51
|
Zhang P, Wang J, Huang L, He M, Yang H, Song G, Zhao J, Li X. Microplastic transport during desertification in drylands: Abundance and characterization of soil microplastics in the Amu Darya-Aral Sea basin, Central Asia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119353. [PMID: 37866184 DOI: 10.1016/j.jenvman.2023.119353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Desertification and microplastic pollution are major environmental issues that impact the function of the ecosystem and human well-being of drylands. Land desertification may influence soil microplastics' abundance, transport, and distribution, but their distribution in the dryland deserts of Central Asia's Amu Darya-Aral Sea basin is unknown. Here, we investigated the abundance and distribution of microplastics in dryland desert soils from the Amu Darya River to the Aral Sea basin in Central Asia at a spatial scale of 1000 km and soil depths ranging from 0 to 50 cm. Microplastics were found in soils from all sample locations, with abundances ranging from 182 to 17841 items kg-1 and a median of 3369. Twenty-four polymers were identified, with polyurethane (PU, 37.3%), silicone resin (SR, 17.0%), and chlorinated polyethylene (CPE, 9.8%) accounting for 64.1% of all polymer types. The abundance of microplastics was significantly higher in deep (20-50 cm) soils than in surface (0-5, 5-20 cm) soils. The main morphological characteristics of the observed microplastics were small size (20-50 μm) and irregular particles with no round edges (mean eccentricity 0.65). The abundance was significantly and positively related to soil EC and TP. According to the findings, desertification processes increase the abundance of microplastic particles in soils and promote migration to deeper soil layers. Human activities, mainly grazing, may be the region's primary cause of desertification and microplastic pollution. Our findings provide new information on the diffusion of microplastics in drylands during desertification; these findings are critical for understanding and promoting dryland plastic pollution prevention and control.
Collapse
Affiliation(s)
- Peng Zhang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Jin Wang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lei Huang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Mingzhu He
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Haotian Yang
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Guang Song
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jiecai Zhao
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xinrong Li
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
52
|
Li T, Cui L, Xu Z, Liu H, Cui X, Fantke P. Micro- and nanoplastics in soil: Linking sources to damage on soil ecosystem services in life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166925. [PMID: 37689210 DOI: 10.1016/j.scitotenv.2023.166925] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Soil ecosystems are crucial for providing vital ecosystem services (ES), and are increasingly pressured by the intensification and expansion of human activities, leading to potentially harmful consequences for their related ES provision. Micro- and nanoplastics (MNPs), associated with releases from various human activities, have become prevalent in various soil ecosystems and pose a global threat. Life Cycle Assessment (LCA), a tool for evaluating environmental performance of product and technology life cycles, has yet to adequately include MNPs-related damage to soil ES, owing to factors like uncertainties in MNPs environmental fate and ecotoxicological effects, and characterizing related damage on soil species loss, functional diversity, and ES. This study aims to address this gap by providing as a first step an overview of the current understanding of MNPs in soil ecosystems and proposing a conceptual approach to link MNPs impacts to soil ES damage. We find that MNPs pervade soil ecosystems worldwide, introduced through various pathways, including wastewater discharge, urban runoff, atmospheric deposition, and degradation of larger plastic debris. MNPs can inflict a range of ecotoxicity effects on soil species, including physical harm, chemical toxicity, and pollutants bioaccumulation. Methods to translate these impacts into damage on ES are under development and typically focus on discrete, yet not fully integrated aspects along the impact-to-damage pathway. We propose a conceptual framework for linking different MNPs effects on soil organisms to damage on soil species loss, functional diversity loss and loss of ES, and elaborate on each link. Proposed underlying approaches include the Threshold Indicator Taxa Analysis (TITAN) for translating ecotoxicological effects associated with MNPs into quantitative measures of soil species diversity damage; trait-based approaches for linking soil species loss to functional diversity loss; and ecological networks and Bayesian Belief Networks for linking functional diversity loss to soil ES damage. With the proposed conceptual framework, our study constitutes a starting point for including the characterization of MNPs-related damage on soil ES in LCA.
Collapse
Affiliation(s)
- Tong Li
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark; School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Lizhen Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Xu
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Hongdou Liu
- School of Environment and Science, Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD 4111, Australia.
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
53
|
Li G, Tang Y, Khan KY, Son Y, Jung J, Qiu X, Zhao X, Iqbal B, Stoffella PJ, Kim GJ, Du D. The toxicological effect on pak choi of co-exposure to degradable and non-degradable microplastics with oxytetracycline in the soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115707. [PMID: 37988994 DOI: 10.1016/j.ecoenv.2023.115707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Microplastics and antibiotics are emerging as ubiquitous contaminants in farmland soil, harming crop quality and yield, and thus threatening global food security and human health. However, few studies have examined the individual and joint effects of degradable and/or non-degradable microplastics and antibiotics on crop plants. This study examined the individual and joint effects of polyethylene (PE) and polylactic acid (PLA) microplastics and the antibiotic oxytetracycline (OTC) on pak choi by measuring its growth, photosynthesis, antioxidant enzyme activity, and metabolite levels. Microplastics and/or oxytetracycline adversely affected root weight, photosynthesis, and antioxidant enzyme (superoxide dismutase, catalase, and ascorbate peroxidase) activities. The levels of leaf metabolites were significantly altered, causing physiological changes. Biosynthesis of plant secondary metabolites and amino acids was altered, and plant hormones pathways were disrupted. Separately and together, OTC, PE, and PLA exerted phytotoxic and antagonistic effects on pak choi. Separately and together with OTC, degradable microplastics altered the soil properties, thus causing more severe impacts on plant performance than non-degradable microplastics. This study elucidates the effects on crop plants of toxicity caused by co-exposure to degradable or non-degradable microplastic and antibiotics contamination and suggests mechanisms.
