51
|
Wang D, Yang X, Liu Q, Yu L, Ding J. Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture. J Mater Chem B 2018; 6:6067-6079. [PMID: 32254817 DOI: 10.1039/c8tb01949e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Injectable and enzyme-mediated cross-linked hydrogels are promising biomedical materials. However, although poly(ethylene glycol) (PEG) is a popular basic component of synthetic hydrogels, only a few PEG-based enzymatically cross-linked hydrogels have been developed based on branched PEG. Compared with branched PEG, linear PEGs with different molecular weights are readily available and low-cost, while the poor capacity for post-polymerization modifications of linear PEG limited its application on a greater scale. Herein, a linear PEG-based analogue functionalized with multiple phenolic hydroxyl moieties, PEGDA-DTT-HPA, was designed and synthesized via Michael-type polyaddition combined with Steglich esterification. Environmentally friendly hydrogels composed of PEGDA-DTT-HPA were facilely formed under the catalysis of horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2). The gelation time and mechanical strengths of hydrogels were found to be adjusted independently by altering the concentrations of HRP and H2O2, respectively. The hydrogels were further demonstrated as protein drug and cell carriers using bovine serum albumin (BSA) and lentivirus-mediated LifeAct-EGFP overexpressed human mesenchymal stem cells (hMSCs-LifeAct-EGFP), respectively. The BSA-loaded hydrogel systems exhibited a sustained drug release over 3 weeks; the encapsulated hMSCs showed good viability over all time points assessed. Consequently, the current study opens new avenues for the design of PEG-based injectable hydrogels and the PEGDA-DTT-HPA hydrogel has great potential for applications in drug delivery, 3D cell culture and tissue regeneration.
Collapse
Affiliation(s)
- Danni Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|
52
|
Cui S, Yu L, Ding J. Semi-bald Micelles and Corresponding Percolated Micelle Networks of Thermogels. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01014] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
53
|
Le TMD, Duong HTT, Thambi T, Giang Phan V, Jeong JH, Lee DS. Bioinspired pH- and Temperature-Responsive Injectable Adhesive Hydrogels with Polyplexes Promotes Skin Wound Healing. Biomacromolecules 2018; 19:3536-3548. [PMID: 30005160 DOI: 10.1021/acs.biomac.8b00819] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Thai Minh Duy Le
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Huu Thuy Trang Duong
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - V.H. Giang Phan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 70000, Vietnam
| | - Ji Hoon Jeong
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
54
|
Boonlai W, Tantishaiyakul V, Hirun N, Sangfai T, Suknuntha K. Thermosensitive Poloxamer 407/Poly(Acrylic Acid) Hydrogels with Potential Application as Injectable Drug Delivery System. AAPS PharmSciTech 2018; 19:2103-2117. [PMID: 29696613 DOI: 10.1208/s12249-018-1010-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022] Open
Abstract
Thermosensitive hydrogels are of great interest for in situ gelling drug delivery. The thermosensitive vehicle with a gelation temperature in a range of 30-36°C would be convenient to be injected as liquid and transform into gel after injection. To prepare novel hydrogels gelling near body temperature, the gelation temperature of poloxamer 407 (PX) were tailored by mixing PX with poly(acrylic acid) (PAA). The gelation behaviors of PX/PAA systems as well as the interaction mechanism were investigated by tube inversion, viscoelastic, shear viscosity, DSC, SEM, and FTIR studies. The gelation temperature of the plain PX solutions at high concentration of 18, 20, and 22% (w/w) gelled at temperature below 28°C, which is out of the suitable temperature range. Mixing PX with PAA to obtain 18 and 20% (w/w) PX with 1% (w/w) PAA increased the gelation temperature to the desired temperature range of 30-36°C. The intermolecular entanglements and hydrogen bonds between PX and PAA may be responsible for the modulation of the gelation features of PX. The mixtures behaved low viscosity liquid at room temperature with shear thinning behavior enabling their injectability and rapidly gelled at body temperature. The gel strength increased, while the pore size decreased with increasing PX concentration. Metronidazole, an antibiotic used for periodontitis, was incorporated into the matrices, and the drug did not hinder their gelling ability. The gels showed the sustained drug release characteristic. The thermosensitive PX/PAA hydrogel could be a promising injectable in situ gelling system for periodontal drug delivery.
