51
|
Pigaiani N, Bertaso A, De Palo EF, Bortolotti F, Tagliaro F. Vitreous humor endogenous compounds analysis for post-mortem forensic investigation. Forensic Sci Int 2020; 310:110235. [PMID: 32169668 DOI: 10.1016/j.forsciint.2020.110235] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/04/2023]
Abstract
The chemical and biochemical analysis of bodily fluids after death is an important thanatochemical approach to assess the cause and time since death. Vitreous humor (VH) has been used as a biofluid for forensic purposes since the 1960s. Due to its established relevance in toxicology, a literature review highlighting the use of VH with an emphasis on endogenous compounds has not yet been undertaken. VH is a chemically complex aqueous solution of carbohydrates, proteins, electrolytes and other small molecules present in living organisms; this biofluid is useful tool for its isolated environment, preserved from bacterial contamination, decomposition, autolysis, and metabolic reactions. The post-mortem analysis of VH provides an important tool for the estimation of the post-mortem interval (PMI), which can be helpful in determining the cause of death. Consequently, the present review evaluates the recent chemical and biochemical advances with particular importance on the endogenous compounds present at the time of death and their modification over time, which are valuable for the PMI prediction and to identify the cause of death.
Collapse
Affiliation(s)
- Nicola Pigaiani
- Department of Diagnostics and Public Health - Unit of Forensic Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy.
| | - Anna Bertaso
- Department of Diagnostics and Public Health - Unit of Forensic Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy.
| | - Elio Franco De Palo
- Department of Diagnostics and Public Health - Unit of Forensic Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Federica Bortolotti
- Department of Diagnostics and Public Health - Unit of Forensic Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Franco Tagliaro
- Department of Diagnostics and Public Health - Unit of Forensic Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy; Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
52
|
Yu H, Zhao Y, Zhang Y, Zhong L. Metabolic profiling of acromegaly using a GC-MS-based nontargeted metabolomic approach. Endocrine 2020; 67:433-441. [PMID: 31875304 DOI: 10.1007/s12020-019-02143-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Acromegaly is a rare disease caused by chronic hypersecretion of growth hormone, which leads to multiple comorbidities and reduced life expectancy. The objective of this study was to characterize the serum metabolic profiles of acromegaly patients and identify metabolic biomarkers using metabolomics. METHODS Twenty-nine active acromegaly patients and age- and sex-matched normal controls were recruited. Serum samples were collected, and serum metabolites were analyzed using gas chromatography-mass spectrometry coupled with a series of multivariate statistical analyses. RESULTS The orthogonal projections to latent structures-discriminate analysis (OPLS-DA) model identified and validated significant metabolic differences between individuals with acromegaly and normal controls (R2Y = 0.908 and Q2Y = 0.601). Compared with normal controls, acromegaly patients had elevated levels of 5-aminovaleric acid, glyceric acid, L-dithiothreitol, dihydrocoumarin, N-acetyl-L-glutamic acid, gluconic acid, and monoolein (P < 0.05) and reduced serum levels of D-erythronolactone, taurine, carbamoyl-aspartic acid, and mucic acid (P < 0.01). Furthermore, glyceric acid and taurine possessed higher area under the receiver operating characteristic curve values (AUC values, 0.914 and 0.931, respectively), suggesting an excellent clinical ability to distinguish acromegaly patients from normal controls. Pathway analysis revealed that the pentose phosphate pathway and the taurine and hypotaurine metabolic pathway are significant pathways (P = 0.002 and 0.004, respectively). CONCLUSIONS Metabolic activity is significantly altered in the serum of individuals with active acromegaly. Glyceric acid and taurine may be considered potential biomarkers for distinguishing acromegaly patients from normal controls.
