51
|
Mugheirbi NA, Marsac PJ, Taylor LS. Insights into Water-Induced Phase Separation in Itraconazole–Hydroxypropylmethyl Cellulose Spin Coated and Spray Dried Dispersions. Mol Pharm 2017; 14:4387-4402. [DOI: 10.1021/acs.molpharmaceut.7b00499] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naila A. Mugheirbi
- Department
of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Patrick J. Marsac
- College
of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Lynne S. Taylor
- Department
of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
52
|
|
53
|
Fu W, Carbrello C, Wu X, Zhang W. Visualizing and quantifying the nanoscale hydrophobicity and chemical distribution of surface modified polyethersulfone (PES) membranes. NANOSCALE 2017; 9:15550-15557. [PMID: 28984332 DOI: 10.1039/c7nr03772d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chemical modifications bring unique properties into polymeric membranes that may have enhanced filtration or separation efficiencies, antifouling, antimicrobial activity and selectivity. However, there is a lack of nanoscale characterization of the chemical additive distribution and the impacts of chemical modifiers or additives on membrane surface properties, especially those at the nanoscale. In this study, a series of industrially relevant polyethersulfone (PES) membranes modified with poly (ethylene glycol) (PEG) and polyvinylpyrrolidone (PVP) were analysed systematically. Particularly, hydrophobicity and chemical distribution were scrutinized by atomic force microscopy (AFM) and AFM coupled with infrared analysis capability (AFM-IR) for the first time that successfully resolved nanoscale structural and chemical properties of the chemically modified PES membranes. Our results indicated the heterogeneous spatial distribution of PVP and PEG based on their characteristic IR bands and the resulting hydrophobicity distribution on modified membrane surfaces at the nanoscale. Particularly, we established a linear correlation (R2 = 0.9449) between the measured adhesion force and water contact angles, which enabled the examination of local surface hydrophobicity. The PES membranes became more hydrophilic with the increasing blend of PVP and PEG. With AFM-IR, trace amounts (1-4%) of PVP could be identified sensitively on PES membranes based on their unique characteristic IR bands, which were not achieved by FTIR or IR mapping. Overall, these novel characterization approaches hold paramount importance for the design and quality control of polymer membrane modification and manufacturing.
Collapse
Affiliation(s)
- Wanyi Fu
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | | | | | | |
Collapse
|
54
|
Saboo S, Taylor LS. Water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) amorphous solid dispersions: Insights with confocal fluorescence microscopy. Int J Pharm 2017; 529:654-666. [PMID: 28705623 DOI: 10.1016/j.ijpharm.2017.07.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
Abstract
The aim of this study was to evaluate the utility of confocal fluorescence microscopy (CFM) to study the water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) (mico-PVPVA) amorphous solid dispersions (ASDs), induced during preparation, upon storage at high relative humidity (RH) and during dissolution. Different fluorescent dyes were added to drug-polymer films and the location of the dyes was evaluated using CFM. Orthogonal techniques, in particular atomic force microscopy (AFM) coupled with nanoscale infrared spectroscopy (AFM-nanoIR), were used to provide additional analysis of the drug-polymer blends. The initial miscibility of mico-PVPVA ASDs prepared under low humidity conditions was confirmed by AFM-nanoIR. CFM enabled rapid identification of drug-rich and polymer-rich phases in phase separated films prepared under high humidity conditions. The identity of drug- and polymer-rich domains was confirmed using AFM-nanoIR imaging and localized IR spectroscopy, together with Lorentz contact resonance (LCR) measurements. The CFM technique was then utilized successfully to further investigate phase separation in mico-PVPVA films exposed to high RH storage and to visualize phase separation dynamics following film immersion in buffer. CFM is thus a promising new approach to study the phase behavior of ASDs, utilizing drug and polymer specific dyes to visualize the evolution of heterogeneity in films exposed to water.
Collapse
Affiliation(s)
- Sugandha Saboo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
55
|
Edueng K, Mahlin D, Bergström CAS. The Need for Restructuring the Disordered Science of Amorphous Drug Formulations. Pharm Res 2017; 34:1754-1772. [PMID: 28523384 PMCID: PMC5533858 DOI: 10.1007/s11095-017-2174-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022]
Abstract
The alarming numbers of poorly soluble discovery compounds have centered the efforts towards finding strategies to improve the solubility. One of the attractive approaches to enhance solubility is via amorphization despite the stability issue associated with it. Although the number of amorphous-based research reports has increased tremendously after year 2000, little is known on the current research practice in designing amorphous formulation and how it has changed after the concept of solid dispersion was first introduced decades ago. In this review we try to answer the following questions: What model compounds and excipients have been used in amorphous-based research? How were these two components selected and prepared? What methods have been used to assess the performance of amorphous formulation? What methodology have evolved and/or been standardized since amorphous-based formulation was first introduced and to what extent have we embraced on new methods? Is the extent of research mirrored in the number of marketed amorphous drug products? We have summarized the history and evolution of amorphous formulation and discuss the current status of amorphous formulation-related research practice. We also explore the potential uses of old experimental methods and how they can be used in tandem with computational tools in designing amorphous formulation more efficiently than the traditional trial-and-error approach.
