51
|
Fan YY, Deng X, Wang M, Li J, Zhang ZQ. A dual-function oligonucleotide-based ratiometric fluorescence sensor for ATP detection. Talanta 2020; 219:121349. [PMID: 32887077 DOI: 10.1016/j.talanta.2020.121349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/27/2023]
Abstract
Adenosine triphosphate (ATP) is the main energy currency of life that plays a vital role in supporting physiological activities in living organisms, including humans. Therefore, accurate and sensitive detection of ATP concentration is necessary in biochemical research and clinical diagnosis. Herein, a ratiometric fluorescence aptasensor was developed for ATP detection. A dual-function DNA strand comprising an ATP-binding aptamer (ABA) and berberine-binding aptamer (BBA) was designed and optimized, in which ABA can capture ATP and thioflavin T (ThT), whereas BBA can capture berberine. Interestingly, the fluorescence intensity of both berberine and ThT were enhanced as they were captured by this dual-function DNA strand. In the presence of ATP, the ABA on the 3'-end of the DNA bound specifically to its target, causing ThT release and a significant drop in ThT fluorescence. However, ATP had no significant effect on the interaction between berberine and DNA, remaining the enhanced fluorescence intensity of berberine stable. Based on this interesting phenomenon, a ratiometric fluorescence sensor was constructed that used the enhanced fluorescence intensity of berberine as reference to measure the fluorescence intensity of ThT for ATP detection. This ratiometric fluorescence strategy had excellent selectivity and high sensitivity towards ATP with a detection limit (3σ) as low as 24.8 nM. The feasibility of application of this method in biological samples was evaluated in human serum and urine samples, where it exhibited a good detection performance.
Collapse
Affiliation(s)
- Yao-Yao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Xu Deng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Man Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Jun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
52
|
Chang HP, Kim SJ, Shah DK. Whole-Body Pharmacokinetics of Antibody in Mice Determined using Enzyme-Linked Immunosorbent Assay and Derivation of Tissue Interstitial Concentrations. J Pharm Sci 2020; 110:446-457. [PMID: 32502472 DOI: 10.1016/j.xphs.2020.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
Abstract
Here we have reported whole-body disposition of wild-type IgG and FcRn non-binding IgG in mice, determined using Enzyme-Linked Immunosorbent Assay (ELISA). The disposition data generated using ELISA are compared with previously published biodistribution data generated using radiolabelled IgG. In addition, we introduce a novel concept of ABCIS values, which are defined as percentage ratios of tissue interstitial and plasma AUC values. These values can help in predicting tissue interstitial concentrations of monoclonal antibodies (mAbs) based on the plasma concentrations. Tissue interstitial concentrations derived from our study are also compared with previously reported values measured using microdialysis or centrifugation method. Lastly, the new set of biodistribution data generated using ELISA are used to refine the PBPK model for mAbs.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Se Jin Kim
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
53
|
CD24-targeted fluorescence imaging in patient-derived xenograft models of high-grade serous ovarian carcinoma. EBioMedicine 2020; 56:102782. [PMID: 32454401 PMCID: PMC7248428 DOI: 10.1016/j.ebiom.2020.102782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The survival rate of patients with advanced high-grade serous ovarian carcinoma (HGSOC) remains disappointing. Clinically translatable orthotopic cell line xenograft models and patient-derived xenografts (PDXs) may aid the implementation of more personalised treatment approaches. Although orthotopic PDX reflecting heterogeneous molecular subtypes are considered the most relevant preclinical models, their use in therapeutic development is limited by lack of appropriate imaging modalities. METHODS We developed novel orthotopic xenograft and PDX models for HGSOC, and applied a near-infrared fluorescently labelled monoclonal antibody targeting the cell surface antigen CD24 for non-invasive molecular imaging of epithelial ovarian cancer. CD24-Alexa Fluor 680 fluorescence imaging was compared to bioluminescence imaging in three orthotopic cell line xenograft models of ovarian cancer (OV-90luc+, Skov-3luc+ and Caov-3luc+, n = 3 per model). The application of fluorescence imaging to assess treatment efficacy was performed in carboplatin-paclitaxel treated orthotopic OV-90 xenografts (n = 10), before the probe was evaluated to detect disease progression in heterogenous PDX models (n = 7). FINDINGS Application of the near-infrared probe, CD24-AF680, enabled both spatio-temporal visualisation of tumour development, and longitudinal therapy monitoring of orthotopic xenografts. Notably, CD24-AF680 facilitated imaging of multiple PDX models representing different histological subtypes of the disease. INTERPRETATION The combined implementation of CD24-AF680 and orthotopic PDX models creates a state-of-the-art preclinical platform which will impact the identification and validation of new targeted therapies, fluorescence image-guided surgery, and ultimately the outcome for HGSOC patients. FUNDING This study was supported by the H2020 program MSCA-ITN [675743], Helse Vest RHF, and Helse Bergen HF [911809, 911852, 912171, 240222, HV1269], as well as by The Norwegian Cancer Society [182735], and The Research Council of Norway through its Centers of excellence funding scheme [223250, 262652].
Collapse
|
54
|
Kopp A, Thurber GM. Severing Ties: Quantifying the Payload Release from Antibody Drug Conjugates. Cell Chem Biol 2020; 26:1631-1633. [PMID: 31951577 DOI: 10.1016/j.chembiol.2019.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a key mediator of efficacy and toxicity, the linker connecting the payload in antibody drug conjugates determines cellular distribution and payload release. Sorkin et al. (2019) have created novel fluorescence-based linkers to quantify the rate of intracellular bond cleavage and track live-cell kinetics for designing more effective agents.