Collapse
|
55
|
Ruan S, Gu Y, Liu B, Gao H, Hu X, Hao H, Jin L, Cai T. Long-Acting Release Microspheres Containing Novel GLP-1 Analog as an Antidiabetic System. Mol Pharm 2018; 15:2857-2869. [PMID: 29763559 DOI: 10.1021/acs.molpharmaceut.8b00344] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) has recently received significant attention as an efficacious way to treat diabetes mellitus. However, the short half-life of the peptide limits its clinical application in diabetes. In our previous study, a novel GLP-1 analog (PGLP-1) with a longer half-life was synthesized and evaluated. Herein, we prepared the PGLP-1-loaded poly(d,l-lactide- co-glycolide) microspheres to achieve long-term effects on blood glucose control. The incorporation of zinc ion into the formulation can effectively decrease the initial burst release, and a uniform drug distribution was obtained, in contrast to native PGLP-1 encapsulated microspheres. We demonstrated that the solubility of the drug encapsulated in microspheres played an important role in in vitro release behavior and drug distribution inside the microspheres. The Zn-PGLP-1 microspheres had a prominent acute glucose reduction effect in the healthy mice. A hypoglycemic effect was observed in the streptozotocin (STZ) induced diabetic mice through a 6-week treatment of Zn-PGLP-1-loaded microspheres. Meanwhile, the administration of Zn-PGLP-1 microspheres led to the β-cell protection and stimulation of insulin secretion. The novel GLP-1 analog-loaded sustained microspheres may greatly improve patient compliance along with a desirable safety feature.
Collapse
|
56
|
Turabee MH, Thambi T, Duong HTT, Jeong JH, Lee DS. A pH- and temperature-responsive bioresorbable injectable hydrogel based on polypeptide block copolymers for the sustained delivery of proteins in vivo. Biomater Sci 2018; 6:661-671. [PMID: 29423489 DOI: 10.1039/c7bm00980a] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Sustained delivery of protein therapeutics is limited owing to the fragile nature of proteins. Despite its great potential, delivery of proteins without any loss of bioactivity remains a challenge in the use of protein therapeutics in the clinic. To surmount this shortcoming, we report a pH- and temperature-responsive in situ-forming injectable hydrogel based on comb-type polypeptide block copolymers for the controlled delivery of proteins. Polypeptide block copolymers, composed of hydrophilic polyethylene glycol (PEG), temperature-responsive poly(γ-benzyl-l-glutamate) (PBLG), and pH-responsive oligo(sulfamethazine) (OSM), exhibit pH- and temperature-induced sol-to-gel transition behavior in aqueous solutions. Polypeptide block copolymers were synthesized by combining N-carboxyanhydride-based ring-opening polymerization and post-functionalization of the chain-end using N-hydroxy succinimide ester activated OSM. The physical properties of polypeptide-based hydrogels were tuned by varying the composition of temperature- and pH-responsive PBLG and OSM in block copolymers. Polypeptide block copolymers were non-toxic to human embryonic kidney cells at high concentrations (2000 μg mL-1). Subcutaneous administration of polypeptide block copolymer sols formed viscoelastic gel instantly at the back of Sprague-Dawley (SD) rats. The in vivo gels exhibited sustained degradation and were found to be bioresorbable in 6 weeks without any noticeable inflammation at the injection site. Anionic characteristics of hydrogels allow efficient loading of a cationic model protein, lysozyme, through electrostatic interaction. Lysozyme-loaded polypeptide block copolymer sols readily formed a viscoelastic gel in vivo and sustained lysozyme release for at least a week. Overall, the results demonstrate an elegant approach to control the release of certain charged proteins and open a myriad of therapeutic possibilities in protein therapeutics.