Collapse
Affiliation(s)
- Khadijah Edueng
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Centre, P.O. Box 580, SE-75123, Uppsala, Sweden
- Kulliyyah of Pharmacy,, International Islamic University Malaysia, Jalan Istana, 25200, Bandar Indera Mahkota, Pahang, Malaysia
| | - Denny Mahlin
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Centre, P.O. Box 580, SE-75123, Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Centre, P.O. Box 580, SE-75123, Uppsala, Sweden.
| |
Collapse
|
56
|
Insights into Nano- and Micron-Scale Phase Separation in Amorphous Solid Dispersions Using Fluorescence-Based Techniques in Combination with Solid State Nuclear Magnetic Resonance Spectroscopy. Pharm Res 2017; 34:1364-1377. [PMID: 28455777 DOI: 10.1007/s11095-017-2145-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE Miscibility between the drug and the polymer in an amorphous solid dispersion (ASD) is considered to be one of the most important factors impacting the solid state stability and dissolution performance of the active pharmaceutical ingredient (API). The research described herein utilizes emerging fluorescence-based methodologies to probe (im)miscibility of itraconazole (ITZ)-hydroxypropyl methylcellulose (HPMC) ASDs. METHODS The ASDs were prepared by solvent evaporation with varying evaporation rates and were characterized by steady-state fluorescence spectroscopy, confocal imaging, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (ssNMR) spectroscopy. RESULTS The size of the phase separated domains for the ITZ-HPMC ASDs was affected by the solvent evaporation rate. Smaller domains (<10 nm) were observed in spray-dried ASDs, whereas larger domains (>30 nm) were found in ASDs prepared using slower evaporation rates. Confocal imaging provided visual confirmation of phase separation along with chemical specificity, achieved by selectively staining drug-rich and polymer-rich phases. ssNMR confirmed the results of fluorescence-based techniques and provided information on the size of phase separated domains. CONCLUSIONS The fluorescence-based methodologies proved to be sensitive and rapid in detecting phase separation, even at the nanoscale, in the ITZ-HPMC ASDs. Fluorescence-based methods thus show promise for miscibility evaluation of spray-dried ASDs.
Collapse
|
57
|
Li N, Gilpin CJ, Taylor LS. Understanding the Impact of Water on the Miscibility and Microstructure of Amorphous Solid Dispersions: An AFM-LCR and TEM-EDX Study. Mol Pharm 2017; 14:1691-1705. [PMID: 28394617 DOI: 10.1021/acs.molpharmaceut.6b01151] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Miscibility is critical for amorphous solid dispersions (ASDs). Phase-separated ASDs are more prone to crystallization, and thus can lose their solubility advantage leading to product failure. Additionally, dissolution performance can be diminished as a result of phase separation in the ASD matrix. Water is known to induce phase separation during storage for some ASDs. However, the impact of water introduced during preparation has not been as thoroughly investigated to date. The purpose of this study was to develop a mechanistic understanding of the effect of water on the phase behavior and microstructure of ASDs. Evacetrapib and two polymers were selected as the model system. Atomic force microscopy coupled with Lorentz contact resonance, and transmission electron microscopy with energy dispersive X-ray spectroscopy were employed to evaluate the microstructure and composition of phase-separated ASDs. It was found that phase separation could be induced via two routes: solution-state phase separation during ASD formation caused by water absorption during film formation by a hydrophilic solvent, or solid-phase separation following exposure to high RH during storage. Water contents of as low as 2% in the organic solvent system used to dissolve the drug and polymer were found to result in phase separation in the resultant ASD film. These findings have profound implications on lab-scale ASD preparation and potentially also for industrial production. Additionally, these high-resolution imaging techniques combined with orthogonal analyses are powerful tools to visualize structural changes in ASDs, which in turn will enable better links to be made between ASD structure and performance.
