51
|
Two-photon AIEgen based on dicyanoisophorone derivative: Synthesis, characterization and cells imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
52
|
Gao F, Liu G, Qiao M, Li Y, Yi X. Biosensors for the Detection of Enzymes Based on Aggregation-Induced Emission. BIOSENSORS 2022; 12:bios12110953. [PMID: 36354464 PMCID: PMC9688369 DOI: 10.3390/bios12110953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 05/14/2023]
Abstract
Enzymes play a critical role in most complex biochemical processes. Some of them can be regarded as biomarkers for disease diagnosis. Taking advantage of aggregation-induced emission (AIE)-based biosensors, a series of fluorogens with AIE characteristics (AIEgens) have been designed and synthesized for the detection and imaging of enzymes. In this work, we summarized the advances in AIEgens-based probes and sensing platforms for the fluorescent detection of enzymes, including proteases, phosphatases, glycosidases, cholinesterases, telomerase and others. The AIEgens involve organic dyes and metal nanoclusters. This work provides valuable references for the design of novel AIE-based sensing platforms.
Collapse
Affiliation(s)
- Fengli Gao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingyi Qiao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingying Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Correspondence:
| |
Collapse
|
53
|
Su H, Xie T, Liu YU, Cui Y, Wen W, Tang BZ, Qin W. Facile synthesis of ultrabright luminogens with specific lipid droplets targeting feature for in vivo two-photon fluorescence retina imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Suleymanov AA, Kraus BM, Damiens T, Ruggi A, Solari E, Scopelliti R, Fadaei‐Tirani F, Severin K. Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Barbara M. Kraus
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thibault Damiens
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie Université de Fribourg 1700 Fribourg Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
55
|
Lee KW, Chen H, Wan Y, Zhang Z, Huang Z, Li S, Lee CS. Innovative probes with aggregation-induced emission characteristics for sensing gaseous signaling molecules. Biomaterials 2022; 289:121753. [DOI: 10.1016/j.biomaterials.2022.121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
|
56
|
Rational design of AIE-based carbazole derivatives for lipid droplet-specific imaging in living cells. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
57
|
AIEgen-Peptide Bioprobes for the Imaging of Organelles. BIOSENSORS 2022; 12:bios12080667. [PMID: 36005064 PMCID: PMC9406086 DOI: 10.3390/bios12080667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 01/03/2023]
Abstract
Organelles are important subsystems of cells. The damage and inactivation of organelles are closely related to the occurrence of diseases. Organelles’ functional activity can be observed by fluorescence molecular tools. Nowadays, a series of aggregation-induced emission (AIE) bioprobes with organelles-targeting ability have emerged, showing great potential in visualizing the interactions between probes and different organelles. Among them, AIE luminogen (AIEgen)-based peptide bioprobes have attracted more and more attention from researchers due to their good biocompatibility and photostability and abundant diversity. In this review, we summarize the progress of AIEgen-peptide bioprobes in targeting organelles, including the cell membrane, nucleus, mitochondria, lysosomes and endoplasmic reticulum, in recent years. The structural characteristics and biological applications of these bioprobes are discussed, and the development prospect of this field is forecasted. It is hoped that this review will provide guidance for the development of AIEgen-peptide bioprobes at the organelles level and provide a reference for related biomedical research.
Collapse
|
58
|
Xu FZ, Zhu L, Han HH, Zou JW, Zang Y, Li J, James TD, He XP, Wang CY. Molecularly engineered AIEgens with enhanced quantum and singlet-oxygen yield for mitochondria-targeted imaging and photodynamic therapy. Chem Sci 2022; 13:9373-9380. [PMID: 36092996 PMCID: PMC9384827 DOI: 10.1039/d2sc00889k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Luminogens characteristic of aggregation-induced emission (AIEgens) have been extensively exploited for the development of imaging-guided photodynamic therapeutic (PDT) agents. However, intramolecular rotation of donor-acceptor (D-A) type AIEgens favors non-radiative decay of photonic energy which results in unsatisfactory fluorescence quantum and singlet oxygen yields. To address this issue, we developed several molecularly engineered AIEgens with partially "locked" molecular structures enhancing both fluorescence emission and the production of triplet excitons. A triphenylphosphine group was introduced to form a D-A conjugate, improving water solubility and the capacity for mitochondrial localization of the resulting probes. Experimental and theoretical analyses suggest that the much higher quantum and singlet oxygen yield of a structurally "significantly-locked" probe (LOCK-2) than its "partially locked" (LOCK-1) and "unlocked" equivalent (LOCK-0) is a result of suppressed AIE and twisted intramolecular charge transfer. LOCK-2 was also used for the mitochondrial-targeting, fluorescence image-guided PDT of liver cancer cells.