Collapse
Affiliation(s)
- Md Hasan Turabee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea.
| | | | | | | | | |
Collapse
|
57
|
Ko DY, Patel M, Lee HJ, Jeong B. Coordinating Thermogel for Stem Cell Spheroids and Their Cyto-Effectiveness. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1706286. [DOI: 10.1002/adfm.201706286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Du Young Ko
- Department of Chemistry and Nanoscience; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 03760 Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 03760 Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 03760 Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 03760 Korea
| |
Collapse
|
58
|
Chen J, Huang K, Chen Q, Deng C, Zhang J, Zhong Z. Tailor-Making Fluorescent Hyaluronic Acid Microgels via Combining Microfluidics and Photoclick Chemistry for Sustained and Localized Delivery of Herceptin in Tumors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3929-3937. [PMID: 29302970 DOI: 10.1021/acsami.7b15832] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Antibody therapeutics, though representing a most used biomedicine, suffers from poor in vivo stability, rapid degradation, and frequent injections. Here, we report that fluorescent hyaluronic acid microgels (HMGs) tailor-made by combining microfluidics and "tetrazole-alkene" photoclick chemistry enable sustained and localized delivery of Herceptin in ovarian tumors. HMGs were obtained with a defined size (25-50 μm), narrow size distribution, high stability, and strong green fluorescence. Notably, HMGs exhibited a remarkably high loading of proteins such as Herceptin and IgG with a loading efficiency exceeding 90% at a theoretical protein-loading content of 30 wt %. In vitro protein release experiments revealed a sustained and hyaluronidase (HAase)-dependent release of Herceptin from HMGs, in which 80.6% of Herceptin was released at 1 U/mL HAase in 10 days. The released Herceptin maintained its secondary structure and antitumor activity. In vivo imaging results demonstrated obviously better tumoral retention for Cy5-labeled Herceptin-loaded HMGs following subcutaneous (sc) injection than for the free-protein counterpart. Interestingly, sc injection of the Herceptin-loaded HMGs into SKOV-3 human ovarian tumor-bearing nude mice at a dose of 30 mg Herceptin equiv/kg induced nearly complete tumor suppression, which was significantly more effective than the sc or systemic injection of free Herceptin. These tailor-made fluorescent HMGs appeared as a robust injectable platform for sustained and localized delivery of therapeutic proteins.
Collapse
Affiliation(s)
- Jing Chen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Ke Huang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Qijun Chen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| |
Collapse
|
59
|
Lee SS, Choi GE, Lee HJ, Kim Y, Choy JH, Jeong B. Layered Double Hydroxide and Polypeptide Thermogel Nanocomposite System for Chondrogenic Differentiation of Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42668-42675. [PMID: 29165981 DOI: 10.1021/acsami.7b17173] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stem cell therapy for damaged cartilage suffers from low rates of retention, survival, and differentiation into chondrocytes at the target site. To solve these problems, here we propose a two-dimensional/three-dimensional (2D/3D) nanocomposite system. As a new two-dimensional (2D) material, hexagonal layered double hydroxides (LDHs) with a uniform lateral length of 2-3 μm were prepared by a hydrothermal process. Then, tonsil-derived mesenchymal stem cells (TMSCs), arginylglycylaspartic acid-coated LDHs, and kartogenin (KGN) were incorporated into the gel through the thermal-energy-driven gelation of the system. The cells exhibited a tendency to aggregate in the nanocomposite system. In particular, chondrogenic biomarkers of type II collagen and transcription factor SOX 9 significantly increased at both the mRNA and protein levels in the nanocomposite system, compared to the pure thermogel systems. The inorganic 2D materials increased the rigidity of the matrix, slowed down the release of a soluble factor (KGN), and improved cell-material interactions in the gel. The current 2D/3D nanocomposite system of bioactive LDH/thermogel can be a new platform material overcoming drawbacks of hydrogel-based 3D cell culture systems and is eventually expected to be applied as an injectable stem cell therapy.