Collapse
Affiliation(s)
- Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
55
|
Li D, Schreiber CL, Smith BD. Sterically Shielded Heptamethine Cyanine Dyes for Bioconjugation and High Performance Near‐Infrared Fluorescence Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong‐Hao Li
- Department of Chemistry and Biochemistry University of Notre Dame 251 Nieuwland Science Hall Notre Dame IN 46556 USA
| | - Cynthia L. Schreiber
- Department of Chemistry and Biochemistry University of Notre Dame 251 Nieuwland Science Hall Notre Dame IN 46556 USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry University of Notre Dame 251 Nieuwland Science Hall Notre Dame IN 46556 USA
| |
Collapse
|
56
|
Dogra P, Butner JD, Nizzero S, Ruiz Ramírez J, Noureddine A, Peláez MJ, Elganainy D, Yang Z, Le AD, Goel S, Leong HS, Koay EJ, Brinker CJ, Cristini V, Wang Z. Image-guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1628. [PMID: 32314552 PMCID: PMC7507140 DOI: 10.1002/wnan.1628] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/06/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
While plasma concentration kinetics has traditionally been the predictor of drug pharmacological effects, it can occasionally fail to represent kinetics at the site of action, particularly for solid tumors. This is especially true in the case of delivery of therapeutic macromolecules (drug-loaded nanomaterials or monoclonal antibodies), which can experience challenges to effective delivery due to particle size-dependent diffusion barriers at the target site. As a result, disparity between therapeutic plasma kinetics and kinetics at the site of action may exist, highlighting the importance of target site concentration kinetics in determining the pharmacodynamic effects of macromolecular therapeutic agents. Assessment of concentration kinetics at the target site has been facilitated by non-invasive in vivo imaging modalities. This allows for visualization and quantification of the whole-body disposition behavior of therapeutics that is essential for a comprehensive understanding of their pharmacokinetics and pharmacodynamics. Quantitative non-invasive imaging can also help guide the development and parameterization of mathematical models for descriptive and predictive purposes. Here, we present a review of the application of state-of-the-art imaging modalities for quantitative pharmacological evaluation of therapeutic nanoparticles and monoclonal antibodies, with a focus on their integration with mathematical models, and identify challenges and opportunities. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Joseph D Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Sara Nizzero
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Javier Ruiz Ramírez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Achraf Noureddine
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| | - María J Peláez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA.,Applied Physics Graduate Program, Rice University, Houston, Texas, USA
| | - Dalia Elganainy
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhen Yang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anh-Dung Le
- Nanoscience and Microsystems Engineering, University of New Mexico, Albuquerque, New Mexico, USA
| | - Shreya Goel
- Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Eugene J Koay
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering and UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
57
|
Gold Nanoparticles in Glioma Theranostics. Pharmacol Res 2020; 156:104753. [PMID: 32209363 DOI: 10.1016/j.phrs.2020.104753] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Abstract
Despite many endeavors to treat malignant gliomas in the last decades, the median survival of patients has not significantly improved. The infiltrative nature of high-grade gliomas and the impermeability of the blood-brain barrier to the most therapeutic agents remain major hurdles, impeding an efficacious treatment. Theranostic platforms bridging diagnosis and therapeutic modalities aim to surmount the current limitations in diagnosis and therapy of glioma. Gold nanoparticles (AuNPs) due to their biocompatibility and tunable optical properties have widely been utilized for an assortment of theranostic purposes. In this Review, applications of AuNPs as imaging probes, drug/gene delivery systems, radiosensitizers, photothermal transducers, and multimodal theranostic agents in malignant gliomas are discussed. This Review also aims to provide a perspective on cancer theranostic applications of AuNPs in future clinical trials.
Collapse
|
58
|
Nessler I, Khera E, Vance S, Kopp A, Qiu Q, Keating TA, Abu-Yousif AO, Sandal T, Legg J, Thompson L, Goodwin N, Thurber GM. Increased Tumor Penetration of Single-Domain Antibody-Drug Conjugates Improves In Vivo Efficacy in Prostate Cancer Models. Cancer Res 2020; 80:1268-1278. [PMID: 31941698 PMCID: PMC7073300 DOI: 10.1158/0008-5472.can-19-2295] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/19/2019] [Accepted: 01/07/2020] [Indexed: 01/11/2023]
Abstract
Targeted delivery of chemotherapeutics aims to increase efficacy and lower toxicity by concentrating drugs at the site-of-action, a method embodied by the seven current FDA-approved antibody-drug conjugates (ADC). However, a variety of pharmacokinetic challenges result in relatively narrow therapeutic windows for these agents, hampering the development of new drugs. Here, we use a series of prostate-specific membrane antigen-binding single-domain (Humabody) ADC constructs to demonstrate that tissue penetration of protein-drug conjugates plays a major role in therapeutic efficacy. Counterintuitively, a construct with lower in vitro potency resulted in higher in vivo efficacy than other protein-drug conjugates. Biodistribution data, tumor histology images, spheroid experiments, in vivo single-cell measurements, and computational results demonstrate that a smaller size and slower internalization rate enabled higher tissue penetration and more cell killing. The results also illustrate the benefits of linking an albumin-binding domain to the single-domain ADCs. A construct lacking an albumin-binding domain was rapidly cleared, leading to lower tumor uptake (%ID/g) and decreased in vivo efficacy. In conclusion, these results provide evidence that reaching the maximum number of cells with a lethal payload dose correlates more strongly with in vivo efficacy than total tumor uptake or in vitro potency alone for these protein-drug conjugates. Computational modeling and protein engineering can be used to custom design an optimal framework for controlling internalization, clearance, and tissue penetration to maximize cell killing. SIGNIFICANCE: A mechanistic study of protein-drug conjugates demonstrates that a lower potency compound is more effective in vivo than other agents with equal tumor uptake due to improved tissue penetration and cellular distribution.
Collapse
Affiliation(s)
- Ian Nessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Eshita Khera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | | | - Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | - James Legg
- Crescendo Biologics, Cambridge, United Kingdom
| | | | | | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
59
|
Zhang L, Wallace CD, Erickson JE, Nelson CM, Gaudette SM, Pohl CS, Karsen SD, Simler GH, Peng R, Stedman CA, Laroux FS, Wurbel MA, Kamath RV, McRae BL, Schwartz Sterman AJ, Mitra S. Near infrared readouts offer sensitive and rapid assessments of intestinal permeability and disease severity in inflammatory bowel disease models. Sci Rep 2020; 10:4696. [PMID: 32170183 PMCID: PMC7070059 DOI: 10.1038/s41598-020-61756-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Intestinal permeability and neutrophil activity are closely linked to inflammatory bowel disease (IBD) pathophysiology. Here we discuss two techniques for assessing permeability and neutrophil activity in mouse IBD models using near infrared (NIR) detection. To address the limitation of visible light readouts-namely high background-IRDye 800CW was used to enable rapid, non-terminal measurements of intestinal permeability. The increased sensitivity of NIR readouts for colon permeability is shown using dextran sulfate sodium (DSS) and anti-CD40 murine colitis models in response to interleukin-22 immunoglobulin Fc (IL22Fc) fusion protein and anti-p40 monoclonal antibody treatments, respectively. In addition to enhanced permeability, elevated levels of neutrophil elastase (NE) have been reported in inflamed colonic mucosal tissue. Activatable NIR fluorescent probes have been extensively used for disease activity evaluation in oncologic animal models, and we demonstrate their translatability using a NE-activatable reagent to evaluate inflammation in DSS mice. Confocal laser endomicroscopy (CLE) and tissue imaging allow visualization of spatial NE activity throughout diseased colon as well as changes in disease severity from IL22Fc treatment. Our findings with the 800CW dye and the NE probe highlight the ease of their implementation in preclinical IBD research.
Collapse
Affiliation(s)
- Liang Zhang
- AbbVie Bioresearch Center, Worcester, MA, 01605, USA.
| | | | | | | | | | | | | | | | - Ruoqi Peng
- AbbVie Bioresearch Center, Worcester, MA, 01605, USA
| | | | | | - Marc A Wurbel
- AbbVie Bioresearch Center, Worcester, MA, 01605, USA
| | | | | | | | - Soumya Mitra
- AbbVie Bioresearch Center, Worcester, MA, 01605, USA
| |
Collapse
|
60
|
Practical Guide for Quantification of In Vivo Degradation Rates for Therapeutic Proteins with Single-Cell Resolution Using Fluorescence Ratio Imaging. Pharmaceutics 2020; 12:pharmaceutics12020132. [PMID: 32033318 PMCID: PMC7076450 DOI: 10.3390/pharmaceutics12020132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022] Open
Abstract
Many tools for studying the pharmacokinetics of biologics lack single-cell resolution to quantify the heterogeneous tissue distribution and subsequent therapeutic degradation in vivo. This protocol describes a dual-labeling technique using two near-infrared dyes with widely differing residualization rates to efficiently quantify in vivo therapeutic protein distribution and degradation rates at the single cell level (number of proteins/cell) via ex vivo flow cytometry and histology. Examples are shown for four biologics with varying rates of receptor internalization and degradation and a secondary dye pair for use in systems with lower receptor expression. Organ biodistribution, tissue-level confocal microscopy, and cellular-level flow cytometry were used to image the multi-scale distribution of these agents in tumor xenograft mouse models. The single-cell measurements reveal highly heterogeneous delivery, and degradation results show the delay between peak tumor uptake and maximum protein degradation. This approach has broad applicability in tracking the tissue and cellular distribution of protein therapeutics for drug development and dose determination.