Collapse
Affiliation(s)
- Fang-Zhou Xu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Ling Zhu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery Shandong 264117 Yantai P. R. China
| | - Jian-Wei Zou
- NingboTech University Ningbo 315100 Zhejiang PR China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery Shandong 264117 Yantai P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Cheng-Yun Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| |
Collapse
|
59
|
He W, Zhang Z, Luo Y, Kwok RTK, Zhao Z, Tang BZ. Recent advances of aggregation-induced emission materials for fluorescence image-guided surgery. Biomaterials 2022; 288:121709. [PMID: 35995625 DOI: 10.1016/j.biomaterials.2022.121709] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/23/2022] [Accepted: 07/31/2022] [Indexed: 01/10/2023]
Abstract
Real-time intraoperative guidance is essential during various surgical treatment of many diseases. Aggregation-induced emission (AIE) materials have shown great potential for guiding surgeons during complex interventions, with the merits of deep tissue penetration, high quantum yield, high molar absorptivity, low background, good targeting ability and excellent photostability. Herein, we provided insights to design efficient AIE materials regarding three key parameters, i.e., deep-tissue penetration ability, high brightness of AIE luminogens (AIEgens), and precise tumor/other pathology nidus targeting strategies, for realizing better application of fluorescence image-guided surgery. Representative interdisciplinary achievements were outlined for the demonstration of this emerging field. Challenges and future opportunities of AIE materials were briefly discussed. The aim of this review is to provide a comprehensive view of AIE materials for intraoperative guidance for researchers and surgeons, and to inspire more further correlational studies in the new frontiers of image-guided surgery.
Collapse
Affiliation(s)
- Wei He
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China; Center for Aggregation-Induced Emission and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| | - Zicong Zhang
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Yumei Luo
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.
| | - Zheng Zhao
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China; Center for Aggregation-Induced Emission and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
60
|
Li J, Zheng H, Lu H, Li J, Yao L, Wang Y, Zhou X, Nie J, Zhu X, Fu Z. Study on pyrrole chalcone derivatives used for blue LED free radical photopolymerization: controllable initiating activity achieved through photoisomerization property. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
61
|
Hong Luo G, Zhao Xu T, Li X, Jiang W, Hong Duo Y, Zhong Tang B. Cellular organelle-targeted smart AIEgens in tumor detection, imaging and therapeutics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
62
|
Naik VG, Hiremath SD, Thakuri A, Hemmadi V, Biswas M, Banerjee M, Chatterjee A. A coumarin coupled tetraphenylethylene based multi-targeted AIEgen for cyanide ion and nitro explosive detection, and cellular imaging. Analyst 2022; 147:2997-3006. [PMID: 35635289 DOI: 10.1039/d2an00040g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A coumarin coupled tetraphenylethylene based AIEgen (TPE-Lac) with an intense greenish-yellow emission has been synthesized and utilized for multipurpose sensing and imaging applications. TPE-Lac acts as a sensitive sensor for the detection of cyanide ions (CN-) with an immediate turn-off response in the presence of many other interfering cations and anions. The limit of detection (LOD) was as low as 33 nM, which is well below the permissible limit set by the World Health Organization (WHO). Cyanide detection in the solid phase was successfully demonstrated by drop-casting the solution of the TPE-Lac probe on TLC plates and measuring and analysing the fluorescence response by ImageJ analysis. TPE-Lac was further employed in the detection of explosive nitroaromatics in solution and solid phases. Also, TPE-Lac was found suitable as an imaging agent and could easily percolate into live H520 cells giving bright fluorescence from the intra-cellular region. Easy and cost-effective synthesis, fast response and low LODs are some of the advantages of this AIEgen over available molecular probes for the same purpose.
Collapse
Affiliation(s)
- Viraj G Naik
- Department of Chemistry, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Sharanabasava D Hiremath
- Department of Chemistry, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Ankit Thakuri
- Department of Chemistry, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Vijay Hemmadi
- Department of Biological Sciences, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Malabika Biswas
- Department of Biological Sciences, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Mainak Banerjee
- Department of Chemistry, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| | - Amrita Chatterjee
- Department of Chemistry, BITS, Pilani K K Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India.
| |
Collapse
|
63
|
Chen W, Chen H, Huang Y, Tan Y, Tan C, Xie Y, Yin J. Molecular Design and Photothermal Application of Thienoisoindigo Dyes with Aggregation-Induced Emission. ACS APPLIED BIO MATERIALS 2022; 5:3428-3437. [PMID: 35748563 DOI: 10.1021/acsabm.2c00363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Organic fluorescent dyes with aggregation-induced emission (AIE) property have an extensive application range, especially in the fields of imaging, labeling, and adjusting microprocesses in aggregated environments. In particular, the thienoisoindigo skeleton, which exhibits an outstanding electron-withdrawing capacity in optoelectronic materials, has been defined as a promising AIE candidate. For instance, by installing AIE blocks or other rotatable groups at two terminal sites, such as various arylamine groups, thienoisoindigo derivatives can be efficiently turned to be functional AIE structures. In this work, a thienoisoindigo derivative with AIE characteristics, namely, TII-TPE, was developed. This AIE system was expanded by linking typical AIE fragments, namely, tetraphenylethene, with the proposed thienoisoindigo derivative, which exhibited typical AIE fluorescence in the 600-850 nm range and maintained high photostability. Then, employing the reported derivative TII-TPA coating thienoisoindigo and triphenylamine as a contrast, aggregated TII-TPE and TII-TPA nanoparticles were prepared and demonstrated photothermal conversion efficiencies of 36.2 and 35.6%, respectively. Moreover, both nanoparticles were evaluated as photothermal therapeutic (PTT) agents in a tumor mouse model, which showed to significantly inhibit tumor growth after four treatment cycles in vivo. This work not only presents an enriched thienoisoindigo system but also provides a pattern for subsequent construction of functional AIE molecules.