Collapse
Affiliation(s)
- Na Li
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Christopher J Gilpin
- Life Science Microscopy Facility, Purdue University , 625 Agriculture Mall Drive, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
58
|
Dazzi A, Prater CB. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging. Chem Rev 2016; 117:5146-5173. [DOI: 10.1021/acs.chemrev.6b00448] [Citation(s) in RCA: 512] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alexandre Dazzi
- Laboratoire
de Chimie Physique, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Craig B. Prater
- Anasys Instruments, 325 Chapala
St., Santa Barbara, California 93101, United States
| |
Collapse
|
59
|
Hellrup J, Mahlin D. Confinement of Amorphous Lactose in Pores Formed Upon Co-Spray Drying With Nanoparticles. J Pharm Sci 2016; 106:322-330. [PMID: 27836110 DOI: 10.1016/j.xphs.2016.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
Abstract
This study aims at investigating factors influencing humidity-induced recrystallization of amorphous lactose, produced by co-spray drying with particles of cellulose nanocrystals or sodium montmorillonite. In particular, the focus is on how the nanoparticle shape and surface properties influence the nanometer to micrometer length scale nanofiller arrangement in the nanocomposites and how the arrangements influence the mechanisms involved in the inhibition of the amorphous to crystalline transition. The nanocomposites were produced by co-spray drying. Solid-state transformations were analyzed at 60%-94% relative humidity using X-ray powder diffraction, microcalorimetry, and light microscopy. The recrystallization rate constant for the lactose/cellulose nanocrystals and lactose/sodium montmorillonite nanocomposites was lowered at nanofiller contents higher than 60% and was stable for months at 80% nanofiller. The most likely explanation to these results is spontaneous formations of mesoporous particle networks that the lactose is confined upon co-spray drying at high filler content. Compartmentalization and rigidification of the amorphous lactose proved to be less important mechanisms involved in the stabilization of lactose in the nanocomposites.
Collapse
Affiliation(s)
- Joel Hellrup
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | - Denny Mahlin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
60
|
Tian B, Tang X, Taylor LS. Investigating the Correlation between Miscibility and Physical Stability of Amorphous Solid Dispersions Using Fluorescence-Based Techniques. Mol Pharm 2016; 13:3988-4000. [PMID: 27700109 DOI: 10.1021/acs.molpharmaceut.6b00803] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bin Tian
- Department
of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road
103, Shenyang 110016, People’s Republic of China
- Department
of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xing Tang
- Department
of Pharmaceutics Science, Shenyang Pharmaceutical University, Wenhua Road
103, Shenyang 110016, People’s Republic of China
| | - Lynne S. Taylor
- Department
of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
61
|
Kawakami K. Supersaturation and crystallization: non-equilibrium dynamics of amorphous solid dispersions for oral drug delivery. Expert Opin Drug Deliv 2016; 14:735-743. [DOI: 10.1080/17425247.2017.1230099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kohsaku Kawakami
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
62
|
Ricarte RG, Lodge TP, Hillmyer MA. Nanoscale Concentration Quantification of Pharmaceutical Actives in Amorphous Polymer Matrices by Electron Energy-Loss Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7411-9. [PMID: 27419264 DOI: 10.1021/acs.langmuir.6b01745] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We demonstrated the use of electron energy-loss spectroscopy (EELS) to evaluate the composition of phenytoin:hydroxypropyl methylcellulose acetate succinate (HPMCAS) spin-coated solid dispersions (SDs). To overcome the inability of bright-field and high-angle annular dark-field TEM imaging to distinguish between glassy drug and polymer, we used the π-π* transition peak in the EELS spectrum to detect phenytoin within the HPMCAS matrix of the SD. The concentration of phenytoin within SDs of 10, 25, and 50 wt % drug loading was quantified by a multiple least-squares analysis. Evaluating the concentration of 50 different regions in each SD, we determined that phenytoin and HPMCAS are intimately mixed at a length scale of 200 nm, even for drug loadings up to 50 wt %. At length scales below 100 nm, the variance of the measured phenytoin concentration increases; we speculate that this increase is due to statistical fluctuations in local concentration and chemical changes induced by electron irradiation. We also performed EELS analysis of an annealed 25 wt % phenytoin SD and showed that the technique can resolve concentration differences between regions that are less than 50 nm apart. Our findings indicate that EELS is a useful tool for quantifying, with high accuracy and sub-100 nm spatial resolution, the composition of many pharmaceutical and soft matter systems.
Collapse
Affiliation(s)
- Ralm G Ricarte
- Department of Chemical Engineering and Materials Science and ‡Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | - Timothy P Lodge
- Department of Chemical Engineering and Materials Science and ‡Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | - Marc A Hillmyer
- Department of Chemical Engineering and Materials Science and ‡Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|