:642-658. [PMID: 36420631 DOI: 10.1002/bit.28293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Nitrogen mitigation is serious environmental issue around the globe. Several methods for wastewater treatment have been introduced, but biological denitrification has been recommended, particularly with addition of the best external carbon source. The key sites of denitrification are wetlands; it can be carried out with different methods. To highlight the aforementioned technology, this paper deals to review the literature to evaluate biological denitrification and to demonstrate cost effective external carbon sources. The results of systematic review disclose the denitrification process and addition of different external carbon sources. The online literature exploration was accomplished using the most well-known databases, that is, science direct and the web of science database, resulting 625 review articles and 3084 research articles, published in peer-reviewed journals between 2015 and 2021 were identified in first process. After doing an in-depth literature survey and exclusion criteria, we started to shape the review from selected review and research articles. A number of studies confirmed that both nitrification and denitrification are significant for biological treatment of wastewater. The studies proved that the carbon source is the main contributor and is a booster for the denitrification. Based on the literature reviewed it is concluded that biological denitrification with addition of external carbon source is cost effective and best option in nitrogen mitigation in a changing world. Our study recommends textile waste for recovery of carbon source.
Collapse
Affiliation(s)
- Sanjrani Manzoor Ahmed
- College of Environmental Science and Engineering, Donghua University, Shanghai, China.,HANDS-Institute of Development Studies, Karachi, Pakistan
| | - Saeeda Rind
- Department of Chemistry, University of Sindh Jamshoro, Jamshoro, Pakistan
| | - Keenjhar Rani
- Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| |
Collapse
|
66
|
Du R, Liu Q, Peng Y, Cao S. Potential causes of partial-denitrification (PD) granular sludge breakdown under high nitrate loading rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160749. [PMID: 36496026 DOI: 10.1016/j.scitotenv.2022.160749] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The granule instability has been frequently reported during the operation of high loading rates. While, there no research was performed on the recently developed anoxic partial-denitrification (PD) granules, a novel pathway in producing nitrite from nitrate for anammox process. Herein, this work, for the first time, investigated the influence of nitrate loading rates on the instability of PD granules and identified the key causes. Two lab-scale sequencing batch reactors (SBRs) were operated with nitrate loading rates (NLR) increased from 0.48 to 3.84 kg N/m3/d (R1, 8 cycles/d), and 0.96 to 7.68 kg N/m3/d (R2, 16 cycles/d) by gradually elevating the influent nitrate concentration. Results showed that nitrite production rates increased with the NLRs, with a maximal value of 5.26 kg N/m3/d obtained. However, the compact regular PD granules were not stable and broke down when NLR was above 3.84 kg N/m3/d, which resulted in serious sludge washing out from SBR. The high NLRs led to the extracellular polymeric substances (EPS) transformation in terms of its composition and structure, which the protein content in the EPS and the tightly bound EPS (T-EPS) fraction was significantly decreased, this was supposed to be the major reason causing the breakdown of PD granules. Besides, it was found the PD granule in R2 was more deteriorated than that in R1 under the same high NLR, suggesting the short starvation (idle) times in SBR cycle was likely another reason impairing the stability of PD granules. Overall, this research provides useful information in development of granule-based PD systems and sheds light on achieving high-rate nitrite production in SBR with great stability.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; College of Architecture and Civil engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, China; Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany.
| |
Collapse
|
67
|
Zeng Z, Wang Y, Zhu W, Xie T, Li L. Effect of COD/ NO3−-N ratio on nitrite accumulation and microbial behavior in glucose-driven partial denitrification system. Heliyon 2023; 9:e14920. [PMID: 37123922 PMCID: PMC10130780 DOI: 10.1016/j.heliyon.2023.e14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
COD/NO3 --N ratio was considered to be one of the key factors achieving effective nitrite accumulation during partial denitrification. In two parallel reactors incubated with glucose as carbon source at COD/NO3 --N of 3 and 5, respectively, the microbial community structure shift and the nitrite accumulation performance during long-term operation were investigated. The maximum nitrite accumulation ratios at COD/NO3 --N of 3 and 5 were 17.9% and 47.04%, respectively. Thauera was the dominant genus in both reactors on day 220 with the relative abundance of 18.67% and 64.01%, respectively. Batch experiments with different electron acceptors suggested that the distinction in nitrite accumulation at COD/NO3 --N of 3 and 5 might be caused by the differences in the abundance of Thauera.
Collapse
|
68
|
Chen J, Zeng J, He Y, Sun S, Wu H, Zhou Y, Chen Z, Wang J, Chen H. Insights into a novel nitrogen removal process based on simultaneous anammox and denitrification (SAD) following nitritation with in-situ NOB elimination. J Environ Sci (China) 2023; 125:160-170. [PMID: 36375902 DOI: 10.1016/j.jes.2022.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 06/16/2023]
Abstract
Simultaneous anammox and denitrification (SAD) is an efficient approach to treat wastewater having a low C/N ratio; however, few studies have investigated a combination of SAD and partial nitritation (PN). In this study, a lab-scale up-flow blanket filter (UBF) and zeolite sequence batch reactor (ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen (TN) removal efficiency of over 70% during the start-up stage (days 1-50), and reached a TN removal efficiency of 96% in the following 90 days (days 51-140) at COD/NH4+-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107 copies/µL DNA; Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN (66.5% ± 4.5%) and COD (71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment.
Collapse
Affiliation(s)
- Jing Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Jia Zeng
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Yiran He
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Haipeng Wu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Zhenguo Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianhui Wang
- School of Food science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hong Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China.
| |
Collapse
|
69
|
Wang H, Zhang L, Dan Q, Zhang Y, Wang S, Zhang Q, Li X, Wang C, Peng Y. Ultra-high nitrogen removal from real municipal wastewater using selective enhancement of glycogen accumulating organisms (GAOs) in a partial nitrification-anammox (PNA) system. WATER RESEARCH 2023; 230:119594. [PMID: 36638736 DOI: 10.1016/j.watres.2023.119594] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Integrating endogenous denitrification (ED) into partial nitrification-anammox (PNA) systems by adequately utilizing organics in municipal wastewater is a promising approach to improve nitrogen removal efficiency (NRE). In this study, a novel strategy to inhibit phosphorus-accumulating organisms (PAOs) by inducing phosphorus release and exclusion was adopted intermittently, optimizing organics allocation between PAOs and glycogen-accumulating organisms (GAOs). Enhanced ED-synergized anammox was established to treat real municipal wastewater, achieving an NRE of 97.5±2.2% and effluent total inorganic nitrogen (TIN) of less than 2.0 mg/L. With low poly-phosphorus (poly-P) levels (poly-P/VSS below 0.01 (w/w)), glycogen accumulating metabolism (GAM) acquired organics exceeded that of phosphorus accumulating metabolism (PAM) and dominated endogenous metabolism. Ca. Competibacter (GAO) dominated the community following phosphorus-rich supernatant exclusion, with abundance increasing from 3.4% to 5.7%, accompanied by enhanced ED capacity (0.2 to 1.4 mg N/g VSS /h). The enriched subgroups (GB4, GB5) of Ca. Competibcater established a consistent nitrate cycle with anammox bacteria (AnAOB) through endogenous partial denitrification (EPD) at a ∆NO2--N/∆NH4+-N of 0.91±0.11, guaranteeing the maintenance of AnAOB abundance and performance. These results provide new insights into the flexibility of PNA for the energy-efficient treatment of low-strength ammonium wastewater.