Collapse
|
61
|
Fu C, Demir B, Alcantara S, Kumar V, Han F, Kelly HG, Tan X, Yu Y, Xu W, Zhao J, Zhang C, Peng H, Boyer C, Woodruff TM, Kent SJ, Searles DJ, Whittaker AK. Low‐Fouling Fluoropolymers for Bioconjugation and In Vivo Tracking. Angew Chem Int Ed Engl 2020; 59:4729-4735. [DOI: 10.1002/anie.201914119] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Changkui Fu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Baris Demir
- School of Chemistry and Molecular Biosciences and Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland 4072 Australia
| | - Sheilajen Alcantara
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Victoria 3010 Australia
| | - Vinod Kumar
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Felicity Han
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Hannah G. Kelly
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Victoria 3010 Australia
| | - Xiao Tan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Ye Yu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Weizhi Xu
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Jiacheng Zhao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Cheng Zhang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Hui Peng
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Stephen J. Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Victoria 3010 Australia
| | - Debra J. Searles
- School of Chemistry and Molecular Biosciences and Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland 4072 Australia
| | - Andrew K. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
62
|
Fu C, Demir B, Alcantara S, Kumar V, Han F, Kelly HG, Tan X, Yu Y, Xu W, Zhao J, Zhang C, Peng H, Boyer C, Woodruff TM, Kent SJ, Searles DJ, Whittaker AK. Low‐Fouling Fluoropolymers for Bioconjugation and In Vivo Tracking. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Changkui Fu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Baris Demir
- School of Chemistry and Molecular Biosciences and Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland 4072 Australia
| | - Sheilajen Alcantara
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Victoria 3010 Australia
| | - Vinod Kumar
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Felicity Han
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Hannah G. Kelly
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Victoria 3010 Australia
| | - Xiao Tan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Ye Yu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Weizhi Xu
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Jiacheng Zhao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Cheng Zhang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Hui Peng
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN) School of Chemical Engineering UNSW Australia Sydney NSW 2052 Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences The University of Queensland St. Lucia Queensland 4072 Australia
| | - Stephen J. Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology Peter Doherty Institute for Infection and Immunity The University of Melbourne Parkville Victoria 3010 Australia
| | - Debra J. Searles
- School of Chemistry and Molecular Biosciences and Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane Queensland 4072 Australia
| | - Andrew K. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
63
|
Wong P, Li L, Chea J, Hu W, Poku E, Ebner T, Bowles N, Wong JYC, Yazaki PJ, Sligar S, Shively JE. Antibody Targeted PET Imaging of 64Cu-DOTA-Anti-CEA PEGylated Lipid Nanodiscs in CEA Positive Tumors. Bioconjug Chem 2020; 31:743-753. [DOI: 10.1021/acs.bioconjchem.9b00854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Patty Wong
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, California 91010, United States
| | - Lin Li
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Junie Chea
- Radiopharmacy, City of Hope Medical Center, Duarte, California 91010, United States
| | - Weidong Hu
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Erasmus Poku
- Radiopharmacy, City of Hope Medical Center, Duarte, California 91010, United States
| | - Todd Ebner
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Nicole Bowles
- Radiopharmacy, City of Hope Medical Center, Duarte, California 91010, United States
| | - Jeffrey Y. C. Wong
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, California 91010, United States
| | - Paul J. Yazaki
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Stephen Sligar
- Department of Molecular and Cellular Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - John E. Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| |
Collapse
|
64
|
Menezes B, Cilliers C, Wessler T, Thurber GM, Linderman JJ. An Agent-Based Systems Pharmacology Model of the Antibody-Drug Conjugate Kadcyla to Predict Efficacy of Different Dosing Regimens. AAPS JOURNAL 2020; 22:29. [PMID: 31942650 DOI: 10.1208/s12248-019-0391-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
The pharmaceutical industry has invested significantly in antibody-drug conjugates (ADCs) with five FDA-approved therapies and several more showing promise in late-stage clinical trials. The FDA-approved therapeutic Kadcyla (ado-trastuzumab emtansine or T-DM1) can extend the survival of patients with tumors overexpressing HER2. However, tumor histology shows that most T-DM1 localizes perivascularly, but coadministration with its unconjugated form (trastuzumab) improves penetration of the ADC into the tumor and subsequent treatment efficacy. ADC dosing schedule, e.g., dose fractionation, has also been shown to improve tolerability. However, it is still not clear how coadministration with carrier doses impacts efficacy in terms of receptor expression, dosing regimens, and payload potency. Here, we develop a hybrid agent-based model (ABM) to capture ADC and/or antibody delivery and to predict tumor killing and growth kinetics. The results indicate that a carrier dose improves efficacy when the increased number of cells targeted by the ADC outweighs the reduced fractional killing of the targeted cells. The threshold number of payloads per cell required for killing plays a pivotal role in defining this cutoff. Likewise, fractionated dosing lowers ADC efficacy due to lower tissue penetration from a reduced maximum plasma concentration. It is only beneficial when an increase in tolerability from fractionation allows a higher ADC/payload dose that more than compensates for the loss in efficacy from fractionation. Overall, the multiscale model enables detailed depictions of heterogeneous ADC delivery, cancer cell death, and tumor growth to show how carrier dosing impacts efficacy to design the most efficacious regimen.
Collapse
Affiliation(s)
- Bruna Menezes
- Department of Chemical Engineering, University of Michigan, NCRC B28, 2800 Plymouth Road, Ann Arbor, Michigan, 48109-2800, USA
| | - Cornelius Cilliers
- Department of Chemical Engineering, University of Michigan, NCRC B28, 2800 Plymouth Road, Ann Arbor, Michigan, 48109-2800, USA
| | - Timothy Wessler
- Department of Chemical Engineering, University of Michigan, NCRC B28, 2800 Plymouth Road, Ann Arbor, Michigan, 48109-2800, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, NCRC B28, 2800 Plymouth Road, Ann Arbor, Michigan, 48109-2800, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, NCRC B28, 2800 Plymouth Road, Ann Arbor, Michigan, 48109-2800, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
65
|
In Vitro Characterization and Stability Profiles of Antibody-Fluorophore Conjugates Derived from Interchain Cysteine Cross-Linking or Lysine Bioconjugation. Pharmaceuticals (Basel) 2019; 12:ph12040176. [PMID: 31810248 PMCID: PMC6958397 DOI: 10.3390/ph12040176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/21/2022] Open
Abstract
Fluorescent labelling of monoclonal antibodies (mAbs) is classically performed by chemical bioconjugation methods. The most frequent labelling technique to generate antibody–fluorophore conjugates (AFCs) involves the bioconjugation onto the mAb lysines of a dye bearing an N-hydroxysuccinimide ester or an isothiocyanate group. However, discrepancies between labelling experiments or kits can be observed, related to reproducibility issues, alteration of antigen binding, or mAb properties. The lack of information on labelling kits and the incomplete characterization of the obtained labelled mAbs largely contribute to these issues. In this work, we generated eight AFCs through either lysine or interchain cysteine cross-linking bioconjugation of green-emitting fluorophores (fluorescein or BODIPY) onto either trastuzumab or rituximab. This strategy allowed us to study the influence of fluorophore solubility, bioconjugation technology, and antibody nature on two known labelling procedures. The structures of these AFCs were thoroughly analyzed by mass spectroscopy, and their antigen binding properties were studied. We then compared these AFCs in vitro by studying their respective spectral properties and stabilities. The shelf stability profiles and sensibility to pH variation of these AFCs prove to be dye-, antibody- and labelling-technology-dependent. Fluorescence emission in AFCs was higher when lysine labelling was used, but cross-linked AFCs were revealed to be more stable. This must be taken into account for the design of any biological study involving antibody labelling.