Collapse
Affiliation(s)
- Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Huijuan Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yurou Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| | - Yuan Xie
- Guangdong Provincial Key Laboratory of Radioactive and Rare Resource Utilization, Shaoguan 512026, P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
64
|
Near-Infrared-Emissive AIE Bioconjugates: Recent Advances and Perspectives. Molecules 2022; 27:molecules27123914. [PMID: 35745035 PMCID: PMC9229065 DOI: 10.3390/molecules27123914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Near-infrared (NIR) fluorescence materials have exhibited formidable power in the field of biomedicine, benefiting from their merits of low autofluorescence background, reduced photon scattering, and deeper penetration depth. Fluorophores possessing planar conformation may confront the shortcomings of aggregation-caused quenching effects at the aggregate level. Fortunately, the concept of aggregation-induced emission (AIE) thoroughly reverses this dilemma. AIE bioconjugates referring to the combination of luminogens showing an AIE nature with biomolecules possessing specific functionalities are generated via the covalent conjugation between AIEgens and functional biological species, covering carbohydrates, peptides, proteins, DNA, and so on. This perfect integration breeds unique superiorities containing high brightness, good water solubility, versatile functionalities, and prominent biosafety. In this review, we summarize the recent progresses of NIR-emissive AIE bioconjugates focusing on their design principles and biomedical applications. Furthermore, a brief prospect of the challenges and opportunities of AIE bioconjugates for a wide range of biomedical applications is presented.
Collapse
|
65
|
Zang S, Wu S, Xiao L, Deng X, Zhao Y. Hyperbranched Tetraphenylethylene Derivatives with Low Non-specific Aggregation-Induced Emission for Fluorescence Recognition of Proteins with Hydrophobic Pockets. Anal Chem 2022; 94:8365-8372. [PMID: 35653302 DOI: 10.1021/acs.analchem.2c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins play an important role in the physiological process of many organisms, and their abnormal level often indicates the occurrence of some diseases. Therefore, protein analysis has important reference value and clinical significance for early diagnosis and therapy of disease. Using human serum albumin (HSA) as a model protein, a series of super-branched tetraphenylethylene (TPE) derivatives with different branching structures and terminal groups are reported herein for highly sensitive and specific recognition of proteins with hydrophobic cages. Benefiting from the hyperbranched structures, these probes showed much higher critical micelle concentrations (CMCs) than most linear TPE-based amphiphilic molecules since the hyperbranched structure not only improved their solubility but also amplified the steric hindrance effect and electrostatic repulsive force to prevent their aggregation. Dynamic light scattering experiments proved that these probes formed dense aggregates at CMC, and such aggregate structures would lead to a higher background fluorescence noise. Hence, a higher CMC is more conducive to the detection of the target with low backgrounds. Among them, P3-COOH with -COOH as the terminal unit and a relatively longer branch showed the highest CMC and the best signal to background ratio (S/N). Mechanism studies showed that P3-COOH was bound to HSA mainly through a hydrophobic force, resulting in a limited P3-COOH molecular movement and less attack from quenchers in solutions, thus leading to greatly enhanced fluorescence intensity. In addition, P3-COOH was also applied to the determination of HSA content in actual human serum samples.
Collapse
Affiliation(s)
- Shiyu Zang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Shuo Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Lili Xiao
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Xunxun Deng
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yanqiu Zhao
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| |
Collapse
|
66
|
Dual-response fluorescence sensor for detecting Cu2+ and Pd2+ based on bis-tetraphenylimidazole Schiff-base. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
67
|
Li Z, Zhou Y, Cui Y, Liang G. Dual-potential electrochemiluminescent film constructed from single AIE luminogens for the sensitive detection of malachite green. NANOSCALE 2022; 14:7711-7719. [PMID: 35579044 DOI: 10.1039/d2nr01009g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exploiting efficient electrochemiluminescent (ECL) luminogens is crucial for the development of high-performance ECL sensors. Herein, a kind of efficient luminogen (BTPEBT) consisting of benzothiadiazole (BTD) as an electron acceptor and tetraphenylethylene (TPE) as an electron donor was facilely synthesized through a one-step Suzuki reaction. BTPEBT showed typical aggregation-induced emission (AIE) effects with a high solid-state quantum yield of 69.8%. The fabricated solid-state ECL film that is based on single AIE luminogens presented unique dual-potential ECL properties for the first time. The bright ECL of this film could be observed by the naked eye with a satisfactory ECL efficiency of 22.8%. The dense ECL film showed a low electron-transfer resistance, which favors electron transfer among AIE luminogens, electrolytes and the electrode, giving rise to bright ECL emission. The bright ECL film was developed as an ECL sensor for the sensitive and selective detection of malachite green (MG) in a broad linear range from 10-10 to 10-5 M. The limit of detection (LOD) was as low as 7.6 × 10-11 M. Moreover, the ECL sensing platform was further employed to detect MG in a real fish tissue sample with high sensitivity and good specificity. More importantly, the recycled BTPEBT film had good reproducibility for MG detection. The novel dual-potential ECL film constructed from single AIE luminogens provides a promising platform for the sensitive detection of MG in the food industry.