Collapse
Affiliation(s)
- Hanbin Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiongpeng Dan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yingxin Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chuanxin Wang
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, Guangdong 510075, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
70
|
Tang M, Guo Z, Xu X, Sun L, Wang X, Yang Y, Chen J. Performance and microbial mechanism of eletrotrophic bio-cathode denitrification under low temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116960. [PMID: 36493545 DOI: 10.1016/j.jenvman.2022.116960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Insufficient amount of carbon in wastewater and low temperatures hinder the use of biological nitrogen removal for purification of wastewaters. Nitrogen removal using cold-tolerant electrotrophic cathodic microbes is a novel and unique autotrophic denitrification technique in which electrical current, not chemicals, is used as a source of electrons. In this study, integrated MFC (RW) and open-circuit MFC (RO) were cultured and acclimatized in stages at a low temperature (10 °C) to impart cold tolerance to electrotrophic cathodic microbes, investigate the effectiveness of simultaneous nitrification and denitrification (SND) process, and address the possible mechanism of microbial action. The results showed that (i) microbial communities in the RW system were successfully enriched with the cold-tolerant electrotrophic cathodic microbes after five stages, and (ii) the degree of NH4+-N removal and SND were 75.50% and 81.91%, respectively, but the respective values in the RO system were only 40.47% and 54.01%. The desirable SND efficiency was obtained in RW at a DO of ∼0.6 mg/L, a current of ∼20 mA, and pH ∼7.0. In RW, Thauera, Pesudomonas, and Hydrogenophaga were the main electrotrophic cathodic denitrifying bacteria with cold tolerance capable of degrading ammonia, nitrate, and nitrite through autotrophic denitrification and cathodic-driven bio-electrochemical denitrification. Besides, for RW, results from high throughput sequencing analysis revealed that the abundance of genes related to energy production and conversion, amino acid transport, and metabolism, signal transduction, environmental adaptation, and enzymatic activity (AMO, HAO, NAR, NIR, NOR, and NOS) were significantly higher than the corresponding parameters of the RO system. This may explain the reason behind RW having excellent ammonia and TN removal performance at low temperatures.
Collapse
Affiliation(s)
- Meizhen Tang
- School of Life Sciences, Qufu Normal University, No.57 Jingxuan West Road, Qufu, 273165, PR China.
| | - Zhina Guo
- School of Life Sciences, Qufu Normal University, No.57 Jingxuan West Road, Qufu, 273165, PR China
| | - Xiaoyan Xu
- School of Life Sciences, Qufu Normal University, No.57 Jingxuan West Road, Qufu, 273165, PR China
| | - Lianglun Sun
- School of Life Sciences, Qufu Normal University, No.57 Jingxuan West Road, Qufu, 273165, PR China
| | - Xiaoning Wang
- Shandong Deli Environmental Protection Engineering Co. Ltd, PR China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, No.57 Jingxuan West Road, Qufu, 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, No.57 Jingxuan West Road, Qufu, 273165, PR China
| |
Collapse
|
71
|
Zhao X, Zhang M, Sun Z, Zheng H, Zhou Q. Anaerobic Storage Completely Removes Suspected Fungal Pathogens but Increases Antibiotic Resistance Gene Levels in Swine Wastewater High in Sulfonamides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3135. [PMID: 36833839 PMCID: PMC9960201 DOI: 10.3390/ijerph20043135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Wastewater storage before reuse is regulated in some countries. Investigations of pathogens and antibiotic resistance genes (ARGs) during wastewater storage are necessary for lowering the risks for wastewater reuse but are still mostly lacking. This study aimed to investigate pathogens, including harmful plant pathogens, and ARGs during 180 d of swine wastewater (SWW) storage in an anaerobic storage experiment. The contents of total organic carbon and total nitrogen in SWW were found to consistently decrease with the extension of storage time. Bacterial abundance and fungal abundance significantly decreased with storage time, which may be mainly attributed to nutrient loss during storage and the long period of exposure to a high level (4653.2 μg/L) of sulfonamides in the SWW, which have an inhibitory effect. It was found that suspected bacterial pathogens (e.g., Escherichia-Shigella spp., Vibrio spp., Arcobacter spp., Clostridium_sensu_stricto_1 spp., and Pseudomonas spp.) and sulfonamide-resistant genes Sul1, Sul2, Sul3, and SulA tended to persist and even become enriched during SWW storage. Interestingly, some suspected plant fungal species (e.g., Fusarium spp., Ustilago spp. and Blumeria spp.) were detected in SWW. Fungi in the SWW, including threatening fungal pathogens, were completely removed after 60 d of anaerobic storage, indicating that storage could lower the risk of using SWW in crop production. The results clearly indicate that storage time is crucial for SWW properties, and long periods of anaerobic storage could lead to substantial nutrient loss and enrichment of bacterial pathogens and ARGs in SWW.
Collapse
Affiliation(s)
- Xinyue Zhao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengjie Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhilin Sun
- College of Architecture Engineering, Zhejiang University, Hangzhou 310058, China
| | - Huabao Zheng
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, Zhejiang A&F University, Hangzhou 311300, China
| | - Qifa Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
72
|
Cao S, Koch K, Drewes JE, Du R. Re-evaluating the Necessity of High-Rate Activated Sludge Processes for Mainstream Anammox. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1851-1854. [PMID: 36696575 DOI: 10.1021/acs.est.3c00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Shenbin Cao
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
- Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
73
|
Ma G, Yu D, Zhang J, Miao Y, Zhao X, Li J, Zhang Y, Dong G, Zhi J. A novel simultaneous partial nitrification, anammox, denitrification and fermentation process: Enhancing nitrogen removal and sludge reduction in a single reactor. BIORESOURCE TECHNOLOGY 2023; 369:128484. [PMID: 36513309 DOI: 10.1016/j.biortech.2022.128484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
This study verified the feasibility of simultaneous partial nitrification, anammox, denitrification and fermentation process under intermittent aeration in a single reactor, and explored the impact of dissolved oxygen (DO) on the synergy between fermentation and nitrogen removal. An advanced nitrogen removal efficiency of 92.8 % and a low observed sludge yield of 0.0268-0.1474 kgMLSS/kgCOD were achieved. In-situ test showed that nitrate and ammonium decreased synchronously in the absence of organic matter, indicating the possibility of simultaneous partial denitrification, anammox and fermentation. Additionally, the abundance of functional genes for acetate production was 66,894 hits, while the key genes relevant to methanogenesis were only 348 hits, which suggested that fermentation might stop at the acid-producing stage and promote partial denitrification-anammox reaction, achieving simultaneous sludge reduction and advanced nitrogen removal performance. When DO increased from 0.1-0.3 to 0.4-0.6 mg/L, the nitrogen removal efficiency was increased (63.9 %→92.8 %) while sludge reduction was negatively affected.