Collapse
|
66
|
Schadt S, Hauri S, Lopes F, Edelmann MR, Staack RF, Villaseñor R, Kettenberger H, Roth AB, Schuler F, Richter WF, Funk C. Are Biotransformation Studies of Therapeutic Proteins Needed? Scientific Considerations and Technical Challenges. Drug Metab Dispos 2019; 47:1443-1456. [PMID: 31748266 DOI: 10.1124/dmd.119.088997] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/09/2019] [Indexed: 02/13/2025] Open
Abstract
For therapeutic proteins, the currently established standard development path generally does not foresee biotransformation studies by default because it is well known that the clearance of therapeutic proteins proceeds via degradation to small peptides and individual amino acids. In contrast to small molecules, there is no general need to identify enzymes involved in biotransformation because this information is not relevant for drug-drug interaction assessment and for understanding the clearance of a therapeutic protein. Nevertheless, there are good reasons to embark on biotransformation studies, especially for complex therapeutic proteins. Typical triggers are unexpected rapid clearance, species differences in clearance not following the typical allometric relationship, a mismatch in the pharmacokinetics/pharmacodynamics (PK/PD) relationship, and the need to understand observed differences between the results of multiple bioanalytical methods (e.g., total vs. target-binding competent antibody concentrations). Early on during compound optimization, knowledge on protein biotransformation may help to design more stable drug candidates with favorable in vivo PK properties. Understanding the biotransformation of a therapeutic protein may also support designing and understanding the bioanalytical assay and ultimately the PK/PD assessment. Especially in cases where biotransformation products are pharmacologically active, quantification and assessment of their contribution to the overall pharmacological effect can be important for establishing a PK/PD relationship and extrapolation to humans. With the increasing number of complex therapeutic protein formats, the need for understanding the biotransformation of therapeutic proteins becomes more urgent. This article provides an overview on biotransformation processes, proteases involved, strategic considerations, regulatory guidelines, literature examples for in vitro and in vivo biotransformation, and technical approaches to study protein biotransformation. SIGNIFICANCE STATEMENT: Understanding the biotransformation of complex therapeutic proteins can be crucial for establishing a pharmacokinetic/pharmacodynamic relationship. This article will highlight scientific, strategic, regulatory, and technological features of protein biotransformation.
Collapse
Affiliation(s)
- Simone Schadt
- Roche Pharma Research and Early Development, Pharmaceutical Sciences (S.S., S.H., F.L., R.V., A.B.R., F.S., W.F.R., C.F.) and Roche Pharma Research and Early Development, Therapeutic Modalities (M.R.E.), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland; and Roche Pharma Research and Early Development, Pharmaceutical Sciences (R.F.S.) and Roche Pharma Research and Early Development, Therapeutic Modalities (H.K.), Roche Innovation Center Munich, Roche Diagnostics, Penzberg, Germany
| | - Simon Hauri
- Roche Pharma Research and Early Development, Pharmaceutical Sciences (S.S., S.H., F.L., R.V., A.B.R., F.S., W.F.R., C.F.) and Roche Pharma Research and Early Development, Therapeutic Modalities (M.R.E.), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland; and Roche Pharma Research and Early Development, Pharmaceutical Sciences (R.F.S.) and Roche Pharma Research and Early Development, Therapeutic Modalities (H.K.), Roche Innovation Center Munich, Roche Diagnostics, Penzberg, Germany
| | - Filipe Lopes
- Roche Pharma Research and Early Development, Pharmaceutical Sciences (S.S., S.H., F.L., R.V., A.B.R., F.S., W.F.R., C.F.) and Roche Pharma Research and Early Development, Therapeutic Modalities (M.R.E.), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland; and Roche Pharma Research and Early Development, Pharmaceutical Sciences (R.F.S.) and Roche Pharma Research and Early Development, Therapeutic Modalities (H.K.), Roche Innovation Center Munich, Roche Diagnostics, Penzberg, Germany
| | - Martin R Edelmann
- Roche Pharma Research and Early Development, Pharmaceutical Sciences (S.S., S.H., F.L., R.V., A.B.R., F.S., W.F.R., C.F.) and Roche Pharma Research and Early Development, Therapeutic Modalities (M.R.E.), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland; and Roche Pharma Research and Early Development, Pharmaceutical Sciences (R.F.S.) and Roche Pharma Research and Early Development, Therapeutic Modalities (H.K.), Roche Innovation Center Munich, Roche Diagnostics, Penzberg, Germany
| | - Roland F Staack
- Roche Pharma Research and Early Development, Pharmaceutical Sciences (S.S., S.H., F.L., R.V., A.B.R., F.S., W.F.R., C.F.) and Roche Pharma Research and Early Development, Therapeutic Modalities (M.R.E.), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland; and Roche Pharma Research and Early Development, Pharmaceutical Sciences (R.F.S.) and Roche Pharma Research and Early Development, Therapeutic Modalities (H.K.), Roche Innovation Center Munich, Roche Diagnostics, Penzberg, Germany
| | - Roberto Villaseñor
- Roche Pharma Research and Early Development, Pharmaceutical Sciences (S.S., S.H., F.L., R.V., A.B.R., F.S., W.F.R., C.F.) and Roche Pharma Research and Early Development, Therapeutic Modalities (M.R.E.), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland; and Roche Pharma Research and Early Development, Pharmaceutical Sciences (R.F.S.) and Roche Pharma Research and Early Development, Therapeutic Modalities (H.K.), Roche Innovation Center Munich, Roche Diagnostics, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research and Early Development, Pharmaceutical Sciences (S.S., S.H., F.L., R.V., A.B.R., F.S., W.F.R., C.F.) and Roche Pharma Research and Early Development, Therapeutic Modalities (M.R.E.), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland; and Roche Pharma Research and Early Development, Pharmaceutical Sciences (R.F.S.) and Roche Pharma Research and Early Development, Therapeutic Modalities (H.K.), Roche Innovation Center Munich, Roche Diagnostics, Penzberg, Germany
| | - Adrian B Roth
- Roche Pharma Research and Early Development, Pharmaceutical Sciences (S.S., S.H., F.L., R.V., A.B.R., F.S., W.F.R., C.F.) and Roche Pharma Research and Early Development, Therapeutic Modalities (M.R.E.), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland; and Roche Pharma Research and Early Development, Pharmaceutical Sciences (R.F.S.) and Roche Pharma Research and Early Development, Therapeutic Modalities (H.K.), Roche Innovation Center Munich, Roche Diagnostics, Penzberg, Germany
| | - Franz Schuler
- Roche Pharma Research and Early Development, Pharmaceutical Sciences (S.S., S.H., F.L., R.V., A.B.R., F.S., W.F.R., C.F.) and Roche Pharma Research and Early Development, Therapeutic Modalities (M.R.E.), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland; and Roche Pharma Research and Early Development, Pharmaceutical Sciences (R.F.S.) and Roche Pharma Research and Early Development, Therapeutic Modalities (H.K.), Roche Innovation Center Munich, Roche Diagnostics, Penzberg, Germany
| | - Wolfgang F Richter
- Roche Pharma Research and Early Development, Pharmaceutical Sciences (S.S., S.H., F.L., R.V., A.B.R., F.S., W.F.R., C.F.) and Roche Pharma Research and Early Development, Therapeutic Modalities (M.R.E.), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland; and Roche Pharma Research and Early Development, Pharmaceutical Sciences (R.F.S.) and Roche Pharma Research and Early Development, Therapeutic Modalities (H.K.), Roche Innovation Center Munich, Roche Diagnostics, Penzberg, Germany
