51
|
Xie Y, Yao L, Yu X, Ruan Y, Li Z, Guo J. Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct Target Ther 2020; 5:109. [PMID: 32606362 PMCID: PMC7326991 DOI: 10.1038/s41392-020-00217-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
tRNA-derived small RNAs (tsRNAs), including tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), are small regulatory RNAs processed from mature tRNAs or precursor tRNAs. tRFs and tiRNAs play biological roles through a variety of mechanisms by interacting with proteins or mRNA, inhibiting translation, and regulating gene expression, the cell cycle, and chromatin and epigenetic modifications. The establishment and application of research technologies are important in understanding the biological roles of tRFs and tiRNAs. To study the molecular mechanisms of tRFs and tiRNAs, researchers have used a variety of bioinformatics and molecular biology methods, such as microarray analysis, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR); Northern blotting; RNA sequencing (RNA-seq); cross-linking, ligation and sequencing of hybrids (CLASH); and photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP). This paper summarizes the classification, action mechanisms, and roles of tRFs and tiRNAs in human diseases and the related signal transduction pathways, targeted therapies, databases, and research methods associated with them.
Collapse
Affiliation(s)
- Yaoyao Xie
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Lipeng Yao
- Ningbo College of Health Sciences, Ningbo, 315000, Zhejiang, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Yao Ruan
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Zhe Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 315211, Ningbo, China.
| |
Collapse
|
52
|
Jehn J, Treml J, Wulsch S, Ottum B, Erb V, Hewel C, Kooijmans RN, Wester L, Fast I, Rosenkranz D. 5' tRNA halves are highly expressed in the primate hippocampus and might sequence-specifically regulate gene expression. RNA (NEW YORK, N.Y.) 2020; 26:694-707. [PMID: 32144192 PMCID: PMC7266158 DOI: 10.1261/rna.073395.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Fragments of mature tRNAs have long been considered as mere degradation products without physiological function. However, recent reports show that tRNA-derived small RNAs (tsRNAs) play prominent roles in diverse cellular processes across a wide spectrum of species. Contrasting the situation in other small RNA pathways the mechanisms behind these effects appear more diverse, more complex, and are generally less well understood. In addition, surprisingly little is known about the expression profiles of tsRNAs across different tissues and species. Here, we provide an initial overview of tsRNA expression in different species and tissues, revealing very high levels of 5' tRNA halves (5' tRHs) particularly in the primate hippocampus. We further modulated the regulation capacity of selected 5' tRHs in human cells by transfecting synthetic tsRNA mimics ("overexpression") or antisense-RNAs ("inhibition") and identified differentially expressed transcripts based on RNA-seq. We then used a novel k-mer mapping approach to dissect the underlying targeting rules, suggesting that 5' tRHs silence genes in a sequence-specific manner, while the most efficient target sites align to the mid-region of the 5' tRH and are located within the CDS or 3' UTR of the target. This amends previous observations that tsRNAs guide Argonaute proteins to silence their targets via a miRNA-like 5' seed match and suggests a yet unknown mechanism of regulation. Finally, our data suggest that some 5' tRHs that are also able to sequence-specifically stabilize mRNAs as up-regulated mRNAs are also significantly enriched for 5' tRH target sites.
Collapse
Affiliation(s)
- Julia Jehn
- Institute of Organismic and Molecular Evolution iOME, Anthropology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Jana Treml
- Institute of Organismic and Molecular Evolution iOME, Anthropology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Svenja Wulsch
- Institute of Organismic and Molecular Evolution iOME, Anthropology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Benjamin Ottum
- Institute of Organismic and Molecular Evolution iOME, Anthropology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Verena Erb
- Institute of Organismic and Molecular Evolution iOME, Anthropology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Charlotte Hewel
- Institute of Organismic and Molecular Evolution iOME, Anthropology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Roxana N Kooijmans
- Primate Brain Bank, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands
| | - Laura Wester
- Institute of Organismic and Molecular Evolution iOME, Anthropology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Isabel Fast
- Institute of Organismic and Molecular Evolution iOME, Anthropology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - David Rosenkranz
- Institute of Organismic and Molecular Evolution iOME, Anthropology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
- Senckenberg Centre for Human Genetics, 60314 Frankfurt am Main, Germany
| |
Collapse
|
53
|
Rosace D, López J, Blanco S. Emerging roles of novel small non-coding regulatory RNAs in immunity and cancer. RNA Biol 2020; 17:1196-1213. [PMID: 32186461 DOI: 10.1080/15476286.2020.1737442] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The term small non-coding RNAs (ncRNAs) refers to all those RNAs that even without encoding for a protein, can play important functional roles. Transfer RNA and ribosomal RNA-derived fragments (tRFs and rRFs, respectively) are an emerging class of ncRNAs originally considered as simple degradation products, which though play important roles in stress responses, signalling, or gene expression. They control all levels of gene expression regulating transcription and translation and affecting RNA processing and maturation. They have been linked to pivotal cellular processes such as self-renewal, differentiation, and proliferation. For this reason, mis-regulation of this novel class of ncRNAs can lead to various pathological processes such as neurodegenerative and development diseases, metabolism and immune system disorders, and cancer. In this review, we summarise the classification, biogenesis, and functions of tRFs and rRFs with a special focus on their role in immunity and cancer.
