51
|
Karimzadeh Bardeei L, Seyedjafari E, Hossein G, Nabiuni M, Majles Ara MH, Salber J. Regeneration of Bone Defects in a Rabbit Femoral Osteonecrosis Model Using 3D-Printed Poly (Epsilon-Caprolactone)/Nanoparticulate Willemite Composite Scaffolds. Int J Mol Sci 2021; 22:10332. [PMID: 34638673 PMCID: PMC8508893 DOI: 10.3390/ijms221910332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/12/2023] Open
Abstract
Steroid-associated osteonecrosis (SAON) is a chronic disease that leads to the destruction and collapse of bone near the joint that is subjected to weight bearing, ultimately resulting in a loss of hip and knee function. Zn2+ ions, as an essential trace element, have functional roles in improving the immunophysiological cellular environment, accelerating bone regeneration, and inhibiting biofilm formation. In this study, we reconstruct SAON lesions with a three-dimensional (3D)-a printed composite made of poly (epsilon-caprolactone) (PCL) and nanoparticulate Willemite (npW). Rabbit bone marrow stem cells were used to evaluate the cytocompatibility and osteogenic differentiation capability of the PCL/npW composite scaffolds. The 2-month bone regeneration was assessed by a Micro-computed tomography (micro-CT) scan and the expression of bone regeneration proteins by Western blot. Compared with the neat PCL group, PCL/npW scaffolds exhibited significantly increased cytocompatibility and osteogenic activity. This finding reveals a new concept for the design of a 3D-printed PCL/npW composite-based bone substitute for the early treatment of osteonecrosis defects.
Collapse
Affiliation(s)
- Latifeh Karimzadeh Bardeei
- Developmental Biology Laboratory, Animal Biology Department, School of Biology, College of Science, University of Tehran, Tehran 1417935840, Iran;
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran 1417935840, Iran
| | - Ghamartaj Hossein
- Developmental Biology Laboratory, Animal Biology Department, School of Biology, College of Science, University of Tehran, Tehran 1417935840, Iran;
| | - Mohammad Nabiuni
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran;
| | - Mohammad Hosein Majles Ara
- Photonics Laboratory, Physics Department, Kharazmi University, Tehran 15719-14911, Iran;
- Applied Science Research Centre, Kharazmi University, Tehran 15719-14911, Iran
| | - Jochen Salber
- Salber Laboratory, Centre for Clinical Research, Department of Experimental Surgery, Ruhr-Universität Bochum, 44780 Bochum, Germany;
- Department of Surgery, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, 44892 Bochum, Germany
| |
Collapse
|
52
|
A Review on Printed Electronics: Fabrication Methods, Inks, Substrates, Applications and Environmental Impacts. JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING 2021. [DOI: 10.3390/jmmp5030089] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Innovations in industrial automation, information and communication technology (ICT), renewable energy as well as monitoring and sensing fields have been paving the way for smart devices, which can acquire and convey information to the Internet. Since there is an ever-increasing demand for large yet affordable production volumes for such devices, printed electronics has been attracting attention of both industry and academia. In order to understand the potential and future prospects of the printed electronics, the present paper summarizes the basic principles and conventional approaches while providing the recent progresses in the fabrication and material technologies, applications and environmental impacts.
Collapse
|
53
|
Towards bioengineered skeletal muscle: recent developments in vitro and in vivo. Essays Biochem 2021; 65:555-567. [PMID: 34342361 DOI: 10.1042/ebc20200149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is a functional tissue that accounts for approximately 40% of the human body mass. It has remarkable regenerative potential, however, trauma and volumetric muscle loss, progressive disease and aging can lead to significant muscle loss that the body cannot recover from. Clinical approaches to address this range from free-flap transfer for traumatic events involving volumetric muscle loss, to myoblast transplantation and gene therapy to replace muscle loss due to sarcopenia and hereditary neuromuscular disorders, however, these interventions are often inadequate. The adoption of engineering paradigms, in particular materials engineering and materials/tissue interfacing in biology and medicine, has given rise to the rapidly growing, multidisciplinary field of bioengineering. These methods have facilitated the development of new biomaterials that sustain cell growth and differentiation based on bionic biomimicry in naturally occurring and synthetic hydrogels and polymers, as well as additive fabrication methods to generate scaffolds that go some way to replicate the structural features of skeletal muscle. Recent advances in biofabrication techniques have resulted in significant improvements to some of these techniques and have also offered promising alternatives for the engineering of living muscle constructs ex vivo to address the loss of significant areas of muscle. This review highlights current research in this area and discusses the next steps required towards making muscle biofabrication a clinical reality.