| | - Christoph Funk
- Roche Pharma Research and Early Development, Pharmaceutical Sciences (S.S., S.H., F.L., R.V., A.B.R., F.S., W.F.R., C.F.) and Roche Pharma Research and Early Development, Therapeutic Modalities (M.R.E.), Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland; and Roche Pharma Research and Early Development, Pharmaceutical Sciences (R.F.S.) and Roche Pharma Research and Early Development, Therapeutic Modalities (H.K.), Roche Innovation Center Munich, Roche Diagnostics, Penzberg, Germany
| |
Collapse
|
67
|
Simpson JD, Ediriweera GR, Howard CB, Fletcher NL, Bell CA, Thurecht KJ. Polymer design and component selection contribute to uptake, distribution & trafficking behaviours of polyethylene glycol hyperbranched polymers in live MDA-MB-468 breast cancer cells. Biomater Sci 2019; 7:4661-4674. [PMID: 31469127 DOI: 10.1039/c9bm00957d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As polymeric nanomedicines grow increasingly complex in design, an effective therapeutic release is often inherently tied to localisation to specific intracellular compartments or microenvironments. The inclusion of environmentally-sensitive moieties links the functionality of such materials to the trafficking behaviours exhibited once materials have obtained access to the cellular milieu. In order to perform their designed function, such materials often need to encounter specific biological cues or stimuli. As such, there is an increased need to improve our understanding of how the physicochemical properties of nanomaterials influence post-internalisation behaviours. Amongst the unknown factors that may contribute to the trafficking behaviours and distribution of polymers within the cellular environment, is the influence of the components selected in the development of such materials. To examine whether composition and arrangement of components within small polymeric nanomaterials contribute to their ability to navigate the intracellular space, here we utilise fluorophores to model component selection, varying the fluorescent handle selected and its method of incorporation. We explore the intracellular behaviours of well-characterised hyperbranched polymers in live MDA-MB-468 breast cancer cells in vitro. Changes in distribution as a function of both fluorophore selection and placement are reported, and our data suggest that the individual components used to produce potential nanomedicines are critical to their overall functioning and efficacy. Further to this, through the use of a novel non-conjugated targeting ligand, we demonstrate that there is inherent competition between component-directing factors and cellular influences on the ultimate fate of the polymers. The behaviours reported here suggest that not only does component selection contribute to intracellular processing, but these factors could potentially be harnessed when designing polymers to ensure improved functionality of future materials for therapeutic delivery.
Collapse
Affiliation(s)
- Joshua D Simpson
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia. and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gayathri R Ediriweera
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia. and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia. and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia. and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig A Bell
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia. and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia. and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and ARC Centre of Excellence for Convergent Bio-Nano Science & Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
68
|
Mittag JJ, Jacobs MR, McManus JJ. Fluorescence Correlation Spectroscopy for Particle Sizing in Highly Concentrated Protein Solutions. Methods Mol Biol 2019; 2039:157-171. [PMID: 31342426 DOI: 10.1007/978-1-4939-9678-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Highly concentrated solutions of biomolecules play an increasingly important role in biopharmaceutical drug development. In these systems, the formation of reversible aggregates by self-association creates a significant analytical challenge, since dilution is often required for techniques such as HPLC/liquid chromatography and analytical ultracentrifugation. There is a growing demand for methods capable of analyzing these assemblies, ideally under formulation conditions (i.e., in the presence of excipients). One approach that addresses this need is based on fluorescence correlation spectroscopy (FCS), which is a flexible and powerful technique to measure the diffusion of fluorescently labeled particles. It is particularly suited to measuring the size distribution of reversible aggregates of proteins or peptides in highly concentrated formulations, since it overcomes some of the challenges associated with other methods. In this protocol, we describe state-of-the-art measurement and analysis of protein self-assembly by determination of particle size distributions in highly concentrated protein solutions using FCS.
Collapse
Affiliation(s)
- Judith J Mittag
- Department of Chemistry, Maynooth University, Maynooth, Kildare, Ireland
| | - Matthew R Jacobs
- Department of Chemistry, Maynooth University, Maynooth, Kildare, Ireland
| | - Jennifer J McManus
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
69
|
Zhu S, Tian R, Antaris AL, Chen X, Dai H. Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900321. [PMID: 31025403 PMCID: PMC6555689 DOI: 10.1002/adma.201900321] [Citation(s) in RCA: 538] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/03/2019] [Indexed: 05/05/2023]
Abstract
Fluorescence bioimaging affords a vital tool for both researchers and surgeons to molecularly target a variety of biological tissues and processes. This review focuses on summarizing organic dyes emitting at a biological transparency window termed the near-infrared-II (NIR-II) window, where minimal light interaction with the surrounding tissues allows photons to travel nearly unperturbed throughout the body. NIR-II fluorescence imaging overcomes the penetration/contrast bottleneck of imaging in the visible region, making it a remarkable modality for early diagnosis of cancer and highly sensitive tumor surgery. Due to their convenient bioconjugation with peptides/antibodies, NIR-II molecular dyes are desirable candidates for targeted cancer imaging, significantly overcoming the autofluorescence/scattering issues for deep tissue molecular imaging. To promote the clinical translation of NIR-II bioimaging, advancements in the high-performance small molecule-derived probes are critically important. Here, molecules with clinical potential for NIR-II imaging are discussed, summarizing the synthesis and chemical structures of NIR-II dyes, chemical and optical properties of NIR-II dyes, bioconjugation and biological behavior of NIR-II dyes, whole body imaging with NIR-II dyes for cancer detection and surgery, as well as NIR-II fluorescence microscopy imaging. A key perspective on the direction of NIR-II molecular dyes for cancer imaging and surgery is also discussed.
Collapse
Affiliation(s)
- Shoujun Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
70
|
Luciano MP, Crooke SN, Nourian S, Dingle I, Nani RR, Kline G, Patel NL, Robinson CM, Difilippantonio S, Kalen JD, Finn MG, Schnermann MJ. A Nonaggregating Heptamethine Cyanine for Building Brighter Labeled Biomolecules. ACS Chem Biol 2019; 14:934-940. [PMID: 31030512 PMCID: PMC6528163 DOI: 10.1021/acschembio.9b00122] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Heptamethine cyanines
are broadly used for a range of near-infrared
imaging applications. As with many fluorophores, these molecules are
prone to forming nonemissive aggregates upon biomolecule conjugation.