Collapse
Affiliation(s)
- Domenico Rosace
- Centro De Investigación Del Cáncer and Instituto De Biología Molecular Y Celular Del Cáncer, Consejo Superior De Investigaciones Científicas (CSIC) - University of Salamanca , Salamanca, Spain
| | - Judith López
- Centro De Investigación Del Cáncer and Instituto De Biología Molecular Y Celular Del Cáncer, Consejo Superior De Investigaciones Científicas (CSIC) - University of Salamanca , Salamanca, Spain
| | - Sandra Blanco
- Centro De Investigación Del Cáncer and Instituto De Biología Molecular Y Celular Del Cáncer, Consejo Superior De Investigaciones Científicas (CSIC) - University of Salamanca , Salamanca, Spain
| |
Collapse
|
54
|
Liapi E, van Bilsen M, Verjans R, Schroen B. tRNAs and tRNA fragments as modulators of cardiac and skeletal muscle function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118465. [DOI: 10.1016/j.bbamcr.2019.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
|
55
|
Lalande S, Merret R, Salinas-Giegé T, Drouard L. Arabidopsis tRNA-derived fragments as potential modulators of translation. RNA Biol 2020; 17:1137-1148. [PMID: 31994438 DOI: 10.1080/15476286.2020.1722514] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transfer RNA-derived fragments (tRFs) exist in all branches of life. They are involved in RNA degradation, regulation of gene expression, ribosome biogenesis. In archaebacteria, kinetoplastid, yeast, and human cells, they were also shown to regulate translation. In Arabidopsis, the tRFs population fluctuates under developmental or environmental conditions but their functions are yet poorly understood. Here, we show that populations of long (30-35 nt) or short (19-25 nt) tRFs produced from Arabidopsis tRNAs can inhibit in vitro translation of a reporter gene. Analysing a series of oligoribonucleotides mimicking natural tRFs, we demonstrate that only a limited set of tRFs possess the ability to affect protein synthesis. Out of a dozen of tRFs, only two deriving from tRNAAla(AGC) and tRNAAsn(GUU) strongly attenuate translation in vitro. Contrary to human tRF(Ala), the 4 Gs present at the 5' extremity of Arabidopsis tRF(Ala) are not implicated in this inhibition while the G18 and G19 residues are essential. Protein synthesis inhibition by tRFs does not require complementarity with the translated mRNA but, having the capability to be associated with polyribosomes, tRFs likely act as general modulation factors of the translation process in plants.
Collapse
Affiliation(s)
- Stéphanie Lalande
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg , Strasbourg, France
| | - Rémy Merret
- Université de Perpignan Via Domitia , Perpignan, France
| | - Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg , Strasbourg, France
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg , Strasbourg, France
| |
Collapse
|
56
|
Kim HK. Transfer RNA-Derived Small Non-Coding RNA: Dual Regulator of Protein Synthesis. Mol Cells 2019; 42:687-692. [PMID: 31656062 PMCID: PMC6821453 DOI: 10.14348/molcells.2019.0214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 01/16/2023] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) play a role in various cellular processes. Accumulating evidence has revealed that tsRNAs are deeply implicated in human diseases, such as various cancers and neurological disorders, suggesting that tsRNAs should be investigated to develop novel therapeutic intervention. tsRNAs provide more complexity to the physiological role of transfer RNAs by repressing or activating protein synthesis with distinct mechanisms. Here, we highlight the detailed mechanism of tsRNA-mediated dual regulation in protein synthesis and discuss the necessity of novel sequencing technology to learn more about tsRNAs.
Collapse
Affiliation(s)
- Hak Kyun Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974,
Korea
| |
Collapse
|
57
|
Chen Z, Qi M, Shen B, Luo G, Wu Y, Li J, Lu Z, Zheng Z, Dai Q, Wang H. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res 2019; 47:2533-2545. [PMID: 30541109 PMCID: PMC6411830 DOI: 10.1093/nar/gky1250] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
Transfer RNA is heavily modified and plays a central role in protein synthesis and cellular functions. Here we demonstrate that ALKBH3 is a 1-methyladenosine (m1A) and 3-methylcytidine (m3C) demethylase of tRNA. ALKBH3 can promote cancer cell proliferation, migration and invasion. In vivo study confirms the regulation effects of ALKBH3 on growth of tumor xenograft. The m1A demethylated tRNA is more sensitive to angiogenin (ANG) cleavage, followed by generating tRNA-derived small RNAs (tDRs) around the anticodon regions. tDRs are conserved among species, which strengthen the ribosome assembly and prevent apoptosis triggered by cytochrome c (Cyt c). Our discovery opens a potential and novel paradigm of tRNA demethylase, which regulates biological functions via generation of tDRs.