Collapse
Affiliation(s)
- Zihua Li
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yusheng Zhou
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yuhan Cui
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Guodong Liang
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
68
|
Yang Z, Yuan Y, Xu X, Guo H, Yang F. An effective long-wavelength fluorescent sensor for Cu 2+ based on dibenzylidenehydrazine-bridged biphenylacrylonitrile. Anal Bioanal Chem 2022; 414:4707-4716. [PMID: 35562571 DOI: 10.1007/s00216-022-04093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
Although numerous fluorescence sensors for Cu2+ have been presented, a long-wavelength sensor in aqueous media has rarely been reported as expected due to practical application requirements. In this work, a novel AIE molecule (DHBB) containing two biphenylacrylonitrile units bridged by dibenzylidenehydrazine was prepared. It possessed the merits of long-wavelength emission, good emission in aqueous media, and multiple functional groups for binding Cu2+. It exhibited good sensing selectivity for Cu2+ among all kinds of tested metal ions. The detection limit was as low as 1.08 × 10-7 M. The sensing mechanism was clarified as 1:1 stoichiometric ratio based on the binding cooperation of O and N functional groups of DHBB. The selective sensing ability for Cu2+ remained stable at pH = 5-9 and was influenced little by other metal ions. The Cu2+ sensing ability of DHBB was applied in real samples with 96% recovery rate. The bio-imaging experiment of living cells suggested that DHBB possessed not only good bio-imaging performance but also sensing ability for Cu2+ in living environments. This work suggested the good application prospect of DHBB to sense Cu2+ in real samples and living environment.
Collapse
Affiliation(s)
- Zengwei Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China
| | - Yufei Yuan
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fuzhou, 350007, People's Republic of China
| | - Xiangfei Xu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China. .,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China. .,Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fuzhou, 350007, People's Republic of China.
| |
Collapse
|
69
|
Dual-ratiometric fluorescence probe for viscosity and hypochlorite based on AIEgen with mitochondria-targeting ability. Talanta 2022; 241:123235. [DOI: 10.1016/j.talanta.2022.123235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/22/2022]
|
70
|
Highly specific esterase activated AIE plus ESIPT probe for sensitive ratiometric detection of carbaryl. Talanta 2022; 246:123517. [PMID: 35523022 DOI: 10.1016/j.talanta.2022.123517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 12/30/2022]
Abstract
Fabrication of facile, sensitive, and accurate pesticide detection strategies plays crucial roles in food safety, environmental protection, and human health. Here, a novel esterase activatable aggregation-induced emission (AIE) plus excited-state intramolecular proton transfer (ESIPT) probe, kaempferol tetraacetate, was designed and synthesized from purified natural kaempferol for ratiometric sensing of carbaryl. Acetate groups are introduced as the esterase reactive sites and AIE plus ESIPT initiator. Kaempferol tetraacetate is an aggregation-caused quenching compound that shows fluorescent (FL) emission at 415 nm. Esterase specifically hydrolyzes kaempferol tetraacetate to kaempferol with AIE plus ESIPT characteristics (distinct FL emission, 530 nm; a large Stokes shift, 165 nm within a short time (8 min). Molecular docking and kinetics performance indicate the high affinity and specific hydrolysis of esterase and kaempferol tetraacetate. Carbaryl inhibits the activity of esterase to efficiently suppress the production of kaempferol. Thus, a facile ratiometric assay strategy is constructed for carbaryl detection. By measuring the FL intensity ratio, the proposed strategy presents high selectivity and reliability with a wide linear range from 0.02 to 2.00 μg L-1 and a very low limit of detection at 0.007 μg L-1. Furthermore, appropriate recovery from 93.75% to 108.67% with a relative standard deviation less than 5.66% for real sample analysis indicates good accuracy and precision. All results indicate that the fabricated strategy offers a new way for facile, sensitive, and accurate detection of carbaryl in real complex samples.
Collapse
|
71
|
Zhang X, Su SY, Chen XT, Shen LY, Zhang QL, Ni XL, Xu H, Wang ZY, Redshaw C. A New Cationic Fluorescent Probe for HSO 3- Based on Bisulfite Induced Aggregation Self-Assembly. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082378. [PMID: 35458575 PMCID: PMC9033099 DOI: 10.3390/molecules27082378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022]
Abstract
In comparison with the numerous studies that have centered on developing molecular frameworks for the functionalization of fluorescent materials, less research has addressed the influence of the side chains, despite such appendages contributing significantly to the properties and applications of fluorescent materials. In this work, a new series of cationic fluorescent probes with AIE characteristics have been developed, which exhibit unique sensitivity for charge-diffusion anions, namely HSO3−, via the interactions of ions and the cooperation of the controllable hydrophobicity. The impact of the alkyl chain length attached at the cationic probes suggested that the fluorescent intensity and sensitivity of the probes could be partially enhanced by adjusting their aggregation tendency through the action of the hydrophobic effect under aqueous conditions. DLS and SEM images indicated that different particle sizes and new morphologies of the probes were formed in the anion-recognition-triggered self-assembly process, which could be attributed to the composite effect of electrostatic actions, Van der Waals forces and π-π stacking.