Collapse
Affiliation(s)
- Guocheng Ma
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| | - Deshuang Yu
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jianhua Zhang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yuanyuan Miao
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, PR China.
| | - Xinchao Zhao
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiawen Li
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yu Zhang
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guoqing Dong
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| | - Jiaru Zhi
- School of Environmental Science & Engineering, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
74
|
Du R, Li C, Peng Y, Cao S. Extending reaction duration has minor influence on nitrite production in partial-denitrification process. BIORESOURCE TECHNOLOGY 2023; 369:128460. [PMID: 36503097 DOI: 10.1016/j.biortech.2022.128460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Partial denitrification (PD) is another important pathway producing nitrite for anammox, however, whether its performance is affected by overlong reaction time, a situation that often takes place is still unknown. Three sequencing batch reactors were operated for PD to evaluate this factor on nitrite production. Results indicated effluent nitrite was very close despite reaction time even extending to four times longer than control (i.e., nitrate-to-nitrite transformation ratio (NTR) of 94.4%-89.8%). Meanwhile, it was found PD could recover to the normal after suffering from high organics shocking. Cycle studies suggested produced nitrite would not be further reduced with prolonged time, as indicated by changing trend of pH and alkalinity. Microbial analysis revealed PD functional bacteria, Thauera, slightly decreased with prolonged reaction, while it was always predominated. Taken together, this study indicated overlong reaction time had minor influence on PD, demonstrating its robustness with great technological superiority in supplying nitrite for anammox.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; College of Architecture and Civil Engineering, Faculty of Architecture, Civil and Transportation Engineering (FACTE), Beijing University of Technology, Beijing 100124, PR China; Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching 85748, Germany.
| |
Collapse
|
75
|
Unveiling the effects of soluble starch, ethanol, and sodium acetate on the interactions of functional microorganisms and nitrogen removal in a partial nitritation and anammox biofilm system. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
76
|
Su Y, Peng Y, Wang J, Zhang Q, Li X, Wang S, Xue X, Du R. Rapid enrichment of anammox bacteria and transformation to partial denitrification/anammox with nitrification/denitrification sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158973. [PMID: 36162587 DOI: 10.1016/j.scitotenv.2022.158973] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The stable nitrite (NO2--N) generation and rapid startup of anammox-based process are the main bottlenecks hindering its application in mainstream municipal wastewater treatment. In this study, a Partial-Denitrification (PD) system reducing nitrate (NO3--N) to NO2--N was rapidly developed within 40 days, using the nitrification/denitrification sludge from wastewater treatment plant. The NO3--N to NO2--N transformation ratios achieved 80.6 %. Significantly, a fast self-enrichment of anammox bacteria in this system was subsequently obtained, resulting in the successful transformation to an efficient PD/Anammox (PD/A) process after 79-day operation. The total nitrogen removal efficiency increased from 12.4 % to 90.0 % with influent ammonia and nitrate of 45.9 mg N/L and 62.2 mg N/L, corresponding to the anammox activity significantly increasing to 6.0 mgNH4+-N/g VSS/h without seeding anammox sludge. Abundance of anammox increased from 6.7 × 108 to 2.0 × 1011 copies/g dry sludge. High-throughput sequencing results showed that Candidatus Brocadia was the only known anammox genus and accounted for 1.08 % during the PD/A stage. Functional bacteria for PD, assumed to be the Thauera, was enriched from 1.99 % to 60.06 % but decreased to 32.49 % during the improvement of anammox activity. It demonstrated that the PD system with stable NO2--N accumulation enabled a rapid self-enrichment of anammox bacteria and sufficient nitrogen removal with ordinary nitrification/denitrification sludge. This provides new insights into the scaling application of anammox by integrating PD with shortened startup periods and improved TN removal efficiency.
Collapse
Affiliation(s)
- Yunlong Su
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiao Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaofei Xue
- Beijing Enterprises Water Group (China) Investment Limited, Beijing 100102, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
77
|
Zhang C, Guo L, Qin J, Chen Z, Deng Z, Wang X. Combined partial denitrification-anammox with urea hydrolysis (U-PD-Anammox) process: A novel economical low-carbon method for nitrate-containing wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116653. [PMID: 36410300 DOI: 10.1016/j.jenvman.2022.116653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
For the sake of exploring a new economical and low-carbon alternative for real nitrate-containing wastewater treatment, a new combined partial denitrification-anammox with urea hydrolysis (U-PD-Anammox) process was developed. The nitrogen removal performance of this process was investigated through long-term operation in a sequencing batch reactor (SBR) and two submerged anaerobic biological filters (SABF). Results showed that the average NO3--N to NO2-N transformation ratio improved to 82.6% with organic carbon source to NO3-N ratio of 1.8, and urea hydrolysis provided sufficient NH4+-N and inorganic carbon to anammox process for nitrogen removal. The influent NH4+-N/NO2--N ratio for subsequent anammox reactor could be adjacent to the optimal ratio of 1.32 during the whole operation. The combined process showed efficient nitrogen removal performance with 85% NO3--N removal, 93.8% total nitrogen removal and total nitrogen loading rate as 1.1 ± 0.5 kg N/(m3·d). High-throughput sequencing analysis results revealed that Genera Thauera, Hyphomicrobium and Candidatus Brocadia were the dominant species responsible for partial denitrification, urea hydrolysis and anammox, respectively. The proposed process was more economically and environmental-friendly than the traditional denitrification process with 51.7% operational cost reduction, 99.7% N2O and 60% CO2 emission decrement, facilitating the sustainable development of the nitrate-containing wastewater treatment industry in the future.
Collapse
Affiliation(s)
- Chuchu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Lu Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Jiafu Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Zhenguo Chen
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Zexi Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; Hua An Biotech Co., Ltd., Foshan 528300, China.
| |
Collapse
|
78
|
Yang Y, Long Y, Xu J, Liu S, Liu L, Liu C, Tian Y. Achieving robust and highly efficient nitrogen removal in a mainstream anammox reactor by introducing low concentrations of readily biodegradable organics. Front Microbiol 2023; 14:1186819. [PMID: 37187540 PMCID: PMC10175599 DOI: 10.3389/fmicb.2023.1186819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
In this study, an anammox reactor was operated to treat low-strength (NH4+ + NO2-, 25-35 mg/L) wastewater without (phase I) or with (phase II) readily biodegradable chemical oxygen demand (rbCOD). In phase I, although efficient nitrogen removal was achieved at the beginning, nitrate accumulated in the effluent after long-term operation (75 days), resulting in a decrease in the nitrogen removal efficiency to 30%. Microbial analysis revealed that the abundance of anammox bacteria decreased from 2.15 to 1.78%, whereas that of nitrite-oxidizing bacteria (NOB) increased from 0.14 to 0.56%. In phase II, rbCOD, in terms of acetate, was introduced into the reactor with a carbon/nitrogen ratio of 0.9. The nitrate concentration in the effluent decreased within 2 days. Advanced nitrogen removal was achieved in the following operation, with an average effluent total nitrogen of 3.4 mg/L. Despite the introduction of rbCOD, anammox pathway still dominated to the nitrogen loss. High-throughput sequencing indicated that high anammox abundance (2.48%) further supports its dominant position. The improvement in nitrogen removal was attributed to the enhanced suppression of NOB activity, simultaneous nitrate polishing through partial denitrification and anammox, and promotion of sludge granulation. Overall, the introduction of low concentrations of rbCOD is a feasible strategy for achieving robust and efficient nitrogen removal in mainstream anammox reactors.