Collapse
Affiliation(s)
- Zhuojia Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Meijie Qi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Guanzheng Luo
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.,School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingmin Wu
- Department of Microbial and Biochemical Pharmacy, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiexin Li
- Department of Microbial and Biochemical Pharmacy, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhike Lu
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Zhong Zheng
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Hongsheng Wang
- Department of Microbial and Biochemical Pharmacy, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
58
|
Sharma U. Paternal Contributions to Offspring Health: Role of Sperm Small RNAs in Intergenerational Transmission of Epigenetic Information. Front Cell Dev Biol 2019; 7:215. [PMID: 31681757 PMCID: PMC6803970 DOI: 10.3389/fcell.2019.00215] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
The most fundamental process for the perpetuation of a species is the transfer of information from parent to offspring. Although genomic DNA contributes to the majority of the inheritance, it is now clear that epigenetic information −information beyond the underlying DNA sequence − is also passed on to future generations. However, the mechanism and extent of such inheritance are not well-understood. Here, I review some of the concepts, evidence, and mechanisms of intergenerational epigenetic inheritance via sperm small RNAs. Recent studies provide evidence that mature sperm are highly abundant in small non-coding RNAs. These RNAs are modulated by paternal environmental conditions and potentially delivered to the zygote at fertilization, where they can regulate early embryonic development. Intriguingly, sperm small RNA payload undergoes dramatic changes during testicular and post-testicular maturation, making the mature sperm epigenome highly unique and distinct from testicular germ cells. I explore the mechanism of sperm small RNA remodeling during post-testicular maturation in the epididymis, and the potential role of this reprograming in intergenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
59
|
Su Z, Kuscu C, Malik A, Shibata E, Dutta A. Angiogenin generates specific stress-induced tRNA halves and is not involved in tRF-3-mediated gene silencing. J Biol Chem 2019; 294:16930-16941. [PMID: 31582561 DOI: 10.1074/jbc.ra119.009272] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/27/2019] [Indexed: 01/13/2023] Open
Abstract
tRNA fragments (tRFs) and tRNA halves have been implicated in various cellular processes, including gene silencing, translation, stress granule assembly, cell differentiation, retrotransposon activity, symbiosis, apoptosis, and more. Overexpressed angiogenin (ANG) cleaves tRNA anticodons and produces tRNA halves similar to those produced in response to stress. However, it is not clear whether endogenous ANG is essential for producing the stress-induced tRNA halves. It is also not clear whether smaller tRFs are generated from the tRNA halves. Here, using global short RNA-Seq approach, we found that ANG overexpression selectively cleaves a subset of tRNAs, including tRNAGlu, tRNAGly, tRNALys, tRNAVal, tRNAHis, tRNAAsp, and tRNASeC to produce tRNA halves and tRF-5s that are 26-30 bases long. Surprisingly, ANG knockout revealed that the majority of stress-induced tRNA halves, except for the 5' half from tRNAHisGTG and the 3' half from tRNAAspGTC, are ANG independent, suggesting there are other RNases that produce tRNA halves. We also found that the 17-25 bases-long tRF-3s and tRF-5s that could enter into Argonaute complexes are not induced by ANG overexpression, suggesting that they are generated independently from tRNA halves. Consistent with this, ANG knockout did not decrease tRF-3 levels or gene-silencing activity. We conclude that ANG cleaves specific tRNAs and is not the only RNase that creates tRNA halves and that the shorter tRFs are not generated from the tRNA halves or from independent tRNA cleavage by ANG.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22901
| | - Canan Kuscu
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22901
| | - Asrar Malik
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22901
| | - Etsuko Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22901
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22901
| |
Collapse
|
60
|
Luo S, He F, Luo J, Dou S, Wang Y, Guo A, Lu J. Drosophila tsRNAs preferentially suppress general translation machinery via antisense pairing and participate in cellular starvation response. Nucleic Acids Res 2019; 46:5250-5268. [PMID: 29548011 PMCID: PMC6007262 DOI: 10.1093/nar/gky189] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/03/2018] [Indexed: 12/11/2022] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are an emerging class of small RNAs, yet their regulatory roles have not been well understood. Here we studied the molecular mechanisms and consequences of tsRNA-mediated regulation in Drosophila. By analyzing 495 public small RNA libraries, we demonstrate that most tsRNAs are conserved, prevalent and abundant in Drosophila. By carrying out mRNA sequencing and ribosome profiling of S2 cells transfected with single-stranded tsRNA mimics and mocks, we show that tsRNAs recognize target mRNAs through conserved complementary sequence matching and suppress target genes by translational inhibition. The target prediction suggests that tsRNAs preferentially suppress translation of the key components of the general translation machinery, which explains how tsRNAs inhibit the global mRNA translation. Serum starvation experiments confirm tsRNAs participate in cellular starvation responses by preferential targeting the ribosomal proteins and translational initiation or elongation factors. Knock-down of AGO2 in S2 cells under normal and starved conditions reveals a dependence of the tsRNA-mediated regulation on AGO2. We also validated the repressive effects of representative tsRNAs on cellular global translation and specific targets with luciferase reporter assays. Our study suggests the tsRNA-mediated regulation might be crucial for the energy homeostasis and the metabolic adaptation in the cellular systems.