Collapse
Affiliation(s)
- Xing Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550004, China; (X.Z.); (X.-T.C.); (L.-Y.S.); (H.X.)
| | - Shao-Yuan Su
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China;
| | - Xuan-Ting Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550004, China; (X.Z.); (X.-T.C.); (L.-Y.S.); (H.X.)
| | - Ling-Yi Shen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550004, China; (X.Z.); (X.-T.C.); (L.-Y.S.); (H.X.)
| | - Qi-Long Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550004, China; (X.Z.); (X.-T.C.); (L.-Y.S.); (H.X.)
- Correspondence: (Q.-L.Z.); (X.-L.N.); (Z.-Y.W.)
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China;
- Correspondence: (Q.-L.Z.); (X.-L.N.); (Z.-Y.W.)
| | - Hong Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550004, China; (X.Z.); (X.-T.C.); (L.-Y.S.); (H.X.)
| | - Zhi-Yong Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550004, China; (X.Z.); (X.-T.C.); (L.-Y.S.); (H.X.)
- Correspondence: (Q.-L.Z.); (X.-L.N.); (Z.-Y.W.)
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, UK;
| |
Collapse
|
72
|
Thiophenitrile triphenylamine as a viscosity-sensitive molecular rotor toward liquid safety inspection. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
73
|
Zha B, Fang S, Chen H, Guo H, Yang F. An effective dual sensor for Cu 2+ and Zn 2+ with long-wavelength fluorescence in aqueous media based on biphenylacrylonitrile Schiff-base. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120765. [PMID: 34959034 DOI: 10.1016/j.saa.2021.120765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Although some sensors for Cu2+ and Zn2+ had been reported, the sensor with long-wavelength emission in aqueous media for in-situ detecting Cu2+ and Zn2+ was always expected. Herein, a biphenylacrylonitrile Schiff-base (OPBS) with large aromatic conjugated system was designed and synthesized in yield of 82%. OPBS possessed excellent long-wavelength fluorescence at 550-750 nm in aqueous media, which selectively response to sense Cu2+ with quenched fluorescence and Zn2+ with chromotropic fluorescence from red to yellow. The detection of Cu2+ and Zn2+ were realized without mutual interference in their coexistence system by means of the assistance of ATP. The detection limits were 2.3 × 10-7 M for Cu2+ and 1.8 × 10-6 M for Zn2+, respectively. The sensing mechanism was elucidated by binding MS spectra, fluorescence Job's plot and 1H NMR spectra. Moreover, OPBS exhibited good bioimaging performance and the in-situ sensing abilities for Cu2+ and Zn2+ in living cells, suggesting the application potential for detecting Cu2+ and Zn2+ in both vitro assay and vivo environment.
Collapse
Affiliation(s)
- Bowen Zha
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Shuting Fang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Huiling Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China.
| |
Collapse
|
74
|
Meti P, Gong YD. Unveiling the structure-property relationship of X-shaped pyrazine-based D-A type luminophores with tunable aggregation-induced emission. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
75
|
Chen KF, Zhang Y, Lin J, Chen JY, Lin C, Gao M, Chen Y, Liu S, Wang L, Cui ZK, Jia YG. Upper Critical Solution Temperature Polyvalent Scaffolds Aggregate and Exterminate Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107374. [PMID: 35129310 DOI: 10.1002/smll.202107374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Specific recognition and strong affinities of bacteria receptors with the host cell glycoconjugates pave the way to control the bacteria aggregation and kill bacteria. Herein, using aggregation-induced emission (AIE) molecules decorated upper critical solution temperature (UCST) polyvalent scaffold (PATC-GlcN), an approach toward visualizing bacteria aggregation and controlling bacteria-polyvalent scaffolds affinities under temperature stimulus is described. Polyvalent scaffolds with diblocks, one UCST block PATC of polyacrylamides showing a sharp UCST transition and typical AIE behavior, the second bacteria recognition block GlcN of hydrophilic glucosamine modified polyacrylamide, are prepared through a reversible addition and fragmentation chain transfer polymerization. Aggregated chain conformation of polyvalent scaffolds at temperature below UCST induces the aggregation of E. coli ATCC8739, because of the high density of glucosamine moieties, whereas beyond UCST, the hydrophilic state of the scaffolds dissociates the bacteria aggregation. The sweet-talking of bacteria toward the polyvalent scaffolds can be visualized by the fluorescent imaging technique, simultaneously. Due to the specific recognition of polyvalent scaffolds with bacteria, the photothermal agent IR780 loaded PATC-GlcN shows the targeted killing ability toward E. coli ATCC8739 in vitro and in vivo under NIR radiation.