Collapse
Affiliation(s)
- Hengchi Yu
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China
| | - Yaqun Zhao
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China
| | - Yazhuo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, PR China
| | - Liyong Zhong
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China.
| |
Collapse
|
53
|
Wang H, Fang J, Chen F, Sun Q, Xu X, Lin SH, Liu K. Metabolomic profile of diabetic retinopathy: a GC-TOFMS-based approach using vitreous and aqueous humor. Acta Diabetol 2020; 57:41-51. [PMID: 31089930 DOI: 10.1007/s00592-019-01363-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
AIM To identify the potential metabolite markers in diabetic retinopathy (DR) by using gas chromatography coupled with time-of-flight mass spectrometry (GC-TOFMS). METHODS GC-TOFMS spectra were acquired from vitreous and aqueous humor (AH) samples of patients with DR and non-diabetic participants. Comparative analysis was used to elucidate the distinct metabolites of DR. Metabolic pathway was employed to explicate the metabolic reprogramming pathways involved in DR. Logistic regression and receiver-operating characteristic analyses were carried out to select and validate the biomarker metabolites and establish a therapeutic model. RESULTS Comparative analysis showed a clear separation between disease and control groups. Eight differentiating metabolites from AH and 15 differentiating metabolites from vitreous were highlighted. Out of these 23 metabolites, 11 novel metabolites have not been detected previously. Pathway analysis identified nine pathways (three in AH and six in vitreous) as the major disturbed pathways associated with DR. The abnormal of gluconeogenesis, ascorbate-aldarate metabolism, valine-leucine-isoleucine biosynthesis, and arginine-proline metabolism might weigh the most in the development of DR. The AUC of the logistic regression model established by D-2,3-Dihydroxypropanoic acid, isocitric acid, fructose 6-phosphate, and L-Lactic acid in AH was 0.965. The AUC established by pyroglutamic acid and pyruvic acid in vitreous was 0.951. CONCLUSIONS These findings have expanded our understanding of identified metabolites and revealed for the first time some novel metabolites in DR. These results may provide useful information to explore the mechanism and may eventually allow the development of metabolic biomarkers for prognosis and novel therapeutic strategies for the management of DR.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Junwei Fang
- College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenge Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Qian Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaoyin Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Shu-Hai Lin
- College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
| |
Collapse
|
54
|
Wang H, Zhai R, Sun Q, Wu Y, Wang Z, Fang J, Kong X. Metabolomic Profile of Posner-Schlossman Syndrome: A Gas Chromatography Time-of-Flight Mass Spectrometry-Based Approach Using Aqueous Humor. Front Pharmacol 2019; 10:1322. [PMID: 31780941 PMCID: PMC6855217 DOI: 10.3389/fphar.2019.01322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/15/2019] [Indexed: 01/03/2023] Open
Abstract
The Posner-Schlossman syndrome (PSS) is a disease with clinically recurrent unilateral anterior uveitis with markedly elevated intraocular pressure (IOP) and subsequent progression to optic neuropathy. Retrospective studies have reported increased annual incidence of PSS, especially in China. While currently, the clinical management of PSS is still challenging. Metabolomics is considered to be a sensitive approach for the development of novel targeted therapeutics because of its direct elucidation of pathophysiological mechanisms. Therefore, we adopted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) technology-based non-targeted metabolomics approach to measure comprehensive metabolic profiles of aqueous humor (AH) samples obtained from patients with PSS, with an aim to demonstrate the underlying pathophysiology, identify potential biomarkers specific to PSS, and develop effective treatment strategies. A comparative analysis was used to indicate the distinct metabolites of PSS. Pathway analysis was conducted using MetaboAnalyst 4.0 to explore the metabolic reprogramming pathways involved in PSS. Logistic regression and receiver-operating characteristic (ROC) analyses were employed to evaluate the diagnostic capability of selected metabolites. Comparative analysis revealed a clear separation between PSS and control groups. Fourteen novel differentiating metabolites from AH samples obtained from patients with PSS were highlighted. Pathway analysis identified 11 carbohydrate, amino acid metabolism and energy metabolism pathways as the major disturbed pathways associated with PSS. The abnormal lysine degradation metabolism, valine-leucine-isoleucine biosynthesis, and citrate circle were considered to weigh the most in the development of PSS. The ROC analysis implied that the combination of glycine and homogentisic acid could serve as potential biomarkers for the discrimination of control and PSS groups. In conclusion, these results revealed for the first time the identity of important metabolites and pathways contributing to the development/progression of PSS, enabled the better understanding of the mechanism of PSS, and might lead to the development of metabolic biomarkers and novel therapeutic strategies to restrict the development/progression of PSS.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Ruyi Zhai