Collapse
Affiliation(s)
- Shiqi Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Feng He
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junjie Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yirong Wang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Annan Guo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
61
|
Wang X, Yang Y, Tan X, Mao X, Wei D, Yao Y, Jiang P, Mo D, Wang T, Yan F. Identification of tRNA-Derived Fragments Expression Profile in Breast Cancer Tissues. Curr Genomics 2019; 20:199-213. [PMID: 31929727 PMCID: PMC6935952 DOI: 10.2174/1389202920666190326145459] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 01/12/2023] Open
Abstract
Background: In recent years, tRFs(transfer RNA-Derived Fragments) and transfer RNADerived Stress-induced RNAs (or tRNA halves) have been shown to have vital roles in cancer biology.We aimed to reveal the expression profile of tRNA-derived fragments in breast cancer tissues in the study, and to explore their potential as biomarkers of breast cancer. Methods: We characterized the tRNA-derived fragments expression profile from 6 paired clinical breast cancer tissues and adjacent normal samples. Then we selected 6 significantly expressed tRNAderived fragments and screened the genes for validation by using Quantitative Real-time PCR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes biological pathway were finally analyzed. Results: We found 30 differentially expressed tRNA-derived fragments across our dataset, out of which 17 were up-regulated, and 13 were down-regulated. Compared with 16 clinical breast cancer tissues and adjacent normal tissues by qPCR, the results demonstrated that tRF-32-Q99P9P9NH57SJ(FC = -2.6476, p = 0.0189), tRF-17-79MP9PP (FC = -4.8984, p = 0.0276) and tRF-32-XSXMSL73VL4YK (FC = 6.5781, p = 0.0226) were significantly expressed in breast cancer tissues(p < 0.001). tRF-32-XSXMSL73VL4YK was significantly up-regulated, and tRF-32-Q99P9P9NH57SJ and tRF-17-79MP9PP were significantly down-regulated in which the expressionpatterns were similar to the sequencing results. The top ten significant results of GO and KEGG pathways enrichment analysis were presented. Conclusion: Our studies have demonstrated that there were significantly expressed tRNA-derived fragments in breast cancer tissues. They are hopefully to become biomarkers and would be valuable researches in this area.
Collapse
Affiliation(s)
- Xiaoming Wang
- 1Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China; 2Department of Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yining Yang
- 1Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China; 2Department of Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xuyan Tan
- 1Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China; 2Department of Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xuelian Mao
- 1Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China; 2Department of Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Da Wei
- 1Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China; 2Department of Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yufeng Yao
- 1Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China; 2Department of Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Pan Jiang
- 1Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China; 2Department of Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Dongping Mo
- 1Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China; 2Department of Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wang
- 1Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China; 2Department of Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Yan
- 1Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China; 2Department of Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
62
|
Telonis AG, Loher P, Magee R, Pliatsika V, Londin E, Kirino Y, Rigoutsos I. tRNA Fragments Show Intertwining with mRNAs of Specific Repeat Content and Have Links to Disparities. Cancer Res 2019; 79:3034-3049. [PMID: 30996049 DOI: 10.1158/0008-5472.can-19-0789] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023]
Abstract
tRNA-derived fragments (tRF) are a class of potent regulatory RNAs. We mined the datasets from The Cancer Genome Atlas (TCGA) representing 32 cancer types with a deterministic and exhaustive pipeline for tRNA fragments. We found that mitochondrial tRNAs contribute disproportionally more tRFs than nuclear tRNAs. Through integrative analyses, we uncovered a multitude of statistically significant and context-dependent associations between the identified tRFs and mRNAs. In many of the 32 cancer types, these associations involve mRNAs from developmental processes, receptor tyrosine kinase signaling, the proteasome, and metabolic pathways that include glycolysis, oxidative phosphorylation, and ATP synthesis. Even though the pathways are common to multiple cancers, the association of specific mRNAs with tRFs depends on and differs from cancer to cancer. The associations between tRFs and mRNAs extend to genomic properties as well; specifically, tRFs are positively correlated with shorter genes that have a higher density in repeats, such as ALUs, MIRs, and ERVLs. Conversely, tRFs are negatively correlated with longer genes that have a lower repeat density, suggesting a possible dichotomy between cell proliferation and differentiation. Analyses of bladder, lung, and kidney cancer data indicate that the tRF-mRNA wiring can also depend on a patient's sex. Sex-dependent associations involve cyclin-dependent kinases in bladder cancer, the MAPK signaling pathway in lung cancer, and purine metabolism in kidney cancer. Taken together, these findings suggest diverse and wide-ranging roles for tRFs and highlight the extensive interconnections of tRFs with key cellular processes and human genomic architecture. SIGNIFICANCE: Across 32 TCGA cancer contexts, nuclear and mitochondrial tRNA fragments exhibit associations with mRNAs that belong to concrete pathways, encode proteins with particular destinations, have a biased repeat content, and are sex dependent.