Collapse
Affiliation(s)
- Yandong Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
- Engineering Research Center of Concrete Technology Under Marine Environment, Ministry of Education, Qingdao, China
- *Correspondence: Yandong Yang,
| | - Yanan Long
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Jiarui Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Shichong Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Lei Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yong Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
79
|
Yue X, You A, Liu Y, Lai M, Zhang K. Low-concentration methanol effect on the microorganisms, nitrogen removal, and recovery of the completely autotrophic nitrogen removal over nitrite. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:130-143. [PMID: 36640028 DOI: 10.2166/wst.2022.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Methanol has a significant effect on the performance of the completely autotrophic nitrogen removal over the nitrite (CANON) process. In this research, the effect of low-concentration methanol on the functional microorganisms and nitrogen removal and recovery in the CANON system is investigated. The result shows that the anaerobic ammonium-oxidizing bacteria (AnAOB) was suppressed with low-concentration methanol addition, and the phylum Planctomycetes was hidden. The genus Candidatus Brocadia was restrained, and the relative abundances reduced from 25.5 to 15.0% in the upper biofilm and from 20.3 to 14.3% in the bottom biofilm, respectively. However, low-concentration methanol promoted the nitrifying oxidizing bacteria (NOB) activity. This phenomenon reduced the average ammonium nitrogen removal rate from 95.0 to 70.7%, and the average total nitrogen removal rate decreased from 81.3 to 43.6%, respectively. The results demonstrated that the low-concentration methanol as an organic carbon matter harmed the CANON process. Fortunately, the CANON system had an excellent self-healing ability when the methanol was stopped, with the average ammonium nitrogen removal rate and total nitrogen removal rate returning to 95.5 and 80.9%, respectively. This research supplies a reference for practical engineering design and application by improving the understanding of the effects of low-concentration methanol on CANON process performance.
Collapse
Affiliation(s)
- Xiu Yue
- College of Eco-Environmental Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China E-mail:
| | - Ao You
- College of Eco-Environmental Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China E-mail:
| | - Yang Liu
- College of Eco-Environmental Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China E-mail:
| | - Mincheng Lai
- College of Eco-Environmental Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China E-mail:
| | - Kun Zhang
- College of Eco-Environmental Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China E-mail:
| |
Collapse
|
80
|
Li G, Wang J, Ning D, Chen B, Liu J, Jin D, Guo W, Liang J, Ji H. Anammox biofilter with denitrification sludge as seed in treating low nitrogen strength wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116316. [PMID: 36182839 DOI: 10.1016/j.jenvman.2022.116316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Deficient seed sludge, low substrate concentrations are recognized as the major barriers for the application of anaerobic ammonia oxidation (Anammox) to treat mainstream wastewater. In this work, anammox biofilter (A-BF) was started up by inoculating denitrification sludge at low nitrogen strength at 25 °C. The total nitrogen removal efficiency (TNRE) and nitrogen removal rate (NRR) reached 74.8 ± 3.4% and 0.81 kg-N m-3 d-1 under nitrogen loading rate (NLR) of 1.20 kg-N m-3 d-1 with 7.00 mg-NH4+-N L-1 and 10.00 mg-NO2--N L-1 as influent. 1.00-2.00 mg-DO L-1 negatively impacted effluent, but the total nitrogen of effluent (TNeff) was 10.65 ± 2.76 mg L-1, in limit of the standard of Class 1A for municipal WWTP discharge (GB18918-2002). The abundance of Planctomycetes increased from 0.6% to 1.4-2.6%, in which, Candidatus_Brocadia was the dominant genera. The results establish the application feasibility of A-BFs as advanced nitrogen removal technique in treating mainstream wastewater.
Collapse
Affiliation(s)
- Gaigai Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; China Qiyuan Engineering Corporation, Xi'an, 710018, China
| | - Jinxing Wang
- College of Horticulture, North West Agriculture and Forestry University, Yangling, 712100, China
| | - Dingying Ning
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bingquan Chen
- Suez Water Treatment Company Limited, Beijing, 100026, China
| | - Jia Liu
- Suez Water Treatment Company Limited, Beijing, 100026, China
| | - Deyuan Jin
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wuke Guo
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jidong Liang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Hua Ji
- Suez Water Treatment Company Limited, Beijing, 100026, China
| |
Collapse
|
81
|
Jiang H, Wen Y, Qian R, Liu S, Tang X, Huang W, Chen H. Novel insights into aerobic duration control-based partial nitritation in source-separated blackwater treatment: Growth type, inoculation source, and comammox threat. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116319. [PMID: 36170781 DOI: 10.1016/j.jenvman.2022.116319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Aerobic duration control (ADC), whereby aeration is terminated before nitrite is extremely oxidized during the nitrification process, is an effective strategy to achieve partial nitritation (PN) for blackwater. This study evaluated the effects of microbial growth type, influent ammonia-oxidizing organisms (AOO), and comammox bacteria from seeding sludge to ADC-based PN. The long-term operation of lab-scale reactors and model simulations were implemented to select the best growth type. The biofilm formed on the inner wall of the activated sludge reactor decreased the nitrite accumulation ratio (NAR) from 99.2% to 77.2%. Meanwhile, the NAR of the pure-biofilm reactor decreased from 95.9% to 47.8%. The deteriorated PN of the biofilm-related reactors was due to the extended solid retention time and increased substrate saturation constants of AOOs compared with those of nitrite-oxidizing organisms (NOO). Periodic biofilm carrier regeneration and biofilm thickness control can recover PN performance but are difficult to implement. In contrast, the optimized activated sludge reactor exhibited high (NAR >94%) and stable (>3 months) PN performance when treating real blackwater. Nitrifiers were found in blackwater, and chemically enhanced high-rate activated sludge pretreatment removed more NOOs than AOOs (41.8% vs. 24.3%) and increased the influent AOO/NOO ratio. Interestingly, the influent AOOs supported fast PN start-up in the moving-bed biofilm reactor without the initial inoculation of activated sludge. Moreover, model simulations verified that high and stable PN could also be realized in an activated sludge reactor by the continuous inoculation of influent AOOs, which is a novel PN start-up strategy. Metagenomic analyses showed that the comammox bacteria from the seeding sludge eventually disappeared owing to their intrinsic specific growth rates and free ammonia inhibition. The findings of this study will provide insightful guidelines for PN application in decentralized and semi-centralized wastewater treatment systems.
Collapse
Affiliation(s)
- Haixin Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Yexuan Wen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Ruibo Qian
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Shiting Liu
- Sichuan Environmental Protection Industry Group Company Limited, Chengdu, 610046, China
| | - Xianchun Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Weiping Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Hongbin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
82
|
Cheng YF, Zhang ZZ, Ma WJ, Li GF, Huang BC, Fan NS, Jin RC. Response of the mainstream anammox process to the biodegradable carbon sources in the granule-based systems: The difference in self-stratification of the microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158191. [PMID: 35995153 DOI: 10.1016/j.scitotenv.2022.158191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The inevitable introduction of biodegradable carbon sources (such as monosaccharides and volatile fatty acids) originating from pretreatment units might affect the performance of the mainstream anaerobic ammonium oxidation (anammox) process. Two model carbon sources (glucose and acetate) were selected to investigate their effects on granule-based anammox systems under mainstream conditions (70 mg total nitrogen (TN) L-1, 15 °C). At a nitrogen loading rate of 2.87 ± 0.80 kg N m-3 d-1, a satisfactory effluent quality (TN < 10 mg L-1) was achieved in the presence of glucose or acetate at a chemical oxygen demand (COD/N) ratio of 0.5. The contribution of anammox to nitrogen removal decreased with increasing COD/N ratio to 1.0 because the expression of anammox functional genes was inhibited, whereas the expression of denitrifying functional genes was promoted. However, the nitrogen removal efficiency of the two considered reactors was maintained above 80 %. Self-stratification of the microbial community along the reactor height facilitated a functional balance through the retention of anammox bacteria in granules but resulted in washout of denitrifying bacteria in flocs under a high-flow pattern. These findings highlighted the advantages of granule-based systems in the mainstream anammox process due to their inherent biomass self-segregation property and the need for the development of targeted biomass retention strategies.