Prior work has focused on persulfonation strategies, which only partially
address these issues. Here, we report a new set of peripheral substituents,
short polyethylene glycol chains on the indolenine nitrogens and a
substituted alkyl ether at the C4′ position, that provide exceptionally
aggregation-resistant fluorophores. These symmetrical molecules are
net-neutral, can be prepared in a concise sequence, and exhibit no
evidence of H-aggregation even at high labeling density when
appended to monoclonal antibodies or virus-like particles. The resulting
fluorophore–biomolecule conjugates exhibit exceptionally bright in vitro and in vivo signals when compared
to a conventional persulfonated heptamethine cyanine. Overall, these
efforts provide a new class of heptamethine cyanines with significant
utility for complex labeling applications.
Collapse
Affiliation(s)
- Michael P. Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Stephen N. Crooke
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Saghar Nourian
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ivan Dingle
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Roger R. Nani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Gabriel Kline
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nimit L. Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Christina M. Robinson
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Simone Difilippantonio
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Joseph D. Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
71
|
Debie P, Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front Pharmacol 2019; 10:510. [PMID: 31139085 PMCID: PMC6527780 DOI: 10.3389/fphar.2019.00510] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescence imaging is an emerging technology that can provide real-time information about the operating field during cancer surgery. Non-specific fluorescent agents, used for the assessment of blood flow and sentinel lymph node detection, have so far dominated this field. However, over the last decade, several clinical studies have demonstrated the great potential of targeted fluorescent tracers to visualize tumor lesions in a more specific way. This has led to an exponential growth in the development of novel molecular fluorescent contrast agents. In this review, the design of fluorescent molecular tracers will be discussed, with particular attention for agents and approaches that are of interest for clinical translation.
Collapse
Affiliation(s)
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
72
|
Zettlitz KA, Waldmann CM, Tsai WTK, Tavaré R, Collins J, Murphy JM, Wu AM. A Dual-Modality Linker Enables Site-Specific Conjugation of Antibody Fragments for 18F-Immuno-PET and Fluorescence Imaging. J Nucl Med 2019; 60:1467-1473. [PMID: 30877181 DOI: 10.2967/jnumed.118.223560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/06/2019] [Indexed: 12/30/2022] Open
Abstract
Antibody-based dual-modality (PET/fluorescence) imaging enables both presurgery antigen-specific immuno-PET for noninvasive whole-body evaluation and intraoperative fluorescence for visualization of superficial tissue layers for image-guided surgery. Methods: We developed a universal dual-modality linker (DML) that facilitates site-specific conjugation to a cysteine residue-bearing antibody fragment, introduction of a commercially available fluorescent dye (via an amine-reactive prosthetic group), and rapid and efficient radiolabeling via click chemistry with 18F-labeled trans-cyclooctene (18F-TCO). To generate a dual-modality antibody fragment-based imaging agent, the DML was labeled with the far-red dye sulfonate cyanine 5 (sCy5), site-specifically conjugated to the C-terminal cysteine of the anti-prostate stem cell antigen (PSCA) cys-diabody A2, and subsequently radiolabeled by click chemistry with 18F-TCO. The new imaging probe was evaluated in a human PSCA-positive prostate cancer xenograft model by sequential immuno-PET and optical imaging. Uptake in target tissues was confirmed by ex vivo biodistribution. Results: We successfully synthesized a DML for conjugation of a fluorescent dye and 18F. The anti-PSCA cys-diabody A2 was site-specifically conjugated with either DML or sCy5 and radiolabeled via click chemistry with 18F-TCO. Immuno-PET imaging confirmed in vivo antigen-specific targeting of prostate cancer xenografts as early as 1 h after injection. Rapid renal clearance of the 50-kDa antibody fragment enables same-day imaging. Optical imaging showed antigen-specific fluorescent signal in PSCA-positive xenografts and high contrast to surrounding tissue and PSCA-negative xenografts. Conclusion: The DML enables site-specific conjugation away from the antigen-binding site of antibody fragments, with a controlled linker-to-protein ratio, and combines signaling moieties for 2 imaging systems into 1 molecule. Dual-modality imaging could provide both noninvasive whole-body imaging with organ-level biodistribution and fluorescence image-guided identification of tumor margins during surgery.
Collapse
Affiliation(s)
- Kirstin A Zettlitz
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Christopher M Waldmann
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Wen-Ting K Tsai
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Richard Tavaré
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jeffrey Collins
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jennifer M Murphy
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
73
|
Debie P, Devoogdt N, Hernot S. Targeted Nanobody-Based Molecular Tracers for Nuclear Imaging and Image-Guided Surgery. Antibodies (Basel) 2019; 8:E12. [PMID: 31544818 PMCID: PMC6640687 DOI: 10.3390/antib8010012] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging is paving the way towards noninvasive detection, staging, and treatment follow-up of diseases such as cancer and inflammation-related conditions. Monoclonal antibodies have long been one of the staples of molecular imaging tracer design, although their long blood circulation and high nonspecific background limits their applicability. Nanobodies, unique antibody-binding fragments derived from camelid heavy-chain antibodies, have excellent properties for molecular imaging as they are able to specifically find their target early after injection, with little to no nonspecific background. Nanobody-based tracers using either nuclear or fluorescent labels have been heavily investigated preclinically and are currently making their way into the clinic. In this review, we will discuss different important factors in nanobody-tracer design, as well as the current state of the art regarding their application for nuclear and fluorescent imaging purposes. Furthermore, we will discuss how nanobodies can also be exploited for molecular therapy applications such as targeted radionuclide therapy and photodynamic therapy.
Collapse
Affiliation(s)
- Pieterjan Debie
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Nick Devoogdt
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
74
|
Khera E, Thurber GM. Pharmacokinetic and Immunological Considerations for Expanding the Therapeutic Window of Next-Generation Antibody-Drug Conjugates. BioDrugs 2019; 32:465-480. [PMID: 30132210 DOI: 10.1007/s40259-018-0302-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibody-drug conjugate (ADC) development has evolved greatly over the last 3 decades, including the Food and Drug Administration (FDA) approval of several new drugs. However, translating ADCs from the design stage and preclinical promise to clinical success has been a major hurdle for the field, particularly for solid tumors. The challenge in clinical development can be attributed to the difficulty in connecting the design of these multifaceted agents with the impact on clinical efficacy, especially with the accelerated development of 'next-generation' ADCs containing a variety of innovative biophysical developments. Given their complex nature, there is an urgent need to integrate holistic ADC characterization approaches. This includes comprehensive in vivo assessment of systemic, intratumoral and cellular pharmacokinetics, pharmacodynamics, toxicodynamics, and interactions with the immune system, with the aim of optimizing the ADC therapeutic window. Pharmacokinetic/pharmacodynamic factors influencing the ADC therapeutic window include (1) selecting optimal target and ADC components for prolonged and stable plasma circulation to increase tumoral uptake with minimal non-specific systemic toxicity, (2) balancing homogeneous intratumoral distribution with efficient cellular uptake, and (3) translating improved ADC potency to better clinical efficacy. Balancing beneficial immunological effects such as Fc-mediated and payload-mediated immune cell activation against harmful immunogenic/toxic effects is also an emerging concern for ADCs. Here, we review practical considerations for tracking ADC efficacy and toxicity, as aided by high-resolution biomolecular and immunological tools, quantitative pharmacology, and mathematical models, all of which can elucidate the relative contributions of the multitude of interactions governing the ADC therapeutic window.