Collapse
Affiliation(s)
- Kai-Feng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yiqing Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, 510515, China
| | - Jiawei Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Jun-You Chen
- Department of Cell Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, 510515, China
| | - Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhong-Kai Cui
- Department of Cell Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
76
|
Hu D, Mao L, Wang M, Huang H, Hu R, Ma H, Yuan J, Wei Y. In Situ Visualization of Reversible Diels-Alder Reactions with Self-Reporting Aggregation-Induced Emission Luminogens. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3485-3495. [PMID: 34994541 DOI: 10.1021/acsami.1c20758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dynamic reversible Diels-Alder (DA) reactions play essential roles in both academic and applied fields. Currently, in situ visualization and direct monitoring of the formation and cleavage of covalent bonds in DA reactions are hampered by finite compatibility and expensive precise instruments, especially limited in solid reactions. We herein report a fluorescence system capable of in situ visualization by naked eyes and monitoring DA/retro-DA reactions. With the fluorescence quenching effect, the synthesized TPEMI could work as an innovative self-indicator for both DA termination and retro-DA occurrence. The fluorescence increases during DA reactions, and the mechanism is investigated to establish qualitative and quantitative relations. Besides rapid screening of reaction conditions and monitoring of DA exchange processes, the TPEMI fluorescence system can visualize heterogeneous and solid-state reactions with the AIE character. The TPEMI platform is expected to offer novel insights into reversible DA processes and dynamic covalent chemistry.
Collapse
Affiliation(s)
- Danning Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liucheng Mao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mengshi Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongye Huang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Renjian Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haijun Ma
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinying Yuan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Center for Nanotechnology, Institute of Biomedical Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan, China
| |
Collapse
|
77
|
Thakuri A, Banerjee M, Chatterjee A. Sulfonate‐Functionalized AIEgens: Strategic Approaches Beyond Water Solubility for Sensing and Imaging Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ankit Thakuri
- Department of Chemistry BITS-Pilani, KK Birla Goa Campus NH 17B, Bypass Road, Zuarinagar Sancoale Goa 403726 India
| | - Mainak Banerjee
- Department of Chemistry BITS-Pilani, KK Birla Goa Campus NH 17B, Bypass Road, Zuarinagar Sancoale Goa 403726 India
| | - Amrita Chatterjee
- Department of Chemistry BITS-Pilani, KK Birla Goa Campus NH 17B, Bypass Road, Zuarinagar Sancoale Goa 403726 India
| |
Collapse
|
78
|
Gayathri P, Subramaniyan SB, Veerappan A, Anwarhussaini S, Jayanty S, Pannipara M, Al-Sehemi AG, Moon D, Anthony SP. Dark to bright fluorescence state by inter-connecting fluorophores: concentration-dependent blue to NIR emission and live cell imaging applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj03457c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interconnected AIEgens produced concentration dependent tunable emission from blue to NIR.
Collapse
Affiliation(s)
- Parthasarathy Gayathri
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur – 613401, Tamil Nadu, India
| | - Siva Bala Subramaniyan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur – 613401, Tamil Nadu, India
| | - Anbazhagan Veerappan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur – 613401, Tamil Nadu, India
| | - Syed Anwarhussaini
- Department of Chemistry, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Hyderabad – 500078, India
| | - Subbalakshmi Jayanty
- Department of Chemistry, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Hyderabad – 500078, India
| | - Mehboobali Pannipara
- Department of chemistry, King Khalid University, Abha 61413, Saudi Arabia
- Research center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Abdullah G. Al-Sehemi
- Department of chemistry, King Khalid University, Abha 61413, Saudi Arabia
- Research center for Advanced Materials Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127beongil, Nam-gu, Pohang, Gyeongbuk, Korea
| | | |
Collapse
|
79
|
Bhosle AA, Banerjee M, Gupta V, Ghosh S, Bhasikuttan AC, Chatterjee A. Mechanochemical synthesis of an AIE-TICT-ESIPT active orange-emissive chemodosimeter for selective detection of hydrogen peroxide in aqueous media and living cells, and solid-phase quantitation using a smartphone. NEW J CHEM 2022. [DOI: 10.1039/d2nj03064k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein the design and mechanochemical synthesis of a chemodosimeter, benzothiazole-derived unsymmetrical azine protected by 4-bromomethylphenylboronic acid (BTPAB), an orange aggregation-induced emission (AIE), for the selective detection of H2O2 in a turn-on manner.
Collapse
Affiliation(s)
- Akhil A. Bhosle
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Mainak Banerjee
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| | - Varsha Gupta
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
| | - Surajit Ghosh
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032, India
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Achikanath C. Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Amrita Chatterjee
- Department of Chemistry, BITS Pilani, K. K. Birla Goa Campus, NH 17B Bypass Road, Zuarinagar, Goa 403726, India
| |
Collapse
|
80
|
Guo Y, Pan Y, Tang L. Progresses in Reactive Fluorescent Probes with Fused Aggregation- Induced Emission (AIE) and Excited State Intramolecular Proton Transfer (ESIPT) Structures. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
81
|
Zhu H, Zhang S, Yang J, Wu M, Wu Q, Liu J, Zhang J, Kong L, Yang J. Tunable aggregation-induced emission, solid-state fluorescence, and mechanochromic behaviors of tetraphenylethene-based luminophores by slight modulation of substituent structure. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
82
|
Patra SK, Sen B, Rabha M, Khatua S. An aggregation-induced emission-active bis-heteroleptic ruthenium(ii) complex of thiophenyl substituted phenanthroline for the selective “turn-off” detection of picric acid. NEW J CHEM 2022. [DOI: 10.1039/d1nj04798a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A bis-heteroleptic Ru(ii) polypyridine complex-based AIEgen has been developed for the selective detection of nitroaromatic explosive picric acid in aqueous media.