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Qian Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Ying Wu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Zhujian Wang
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangmei Kong
- Department of Ophthalmology and Visual Science, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
55
|
Jin H, Zhu B, Liu X, Jin J, Zou H. Metabolic characterization of diabetic retinopathy: An 1H-NMR-based metabolomic approach using human aqueous humor. J Pharm Biomed Anal 2019; 174:414-421. [PMID: 31212142 DOI: 10.1016/j.jpba.2019.06.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 01/22/2023]
Abstract
Patients with a long duration of diabetes mellitus (DM) usually have accompanied complications such as diabetic retinopathy (DR), which is a leading cause of blindness and visual impairment among working-age persons in developed countries; nevertheless, some patients have no complications. Thus, various studies, including genomic, transcriptomic, and proteomic studies, have been conducted to identify potential biomarkers for predicting DR and to reveal the underlying disease mechanism. Although metabolomics could be a powerful tool for characterizing aqueous eye fluids and revealing the metabolic signatures of common ocular diseases such as DR, studies about its relationship with DR are limited. Moreover, to our knowledge, no previous study has applied a metabolomic approach to investigate the aqueous humor in DR. Therefore, we performed an NMR-based metabolomic study of the aqueous humor of patients with DM and cataract (DM, n = 13), DR and cataract (DR, n = 14), and senile cataract (CON, n = 7) to investigate the metabolic alterations accompanying the development of DR. Principal component analysis, average change analysis, and heatmap analysis revealed that lactate, succinate, 2-hydroxybutyrate, asparagine, dimethylamine, histidine, threonine, and glutamine were the most altered metabolites that potentially play roles in the development and progression of DR. The highly activated alanine, aspartate, and glutamate metabolic pathway was selected using pathway analysis. The phenotypic metabolomic analyses of the aqueous humor indicated an alteration in the metabolic pathways of energy metabolism and amino acids in DR patients which was to some extent suggestive of the pathophysiological process of mitochondrial dysfunction and oxidative stress/endothelial damage. It provides a proof of concept that metabolomic analysis using the aqueous humor of DM patients may be a reliable method to improve the accuracy of predicting the development and progression of DR.
Collapse
Affiliation(s)
- Huiyi Jin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Bijun Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China.
| | - Xia Liu
- CAS Key Laboratory of Receptor Research, Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing Jin
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Fundus Disease, Shanghai, China; Department of Preventative Ophthalmology, Shanghai Eye Diseases Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China.
| |
Collapse
|
56
|
Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, Presta M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog Retin Eye Res 2019; 72:100756. [PMID: 30951889 DOI: 10.1016/j.preteyeres.2019.03.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of visual impairment in the working-age population. DR is a progressive eye disease caused by long-term accumulation of hyperglycaemia-mediated pathological alterations in the retina of diabetic patients. DR begins with asymptomatic retinal abnormalities and may progress to advanced-stage proliferative diabetic retinopathy (PDR), characterized by neovascularization or preretinal/vitreous haemorrhages. The vitreous, a transparent gel that fills the posterior cavity of the eye, plays a vital role in maintaining ocular function. Structural and molecular alterations of the vitreous, observed during DR progression, are consequences of metabolic and functional modifications of the retinal tissue. Thus, vitreal alterations reflect the pathological events occurring at the vitreoretinal interface. These events are caused by hypoxic, oxidative, inflammatory, neurodegenerative, and leukostatic conditions that occur during diabetes. Conversely, PDR vitreous can exert pathological effects on the diabetic retina, resulting in activation of a vicious cycle that contributes to disease progression. In this review, we recapitulate the major pathological features of DR/PDR, and focus on the structural and molecular changes that characterize the vitreal structure and composition during DR and progression to PDR. In PDR, vitreous represents a reservoir of pathological signalling molecules. Therefore, in this review we discuss how studying the biological activity of the vitreous in different in vitro, ex vivo, and in vivo experimental models can provide insights into the pathogenesis of PDR. In addition, the vitreous from PDR patients can represent a novel tool to obtain preclinical experimental evidences for the development and characterization of new therapeutic drug candidates for PDR therapy.