Collapse
Affiliation(s)
- Aristeidis G Telonis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rogan Magee
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Venetia Pliatsika
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Eric Londin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yohei Kirino
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
63
|
Metazoan tsRNAs: Biogenesis, Evolution and Regulatory Functions. Noncoding RNA 2019; 5:ncrna5010018. [PMID: 30781726 PMCID: PMC6468576 DOI: 10.3390/ncrna5010018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are an emerging class of regulatory non-coding RNAs that play important roles in post-transcriptional regulation across a variety of biological processes. Here, we review the recent advances in tsRNA biogenesis and regulatory functions from the perspectives of functional and evolutionary genomics, with a focus on the tsRNA biology of Drosophila. We first summarize our current understanding of the biogenesis mechanisms of different categories of tsRNAs that are generated under physiological or stressed conditions. Next, we review the conservation patterns of tsRNAs in all domains of life, with an emphasis on the conservation of tsRNAs between two Drosophila species. Then, we elaborate the currently known regulatory functions of tsRNAs in mRNA translation that are independent of, or dependent on, Argonaute (AGO) proteins. We also highlight some issues related to the fundamental biology of tsRNAs that deserve further study.
Collapse
|
64
|
Grafanaki K, Anastasakis D, Kyriakopoulos G, Skeparnias I, Georgiou S, Stathopoulos C. Translation regulation in skin cancer from a tRNA point of view. Epigenomics 2018; 11:215-245. [PMID: 30565492 DOI: 10.2217/epi-2018-0176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein synthesis is a central and dynamic process, frequently deregulated in cancer through aberrant activation or expression of translation initiation factors and tRNAs. The discovery of tRNA-derived fragments, a new class of abundant and, in some cases stress-induced, small Noncoding RNAs has perplexed the epigenomics landscape and highlights the emerging regulatory role of tRNAs in translation and beyond. Skin is the biggest organ in human body, which maintains homeostasis of its multilayers through regulatory networks that induce translational reprogramming, and modulate tRNA transcription, modification and fragmentation, in response to various stress signals, like UV irradiation. In this review, we summarize recent knowledge on the role of translation regulation and tRNA biology in the alarming prevalence of skin cancer.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece.,Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios Anastasakis
- National Institute of Musculoskeletal & Arthritis & Skin, NIH, 50 South Drive, Room 1152, Bethesda, MD 20892, USA
| | - George Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | |
Collapse
|
65
|
Oberbauer V, Schaefer MR. tRNA-Derived Small RNAs: Biogenesis, Modification, Function and Potential Impact on Human Disease Development. Genes (Basel) 2018; 9:genes9120607. [PMID: 30563140 PMCID: PMC6315542 DOI: 10.3390/genes9120607] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Transfer RNAs (tRNAs) are abundant small non-coding RNAs that are crucially important for decoding genetic information. Besides fulfilling canonical roles as adaptor molecules during protein synthesis, tRNAs are also the source of a heterogeneous class of small RNAs, tRNA-derived small RNAs (tsRNAs). Occurrence and the relatively high abundance of tsRNAs has been noted in many high-throughput sequencing data sets, leading to largely correlative assumptions about their potential as biologically active entities. tRNAs are also the most modified RNAs in any cell type. Mutations in tRNA biogenesis factors including tRNA modification enzymes correlate with a variety of human disease syndromes. However, whether it is the lack of tRNAs or the activity of functionally relevant tsRNAs that are causative for human disease development remains to be elucidated. Here, we review the current knowledge in regard to tsRNAs biogenesis, including the impact of RNA modifications on tRNA stability and discuss the existing experimental evidence in support for the seemingly large functional spectrum being proposed for tsRNAs. We also argue that improved methodology allowing exact quantification and specific manipulation of tsRNAs will be necessary before developing these small RNAs into diagnostic biomarkers and when aiming to harness them for therapeutic purposes.