Collapse
Affiliation(s)
- Guanlin Li
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China; Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yi Tang
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Kiran Yasmin Khan
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Yowhan Son
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Xuchun Qiu
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Babar Iqbal
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Peter Joseph Stoffella
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, United States
| | - Gwang-Jung Kim
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daolin Du
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
54
|
Qiu G, Wang Q, Wang Q, Wang T, Kang Z, Zeng Y, Yang X, Song N, Zhang S, Han X, Yu H. Effects of polyethylene microplastics on properties, enzyme activities, and the succession of microbial community in Mollisol: At the aggregate level. ENVIRONMENTAL RESEARCH 2023; 237:116976. [PMID: 37625535 DOI: 10.1016/j.envres.2023.116976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Soil, as a heterogeneous body, is composed of different-sized aggregates. There is limited data available on the potential role of microplastics (MPs) in microbial properties at the soil aggregate level. In this study, changes in microbial construction and diversity in farmland bulk soil and aggregates induced by polyethylene MPs (PE-MPs) were investigated at a dose of 0.5% (w/w) through 16s rDNA sequencing and enzyme activity measurements of different particle size aggregates in incubated soil. The presence of low-dose PE-MPs increased the proportion of >1 mm soil aggregates fraction, and decreased soil available nitrogen and available phosphorus in bulk soils. Furthermore, low-dose PE-MPs increased bacterial richness and diversity in 1-0.5 and < 0.25 mm fractions and decreased operational taxonomic unit, abundance-based coverage estimator, and Chao1 indices in bulk soil and >1 mm fractions. The levels of predicted functional genes taking part in the biodegradation and metabolism of exogenous substances also increased. At the phylum level, PE-MPs changed the proportion of Proteobacteria and Actinobacteria. The variations in soil aggregate properties were significantly correlated with the bacterial communities' composition and diversity. This study deepens our perception of the soil microenvironment, microbial community composition, and diversity in response to PE-MPs.
Collapse
Affiliation(s)
- Guankai Qiu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qirong Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Tianye Wang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Zhichao Kang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zeng
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xiutao Yang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Ningning Song
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Shaoqing Zhang
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xuerong Han
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
55
|
Kurniawan TA, Haider A, Mohyuddin A, Fatima R, Salman M, Shaheen A, Ahmad HM, Al-Hazmi HE, Othman MHD, Aziz F, Anouzla A, Ali I. Tackling microplastics pollution in global environment through integration of applied technology, policy instruments, and legislation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118971. [PMID: 37729832 DOI: 10.1016/j.jenvman.2023.118971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/19/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Microplastic pollution is a serious environmental problem that affects both aquatic and terrestrial ecosystems. Small particles with size of less than 5 mm, known as microplastics (MPs), persist in the environment and pose serious threats to various species from micro-organisms to humans. However, terrestrial environment has received less attention than the aquatic environment, despite being a major source of MPs that eventually reaches water body. To reflect its novelty, this work aims at providing a comprehensive overview of the current state of MPs pollution in the global environment and various solutions to address MP pollution by integrating applied technology, policy instruments, and legislation. This review critically evaluates and compares the existing technologies for MPs detection, removal, and degradation, and a variety of policy instruments and legislation that can support the prevention and management of MPs pollution scientifically. Furthermore, this review identifies the gaps and challenges in addressing the complex and diverse nature of MPs and calls for joint actions and collaboration from stakeholders to contain MPs. As water pollution by MPs is complex, managing it effectively requires their responses through the utilization of technology, policy instruments, and legislation. It is evident from a literature survey of 228 published articles (1961-2023) that existing water technologies are promising to remove MPs pollution. Membrane bioreactors and ultrafiltration achieved 90% of MPs removal, while magnetic separation was effective at extracting 88% of target MPs from wastewater. In biological process, one kg of wax worms could consume about 80 g of plastic/day. This means that 100 kg of wax worms can eat about 8 kg of plastic daily, or about 2.9 tons of plastic annually. Overall, the integration of technology, policy instrument, and legislation is crucial to deal with the MPs issues.