Collapse
Affiliation(s)
- Ya-Fei Cheng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zheng-Zhe Zhang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wen-Jie Ma
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Gui-Feng Li
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
83
|
Yao H, Gao X, Guo J, Wang H, Zhang L, Fan L, Jia F, Guo J, Peng Y. Contribution of nitrous oxide to the carbon footprint of full-scale wastewater treatment plants and mitigation strategies- a critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120295. [PMID: 36181929 DOI: 10.1016/j.envpol.2022.120295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/27/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Nitrous oxide (N2O), a potent greenhouse gas, significantly contributes to the carbon footprint of wastewater treatment plants (WWTPs) and contributes significantly to global climate change and to the deterioration of the natural environment. Our understanding of N2O generation mechanisms has significantly improved in the last decade, but the development of effective N2O emission mitigation strategies has lagged owing to the complexity of parameter regulation, substandard monitoring activities, and inadequate policy criteria. Based on critically screened published studies on N2O control in full-scale WWTPs, this review elucidates N2O generation pathway identifications and emission mechanisms and summarizes the impact of N2O on the total carbon footprint of WWTPs. In particular, a linear relationship was established between N2O emission factors and total nitrogen removal efficiencies in WWTPs located in China. Promising N2O mitigation options were proposed, which focus on optimizing operating conditions and implementation of innovative treatment processes. Furthermore, the sustainable operation of WWTPs has been anticipated to convert WWTPs into absolute greenhouse gas reducers as a result of the refinement and improvement of on-site monitoring activities, mitigation mechanisms, regulation of operational parameters, modeling, and policies.
Collapse
Affiliation(s)
- Hong Yao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| | - Xinyu Gao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jingbo Guo
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, 132012, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Liru Fan
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Fangxu Jia
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
84
|
Yang D, Chen Q, Liu R, Song L, Zhang Y, Dai X. Ammonia recovery from anaerobic digestate: State of the art, challenges and prospects. BIORESOURCE TECHNOLOGY 2022; 363:127957. [PMID: 36113813 DOI: 10.1016/j.biortech.2022.127957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen-containing wastewater and organic wastes are inevitably produced during human activities. To reduce nitrogen pollution, much energy has been used to convert ammonia nitrogen into nitrogen gas through biological nitrogen removal method. However, it needs to consume high energy again during industrial nitrogen fixation, which give rise to massive greenhouse gas (GHG) emissions. Therefore, ammonia recovery from organic wastes has attracted much attention in recent years. In this review, the advantages and disadvantages of ammonia stripping, membrane separation and struvite precipitation are discussed firstly. The ammonia stripping mechanisms, influencing factors, mass transfer process, and the latest innovative ammonia stripping techniques from the anaerobic digestate of organic wastes are critically reviewed. Additionally, a comprehensive economic analysis of different ammonia removal or recovery processes is carried out. The challenges and prospects of ammonia recovery are suggested. Ammonia recovery is of great significance for promoting nitrogen cycle, energy saving and GHG emission reduction.
Collapse
Affiliation(s)
- Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuhong Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Liang Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yue Zhang
- China Civil Engineering Society Water Industry Association, Beijing 100082, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
85
|
Fan J, Du R, Liu Q, Li C, Peng Y. Insight into the microbial interactions of Anammox and heterotrophic bacteria in different granular sludge systems: effect of size distribution and available organic carbon source. BIORESOURCE TECHNOLOGY 2022; 364:128055. [PMID: 36191754 DOI: 10.1016/j.biortech.2022.128055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Microbial interactions between Anammox and heterotrophic bacteria in different granule distributions in an Anammox system (AMX) and partial denitrification coupled with Anammox system (PDA) were analyzed in this paper. Candidatus Brocadia was the main Anammox microorganism in granules of 1.0 > d > 0.5 mm with the highest abundance of 21.5 % in AMX, significantly higher than the maximum proportion of 2.3 % in PDA sludge > 2.0 mm. However, the total nitrogen (TN) removal of 77.9 % in AMX was lower than PDA (94.0 %) because of the excessive NO3--N generated by nitrite-oxidizing bacteria (NOB). Anammox activity could be stimulated by heterotrophs via simple organic carbon, which decreased with the increasing size of sludge in AMX but increased in PDA. This highlighted that regulation of the distribution of sludge size and organic carbon source had an essential effect on efficient nitrogen removal of Anammox technology.
Collapse
Affiliation(s)
- Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
86
|
Du R, Li C, Liu Q, Fan J, Peng Y. A review of enhanced municipal wastewater treatment through energy savings and carbon recovery to reduce discharge and CO 2 footprint. BIORESOURCE TECHNOLOGY 2022; 364:128135. [PMID: 36257527 DOI: 10.1016/j.biortech.2022.128135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Municipal wastewater treatment that mainly performed by conventional activated sludge (CAS) process faces the challenge of intensive aeration-associated energy consumption for oxidation of organics and ammonium, contributing to significant directly/indirectly greenhouse gas (GHG) emissions from energy use, which hinders the achievement of carbon neutral, the top priority mission in the coming decades to cope with the global climate change. Therefore, this article aimed to offer a comprehensive analysis of recently developed biological treatment processes with the focus on reducing discharge and CO2 footprint. The biotechnologies including "Zero Carbon", "Low Carbon", "Carbon Capture and Utilization" are discussed, it suggested that, by integrating these processes with energy-saving and carbon recovery, the challenges faced in current wastewater treatment plants can be overcome, and a carbon-neutral even be possible. Future research should investigate the integration of these methods and improve anammox contribution as well as minimize organics lost under different scales.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
87
|
Chen Y, Guo G, Li YY. A review on upgrading of the anammox-based nitrogen removal processes: Performance, stability, and control strategies. BIORESOURCE TECHNOLOGY 2022; 364:127992. [PMID: 36150424 DOI: 10.1016/j.biortech.2022.127992] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The anaerobic ammonia oxidation (anammox) process is a promising biological nitrogen removal technology. However, owing to the sensitivity and slow cell growth of anammox bacteria, long startup time and initially low nitrogen removal rate (NRR) are still limiting factors of practical applications of anammox process. Moreover, nitrogen removal efficiency (NRE) is often lower than 88 %. This review summarizes the most common methods for improving NRR by increasing microorganism concentration, and modifying reactor configuration. Recent integrated anammox-based systems were evaluated, including hydroxyapatite (HAP)-enhanced one-stage partial nitritation/anammox (PNA) process for a high NRR of over 2 kg N/m3/d at 25 °C, partial denitrification/anammox (PDA) process, and simultaneous partial nitrification, anammox, and denitrification process for a high NRE of up to 100 %. After discussing the challenges for the application of these systems critically, a combined system of anaerobic digestion, HAP-enhanced one-stage PNA and PDA is proposed in order to achieve a high NRR, high NRE, and phosphorus removal simultaneously.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Guangze Guo
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
88
|
Feng Y, Wang S, Peng Y. Stable nitrogen removal in the novel continuous flow anammox system under deteriorated partial nitrification: Significance and superiority of the anaerobic-oxic-anoxic-oxic operation mode. BIORESOURCE TECHNOLOGY 2022; 361:127693. [PMID: 35905875 DOI: 10.1016/j.biortech.2022.127693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The collapse of mainstream anammox system caused by deterioration of partial nitrification (PN) is easy to occur and it is vital to quickly restore the stable nitrogen elimination performance. Herein, a novel continuous push-flow anaerobic-oxic-anoxic-oxic (AOAO) process treating sewage was used to restore the nitrogen elimination performance rapidly under deteriorated PN. The increased abundances of Nitrospira and Candidatus Nitrotoga was responsible for the deterioration of PN. Effluent total inorganic nitrogen of 8.7 mg N/L and a stable nitrogen removal rate of 0.083 kg N/m3·d were obtained with the aerobic hydraulic retention time (HRT) of 3.75 h even PN deteriorated. Endogenous partial denitrification coupled anammox in the anoxic zone was essential to maintain stable nitrogen removal under the deterioration of PN and the anammox contribution increased from 17.2 % to 23.6 %. The AOAO system shows robustness on nitrogen removal even PN deteriorated under the decrease of HRT from 16 to 12 h.