Collapse
Affiliation(s)
- Seon Sook Lee
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Go Eun Choi
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Yelin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jin-Ho Choy
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
60
|
Yu S, Zhang D, He C, Sun W, Cao R, Cui S, Deng M, Gu Z, Chen X. Injectable Thermosensitive Polypeptide-Based CDDP-Complexed Hydrogel for Improving Localized Antitumor Efficacy. Biomacromolecules 2017; 18:4341-4348. [PMID: 29141405 DOI: 10.1021/acs.biomac.7b01374] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuangjiang Yu
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Dianliang Zhang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department
of Chemistry, Northeast Normal University, Changchun 130022, China
| | - Chaoliang He
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wujin Sun
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Rangjuan Cao
- Department
of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Shusen Cui
- Department
of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Mingxiao Deng
- Department
of Chemistry, Northeast Normal University, Changchun 130022, China
| | - Zhen Gu
- Joint
Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Xuesi Chen
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
61
|
Shen W, Chen X, Luan J, Wang D, Yu L, Ding J. Sustained Codelivery of Cisplatin and Paclitaxel via an Injectable Prodrug Hydrogel for Ovarian Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40031-40046. [PMID: 29131563 DOI: 10.1021/acsami.7b11998] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The sustained release of both the hydrophilic drug and hydrophobic drug from one delivery system remains challenging in pharmaceutics and biomaterials science. The combination of hydrophilic cisplatin and hydrophobic paclitaxel (PTX) exhibits a clinical survival advantage compared with the individual drug therapy against various tumors such as ovarian cancer. In this study, a localized, long-term codelivery system of cisplatin and PTX was developed using an injectable and thermosensitive polymer-platinum(IV) conjugate hydrogel as the carrier. The thermosensitive Bi(mPEG-PLGA)-Pt(IV) (PtGel) conjugate was synthesized via covalently linking two mPEG-PLGA copolymers onto a Pt(IV) prodrug, and its concentrated aqueous solution exhibited a reversible sol-gel transition upon heating. Meanwhile, the core-corona micelles formed by the amphiphilic conjugates in water could serve as a reservoir for the solubilization of PTX, and thus an injectable binary drug-loaded hydrogel formulation was obtained. We also found that the introduction of PTX into the conjugate hydrogel decreased its sol-gel transition temperature and improved its gel strength. In vitro release experiments showed that both of the loaded drugs were released in a sustained manner for as long as 2.5 months, which was the longest combination delivery of these two drugs ever reported. In vitro cellular assays revealed that the dual-drug system exhibited a synergistic anticancer effect against ovarian cancer cells. Finally, using the SKOV-3 ovarian cancer xenograft mouse model, we demonstrated that a single injection of the PTX-loaded conjugate hydrogel system resulted in enhanced anticancer efficacy and significantly reduced the side effects, when compared with the multiple injections of the free drug combination.