Collapse
Affiliation(s)
| | - Ahtisham Haider
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
| | - Rida Fatima
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Muhammad Salman
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Anila Shaheen
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan; Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Faissal Aziz
- Laboratory of Water, Biodiversity & Climate Changes, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
56
|
Luqman M, Shahid T, Awan MUF, Kashif SUR, Arooj F, Awan AR. Quantification and characterization of microplastics (MPs) pollution in peri-uburban agricultural lands of Lahore, Pakistan. PLoS One 2023; 18:e0291760. [PMID: 37788245 PMCID: PMC10547192 DOI: 10.1371/journal.pone.0291760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Microplastics (MPs) contaminate every conceivable terrestrial and aquatic environment including high peaks and deep marine trenches. Agricultural lands alone are expected to receive plastic up to 23 times more than ocean basins. In this study, soil samples were collected from peri-urban agricultural lands of Lahore on four sides including Kala Shah Kaku (KSK), Punjab University (PU), Dera Gujran (DG), and Sagian (SG). National Oceanic and Atmospheric Administration (NOAA) protocol was used for MPs extraction and analysis. Extracted MPs were analyzed under microscope at 40X magnification and their composition was analyzed using Fourier Transform Infrared (FTIR) spectroscopy. A considerable concentration of MPs was recorded at all sites. The highest contamination was found at SG with 876 ±194 MPs/kg of soil, and the lowest contamination was recorded at PU with 672 ±235 MPs/kg of soil. However, these differences among the sites were not statistically significant (p = 0.29). The overall predominant shape of MPs was fibers (613±71, 79.73%) followed by sheets (125±55, 16.28%), fragments (30±5, 3.9%) and foam particles (1±2, .09%). The differences in the distribution of MPs in various types were statistically significant (p = 0), while differences between sites were insignificant (p = 0.13). About 95% of MPs were less than 2 mm and 85% were less than 1 mm size. The distribution of MPs in various sizes (p = 0) and differences of this distribution between sites (p = 0.037) were both statistically significant. A good diversity of nine colored MPs was recorded, however majority of the MPs were transparent (89.57%). Six polymer including Polyethylene (PE), Polyethylene terephthalate (PET), Polypropylene (PP), Polystyrene (PS), Polycarbonate (PC), and Polyvinyl Chloride (PVC) were identified by FTIR. The current levels of MPs pollution are higher than in many other parts of the world. Composition of MPs (types, colors, sizes, and polymer types) indicates the diversity of their sources and their possible implications on agricultural ecosystem.
Collapse
Affiliation(s)
- Muhammad Luqman
- Department of Environmental Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Tehreem Shahid
- Department of Environmental Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | | | - Saif Ur Rehman Kashif
- Department of Environmental Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Fariha Arooj
- Department of Environmental Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Ali Raza Awan
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| |
Collapse
|
57
|
Chen JY, Liu S, Deng WK, Niu SH, Liao XD, Xiang L, Xing SC. The effect of manure-borne doxycycline combined with different types of oversized microplastic contamination layers on carbon and nitrogen metabolism in sandy loam. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131612. [PMID: 37245359 DOI: 10.1016/j.jhazmat.2023.131612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
The different forms and properties of microplastics (MPs) have different effects on the elemental cycles in soil ecosystems, and this is further complicated when the soil contains antibiotics; meanwhile, oversized microplastic (OMP) in soil is always ignored in studies of environmental behavior. In the context of antibiotic action, the effects of OMP on soil carbon (C) and nitrogen (N) cycling have rarely been explored. In this study, we created four types of oversized microplastic (thick fibers, thin fibers, large debris, and small debris) composite doxycycline (DOX) contamination layers (5-10 cm) in sandy loam, hoping to reveal the effects on soil C and N cycling and potential microbial mechanisms when exposed to the combination of manure-borne DOX and different types of OMP from the perspective of metagenomics in the longitudinal soil layer (0-30 cm). The results showed that all different forms of OMP, when combined with DOX, reduced the soil C content in each layer, but only reduced the soil N content in the upper layer of the OMP contamination layer. The microbial structure of the surface soil (0-10 cm) was more noteworthy than that of the deeper soil (10-30 cm). The genera Chryseolinea and Ohtaekwangia were key microbes involved in C and N cycling in the surface layer and regulated carbon fixation in photosynthetic organisms (K00134), carbon fixation pathways in prokaryotes (K00031), methane metabolism (K11212 and K14941), assimilatory nitrate reduction (K00367), and denitrification (K00376 and K04561). The present study is the first to reveal the potential microbial mechanism of C and N cycling under OMP combined with DOX in different layers, mainly the OMP contamination layer and its upper layer, and the OMP shape plays an important role in this process.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Lei Xiang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, Guangdong, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
58
|
Quilliam RS, Pow CJ, Shilla DJ, Mwesiga JJ, Shilla DA, Woodford L. Microplastics in agriculture - a potential novel mechanism for the delivery of human pathogens onto crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1152419. [PMID: 37636119 PMCID: PMC10448812 DOI: 10.3389/fpls.2023.1152419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Mulching with plastic sheeting, the use of plastic carriers in seed coatings, and irrigation with wastewater or contaminated surface water have resulted in plastics, and microplastics, becoming ubiquitous in agricultural soils. Once in the environment, plastic surfaces quickly become colonised by microbial biofilm comprised of a diverse microbial community. This so-called 'plastisphere' community can also include human pathogens, particularly if the plastic has been exposed to faecal contamination (e.g., from wastewater or organic manures and livestock faeces). The plastisphere is hypothesised to facilitate the survival and dissemination of pathogens, and therefore plastics in agricultural systems could play a significant role in transferring human pathogens to crops, particularly as microplastics adhering to ready to eat crops are difficult to remove by washing. In this paper we critically discuss the pathways for human pathogens associated with microplastics to interact with crop leaves and roots, and the potential for the transfer, adherence, and uptake of human pathogens from the plastisphere to plants. Globally, the concentration of plastics in agricultural soils are increasing, therefore, quantifying the potential for the plastisphere to transfer human pathogens into the food chain needs to be treated as a priority.