Collapse
Affiliation(s)
- Vera Oberbauer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
| |
Collapse
|
66
|
Functional characterization of RNA fragments using high-throughput interactome screening. J Proteomics 2018; 193:173-183. [PMID: 30339940 DOI: 10.1016/j.jprot.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/17/2018] [Accepted: 10/15/2018] [Indexed: 12/30/2022]
Abstract
Populations of small eukaryotic RNAs, in addition to relatively well recognized molecules such as miRNAs or siRNAs, also contain fragments derived from all classes of constitutively expressed non-coding RNAs. It has been recently demonstrated that the formation and accumulation of RNA fragments (RFs) is cell-/tissue-specific and depends on internal and external stimuli. Unfortunately, the mechanisms underlying RF biogenesis and function remain unclear. To better understand them, we employed RNA pull-down and mass spectrometry methods to characterize the interactions of seven RFs originating from tRNA, snoRNA and snRNA. By integrating our results with publicly available data on physical protein-protein interactions, we constructed an RF interactome network. We determined that the RF interactome comprises proteins generally different from those that interact with their parental full length RNAs. Proteins captured by the RFs were involved in mRNA splicing, tRNA processing, DNA recombination/replication, protein biosynthesis and carboxylic acid metabolism. Our data suggest that RFs can be endogenous aptamer-like molecules and potential players in recently revealed RNA-protein regulatory networks. SIGNIFICANCE: In the recent decade it has become evident that RNAs with well-known functions (for example tRNA, snoRNA or rRNA) can be cleaved to yield short fragments, whose role in cells remains only partially characterized. At the same time, unconventional interactions between mRNA and proteins without RNA-binding domains have been demonstrated, revealing novel layers of possible RNA-mediated regulation. Considering the above, we hypothesized that RNA fragments (RFs) can be endogenous aptamer-like molecules that unconventionally interact with proteins. In this study we identified protein partners of seven selected RFs. We found that RFs bind different set of proteins than their parental full length RNAs and identified proteins differentially bound by the particular RFs. These observations suggest biological relevance of the discovered interactions. Our data provide a novel perspective on the significance of RFs and point to this pool of molecules as to a rich collection of potential components of the recently discovered RNA-protein regulatory networks.
Collapse
|
67
|
Shen Y, Yu X, Zhu L, Li T, Yan Z, Guo J. Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases. J Mol Med (Berl) 2018; 96:1167-1176. [PMID: 30232504 DOI: 10.1007/s00109-018-1693-y] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
The number of studies on non-coding RNAs has increased substantially in recent years owing to their importance in gene regulation. However, the biological functions of small RNAs from abundant species of housekeeping non-coding RNAs (rRNA, tRNA, etc.) remain a highly studied topic. tRNA-derived small RNAs (tsRNAs) refer to the specific cleavage of tRNAs by specific nucleases [e.g., Dicer and angiogenin (ANG)] in particular cells or tissues or under certain conditions such as stress and hypoxia. tsRNAs are a type of non-coding small RNA that are widely found in the prokaryotic and eukaryotic transcriptomes and are generated from mature tRNAs or precursor tRNAs at different sites. There are two main types of tsRNAs, tRNA-derived fragments (tRFs) and tRNA halves. tRFs are 14-30 nucleotides (nt) long and mainly consist of three subclasses: tRF-5, tRF-3, and tRF-1. tRNA halves, which are 31-40 nt long, are generated by specific cleavage in the anticodon loops of mature tRNAs. There are two types of tRNA halves, 5'-tRNA halves and 3'-tRNA halves. tsRNAs have multiple biological functions including acting as signaling molecules in stress responses and as regulators of gene expression. Additionally, they have been considered to be involved in RNA processing, cell proliferation, translation suppression, the modulation of DNA damage response, and neurodegeneration. More importantly, they are closely related to the occurrence of many human diseases such as tumors, infectious diseases, metabolic diseases, and neurological diseases. Moreover, tsRNAs have the potential to become new biomarkers for disease diagnosis. Continuous investigations will help us to understand their generation and regulatory mechanisms as well as the possible roles of tRFs and tRNA halves.
Collapse
Affiliation(s)
- Yijing Shen
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Xiuchong Yu
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University and Ningbo No. 1 Hospital, Ningbo, 315010, China
| | - Linwen Zhu
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Tianwen Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Zhilong Yan
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University and Ningbo No. 1 Hospital, Ningbo, 315010, China.
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
68
|
Światowy W, Jagodzińśki PP. Molecules derived from tRNA and snoRNA: Entering the degradome pool. Biomed Pharmacother 2018; 108:36-42. [PMID: 30216797 DOI: 10.1016/j.biopha.2018.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/03/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
Molecules built of RNA have been the subjects of numerous studies, which have made known new functions and structures that these molecules can create. In recent years, thanks to next-generation sequencing, it is possible to observe very small RNAs and the number of newly discovered RNA molecules is rapidly increasing. Among other small oligonucleotides, structures derived from tRNA and snoRNA molecules have been observed, and these molecules were determined to not be precursors of known RNA molecules. These structures have attracted the attention of researchers because the level of accumulation of tRNA or snoRNA fragments was relatively high. Additionally, other parts of the parent molecules were absent. Derivatives of well-known RNA molecules also have functions that are different from their parent molecules. They are mainly involved in regulating the expression of genetic information in a similar way to miRNA. In addition, some of the miRNAs that have been described are derivatives of tRNA or snoRNA. Most of the research on these newly discovered molecules is based on their detection and on the study of the macro effects that they exert, in the absence of a description of the molecular mechanism by which they arise and work.