Collapse
Affiliation(s)
- Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Danni Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai 200433, China
| |
Collapse
|
62
|
Liu M, Song X, Wen Y, Zhu JL, Li J. Injectable Thermoresponsive Hydrogel Formed by Alginate-g-Poly(N-isopropylacrylamide) That Releases Doxorubicin-Encapsulated Micelles as a Smart Drug Delivery System. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35673-35682. [PMID: 28937214 DOI: 10.1021/acsami.7b12849] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we have synthesized a thermoresponsive copolymer, alginate-g-poly(N-isopropylacrylamide) (alginate-g-PNIPAAm) by conjugating PNIPAAm to alginate, where PNIPAAm with different molecular weights and narrow molecular weight distribution was synthesized by atomic transfer radical polymerization. The copolymer dissolved in water or phosphate-buffered saline buffer solution at room temperature and formed self-assembled micelles with low critical micellization concentrations when the temperature increased to above their critical micellization temperatures. At higher concentration, that is, 7.4 wt % in water, the copolymer formed solutions at 25 °C and turned into thermosensitive hydrogels when temperature increased to the body temperature (37 °C). Herein, we hypothesized that the thermoresponsive hydrogels could produce self-assembled micelles with the dissolution of the alginate-g-PNIPAAm hydrogels in a biological fluid or drug release medium. If the drug was hydrophobic, the hydrogel eventually could release and produce drug-encapsulated micelles. In our experiments, we loaded the anticancer drug doxorubicin (DOX) into the alginate-g-PNIPAAm hydrogels and demonstrated that the hydrogels released DOX-encapsulated micelles in a sustained manner. The slowly released DOX-loaded micelles enhanced the cellular uptake of DOX in multidrug resistant AT3B-1 cells, showing the effect of overcoming the drug resistance and achieving better efficiency for killing the cancer cells. Therefore, the injectable thermoresponsive hydrogels formed by alginate-g-PNIPAAm and loaded with DOX turned into a smart drug delivery system, releasing DOX-encapsulated micelles in a sustained manner, showing great potential for overcoming the drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Min Liu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore , 7 Engineering Drive 1, Singapore 117574, Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore , 28 Medical Drive, Singapore 117456, Singapore
| | - Xia Song
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore , 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore , 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Jing-Ling Zhu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore , 7 Engineering Drive 1, Singapore 117574, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore , 7 Engineering Drive 1, Singapore 117574, Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore , 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
63
|
Ji W, Li L, Eniola-Adefeso O, Wang Y, Liu C, Feng C. Non-invasively visualizing cell-matrix interactions in two-photon excited supramolecular hydrogels. J Mater Chem B 2017; 5:7790-7795. [PMID: 32264379 DOI: 10.1039/c7tb02274c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Visualizing the role of extracellular matrix (ECM) in cell bioactivities in three-dimensional (3D) view is highly important for in-depth understanding of fundamental physiological issues in various in vitro experiments. Using current designs it is difficult to produce 3D biomimetic ECM with intrinsic fluorescence under non-invasive near-infrared excitation. Herein, we have designed and synthesized a series of non-conventional coumarin-derived hydrogelators, which can self-assemble to form nanofibrous 3D supramolecular hydrogels through C-HO bonds and be excited by two-photon absorption, ensuring the direct and dynamic visualization of cell-matrix interactions with high resolution images in a 3D environment. Real-time monitoring of ECM-regulated dynamic cell behaviours is highly desirable for future basic and applied research.
Collapse
Affiliation(s)
- Wei Ji
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
64
|
Li Q, Liu C, Wen J, Wu Y, Shan Y, Liao J. The design, mechanism and biomedical application of self-healing hydrogels. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.05.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
65
|
Lee CH, Li YJ, Huang CC, Lai JY. Poly(ε-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment. NANOSCALE 2017; 9:11754-11764. [PMID: 28782783 DOI: 10.1039/c7nr03221h] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glaucoma is an eye-related disease accompanied by highly elevated intraocular pressure (IOP), which causes damage to the optic nerve and results in vision loss and even blindness. Although the treatment of glaucoma with eye drops may reduce the IOP, eye drops have some limitations, such as poor patient compliance and short duration. To develop drug carriers that facilitate the sustained and long-term release of drugs for glaucoma therapy, we synthesized poly(ε-caprolactone) nanoparticles (PCL NPs) capable of loading pilocarpine, a widely used drug for the treatment of dry eye and glaucoma. We prepared two types of PCL NPs, namely, nanospheres (NSs), which are solid spheres capable of harboring the drug in their solid mass, and nanocapsules (NCs), which are hollow spherical structures for encapsulating the drug. The influence of the vesicular structure of PCL NPs on the drug loading efficiencies and release was investigated. The loading of pilocarpine in the PCL NCs was approximately 3 times higher than that in the PCL NSs. In addition, pilocarpine-loaded PCL NCs (PILO-PCL NCs) exhibited a sustained drug release profile. Effective pharmacological responses (i.e., IOP reduction and pupillary constriction) were observed in rabbits intracamerally treated with pilocarpine-loaded PCL NPs. Moreover, the PILO-PCL NCs show long-term therapeutic ability in alleviating ocular hypertension-induced corneal and retinal injuries under physiological conditions, even after 42 days. The results of in vivo studies also reveal that the PCL NCs are advantageous for the treatment of chronic ocular hypertension in glaucomatous eyes.