Collapse
Affiliation(s)
- Yan Feng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
89
|
Li X, Wang G, Chen J, Zhou X, Liu Y. Deciphering the concurrence of comammox, partial denitrification and anammox in a single low-oxygen mainstream nitrogen removal reactor. CHEMOSPHERE 2022; 305:135409. [PMID: 35728663 DOI: 10.1016/j.chemosphere.2022.135409] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/18/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
One-stage anammox-based autotrophic nitrogen removal technology has attracted increasing interest to sustainable biological nitrogen removal for future wastewater treatment. However, its application in mainstream municipal wastewater treatment is still challenging due to low nitrogen and high organics of raw wastewater. Herein, a novel Simultaneous Carbon Oxidation, partial Comammox, Denitratation and Anammox (SCOCDA) was firstly developed in a single sequencing batch biofilm reactor operated at a dissolved oxygen concentration of ∼0.5 mg/L for treating synthetic municipal wastewater (50 mg/L NH4+-N and 100-250 mg/L COD). The long-term operation showed that almost complete COD and nitrogen removal performance could be achieved at a carbon/nitrogen ratio (COD/NH4+-N) of 3-5 with the corresponding effluent total nitrogen (TN)<5 mg/L. Microbial community and amoA-targeting amplicon sequencing analysis further verified that comammox Nitrospira spp., denitrifier Thauera and other aerobic/facultative heterotrophs could work synergistically with anammox bacteria, Candidatus Kuenenia. Moreover, nitrogen metabolic and inorganic carbon fixation pathways through the interaction between comammox and anammox were also revealed with the aid of Kyoto Encyclopedia of Genes and Genomes (KEGG). Lastly, potential application of proposed SCOCDA process was illustrated. This research sheds new light on advanced nitrogen removal towards limit of technology via the synergy of comammox and anammox.
Collapse
Affiliation(s)
- Xu Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Gonglei Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Jiabo Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan, 030024, China.
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 637819, Singapore; Advanced Environmental Biotechnology Centre, NEWRI, Nanyang Technological University, 637141, Singapore
| |
Collapse
|
90
|
Zhang L, Lin Y, Zhu Z, Li X, Wang S, Peng Y. Rapidly recovering and maintaining simultaneous partial nitrification, denitrification and anammox process through hydroxylamine addition to advance nitrogen removal from domestic sewage. BIORESOURCE TECHNOLOGY 2022; 360:127645. [PMID: 35868463 DOI: 10.1016/j.biortech.2022.127645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The collapse of simultaneous partial nitrification, denitrification and anammox (SPNDA) system, caused by the destruction of partial nitrification (PN), is the most likely phenomenon to occur. Therefore, recovering the process quickly and maintaining efficient nitrogen removal is a valuable topic for research. In the anaerobic/aerobic/anoxic operation mode, SPNDA process was used to treat domestic sewage in a sequencing batch biofilm reactor. After the deterioration of PN effect, with the addition of hydroxylamine, the activity of ammonia-oxidizing bacteria in the nitrobacteria increased (61.0-91.3 %), whereas the accumulation of nitrite quickly recovered to 90.4 % within 5 days. Meanwhile, the nitrogen removal efficiency improved (61.8-95.6 %) and the effluent TN was 2.1 mg/L. Furthermore, Candidatus Brocadia was enriched (0.50-1.82 %) in the system. The results indicated that the addition of hydroxylamine was an effective strategy to recover and economically maintain the SPNDA process for advanced nitrogen removal from domestic sewage.
Collapse
Affiliation(s)
- Liyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yangang Lin
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhuo Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
91
|
Wang Y, Liang B, Kang F, Wang Y, Zhao C, Lyu Z, Zhu T, Zhang Z. An efficient anoxic/aerobic/aerobic/anoxic process for domestic sewage treatment: From feasibility to application. Front Microbiol 2022; 13:970548. [PMID: 35983333 PMCID: PMC9378819 DOI: 10.3389/fmicb.2022.970548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
In this paper, the anoxic/aerobic/aerobic/anoxic (AOOA) process was proposed using fixed biofilms in a continuous plug-flow multi-chamber reactor, and no sludge reflux operation was performed during the 190 days of operation. The reactor volume ratio of 1.5:2:1.5:1 (A/O/O/A) with the dissolved oxygen (DO) concentration of 2 mg L−1 in the aerobic zone was the optimal condition for reactor operation. According to the results obtained from the treatment of real domestic sewage, when the hydraulic retention time (HRT) was 6 h, the effluent of the reactor could meet the discharge standard even in cold conditions (13°C). Specifically, the elemental-sulfur-based autotrophic denitrification (ESAD) process contributed the most to the removal of total inorganic nitrogen (TIN) in the reactor. In addition, the use of vibration method was helpful in removing excess sludge from the biofilms of the reactor. Overall, the AOOA process is an efficient and convenient method for treating domestic sewage.
Collapse
|
92
|
Gong X, Zhang L, Gong Q, Liu X, Li X, Zhang Q, Peng Y. Rapid cultivation and enrichment of anammox bacteria solely using traditional activated sludge as inoculum and biocarrier in low-strength real sewage treatment. BIORESOURCE TECHNOLOGY 2022; 358:127354. [PMID: 35609747 DOI: 10.1016/j.biortech.2022.127354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
In low-ammonia sewage anammox process, cultivation and enrichment of anammox bacteria (AnAOB) is a challenge especially from traditional activated sludge. To this end, a novel strategy solely using activated sludge as inoculum and biocarrier in a dynamic fixed-bed reactor was proposed in this study. During 115-day operation, excellent performance was achieved with influent total inorganic nitrogen (TIN) and effluent TIN of 55.3 mg·L-1 and 4.1 mg·L-1, respectively. Rapid enrichment of AnAOB (doubling time: 8.5 days) was demonstrated by augmented specific anammox activity (trace value to 1.85 mg N·g VSS-1·h-1) and increased hzsB gene number (106 to 109 copies·g-1 dry sludge), with predominance of Candidatus_Brocadia. Large-flocs aggregate was the primary habitat for AnAOB with highest abundance and capacity. The distinctive sludge properties, symbiotic microbial interactions and dynamic operation scheme facilitated AnAOB growth and retention. This study provides a simple, economic and workable approach for the start-up of mainstream anammox process.