Collapse
Affiliation(s)
- Sumit Kumar Patra
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Monosh Rabha
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India
| |
Collapse
|
83
|
Wu F, Huang Y, Yang X, Hu JJ, Lou X, Xia F, Song Y, Jiang L. Tunning Intermolecular Interaction of Peptide-Conjugated AIEgen in Nano-Confined Space for Quantitative Detection of Tumor Marker Secreted from Cells. Anal Chem 2021; 93:16257-16263. [PMID: 34809422 DOI: 10.1021/acs.analchem.1c04422] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Determining the expression level of biomarkers is crucial for disease diagnosis. However, the low abundance of biomarkers in the early stage makes the detection extremely difficult by traditional aggregation-induced emission (AIE)-based fluorescent probes. Here, by tuning the intermolecular interaction, a two steps-based MP/NPs-SLIPS sensing system is designed for ultrasensitive detection of the tumor marker matrix metalloproteinase-2 (MMP-2). During the sensing process, aggregation of AIE residual could be intensified through the electrostatic absorption by negatively charged nanoparticles (NPs), as well as the confined space formed by the self-assembly of NPs to photonic crystals (PCs) on slippery lubricant-infused porous substrates (SLIPS). The fluorescent signals obviously increased with a strengthened aggregation degree, which contributes to improved sensitivity. Thus, the limit of detection is decreased to 3.7 ng/mL for MP/NPs-SLIPS sensing system, which could be used for detecting the MMP-2 secreted by tumor cells directly. This strategy also demonstrated its potential applications as high-throughput detection devices and will be of significance for the ultrasensitive analysis of biomarkers.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.,Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Xian Yang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.,Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
84
|
Wang J, Zhang L, Li Z. Aggregation-Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Adv Healthc Mater 2021; 10:e2101169. [PMID: 34783194 DOI: 10.1002/adhm.202101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Fluorescent biomedical materials can visualize subcellular structures and therapy processes in vivo. The aggregation-induced emission (AIE) phenomenon helps suppress the quenching effect in the aggregated state suffered by conventional fluorescent materials, thereby contributing to design strategies for fluorescent biomedical materials. Photoresponsive biomedical materials have attracted attention because of the inherent advantages of light; i.e., remote control, high spatial and temporal resolution, and environmentally friendly characteristics, and their combination with AIE facilitates development of fluorescent molecules with efficient photochemical reactions upon light irradiation. In this review, organic compounds with AIE features for biomedical applications and design strategies for photoresponsive AIE luminogens (AIEgens) are first summarized briefly. Applications are then reviewed, with the employment of photoresponsive and AIE-active molecules for photoactivation imaging, super-resolution imaging, light-induced drug delivery, photodynamic therapy with photochromic behavior, and bacterial targeting and killing being discussed at length. Finally, the future outlook for AIEgens is considered with the aim of stimulating innovative work for further development of this field.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Liyao Zhang
- School of Life Sciences Tianjin University Tianjin 300072 China
| | - Zhen Li
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Department of Chemistry Wuhan University Wuhan 430072 China
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
85
|
Wang Y, Xia B, Huang Q, Luo T, Zhang Y, Timashev P, Guo W, Li F, Liang X. Practicable Applications of Aggregation-Induced Emission with Biomedical Perspective. Adv Healthc Mater 2021; 10:e2100945. [PMID: 34418321 DOI: 10.1002/adhm.202100945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Considerable efforts have been made into developing aggregation-induced emission fluorogens (AIEgens)-containing nano-therapeutic systems due to the excellent properties of AIEgens. Compared to other fluorescent molecules, AIEgens have advantages including low background, high signal-to-noise ratio, good sensitivity, and resistance to photobleaching, in addition to being exempt from concentration quenching or aggregation-caused quenching effects. The present review outlines the major developments in the biomedical applications of AIEgens-containing systems. From a literature survey, the recent AIE works are reviewed and the reasons why AIEgens are chosen in various biomedical applications are highlighted. The research activities on AIEgens-containing systems are increasing rapidly, therefore, the present review is timely.