Collapse
Affiliation(s)
- Chih-Hung Lee
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | | | | | | |
Collapse
|
66
|
Shang H, Chen X, Liu Y, Yu L, Li J, Ding J. Cucurbit[7]-assisted sustained release of human calcitonin from thermosensitive block copolymer hydrogel. Int J Pharm 2017; 527:52-60. [DOI: 10.1016/j.ijpharm.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/18/2017] [Accepted: 05/03/2017] [Indexed: 11/28/2022]
|
67
|
Luginbuhl KM, Schaal JL, Umstead B, Mastria EM, Li X, Banskota S, Arnold S, Feinglos M, D’Alessio D, Chilkoti A. One-week glucose control via zero-order release kinetics from an injectable depot of glucagon-like peptide-1 fused to a thermosensitive biopolymer. Nat Biomed Eng 2017; 1:0078. [PMID: 29062587 PMCID: PMC5650111 DOI: 10.1038/s41551-017-0078] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/25/2017] [Indexed: 12/30/2022]
Abstract
Stimulation of the glucagon-like peptide-1 (GLP1) receptor is a useful treatment strategy for type 2 diabetes because of pleiotropic effects, including the regulation of islet hormones and the induction of satiety. However, the native ligand for the GLP1 receptor has a short half-live owing to enzymatic inactivation and rapid clearance. Here, we show that a subcutaneous depot formed after a single injection of GLP1 recombinantly fused to a thermosensitive elastin-like polypeptide results in zero-order release kinetics and circulation times of up to 10 days in mice and 17 days in monkeys. The optimized pharmacokinetics leads to 10 days of glycemic control in three different mouse models of diabetes, as well as to the reduction of glycosylated hemoglobin levels and weight gain in ob/ob mice treated once weekly for 8 weeks. Our results suggest that the optimized GLP1 formulation could enhance therapeutic outcomes by eliminating peak-and-valley pharmacokinetics and improving overall safety and tolerability. The design principles that we established should be broadly applicable for improving the pharmacological performance of other peptide and protein therapeutics.
Collapse
Affiliation(s)
- Kelli M. Luginbuhl
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jeffrey L. Schaal
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Bret Umstead
- PhaseBio Pharmaceuticals, Inc., Malvern, Pennsylvania 19355, USA
| | - Eric M. Mastria
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Samagya Banskota
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Susan Arnold
- PhaseBio Pharmaceuticals, Inc., Malvern, Pennsylvania 19355, USA
| | - Mark Feinglos
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David D’Alessio
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
68
|
Zhu H, Cai X, Wu L, Gu Z. A facile one-step gelation approach simultaneously combining physical and chemical cross-linking for the preparation of injectable hydrogels. J Mater Chem B 2017; 5:3145-3153. [PMID: 32263712 DOI: 10.1039/c7tb00396j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Injectable hydrogels are promising substrates for tissue engineering and drug delivery applications, while the existing hydrogels and gelation approaches usually have unsatisfactory mechanical strength, notable cytotoxicity, limited controllability, and complex and time-consuming gelation process. Herein, an ultra-facile and versatile approach is reported to overcome these problems via a simultaneously occurring physical (hydrogen bond and π-π stacking) and chemical (transesterification) cross-linking between the polyamidoamine (PAMAM) and N-hydroxysuccinimide/maleimide dual-functionalized PEG (NHS-PEG-MAL). Because of skillfully integrated major advantages of individual physical and chemical cross-linking, as well as due to the simplification of the complex and time-consuming gelation process of sequential multi-step cross-linking, this approach displays various advantages over traditional ones, including excellent mechanical strength, good homogeneity and plasticity, good controllability in gelation rate (tens of seconds to several minutes), porosity and storage modulus (several kPa to several MPa). Moreover, this approach demonstrates a relatively gentle and safe gelation process accompanied by favorable biocompatibility for 3D cell culture. The cell viability of all the resultant hydrogels is >80% after culturing for 2 days, which even increases to >90% for 10% w/v hydrogels. Taken together, this study reports an ultra-facile and versatile approach for the preparation of injectable hydrogels with numerous advanced features enabling various biomedical applications.