Collapse
Affiliation(s)
- Richard S. Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Chloe J. Pow
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Dativa J. Shilla
- Department of Chemistry, Dar es Salaam University College of Education (DUCE), Dar es Salaam, Tanzania
| | - James J. Mwesiga
- Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Daniel A. Shilla
- Department of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
59
|
Gao S, Wu Q, Peng M, Zeng J, Jiang T, Ruan Y, Xu L, Guo K. Rapid urbanization affects microplastic communities in lake sediments: A case study of Lake Aha in southwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117824. [PMID: 37004481 DOI: 10.1016/j.jenvman.2023.117824] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Effective management of pollutants in urban environments is crucial for achieving sustainable cities. Microplastics, as an emerging pollutant widely present in contemporary environments, have received widespread attention in recent years. However, limited studies have reported the impact of rapid urbanization on regional microplastics. In this study, the abundance and composition of microplastic communities in the sediments of Lake Aha were analyzed using a "microplastic community" and slicing the sediments at 5 cm intervals. Results showed that microplastic abundance of sediments in Lake Aha was relatively high (up to 1700 items/kg) and decreased with increasing depth, with the highest abundance found in the surface layer (0-5 cm, 1090 ± 474 items/kg). Hierarchical cluster analysis (HCA), principal component analysis (PCA), and analysis of similarities (ANOSIM) revealed that the different sediment layers could be classified into high and low urbanization level groups based on the composition of microplastic communities. Linear discriminant analysis effect size (LEfSe) indicated that agricultural input was the main source of microplastic pollution during low urbanization levels, characterized by low abundance, large particle size, and high fiber proportion, while urban activities dominated during high urbanization levels, with high abundance, small particle size, high proportion of Polyethylene terephthalate (PET), fragments, and granules, and colorful microplastics. This study clarifies the impact of urbanization on the abundance and composition of microplastics in lake sediments, which has implications for more effective management and control of microplastic pollution in regions undergoing rapid urbanization.
Collapse
Affiliation(s)
- Shilin Gao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Qixin Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Meixue Peng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Jie Zeng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Tingting Jiang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Yunjun Ruan
- College of Bigdata and Information Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Li Xu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ke Guo
- Guiyang Research Academy of Eco-Environmental Science, Guiyang, Guizhou, 550025, China
| |
Collapse
|
60
|
Zhang X, Chen R, Li Z, Yu J, Chen J, Zhang Y, Chen J, Yu Q, Qiu X. The influence of various microplastics on PBDEs contaminated soil remediation by nZVI and sulfide-nZVI: Impedance, electron-accepting/-donating capacity and aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163233. [PMID: 37019223 DOI: 10.1016/j.scitotenv.2023.163233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
The microplastics (MPs) existed in the environment widely has resulted in novel thinking about in-situ remediation techniques, such as nano-zero-valent iron (nZVI) and sulfided nZVI (S-nZVI), which were often compromised by various environmental factors. In this study, three common MPs such as polyvinyl chloride (PVC), polystyrene (PS), and polypropylene (PP) in soil were found to inhibit the degradation rate of decabromodiphenyl ether (BDE209) by nZVI and S-nZVI to different degrees due to MPs inhibiting of electron transfer which is the main way to degrade BDE209. The inhibition strength was related to its impedance (Z) and electron-accepting (EAC)/-donating capacity (EDC). Based on the explanation of the inhibition mechanism, the reason for different aging degrees of nZVI and S-nZVI in different MPs was illustrated, especially in PVC systems. Furthermore, the aging of reacted MPs, functionalization and fragmentation in particular, indicated that they were involved in the degradation process. Moreover, this work provided new insights into the field application of nZVI-based materials for removing persistent organic pollutants (POPs).