Collapse
Affiliation(s)
- Xiaofei Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qingteng Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xuefan Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
93
|
Kao C, Li J, Gao R, Li W, Li X, Zhang Q, Peng Y. Advanced nitrogen removal from real municipal wastewater by multiple coupling nitritation, denitritation and endogenous denitritation with anammox in a single suspended sludge bioreactor. WATER RESEARCH 2022; 221:118749. [PMID: 35728496 DOI: 10.1016/j.watres.2022.118749] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Achieving advanced nitrogen removal based on anammox for treating mainstream municipal wastewater in a single suspended sludge bioreactor is a challenging research topic. In this study, multiple coupling nitritation, denitritation and endogenous denitritation with anammox (PNA-(E)PDA) was simultaneously achieved in a 10 L step-feed bioreactor, which enhanced stable nitrogen removal. After 223 days of operation, the total nitrogen concentrations of the influent and effluent were 70.7 ± 6.1 and 4.3 ± 1.8 mg/L, respectively, when treating municipal wastewater even at C/N ratio of 2.24 with only 5 h of aerobic time (DO: 0.5-0.8 mg/L). After the evolution of nitritation/anammox to PNA-(E)PDA, the contribution of anammox to nitrogen removal increased to 78.6% and the anammox activity increased from 4.3 ± 0.2 to 15.2 ± 0.7 mg NH4+-N/gVSS/d. qPCR results showed that the abundance of anammox bacteria increased from 4.1 × 109 to 4.5 × 1010 copies/ (g VSS). High-throughput sequencing further revealed that the relative abundance of Candidatus Brocadia, the dominant anammox genus, increased from 0.09 to 0.46%. Based on the strong competitiveness of anammox on nitrite, this novel PNA-(E)PDA process provides a potential strategy for enriching anammox bacteria in municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
94
|
Lu W, Zhang X, Zhang Y, Wang Q, Wei Y, Ma B. Synergistic simultaneous endogenous partial denitrification/anammox (EPDA) and denitrifying dephosphatation for advanced nitrogen and phosphorus removal in a complete biofilm system. BIORESOURCE TECHNOLOGY 2022; 358:127378. [PMID: 35644451 DOI: 10.1016/j.biortech.2022.127378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
To achieve simultaneous biological nitrogen and phosphorus removal from municipal wastewater, the endogenous partial denitrification/anammox (EPDA) was combined with denitrifying dephosphatation in a complete biofilm reactor. Advanced nitrogen and phosphorus removal were achieved with effluent total nitrogen (TN) and PO43--P concentrations of 7.77 ± 0.33 mg/L and 0.35 ± 0.10 mg/L, respectively. Anammox took a major role in the system, accounting for 76 ± 7% of nitrogen removal. 16S rRNA high-throughput sequencing results showed that the anammox bacteria co-existed with the denitrifying glycogen accumulating organisms (DGAOs) and the denitrifying phosphorus accumulating organisms (DPAOs). Anammox bacteria were mainly distributed in the inner layer, while DGAOs and DPAOs existed in the outer layer of EPDA biofilms. Furthermore, based on the EPDA biofilm system, a promising advanced nitrogen and phosphorus removal process was suggested to achieve lower requirements for energy and reagent consumption.
Collapse
Affiliation(s)
- Wenkang Lu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Xiangyu Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Yu Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Qingqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Yan Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China.
| |
Collapse
|
95
|
Zhao J, Lei S, Cheng G, Zhang J, Shi B, Xie S, Zhao J. Comparison of inhibitory roles on nitrite-oxidizing bacteria by hydroxylamine and hydrazine during the establishment of partial nitrification. BIORESOURCE TECHNOLOGY 2022; 355:127271. [PMID: 35526711 DOI: 10.1016/j.biortech.2022.127271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The inhibitory roles of hydroxylamine (NH2OH) and hydrazine (N2H4) on nitrite-oxidizing bacteria were investigated in a comparative study. The results showed that nitrite accumulation was achieved by adding 5 mg-N/L NH2OH or N2H4 to two parallel sequencing batch reactors, with nitrite accumulation rate reaching 95.83% and 86.58% within 15 days after adopting aeration time control, respectively. Correspondingly, the maximum level of NO in typical cycles caused by NH2OH addition was 0.18 mg-N/L, which was higher than obtained for N2H4. NH2OH or N2H4 showed strong inhibition on Nitrospira and promoted the enrichment of Nitrosomonas, with the effects of NH2OH being more significant. However, nitritation began to deteriorate after the cessation of inhibitors addition. In conclusion, NH2OH was a better inhibitor than N2H4 for Nitrospira. The inhibitory role of NH2OH was primarily related to NO toxicity, while for N2H4 it was attributed to its own toxicity, with NO playing a smaller role.
Collapse
Affiliation(s)
- Junkai Zhao
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region (Chang'an University), Ministry of Education, Xi'an 710064, Shaanxi, China
| | - Shuhan Lei
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Guangwei Cheng
- Sinochem Quanzhou Petrochemical Co. LTD., Sinochem Holding Co. LTD., Quanhui Petrochemical Park 263000, Quanzhou, Fujian, China
| | - Ju Zhang
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Bingfeng Shi
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Shuting Xie
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China
| | - Jianqiang Zhao
- School of Water and Environment, Chang'an University, Xi'an 710064, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region (Chang'an University), Ministry of Education, Xi'an 710064, Shaanxi, China.
| |
Collapse
|
96
|
Cao S, Du R, Zhou Y. Integrated thermal hydrolysis pretreated anaerobic digestion centrate and municipal wastewater treatment via partial nitritation/anammox process: A promising approach to alleviate inhibitory effects and enhance nitrogen removal. BIORESOURCE TECHNOLOGY 2022; 356:127310. [PMID: 35569714 DOI: 10.1016/j.biortech.2022.127310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Two-stage Partial nitritation/Anammox (PN/A) was firstly performed for recalcitrant organics (RO)-rich thermal hydrolysis pretreated anaerobic digestion (THP-AD) centrate treatment with municipal wastewater (MW) as co-substrate. Results indicated the inhibitory effects of RO was alleviated and high nitrate issue in PN/A effluent was addressed by cotreatment strategy. Stable PN with nitrite accumulation ratio of 95% and N removal efficiency of 97.1% were well maintained at MW of 80%. Nevertheless, nitrate accumulation and anammox activity loss were observed with lowering MW proportion owing to the weakened denitrification activity and aggravated inhibitory effect. Microbial analysis revealed Nitrosomonas was the major ammonium oxidizing bacteria and the ideal PN performance was due to the effective out-selection of nitrite oxidizing bacteria. Candidatus Kuenenia was identified as the primary bacteria for nitrogen removal (82.7%), and the controlled abundance of heterotrophic denitrifiers in anammox system ensured the enhanced nitrogen removal regardless of high COD loading from THP-AD centrate.