Collapse
|
54
|
Uribe-Gomez J, Posada-Murcia A, Shukla A, Alkhamis H, Salehi S, Ionov L. Soft Elastic Fibrous Scaffolds for Muscle Tissue Engineering by Touch Spinning. ACS APPLIED BIO MATERIALS 2021; 4:5585-5597. [PMID: 35006745 DOI: 10.1021/acsabm.1c00403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This paper reports an approach for the fabrication of highly aligned soft elastic fibrous scaffolds using touch spinning of thermoplastic polycaprolactone-polyurethane elastomers and demonstrates their potential for the engineering of muscle tissue. A family of polyester-polyurethane soft copolymers based on polycaprolactone with different molecular weights and three different chain extenders such as 1,4-butanediol and polyethylene glycols with different molecular weight was synthesized. By varying the molar ratio and molecular weights between the segments of the copolymer, different physicochemical and mechanical properties were obtained. The polymers possess elastic modulus in the range of a few megapascals and good reversibility of deformation after stretching. The combination of the selected materials and fabrication methods allows several essential advantages such as biocompatibility, biodegradability, suitable mechanical properties (elasticity and softness of the fibers), high recovery ratio, and high resilience mimicking properties of the extracellular matrix of muscle tissue. Myoblasts demonstrate high viability in contact with aligned fibrous scaffolds, where they align along the fibers, allowing efficient cell patterning on top of the structures. Altogether, the importance of this approach is the fabrication of highly oriented fiber constructs that can support the proliferation and alignment of muscle cells for muscle tissue engineering applications.
Collapse
Affiliation(s)
- Juan Uribe-Gomez
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Andrés Posada-Murcia
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Amit Shukla
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Hanin Alkhamis
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Sahar Salehi
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| |
Collapse
|
55
|
Qi HJ, Ionov L, Zhao R. Preface: Forum on Novel Stimuli-Responsive Materials for 3D Printing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12637-12638. [PMID: 33761585 DOI: 10.1021/acsami.1c03782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|
56
|
Uribe-Gomez J, Posada-Murcia A, Shukla A, Ergin M, Constante G, Apsite I, Martin D, Schwarzer M, Caspari A, Synytska A, Salehi S, Ionov L. Shape-Morphing Fibrous Hydrogel/Elastomer Bilayers Fabricated by a Combination of 3D Printing and Melt Electrowriting for Muscle Tissue Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:1720-1730. [PMID: 35014518 DOI: 10.1021/acsabm.0c01495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This paper reports an approach for the fabrication of shape-changing bilayered scaffolds, which allow the growth of aligned skeletal muscle cells, using a combination of 3D printing of hyaluronic acid hydrogel, melt electrowriting of thermoplastic polycaprolactone-polyurethane elastomer, and shape transformation. The combination of the selected materials and fabrication methods allows a number of important advantages such as biocompatibility, biodegradability, and suitable mechanical properties (elasticity and softness of the fibers) similar to those of important components of extracellular matrix (ECM), which allow proper cell alignment and shape transformation. Myoblasts demonstrate excellent viability on the surface of the shape-changing bilayer, where they occupy space between fibers and align along them, allowing efficient cell patterning inside folded structures. The bilayer scaffold is able to undergo a controlled shape transformation and form multilayer scroll-like structures with cells encapsulated inside. Overall, the importance of this approach is the fabrication of tubular constructs with a patterned interior that can support the proliferation and alignment of muscle cells for muscle tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dulle Martin
- Forschungszentrum Jülich GmbH Jülich Centre for Neutron Science (JCNS-1) and Institute for Complex Systems (ICS-1), Wilhelm-Johnen-Straße, Jülich 52428, Germany
| | - Madeleine Schwarzer
- Leibniz Institute of Polymer Research Dresden e. V., Hohe Straße 6, Dresden 01069, Germany
| | - Anja Caspari
- Leibniz Institute of Polymer Research Dresden e. V., Hohe Straße 6, Dresden 01069, Germany
| | - Alla Synytska
- Leibniz Institute of Polymer Research Dresden e. V., Hohe Straße 6, Dresden 01069, Germany.,Faculty of Mathematics and Science, Institute of Physical Chemistry and Polymer Physics, Dresden University of Technology, Dresden 01062, Germany
| | - Sahar Salehi
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann Strasse 1, 95447 Bayreuth, Germany
| | | |
Collapse
|