Collapse
Affiliation(s)
- Eshita Khera
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
75
|
Tsai WK, Zettlitz KA, Tavaré R, Kobayashi N, Reiter RE, Wu AM. Dual-Modality ImmunoPET/Fluorescence Imaging of Prostate Cancer with an Anti-PSCA Cys-Minibody. Am J Cancer Res 2018; 8:5903-5914. [PMID: 30613270 PMCID: PMC6299441 DOI: 10.7150/thno.27679] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
Inadequate diagnostic methods for prostate cancer lead to over- and undertreatment, and the inability to intraoperatively visualize positive margins may limit the success of surgical resection. Prostate cancer visualization could be improved by combining the complementary modalities of immuno-positron emission tomography (immunoPET) for preoperative disease detection, and fluorescence imaging-guided surgery (FIGS) for real-time intraoperative tumor margin identification. Here, we report on the evaluation of dual-labeled humanized anti-prostate stem cell antigen (PSCA) cys-minibody (A11 cMb) for immunoPET/fluorescence imaging in subcutaneous and orthotopic prostate cancer models. Methods: A11 cMb was site-specifically conjugated with the near-infrared fluorophore Cy5.5 and radiolabeled with 124I or 89Zr. 124I-A11 cMb-Cy5.5 was used for successive immunoPET/fluorescence imaging of prostate cancer xenografts expressing high or moderate levels of PSCA (22Rv1-PSCA and PC3-PSCA). 89Zr-A11 cMb-Cy5.5 dual-modality imaging was evaluated in an orthotopic model. Ex vivo biodistribution at 24 h was used to confirm the uptake values, and tumors were visualized by post-mortem fluorescence imaging. Results: A11 cMb-Cy5.5 retained low nanomolar affinity for PSCA-positive cells. Conjugation conditions were established (dye-to-protein ratio of 0.7:1) that did not affect the biodistribution, pharmacokinetics, or clearance of A11 cMb. ImmunoPET using dual-labeled 124I-A11 cMb-Cy5.5 showed specific targeting to both 22Rv1-PSCA and PC3-PSCA s.c. xenografts in nude mice. Ex vivo biodistribution confirmed specific uptake to PSCA-expressing tumors with 22Rv1-PSCA:22Rv1 and PC3-PSCA:PC3 ratios of 13:1 and 5.6:1, respectively. Consistent with the immunoPET, fluorescence imaging showed a strong signal from both 22Rv1-PSCA and PC3-PSCA tumors compared with non-PSCA expressing tumors. In an orthotopic model, 89Zr-A11 cMb-Cy5.5 immunoPET was able to detect intraprostatically implanted 22Rv1-PSCA cells. Importantly, fluorescence imaging clearly distinguished the prostate tumor from surrounding seminal vesicles. Conclusion: Dual-labeled A11 cMb specifically visualized PSCA-positive tumor by successive immunoPET/fluorescence, which can potentially be translated for preoperative whole-body prostate cancer detection and intraoperative surgical guidance in patients.
Collapse
|
76
|
Liu X, Wang C, Liu Z. Protein-Engineered Biomaterials for Cancer Theranostics. Adv Healthc Mater 2018; 7:e1800913. [PMID: 30260583 DOI: 10.1002/adhm.201800913] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Indexed: 12/18/2022]
Abstract
Proteins are an important class of biomaterials promising a variety of applications such as drug delivery, and imaging or therapy, owing to their biodegradability, biocompatibility, as well as inherent biological activities acting as enzymes, recognizing molecules, or therapeutics by themselves. Over the few past decades, different types of proteins with desired properties have been widely explored for biomedical applications. Many therapeutic proteins have now entered clinical use. This review therefore summarizes various strategies in the engineering of biomaterials for delivery of therapeutic proteins, as well as the recent development of protein-based biomaterials for cancer theranostics.
Collapse
Affiliation(s)
- Xiaowen Liu
- Pharmacology; Department of Basic Medical Sciences; Faculty of Medical Science; Jinan University; Guangzhou Guangdong 510632 China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM); Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices; Soochow University; Suzhou Jiangsu 215123 China
| |
Collapse
|
77
|
Zhu S, Yung BC, Chandra S, Niu G, Antaris AL, Chen X. Near-Infrared-II (NIR-II) Bioimaging via Off-Peak NIR-I Fluorescence Emission. Theranostics 2018; 8:4141-4151. [PMID: 30128042 PMCID: PMC6096392 DOI: 10.7150/thno.27995] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
Significantly reduced photon scattering and minimal tissue autofluorescence levels in the second biological transparency window (NIR-II; 1000-1700 nm) facilitate higher resolution in vivo biological imaging compared to tradition NIR fluorophores (~700-900 nm). However, the existing palette of NIR-II fluorescent agents including semiconducting inorganic nanomaterials and recently introduced small-molecule organic dyes face significant technical and regulatory hurdles prior to clinical translation. Fortunately, recent spectroscopic characterization of NIR-I dyes (e.g., indocyanine green (ICG), IRDye800CW and IR-12N3) revealed long non-negligible emission tails reaching past 1500 nm. Repurposing the most widely used NIR dye in medicine, in addition to those in the midst of clinical trials creates an accelerated pathway for NIR-II clinical translation. This review focuses on the significant advantage of imaging past 1000 nm with NIR-I fluorophores from both a basic and clinical viewpoint. We further discuss optimizing NIR-I dyes around their NIR-II/shortwave infrared (SWIR) emission, NIR-II emission tail characteristics and prospects of NIR-II imaging with clinically available and commercially available dyes.
Collapse
Affiliation(s)
- Shoujun Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 35A Convent Dr, Bethesda, Maryland 20892, United States
| | - Bryant C. Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 35A Convent Dr, Bethesda, Maryland 20892, United States
| | - Swati Chandra
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 35A Convent Dr, Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 35A Convent Dr, Bethesda, Maryland 20892, United States
| | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 35A Convent Dr, Bethesda, Maryland 20892, United States
| |
Collapse
|
78
|
Zhu S, Hu Z, Tian R, Yung BC, Yang Q, Zhao S, Kiesewetter DO, Niu G, Sun H, Antaris AL, Chen X. Repurposing Cyanine NIR-I Dyes Accelerates Clinical Translation of Near-Infrared-II (NIR-II) Bioimaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802546. [PMID: 29985542 DOI: 10.1002/adma.201802546] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/30/2018] [Indexed: 05/24/2023]
Abstract
The significantly reduced tissue autofluorescence and scattering in the NIR-II region (1000-1700 nm) opens many exciting avenues for detailed investigation of biological processes in vivo. However, the existing NIR-II fluorescent agents, including many molecular dyes and inorganic nanomaterials, are primarily focused on complicated synthesis routes and unknown immunogenic responses with limited potential for clinical translation. Herein, the >1000 nm tail emission of conventional biocompatible NIR cyanine dyes with emission peaks at 700-900 nm is systematically investigated, and a type of bright dye for NIR-II imaging with high potential for accelerating clinical translation is identified. The asymmetry of the π domain in the S1 state of NIR cyanine dyes is proven to result in a twisted intramolecular charge-transfer process and NIR-II emission, establishing a general rule to guide future NIR-I/II fluorophore synthesis. The screened NIR dyes are identified to possess a bright emission tail in the NIR-II region along with high quantum yield, high molar-extinction coefficient, rapid fecal excretion, and functional groups amenable for bioconjugation. As a result, NIR cyanine dyes can be used for NIR-II imaging to afford superior contrast and real-time imaging of several biological models, facilitating the translation of NIR-II bioimaging to clinical theranostic applications.