Collapse
Affiliation(s)
- Witold Światowy
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Poland.
| | - Paweł P Jagodzińśki
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Poland
| |
Collapse
|
69
|
Mleczko AM, Celichowski P, Bąkowska-Żywicka K. Transfer RNA-derived fragments target and regulate ribosome-associated aminoacyl-transfer RNA synthetases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(17)30380-2. [PMID: 29883755 DOI: 10.1016/j.bbagrm.2018.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 01/08/2023]
Abstract
Ribosome-associated noncoding (ranc) RNAs are a novel class of short regulatory RNAs with functions and origins that have not been well studied. In this present study, we functionally characterized the molecular activity of Saccharomyces cerevisiae transfer RNA (tRNA)-derived fragments (tRFs) during protein biosynthesis. Our results indicate ribosome-associated tRFs derived from both 5' (ranc-5'-tRFs) and 3'-part of tRNAs (ranc-3'-tRFs) have regulatory roles during translation. We demonstrated five 3'-tRFs and one 5'-tRF associate with a small ribosomal subunit and aminoacyl-tRNA synthetases (aa-RSs) in yeast. Furthermore, we discovered that four yeast aa-RSs interact directly with yeast ribosomes. tRFs interactions with ribosome-associated aa-RSs correlate with impaired efficiency of tRNA aminoacylation.
Collapse
Affiliation(s)
- Anna M Mleczko
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego St. 12/14, 61-704 Poznan, Poland
| | - Piotr Celichowski
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego St. 12/14, 61-704 Poznan, Poland
| | - Kamilla Bąkowska-Żywicka
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego St. 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
70
|
Eng MW, Clemons A, Hill C, Engel R, Severson DW, Behura SK. Multifaceted functional implications of an endogenously expressed tRNA fragment in the vector mosquito Aedes aegypti. PLoS Negl Trop Dis 2018; 12:e0006186. [PMID: 29364883 PMCID: PMC5783352 DOI: 10.1371/journal.pntd.0006186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/22/2017] [Indexed: 01/16/2023] Open
Abstract
The mosquito Aedes aegypti is the primary vector of human arboviral diseases caused by dengue, chikungunya and Zika viruses. Many studies have shown the potential roles of small RNA molecules such as microRNA, small interfering RNA and PIWI-interacting RNA in vector mosquitoes. The function of tRNA fragments (tRF), the newly discovered class of small RNAs, in mosquitoes is not known. In this study, we show that specific tRFs are expressed in significantly differential manner between males and females of Ae. aegypti strains. Specific tRFs also show differential response during developmental transition from larvae to adults, as well as after blood feeding of adult females. The expression pattern of tRFs upon blood feeding varied depending upon if the blood contained dengue virus, and also if the females were treated with antibiotic prior to feeding to cleanse of the gut bacteria. Our findings show that a single tRF derived from the precursor sequences of a tRNA-Gly was differentially expressed between males and females, developmental transitions and also upon blood feeding by females of two laboratory strains that vary in midgut susceptibility to dengue virus infection. The multifaceted functional implications of this specific tRF suggest that biogenesis of small regulatory molecules from a tRNA can have wide ranging effects on key aspects of Ae. aegypti vector biology. The mosquito Aedes aegypti is a major vector of arboviral diseases in subtropics and tropics. The confounding effects of immature development and adult microbiome on the ability of Ae. aegypti to transmit diseases (vector competence) have gained renewed attention in the recent years. However, the molecular nature of these links/ effects remains unknown. This is major gap in knowledge regarding how vector competence is regulated at molecular level, and how that regulation may be variable among different strains of this mosquito. In this study, we investigated expression of newly discovered class of small RNAs, called tRNA fragments (tRF) in Ae. aegypti strains. Based on small RNA sequencing and bioinformatics analyses, we show that tRFs are expressed in Ae. aegypti, and they are associated with significant changes in expression between males and females, during development stages, and post blood feeding responses. A single tRF showed association with sex-biased expression, developmental regulation and in response to blood meals between Moyo-S and Moyo-R strains that differ in midgut susceptibility to dengue virus. The findings of this study are expected to guide future research efforts directed toward examining detailed regulatory mechanisms of tRFs in vector competence of Ae. aegypti to disease transmission.