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ran Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhenhui Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Junxia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jinyi Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuanyuan Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jinhong Chen
- Hainan Provincial Ecological and Environmental Monitoring Centre, Hainan, China
| | - Qianqian Yu
- School of Earth Science, China University of Geosciences, Wuhan 430074, China
| | - Xinhong Qiu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan 430074, China; Hubei Engineering Technology Research Center for Chemical Industry Pollution Control, Wuhan 430205, China.
| |
Collapse
|
61
|
Astner AF, Gillmore AB, Yu Y, Flury M, DeBruyn JM, Schaeffer SM, Hayes DG. Formation, behavior, properties and impact of micro- and nanoplastics on agricultural soil ecosystems (A Review). NANOIMPACT 2023; 31:100474. [PMID: 37419450 DOI: 10.1016/j.impact.2023.100474] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Micro and nanoplastics (MPs and NPs, respectively) in agricultural soil ecosystems represent a pervasive global environmental concern, posing risks to soil biota, hence soil health and food security. This review provides a comprehensive and current summary of the literature on sources and properties of MNPs in agricultural ecosystems, methodology for the isolation and characterization of MNPs recovered from soil, MNP surrogate materials that mimic the size and properties of soil-borne MNPs, and transport of MNPs through the soil matrix. Furthermore, this review elucidates the impacts and risks of agricultural MNPs on crops and soil microorganisms and fauna. A significant source of MPs in soil is plasticulture, involving the use of mulch films and other plastic-based implements to provide several agronomic benefits for specialty crop production, while other sources of MPs include irrigation water and fertilizer. Long-term studies are needed to address current knowledge gaps of formation, soil surface and subsurface transport, and environmental impacts of MNPs, including for MNPs derived from biodegradable mulch films, which, although ultimately undergoing complete mineralization, will reside in soil for several months. Because of the complexity and variability of agricultural soil ecosystems and the difficulty in recovering MNPs from soil, a deeper understanding is needed for the fundamental relationships between MPs, NPs, soil biota and microbiota, including ecotoxicological effects of MNPs on earthworms, soil-dwelling invertebrates, and beneficial soil microorganisms, and soil geochemical attributes. In addition, the geometry, size distribution, fundamental and chemical properties, and concentration of MNPs contained in soils are required to develop surrogate MNP reference materials that can be used across laboratories for conducting fundamental laboratory studies.
Collapse
Affiliation(s)
- Anton F Astner
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Alexis B Gillmore
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Yingxue Yu
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Markus Flury
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Douglas G Hayes
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America.
| |
Collapse
|
62
|
Zhang S, Pei L, Zhao Y, Shan J, Zheng X, Xu G, Sun Y, Wang F. Effects of microplastics and nitrogen deposition on soil multifunctionality, particularly C and N cycling. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131152. [PMID: 36934700 DOI: 10.1016/j.jhazmat.2023.131152] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Both nitrogen deposition (ND) and microplastics (MPs) pose global change challenges. The effects of MPs co-existing with ND on ecosystem functions are still largely unknown. Herein, we conducted a 10-month soil incubation experiment to explore the effects of polyethylene (PE) and polylactic acid (PLA) MPs on soil multifunctionality under different ND scenarios. We found that the interactions between ND and MPs affected soil multifucntionality. FAPROTAX function prediction indicated that both ND and MPs affected C and N cycling. ND increased some C-cycling processes, such as cellulolysis, ligninolysis, and plastic degradation. MPs also showed stimulating effects on these processes, particularly in the soil with ND. ND significantly decreased the abundance of functional genes NifH, amoA, and NirK, leading to inhibited N-fixation, nitrification, and denitrification. The addition of MPs also modified N-cycling processes: 0.1% PE enriched the bacterial groups for nitrate reduction, nitrate respiration, nitrite respiration, and nitrate ammonification, and 1% PLA MPs enriched N-fixation bacteria at all ND levels. We found that ND caused lower soil pH but higher soil N, decreased bacterial diversity and richness, and changed the composition and activity of functional bacteria, which explains why ND changed soil functions and regulated the impact of MPs.
Collapse
Affiliation(s)
- Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Lei Pei
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Yanxin Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xuebo Zheng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China.
| |
Collapse
|
63
|
He X, Qian Y, Li Z, Yang S, Tian J, Wang Q, Lei J, Qi R, Feng C. Identification of factors influencing the microplastic distribution in agricultural soil on Hainan Island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162426. [PMID: 36842590 DOI: 10.1016/j.scitotenv.2023.162426] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are ubiquitous in agricultural soils, but to what extent and how environmental factors determine the source and fate of MPs in agricultural soils is not clear. In this study, Hainan Island, which has different climatic conditions, altitudes, and land uses across the island, was selected to investigate the MPs abundance and the shape, size, color, and polymer type of the MPs in agricultural soils. The main focus was on the role of land use type and the identification of environmental influencing factors. The results showed that MPs were detected in all the soil samples across the island, with an abundance range of 20 to 6790 items kg-1 and an average of 417 items kg-1. Fragments (46.8 %), MPs smaller than 0.5 mm (37.8 %), black MPs (48.3 %), and polypropylene MPs (56.8 %) were observed as the dominant MPs species. Significantly higher MPs abundance was found in mulched arable land, and higher contents of fibers and fragments were observed in woodland and paddy lands, respectively. With correlation and redundancy analyses, soil pH, soil organic matter content, and average annual temperature were found to be the main factors influencing the biotic/abiotic fragmentation of MPs. The regional population density, including tourism represented by the night light index, affects the input process of MPs. MPs transport and deposition were found to be affected by altitude, annual precipitation, and soil moisture content. This study represents the first large-scale study of MPs contamination in island agricultural soils and provides important data on the distribution, transport, and fate of MPs.