Collapse
Affiliation(s)
- Shoujun Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | | | - Su Zhao
- Nirmidas Biotech, Palo Alto, CA, 94303, USA
| | - Dale O Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai, 200062, China
| | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
79
|
Ilovich O, Qutaish M, Hesterman JY, Orcutt K, Hoppin J, Polyak I, Seaman M, Abu-Yousif AO, Cvet D, Bradley DP. Dual-Isotope Cryoimaging Quantitative Autoradiography: Investigating Antibody–Drug Conjugate Distribution and Payload Delivery Through Imaging. J Nucl Med 2018; 59:1461-1466. [DOI: 10.2967/jnumed.118.207753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/19/2018] [Indexed: 12/24/2022] Open
|
80
|
Zettlitz KA, Tsai WTK, Knowles SM, Kobayashi N, Donahue TR, Reiter RE, Wu AM. Dual-Modality Immuno-PET and Near-Infrared Fluorescence Imaging of Pancreatic Cancer Using an Anti-Prostate Stem Cell Antigen Cys-Diabody. J Nucl Med 2018; 59:1398-1405. [PMID: 29602820 DOI: 10.2967/jnumed.117.207332] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/12/2018] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer has a high mortality rate due to late diagnosis and the tendency to invade surrounding tissues and metastasize at an early stage. A molecular imaging agent that enables both presurgery antigen-specific PET (immuno-PET) and intraoperative near-infrared fluorescence (NIRF) guidance might benefit diagnosis of pancreatic cancer, staging, and surgical resection, which remains the only curative treatment. Methods: We developed a dual-labeled probe based on A2 cys-diabody (A2cDb) targeting the cell-surface prostate stem cell antigen (PSCA), which is expressed in most pancreatic cancers. Maleimide-IRDye800CW was site-specifically conjugated to the C-terminal cys-tag (A2cDb-800) without impairing integrity or affinity (half-maximal binding, 4.3 nM). Direct radioiodination with 124I (124I-A2cDb-800) yielded a specific activity of 159 ± 48 MBq/mg with a radiochemical purity exceeding 99% and 65% ± 4.5% immunoreactivity (n = 3). In vivo specificity for PSCA-expressing tumor cells and biodistribution of the dual-modality tracer were evaluated in a prostate cancer xenograft model and compared with single-labeled 124I-A2cDb. Patient-derived pancreatic ductal adenocarcinoma xenografts (PDX-PDACs) were grown subcutaneously in NSG mice and screened for PSCA expression by immuno-PET. Small-animal PET/CT scans of PDX-PDAC-bearing mice were obtained using the dual-modality 124I-A2cDb-800 followed by postmortem NIRF imaging with the skin removed. Tumors and organs were analyzed ex vivo to compare the relative fluorescent signals without obstruction by other organs. Results: Specific uptake in PSCA-positive tumors and low nonspecific background activity resulted in high-contrast immuno-PET images. Concurrent with the PET studies, fluorescent signal was observed in the PSCA-positive tumors of mice injected with the dual-tracer 124I-A2cDb-800, with low background uptake or autofluorescence in the surrounding tissue. Ex vivo biodistribution confirmed comparable tumor uptake of both 124I-A2cDb-800 and 124I-A2cDb. Conclusion: Dual-modality imaging using the anti-PSCA cys-diabody resulted in high-contrast immuno-PET/NIRF images of PDX-PDACs, suggesting that this imaging agent might offer both noninvasive whole-body imaging to localize PSCA-positive pancreatic cancer and fluorescence image-guided identification of tumor margins during surgery.
Collapse
Affiliation(s)
- Kirstin A Zettlitz
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California .,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California.,David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Wen-Ting K Tsai
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California.,David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Scott M Knowles
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California.,David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Naoko Kobayashi
- David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Urology, UCLA, Los Angeles, California; and
| | - Timothy R Donahue
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California.,David Geffen School of Medicine, UCLA, Los Angeles, California.,Division of General Surgery, Department of Surgery, UCLA, Los Angeles, California
| | - Robert E Reiter
- David Geffen School of Medicine, UCLA, Los Angeles, California.,Department of Urology, UCLA, Los Angeles, California; and
| | - Anna M Wu
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, California.,Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California.,David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
81
|
Cilliers C, Menezes B, Nessler I, Linderman J, Thurber GM. Improved Tumor Penetration and Single-Cell Targeting of Antibody-Drug Conjugates Increases Anticancer Efficacy and Host Survival. Cancer Res 2017; 78:758-768. [PMID: 29217763 DOI: 10.1158/0008-5472.can-17-1638] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/18/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022]
Abstract
Current antibody-drug conjugates (ADC) have made advances in engineering the antibody, linker, conjugation site, small-molecule payload, and drug-to-antibody ratio (DAR). However, the relationship between heterogeneous intratumoral distribution and efficacy of ADCs is poorly understood. Here, we compared trastuzumab and ado-trastuzumab emtansine (T-DM1) to study the impact of ADC tumor distribution on efficacy. In a mouse xenograft model insensitive to trastuzumab, coadministration of trastuzumab with a fixed dose of T-DM1 at 3:1 and 8:1 ratios dramatically improved ADC tumor penetration and resulted in twice the improvement in median survival compared with T-DM1 alone. In this setting, the effective DAR was lowered, decreasing the amount of payload delivered to each targeted cell but increasing the number of cells that received payload. This result is counterintuitive because trastuzumab acts as an antagonist in vitro and has no single-agent efficacy in vivo, yet improves the effectiveness of T-DM1 in vivo Novel dual-channel fluorescence ratios quantified single-cell ADC uptake and metabolism and confirmed that the in vivo cellular dose of T-DM1 alone exceeded the minimum required for efficacy in this model. In addition, this technique characterized cellular pharmacokinetics with heterogeneous delivery after 1 day, degradation and payload release by 2 days, and in vitro cell killing and in vivo tumor shrinkage 2 to 3 days later. This work demonstrates that the intratumoral distribution of ADC, independent of payload dose or plasma clearance, plays a major role in ADC efficacy.Significance: This study shows how lowering the drug-to-antibody ratio during treatment can improve the intratumoral distribution of a antibody-drug conjugate, with implications for improving the efficacy of this class of cancer drugs. Cancer Res; 78(3); 758-68. ©2017 AACR.
Collapse
Affiliation(s)
- Cornelius Cilliers
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Bruna Menezes
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ian Nessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jennifer Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
82
|
Hage C, Gremse F, Griessinger CM, Maurer A, Hoffmann SH, Osl F, Pichler BJ, Kiessling F, Scheuer W, Pöschinger T. Comparison of the Accuracy of FMT/CT and PET/MRI for the Assessment of Antibody Biodistribution in Squamous Cell Carcinoma Xenografts. J Nucl Med 2017; 59:44-50. [DOI: 10.2967/jnumed.117.197178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
|