Collapse
Affiliation(s)
- Matthew W. Eng
- Department of Biological Sciences and Eck institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Anthony Clemons
- Department of Biological Sciences and Eck institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Casey Hill
- Department of Biological Sciences and Eck institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Roberta Engel
- Department of Biological Sciences and Eck institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - David W. Severson
- Department of Biological Sciences and Eck institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Susanta K. Behura
- Department of Biological Sciences and Eck institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
71
|
Pliatsika V, Loher P, Magee R, Telonis AG, Londin E, Shigematsu M, Kirino Y, Rigoutsos I. MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Res 2018; 46:D152-D159. [PMID: 29186503 PMCID: PMC5753276 DOI: 10.1093/nar/gkx1075] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022] Open
Abstract
MINTbase is a repository that comprises nuclear and mitochondrial tRNA-derived fragments ('tRFs') found in multiple human tissues. The original version of MINTbase comprised tRFs obtained from 768 transcriptomic datasets. We used our deterministic and exhaustive tRF mining pipeline to process all of The Cancer Genome Atlas datasets (TCGA). We identified 23 413 tRFs with abundance of ≥ 1.0 reads-per-million (RPM). To facilitate further studies of tRFs by the community, we just released version 2.0 of MINTbase that contains information about 26 531 distinct human tRFs from 11 719 human datasets as of October 2017. Key new elements include: the ability to filter tRFs on-the-fly by minimum abundance thresholding; the ability to filter tRFs by tissue keywords; easy access to information about a tRF's maximum abundance and the datasets that contain it; the ability to generate relative abundance plots for tRFs across cancer types and convert them into embeddable figures; MODOMICS information about modifications of the parental tRNA, etc. Version 2.0 of MINTbase contains 15x more datasets and nearly 4x more distinct tRFs than the original version, yet continues to offer fast, interactive access to its contents. Version 2.0 is available freely at http://cm.jefferson.edu/MINTbase/.
Collapse
Affiliation(s)
- Venetia Pliatsika
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Rogan Magee
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Aristeidis G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Alumni Hall #M81, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
72
|
Gebert D, Hewel C, Rosenkranz D. unitas: the universal tool for annotation of small RNAs. BMC Genomics 2017; 18:644. [PMID: 28830358 PMCID: PMC5567656 DOI: 10.1186/s12864-017-4031-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Next generation sequencing is a key technique in small RNA biology research that has led to the discovery of functionally different classes of small non-coding RNAs in the past years. However, reliable annotation of the extensive amounts of small non-coding RNA data produced by high-throughput sequencing is time-consuming and requires robust bioinformatics expertise. Moreover, existing tools have a number of shortcomings including a lack of sensitivity under certain conditions, limited number of supported species or detectable sub-classes of small RNAs. RESULTS Here we introduce unitas, an out-of-the-box ready software for complete annotation of small RNA sequence datasets, supporting the wide range of species for which non-coding RNA reference sequences are available in the Ensembl databases (currently more than 800). unitas combines high quality annotation and numerous analysis features in a user-friendly manner. A complete annotation can be started with one simple shell command, making unitas particularly useful for researchers not having access to a bioinformatics facility. Noteworthy, the algorithms implemented in unitas are on par or even outperform comparable existing tools for small RNA annotation that map to publicly available ncRNA databases. CONCLUSIONS unitas brings together annotation and analysis features that hitherto required the installation of numerous different bioinformatics tools which can pose a challenge for the non-expert user. With this, unitas overcomes the problem of read normalization. Moreover, the high quality of sequence annotation and analysis, paired with the ease of use, make unitas a valuable tool for researchers in all fields connected to small RNA biology.
Collapse
Affiliation(s)
- Daniel Gebert
- Institute of Organismic and Molecular Evolutionary Biology, Anthropology, Johannes Gutenberg University, 55099, Mainz, Germany
| | - Charlotte Hewel
- Institute of Organismic and Molecular Evolutionary Biology, Anthropology, Johannes Gutenberg University, 55099, Mainz, Germany
| | - David Rosenkranz
- Institute of Organismic and Molecular Evolutionary Biology, Anthropology, Johannes Gutenberg University, 55099, Mainz, Germany.
| |
Collapse
|
73
|
Soares AR, Santos M. Discovery and function of transfer RNA-derived fragments and their role in disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28608481 DOI: 10.1002/wrna.1423] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 01/02/2023]
Abstract
Until recently, transfer RNAs (tRNAs) were thought to function in protein translation only. However, recent findings demonstrate that both pre- and mature tRNAs can undergo endonucleolytic cleavage by different ribonucleases originating different types of small non-coding RNAs, known as tRNA-derived fragments (tRFs). tRFs are classified according to their origin and are implicated in various cellular processes, namely apoptosis, protein synthesis control, and RNA interference. Although their functions are still poorly understood, their mechanisms of action vary according to the tRF sub-type. Several tRFs have been associated with cancer, neurodegenerative disorders, and viral infections and growing evidence shows that they may constitute novel molecular targets for modulating pathological processes. Here, we recapitulate the current knowledge of tRF biology, highlight the known functions and mechanisms of action of the different sub-classes of tRFs and discuss their implications in human disease. WIREs RNA 2017, 8:e1423. doi: 10.1002/wrna.1423 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ana Raquel Soares
- Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
| | - Manuel Santos
- Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|