Collapse
Affiliation(s)
- Xiaokang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yibin Qian
- Hainan Research Academy of Environmental Sciences, 571127 Haikou, PR China; National Plot Zone for Ecological Conservation (Hainan) Research Center, 571127 Haikou, PR China
| | - Zhenling Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Shuai Yang
- Hainan Research Academy of Environmental Sciences, 571127 Haikou, PR China; National Plot Zone for Ecological Conservation (Hainan) Research Center, 571127 Haikou, PR China
| | - Jinfei Tian
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Qixuan Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jinming Lei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Ruifang Qi
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
64
|
Tang S, Sun P, Qu G, Tian Y, Liu J, Pervez MN, Li X, Cao C, Zhao Y. Photo-aged non-biodegradable and biodegradable mulching film microplastics alter the interfacial behaviors between agricultural soil and inorganic arsenic. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131552. [PMID: 37207479 DOI: 10.1016/j.jhazmat.2023.131552] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/17/2023] [Accepted: 04/30/2023] [Indexed: 05/21/2023]
Abstract
The impacts of microplastics (MPs) prevalent in soil on the transport of pollutants were urged to be addressed, which has important implications for ecological risk assessment. Therefore, we investigated the influence of virgin/photo-aged biodegradable polylactic acid (PLA) and non-biodegradable black polyethylene (BPE) mulching films MPs on arsenic (As) transport behaviors in agricultural soil. Results showed that both virgin PLA (VPLA) and aged PLA (APLA) enhanced the adsorption of As(Ⅲ) (9.5%, 13.3%) and As(Ⅴ) (22.0%, 6.8%) due to the formation of abundant H-bonds. Conversely, virgin BPE (VBPE) reduced the adsorption of As(Ⅲ) (11.0%) and As(Ⅴ) (7.4%) in soil owing to the "dilution effect", while aged BPE (ABPE) improved arsenic adsorption amount to the level of pure soil due to newly generated O-containing functional groups being feasible to form H-bonds with arsenic. Site energy distribution analysis indicated that the dominant adsorption mechanism of arsenic, chemisorption, was not impacted by MPs. The occurrence of biodegradable VPLA/APLA MPs rather than non-biodegradable VBPE/ABPE MPs resulted in an increased risk of soil accumulating As(Ⅲ) (moderate) and As(Ⅴ) (considerable). This work uncovers the role of biodegradable/non-biodegradable mulching film MPs in arsenic migration and potential risks in the soil ecosystem, depending on the types and aging of MPs.
Collapse
Affiliation(s)
- Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peipei Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Guojuan Qu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Tian
- School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Junlai Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Md Nahid Pervez
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Xiuyan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chengjin Cao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
65
|
Malli A, Shehayeb A, Yehya A. Occurrence and risks of microplastics in the ecosystems of the Middle East and North Africa (MENA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64800-64826. [PMID: 37086319 PMCID: PMC10122206 DOI: 10.1007/s11356-023-27029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The ubiquitous nature of microplastics (MPs) in nature and the risks they pose on the environment and human health have led to an increased research interest in the topic. Despite being an area of high plastic production and consumption, studies on MPs in the Middle East and North Africa (MENA) region have been limited. However, the region witnessed a research surge in 2021 attributed to the COVID-19 pandemic. In this review, a total of 97 studies were analyzed based on their environmental compartments (marine, freshwater, air, and terrestrial) and matrices (sediments, water columns, biota, soil, etc.). Then, the MP concentrations and polymer types were utilized to conduct a risk assessment to provide a critical analysis of the data. The highest MP concentrations recorded in the marine water column and sediments were in the Mediterranean Sea in Tunisia with 400 items/m3 and 7960 items/kg of sediments, respectively. The number of MPs in biota ranged between 0 and 7525 per individual across all the aquatic compartments. For the air compartment, a school classroom had 56,000 items/g of dust in Iran due to the confined space. Very high risks in the sediment samples (Eri > 1500) were recorded in the Caspian Sea and Arab/Persian Gulf due to their closed or semi-closed nature that promotes sedimentation. The risk factors obtained are sensitive to the reference concentration which calls for the development of more reliable risk assessment approaches. Finally, more studies are needed in understudied MENA environmental compartments such as groundwater, deserts, and estuaries.
Collapse
Affiliation(s)
- Ali Malli
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Ameed Shehayeb
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- CIRAIG, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Canada
| | - Alissar Yehya
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA, Cambridge, USA
| |
Collapse
|
66
|
Liu Y, Jin T, Wang L, Tang J. Polystyrene micro and nanoplastics attenuated the bioavailability and toxic effects of Perfluorooctane sulfonate (PFOS) on soybean (Glycine max) sprouts. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130911. [PMID: 36860033 DOI: 10.1016/j.jhazmat.2023.130911] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Microplastics and nanoplastics (MNPs) have attracted much attention since their wide distribution in the environment and organisms. MNPs in the environment adsorb other organic pollutants, such as Perfluorooctane sulfonate (PFOS), and cause combined effects. However, the impact of MNPs and PFOS in agricultural hydroponic systems is unclear. This study investigated the combined effects of polystyrene (PS) MNPs and PFOS on soybean (Glycine max) sprouts, which are common hydroponic vegetable. Results demonstrated that the adsorption of PFOS on PS particles transformed free PFOS into adsorbed state and reduced its bioavailability and potential migration, thus attenuating acute toxic effects such as oxidative stress. TEM and Laser confocal microscope images showed that PS nanoparticles uptake in sprout tissue was enhanced by the adsorption of PFOS which is because of changes of the particle surface properties. Transcriptome analysis showed that PS and PFOS exposure promoted soybean sprouts to adapt to environmental stress and MARK pathway might play an important role in recognition of microplastics coated by PFOS and response to enhancing plant resistance. This study provided the first evaluation about the effect of adsorption between PS particles and PFOS on their phytotoxicity and bioavailability, in order to provide new ideas for risk assessment.