Collapse
Affiliation(s)
- Haofang Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610065, P. R. China.
| | | | | | | |
Collapse
|
69
|
Sun J, Lei Y, Dai Z, Liu X, Huang T, Wu J, Xu ZP, Sun X. Sustained Release of Brimonidine from a New Composite Drug Delivery System for Treatment of Glaucoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7990-7999. [PMID: 28198606 DOI: 10.1021/acsami.6b16509] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A novel layered double hydroxide (LDH) nanoparticle/thermogel composite drug delivery system (DDS) for sustained release of brimonidine (Bri) has been designed, prepared, and characterized in this study for treatment of severe glaucoma. Brimonidine is first loaded onto LDH (Bri@LDH) nanoparticles, which are then dispersed in the thermogel consisting of plenty of micelles based on poly(dl-lactic acid-co-coglycolic acid)-polyethylene glycol-poly(dl-lactic acid-co-coglycolic acid) (PLGA-PEG-PLGA) copolymer. The Bri@LDH/Thermogel DDS containing 125.0 μg/g of brimonidine has been found to sustainably release the drug for up to 144 h, significantly extending the drug release period compared to that from Bri@LDH nanoparticles. The Bri@LDH/Thermogel DDS is not cytotoxic to human corneal epithelial cells and shows good biocompatibility. In vivo drug release from the special contact lens made of Bri@LDH/Thermogel DDS has been sustained for at least 7 days, which more effectively modulates the relief of intraocular pressure (IOP). Thus, the Bri@LDH/Thermogel DDS is a promising drug delivery alternative that can be used for treatment of severe glaucoma.
Collapse
Affiliation(s)
- Jianguo Sun
- Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence for Functional Nanomaterials, The University of Queensland , Brisbane, Queensland 4072, Australia
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | | | | | | | | | - Jihong Wu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University , Shanghai 200032, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence for Functional Nanomaterials, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Xinghuai Sun
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University , Shanghai 200032, China
| |
Collapse
|
70
|
Luan J, Cui S, Wang J, Shen W, Yu L, Ding J. Positional isomeric effects of coupling agents on the temperature-induced gelation of triblock copolymer aqueous solutions. Polym Chem 2017. [DOI: 10.1039/c7py00232g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The linking angles of positional isomers in the middle of thermogelling mPEG-PLGA-mPEG polymers were found to affect their microscopic conformations and macroscopic properties.
Collapse
Affiliation(s)
- Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Juntao Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
71
|
Sun J, Liu X, Lei Y, Tang M, Dai Z, Yang X, Yu X, Yu L, Sun X, Ding J. Sustained subconjunctival delivery of cyclosporine A using thermogelling polymers for glaucoma filtration surgery. J Mater Chem B 2017; 5:6400-6411. [DOI: 10.1039/c7tb01556a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We successfully developed a subconjunctival delivery system of CsA using an injectable thermogel to inhibit post-surgical scar formation after glaucoma filtration surgery.
Collapse
|