Collapse
Affiliation(s)
- Shenbin Cao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China; Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
97
|
Huang Y, Qian X, Wang X, Wang T, Lounder SJ, Ravindran T, Demitrack Z, McCutcheon J, Asatekin A, Li B. Electrospraying Zwitterionic Copolymers as an Effective Biofouling Control for Accurate and Continuous Monitoring of Wastewater Dynamics in a Real-Time and Long-Term Manner. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8176-8186. [PMID: 35576931 DOI: 10.1021/acs.est.2c01501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Long-term continuous monitoring (LTCM) of water quality can provide high-fidelity datasets essential for executing swift control and enhancing system efficiency. One roadblock for LTCM using solid-state ion-selective electrode (S-ISE) sensors is biofouling on the sensor surface, which perturbs analyte mass transfer and deteriorates the sensor reading accuracy. This study advanced the anti-biofouling property of S-ISE sensors through precisely coating a self-assembled channel-type zwitterionic copolymer poly(trifluoroethyl methacrylate-random-sulfobetaine methacrylate) (PTFEMA-r-SBMA) on the sensor surface using electrospray. The PTFEMA-r-SBMA membrane exhibits exceptional permeability and selectivity to primary ions in water solutions. NH4+ S-ISE sensors with this anti-fouling zwitterionic layer were examined in real wastewater for 55 days consecutively, exhibiting sensitivity close to the theoretical value (59.18 mV/dec) and long-term stability (error <4 mg/L). Furthermore, a denoising data processing algorithm (DDPA) was developed to further improve the sensor accuracy, reducing the S-ISE sensor error to only 1.2 mg/L after 50 days of real wastewater analysis. Based on the dynamic energy cost function and carbon footprint models, LTCM is expected to save 44.9% NH4+ discharge, 12.8% energy consumption, and 26.7% greenhouse emission under normal operational conditions. This study unveils an innovative LTCM methodology by integrating advanced materials (anti-fouling layer coating) with sensor data processing (DDPA).
Collapse
Affiliation(s)
- Yuankai Huang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xin Qian
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingyu Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tianbao Wang
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Samuel J Lounder
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Tulasi Ravindran
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zoe Demitrack
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jeffrey McCutcheon
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ayse Asatekin
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Baikun Li
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
98
|
Du R, Cao S, Jin R, Li X, Fan J, Peng Y. Beyond an Applicable Rate in Low-Strength Wastewater Treatment by Anammox: Motivated Labor at an Extremely Short Hydraulic Retention Time. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8650-8662. [PMID: 35537060 DOI: 10.1021/acs.est.1c05123] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The application of anammox technology in low-strength wastewater treatment is still challenging due to unstable nitrite (NO2--N) generation. Partial denitrification (PD) of nitrate (NO3--N) reduction ending with NO2--N provides a promising solution. However, little is known about the feasibility of accelerating nitrogen removal toward the practical application of anammox combined with heterotrophic denitrification. In this work, an ultrafast, highly stable, and impressive nitrogen removal performance was demonstrated in the PD coupling with an anammox (PD/A) system. With a low-strength influent [50 mg/L each of ammonia (NH4+-N) and NO3--N] at a low chemical oxygen demand/NO3--N ratio of 2.2, the hydraulic retention time could be shortened from 16.0 to 1.0 h. Remarkable nitrogen removal rates of 1.28 kg N/(m3 d) and excellent total nitrogen removal efficiency of 94.1% were achieved, far exceeding the applicable capacity for mainstream treatment. Stimulated enzymatic reaction activity of anammox was obtained due to the fast NO2--N jump followed by a famine condition with limited organic carbon utilization. This high-rate PD/A system exhibited efficient renewal of bacteria with a short sludge retention time. The 16S rRNA sequencing unraveled the rapid growth of the genus Thauera, possibly responsible for the incomplete reduction of NO3--N to NO2--N and a decreasing abundance of anammox bacteria. This provides new insights into the practical application of the PD/A process in the energy-efficient treatment of low-strength wastewater with less land occupancy and desirable effluent quality.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Rencun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
99
|
Fan Z, Zeng W, Liu H, Jia Y, Peng Y. A novel partial denitrification, anammox-biological phosphorus removal, fermentation and partial nitrification (PDA-PFPN) process for real domestic wastewater and waste activated sludge treatment. WATER RESEARCH 2022; 217:118376. [PMID: 35405552 DOI: 10.1016/j.watres.2022.118376] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/20/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
A novel process was developed for real domestic wastewater and waste activated sludge (WAS) treatment based on partial denitrification, anammox-biological phosphorus removal, fermentation and partial nitrification (PDA-PFPN). After 246 days of operation, the effluent concentrations of NH4+-N, NO2--N and NO3--N were below detection limits (0.1 mg/L), and the effluent concentration of PO43--P was 0.1 mg/L without the addition of external carbon source in PDA-PFPN system. Moreover, the sludge reduction efficiency reached 48.1% due to fermentation. The nitrite accumulation ratios by ammonia oxidation and nitrate reduction pathway were 60.6% and 87%, respectively. Intracellular metabolites measured by liquid chromatography mass spectrometer (LC-MS/MS) suggested that different intracellular amino acids were stored and consumed at different duration, and intracellular Valine, Glycine and Lysine were not utilized in oxic stage. Results of flow cytometry showed that the proportion of intact cells decreased from 94.7% to 82.9%, and necrotic cells increased from 5.3% to 17.1% with the increase of DNA content in sludge supernatant and cell decay rate, indicating the occurrence of cell death and lysis and leading to WAS reduction. Analysis of transcriptional community composition revealed that partial denitrification bacteria (Thauera), anammox bacteria (Candidatus Brocadia and Candidatus Kuenenia), simultaneous phosphorus removal and fermentation bacteria (Tetrasphaera) and partial nitrification bacteria (Nitrosomonas) coexisted and actually worked in PDA-PFPN system. The novel PDA-PFPN process simultaneously achieved highly efficient nitrogen and phosphorus removal and WAS reduction without the addition of external carbon source, which greatly reduced the operation cost of carbon source dosing and WAS treatment in wastewater treatment.
Collapse
Affiliation(s)
- Zhiwei Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Hong Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuan Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
100
|
Cao S, Du R, Yan W, Zhou Y. Mitigation of inhibitory effect of THP-AD centrate on partial nitritation and anammox: Insights into ozone pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128599. [PMID: 35278943 DOI: 10.1016/j.jhazmat.2022.128599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion centrate produced from thermal hydrolysis pretreated sludge (THP-AD centrate) has serious inhibitory effect on ammonium oxidizing bacteria (AOB) and anammox bacteria. This imposes huge challenge to employ partial nitritation/anammox (PN/A) process to treat THP-AD centrate. This study, for the first time, presented an effective strategy, ozone pretreatment, to alleviate such inhibitory effect. The activities of AOB and anammox bacteria increased with increasing ozone dosage, which were likely related to the transformation of organic compounds including humic acid-like and fulvic acid-like substances as well as high molecular weight (HMW) protein. Long-term operation of PN/A system further demonstrated the improved performance in term of nitrogen removal, organics degradation as well as sludge settleability and effluent solids. Nitrogen removal rate (NRR) of 0.64 Kg N/m3/d was achieved (1.38 g O3/ g COD), which was 42.2% higher compared to treating untreated THP-AD centrate. Effluent nitrate, the by-product of PN/A process, was reduced by 39.7% despite of its release in ozonation. This was due to the enhanced denitrification activity, humic acid-like and fulvic acid-like substances as well as HMW protein were significantly reduced. Overall, this study provides a promising method to improve PN/A performance and final effluent quality when treating organic-rich THP-AD centrate.
Collapse
Affiliation(s)
- Shenbin Cao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; College of Architecture and Civil Engineering, Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Wangwang Yan
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|