Collapse
Affiliation(s)
- Yaxuan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tianyue Jin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
67
|
Ning Y, Zhou H, Wang X, Lu J, Yang Y, Zou D, Zhou D. A method to study the effects of combined stress of cadmium and microplastics on the acute toxicity of Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61123-61133. [PMID: 37055689 DOI: 10.1007/s11356-023-26836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
The compound pollutants formed by microplastics and cadmium present a significant potential threat to the soil-based ecosystem, and it is urgent to carry out relevant ecotoxicological studies. However, the lack of appropriate test methods and scientific mathematical analysis models has restricted the progress of research. Based on an orthogonal test design, a ternary combined stress test was performed to study the effect of microplastics and cadmium on earthworms. This study used the particle size and concentration of microplastics as well as the concentration of cadmium as test factors. Using the improved factor analysis model and the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, a new model was constructed according to the response surface methodology to analyze the acute toxic effects on earthworms under the combined stress of microplastics and cadmium. In addition, the model was tested in a soil-polluted environment. The results show that the model can perfectly integrate the spatiotemporal cross effects of the concentration and time of the applied stress, and the scientific data analysis process ensures the efficient development of ecotoxicological research in the actual compound pollution environment. Moreover, the results of the filter paper test and soil test showed that the equivalent toxicity ratio of cadmium concentration, microplastic concentration, and microplastic particle size to earthworms as 26:35:39 and 23:36:41, respectively. In terms of the interaction effect, a certain positive interaction was observed between the cadmium concentration and that of the microplastics and their particle size, while a negative interaction was observed between the concentration of microplastics and their particle size. This research provides a test basis and model reference for early monitoring of the health of contaminated soils and assessments of ecological safety and security.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haoran Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Xu Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jiyang Lu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yanna Yang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
68
|
Pang R, Shao B, Chen Q, Shi H, Xie B, Soliman M, Tai J, Su Y. The co-occurrent microplastics and nano-CuO showed antagonistic inhibitory effects on bacterial denitrification: Interaction of pollutants and regulations on functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160892. [PMID: 36521594 DOI: 10.1016/j.scitotenv.2022.160892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The wide occurrence of microplastics (MPs) and nanoparticles resulted in their inevitable coexistence in environment. However, the joint effects of these two types of particulate emerging contaminants on denitrification have seldomly been investigated. Herein, non-biodegradable polyvinyl chloride, polypropylene, polyethylene and biodegradable polyhydroxyalkanoate (PHA) MPs were chosen to perform the co-occurrent effects with nano copper oxide (nano-CuO). Both the nano-CuO and MPs inhibited the denitrification process, and biodegradable PHA-MPs showed severer inhibition than non-biodegradable MPs. However, the presence of MPs significantly alleviated the inhibition of nano-CuO, suggesting an antagonistic effect. Other than MPs decreasing copper ion release from nano-CuO, MPs and nano-CuO formed agglomerations and induced lower levels of oxidative stress compared to individual exposure. Transcriptome analysis indicated that the co-occurrent MPs and nano-CuO induced different regulation on denitrifying genes (e. g. nar and nor) compared to individual ones. Also, the expressions of genes involved in denitrification-associated metabolic pathways, including glycolysis and NADH electron transfer, were down-regulated by nano-CuO or MPs, but exhibiting recovery under the co-occurrent conditions. This study firstly discloses the antagonistic effect of nano-CuO and MPs on environmental process, and these findings will benefit the systematic evaluation of MPs environmental behavior and co-occurrent risk with other pollutants.