Collapse
Affiliation(s)
- Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Brescia, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
57
|
Abstract
Each day, the retina converts an immense number of photons into chemical signals that are then transported to higher order neural centers for interpretation. This process of photo transduction requires large quantities of cellular energy and anabolic precursors, making the retina one of the most metabolically active tissues in the body. With such a large metabolic demand, the retina is understandably sensitive to perturbations in perfusion and hypoxia. Indeed, retinal ischemia underlies many prevalent retinal disorders including diabetic retinopathy (DR), retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Retinal ischemia leads to the expression of growth factors, cytokines, and other cellular mediators which promote inflammation, vascular dysfunction, and ultimately, vision loss. This review aims to highlight the most recent and compelling findings that have advanced our understanding of the molecular mechanisms underlying retinal ischemias.
Collapse
Affiliation(s)
- Seth D Fortmann
- Department of Ophthalmology, University of Alabama, Birmingham, AL, United States
| | - Maria B Grant
- Department of Ophthalmology, University of Alabama, Birmingham, AL, United States
| |
Collapse
|
58
|
Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm Res 2019; 36:40. [PMID: 30673862 PMCID: PMC6344398 DOI: 10.1007/s11095-019-2569-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Abstract
Biomarkers provide a powerful and dynamic approach to improve our understanding of the mechanisms underlying ocular diseases with applications in diagnosis, disease modulation or for predicting and monitoring of clinical response to treatment. Defined as measurable indicator of normal or pathological processes, biomarker evaluation has been used extensively in drug development within clinical settings to better comprehend effectiveness of treatment in ocular diseases. Biomarkers in the eye have the advantage of access to multiple ocular matrices via minimally invasive methods. Repeat sampling for biomarker assessment has enabled reproducible objective measures of disease process or biological responses to a drug treatment. This review describes the usage of biomarkers with respect to four commonly sampled ocular matrices in clinic: tears, conjunctiva, aqueous humor and vitreous. Issues that affect the evaluation of biomarkers are discussed along with opportunities to leverage biomarkers such that ultimately, they can be used for customized targeted therapy.
Collapse
|
59
|
Brown CN, Green BD, Thompson RB, den Hollander AI, Lengyel I. Metabolomics and Age-Related Macular Degeneration. Metabolites 2018; 9:metabo9010004. [PMID: 30591665 PMCID: PMC6358913 DOI: 10.3390/metabo9010004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Age-related macular degeneration (AMD) leads to irreversible visual loss, therefore, early intervention is desirable, but due to its multifactorial nature, diagnosis of early disease might be challenging. Identification of early markers for disease development and progression is key for disease diagnosis. Suitable biomarkers can potentially provide opportunities for clinical intervention at a stage of the disease when irreversible changes are yet to take place. One of the most metabolically active tissues in the human body is the retina, making the use of hypothesis-free techniques, like metabolomics, to measure molecular changes in AMD appealing. Indeed, there is increasing evidence that metabolic dysfunction has an important role in the development and progression of AMD. Therefore, metabolomics appears to be an appropriate platform to investigate disease-associated biomarkers. In this review, we explored what is known about metabolic changes in the retina, in conjunction with the emerging literature in AMD metabolomics research. Methods for metabolic biomarker identification in the eye have also been discussed, including the use of tears, vitreous, and aqueous humor, as well as imaging methods, like fluorescence lifetime imaging, that could be translated into a clinical diagnostic tool with molecular level resolution.
Collapse
Affiliation(s)
- Connor N Brown
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Brian D Green
- Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast BT9 6AG, UK.
| | - Richard B Thompson
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen 6525 EX, The Netherlands.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|