Collapse
Affiliation(s)
- Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Boqun Shao
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Mostafa Soliman
- Ministry of Agriculture and Land Reclamation, Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods (QCAP Egypt), Giza 12311, Egypt
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
69
|
Ni N, Shi R, Meng J, Guo X, Shi M, Zhang X, Yao S, Nkoh JN, Wang F, Song Y, Wang N. Comparative analysis of the sorption behaviors and mechanisms of amide herbicides on biodegradable and nondegradable microplastics derived from agricultural plastic products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120865. [PMID: 36521718 DOI: 10.1016/j.envpol.2022.120865] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/17/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Coexisting of microplastics (MPs) and residual herbicides has received substantial attention due to concerns about the pollutant vector effect. Here, the widely used amide herbicides were examined for their sorption behaviors on the priority biodegradable and nondegradable MPs identified in intensive agriculture. The fitting results indicated that the interactions between napropamide (Nap)/acetochlor (Ace) and the MPs, i.e., poly (butyleneadipate-co-terephthalate) microplastic (PBATM), polyethylene microplastic (PEM), and polypropylene microplastic (PPM), may be dominated by hydrophobic absorptive partitioning on the heterogeneous surfaces. Additionally, chemisorption cannot be ignored for the sorption of Nap/Ace on the biodegradable MPs. The sorption capacities of Nap/Ace on the MPs followed the order of PBATM > PEM > PPM. The differences in sorption capacity which varied by the MP colors were not significant. The hydrophobicity of the herbicides and the MPs, the rubber regions, surface O-functional groups, benzene ring structures and large specific surface area of the biodegradable MPs played key roles in the better performance in sorbing amide herbicides. Moreover, MPs, especially biodegradable MPs, might lead to a higher vector effect for residual amide herbicides than some other common environmental media. This study may provide baseline insights into the great potential of biodegradable MPs to serve as carriers of residual amide herbicides in intensive agrosystems.
Collapse
Affiliation(s)
- Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Renyong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jie Meng
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China
| | - Xinyan Guo
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Mali Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Xiaohui Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing 210008, PR China
| | - Jackson Nkoh Nkoh
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Fenghe Wang
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing 210008, PR China
| | - Na Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China.
| |
Collapse
|
70
|
Gan Q, Cui J, Jin B. Environmental microplastics: Classification, sources, fates, and effects on plants. CHEMOSPHERE 2023; 313:137559. [PMID: 36528162 DOI: 10.1016/j.chemosphere.2022.137559] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Microplastic (MP) pollution has become a global concern due to the generation of extensive plastic waste and products (370 million metric tons in 2020) that are difficult to biodegrade. Therefore, MPs have attracted a great deal of research attention, and many new findings regarding MPs (over 9000 papers published in the last 3 years) have been reported. MPs generally exert adverse effects on plants. As MPs accumulate in agricultural ecosystems, many studies have sought to understand the sources and fates of MPs and their effects on various plants. However, there have been few reviews of the properties of MPs, their effects on plants, and their interactions with other factors (e.g., drought, heat, ultraviolet light, plant hormones, heavy metals, and other pollutants) remain poorly understood. In this review, we performed scientometrics analyses of research papers (January 1, 2019, to September 30, 2022) in this field. We focused on the recent progress in the classification of MPs and their sources, circulation, and deposition in agricultural ecosystems. We review MP uptake and transport in plants, as well as factors (size, type, and environmental factors) that affect MP uptake, the positive and negative effects of MPs on plants, and the mechanisms of MP impacts on plants. We discuss current issues and future perspectives concerning research into plant interactions with MPs, along with some promising methods to manage the MP issue.
Collapse
Affiliation(s)
- Quan Gan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Jiawen Cui
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
71
|
Assessment of microplastic as contaminants in the coal mine area of an industrial region, Barapukuria, Bangladesh. Heliyon 2022; 8:e11666. [DOI: 10.1016/j.heliyon.2022.e11666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/04/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
|
72
|
Lin P, Tong X, Xue F, Qianru C, Xinyu T, Zhe L, Zhikun B, Shu L. Polystyrene nanoplastics exacerbate lipopolysaccharide-induced myocardial fibrosis and autophagy in mice via ROS/TGF-β1/Smad. Toxicology 2022; 480:153338. [PMID: 36167198 DOI: 10.1016/j.tox.2022.153338] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
Polystyrene nanoplastics (PS NPs) contamination is a serious problem for human and animal health. Excessive exposure to PS NPs can affect the structure and function of the heart. And lipopolysaccharide (LPS) induces myocardial damage, leading to myocardial fibrosis (MF). To investigate whether PS NPs exacerbate LPS-induced myocardial autophagy and fibrosis, we established in vivo and in vitro models of PS NPs/LPS exposure alone and in combination. We found that PS NPs/LPS exposure disrupts myocardial structure, significantly increases reactive oxygen species (ROS), triggers oxidative stress, promotes TGF-β1/Smad pathway activation, and leads to elevated levels of fibrotic proteins and collagen. Meanwhile, activation of AMPK/mTOR/ULK1 signaling pathway induced autophagy onset, and combined exposure of PS NPs/LPS exacerbated MF and autophagy. H9C2 cells were used for in vitro experiments, and the experimental results showed that the addition of TGF-β receptor inhibitor LY2109761 to the exposed group not only inhibited the upregulation of fibrotic genes but also effectively reduced the expression of autophagic signals, indicating that combined exposure of PS NPs and LPS mediates and regulates cardiac autophagy through TGF-β1. The above results suggest that PS NPs exacerbate LPS-induced MF and autophagy in mice via ROS/TGF-β1/Smad. Our study provides some new evidence to clarify the potential mechanisms of PS NPs-induced cardiotoxicity.
Collapse
Affiliation(s)
- Peng Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Fan Xue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chi Qianru
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tang Xinyu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Li Zhe
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Bai Zhikun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|