Collapse
Affiliation(s)
- Yuqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino‐Danish Center for Education and Research Sino‐Danish College of University of Chinese Academy of Sciences Beijing 100049 China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qianqian Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino‐Danish Center for Education and Research Sino‐Danish College of University of Chinese Academy of Sciences Beijing 100049 China
| | - Ting Luo
- School of Medicine Nankai University Tianjin 300071 China
- Department of Interventional Ultrasound Chinese PLA General Hospital Beijing 100853 China
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies Institute for Regenerative Medicine Sechenov University Moscow 119991 Russia
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies Institute for Regenerative Medicine Sechenov University Moscow 119991 Russia
| | - Weisheng Guo
- Translational Medicine Center Key Laboratory of Molecular Target and Clinical Pharmacology School of Pharmaceutical Sciences and The Second Affiliated Hospital Guangzhou Medical University Guangzhou 510260 China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
| | - Xing‐Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
86
|
Wang Y, Mei D, Zhang X, Qu DH, Mei J. Visualizing Aβ deposits in live young AD model mice with a simple red/near-infrared-fluorescent AIEgen. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1113-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
87
|
Tang Y, Zhang D, Zhang Y, Liu Y, Cai L, Plaster E, Zheng J. Fundamentals and exploration of aggregation-induced emission molecules for amyloid protein aggregation. J Mater Chem B 2021; 10:2280-2295. [PMID: 34724699 DOI: 10.1039/d1tb01942b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The past decade has witnessed the growing interest and advances in aggregation-induced emission (AIE) molecules as driven by their unique fluorescence/optical properties in particular sensing applications including biomolecule sensing/detection, environmental/health monitoring, cell imaging/tracking, and disease analysis/diagnosis. In sharp contrast to conventional aggregation-caused quenching (ACQ) fluorophores, AIE molecules possess intrinsic advantages for the study of disease-related protein aggregates, but such studies are still at an infant stage with much less scientific exploration. This outlook mainly aims to provide the first systematic summary of AIE-based molecules for amyloid protein aggregates associated with neurodegenerative diseases. Despite a limited number of studies on AIE-amyloid systems, we will survey recent and important developments of AIE molecules for different amyloid protein aggregates of Aβ (associated with Alzheimer's disease), insulin (associated with type 2 diabetes), (α-syn, associated with Parkinson's disease), and HEWL (associated with familial lysozyme systemic amyloidosis) with a particular focus on the working principle and structural design of four types of AIE-based molecules. Finally, we will provide our views on current challenges and future directions in this emerging area. Our goal is to inspire more researchers and investment in this emerging but less explored subject, so as to advance our fundamental understanding and practical design/usages of AIE molecules for disease-related protein aggregates.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Lirong Cai
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Eleanor Plaster
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| |
Collapse
|
88
|
Wang HS, Xia X, Wang Y, Lyu W, Sang M, Gu C, Liu W, Zheng F. Anti-cancer adjuvant drug screening via epithelial-mesenchymal transition-related aptamer probe. Anal Bioanal Chem 2021; 413:6951-6962. [PMID: 34676432 DOI: 10.1007/s00216-021-03669-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is implicated in the pathological processes of cancer metastasis and drug resistance. Anti-cancer drugs may also potentially lead to EMT, resulting in their reduced therapeutic effect. Therefore, the combination of these anti-cancer drugs with anti-EMT agents has been promoted in clinic. Screening anti-EMT drugs and evaluation of EMT process are highly dependent on EMT biomarkers on cell membrane. At present, the detection of EMT biomarker is mainly by Western blot method, which is time-consuming and complicated. In this work, for effectively screening anti-EMT drugs by evaluation of the EMT process, a type of aptamer probe based on aggregation-induced emission (AIE) was designed. The aptamer SYL3C was employed to target the EMT biomarker EpCAM on cell membrane. Two fluorophores, FAM and tetraphenylethene (TPE, an AIE dye), were modified at the two ends of SYL3C, respectively. This aptamer probe (TPE-SYL3C-FAM) can monitor the EpCAM expression, which can be recovered by anti-EMT drugs. By observation of the change in TPE emission intensity, the anti-EMT effect of drugs can be evaluated. The FAM emission was used as internal reference to reduce environmental interferences. This probe can be potentially used to screen anti-EMT agents as anti-cancer adjuvant drugs with high throughput.
Collapse
Affiliation(s)
- Huai-Song Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xingya Xia
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yingming Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Weiping Lyu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Mangmang Sang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Congcong Gu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Feng Zheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
89
|
Xie N, Hou Y, Wang S, Ai X, Bai J, Lai X, Zhang Y, Meng X, Wang X. Second near-infrared (NIR-II) imaging: a novel diagnostic technique for brain diseases. Rev Neurosci 2021; 33:467-490. [PMID: 34551223 DOI: 10.1515/revneuro-2021-0088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Imaging in the second near-infrared II (NIR-II) window, a kind of biomedical imaging technology with characteristics of high sensitivity, high resolution, and real-time imaging, is commonly used in the diagnosis of brain diseases. Compared with the conventional visible light (400-750 nm) and NIR-I (750-900 nm) imaging, the NIR-II has a longer wavelength of 1000-1700 nm. Notably, the superiorities of NIR-II can minimize the light scattering and autofluorescence of biological tissue with the depth of brain tissue penetration up to 7.4 mm. Herein, we summarized the main principles of NIR-II in animal models of traumatic brain injury, cerebrovascular visualization, brain tumor, inflammation, and stroke. Simultaneously, we encapsulated the in vivo process of NIR-II probes and their in vivo and in vitro toxic effects. We further dissected its limitations and following optimization measures.
Collapse
Affiliation(s)
- Na Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Ya Hou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Shaohui Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xiaopeng Ai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Jinrong Bai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xianrong Lai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
90
|
Jiao Z, Guo Z, Huang X, Yang J, Huang J, Liu Y, Liu G, Zhang P, Song C, Tang BZ. 3D-Printed, Portable, Fluorescent-Sensing Platform for Smartphone-Capable Detection of Organophosphorus Residue Using Reaction-Based Aggregation Induced Emission Luminogens. ACS Sens 2021; 6:2845-2850. [PMID: 34406746 DOI: 10.1021/acssensors.1c01178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Development of an easy-to-use, low-cost, household device can help the consumer quickly identify an organophosphorus (OP) residue concentration level. In this work, we demonstrate a 3D-printed, portable, fluorescent-sensing platform for smartphone-capable detection of OPs in vegetables. For development of the proposed device, we utilize the smartphone for capturing the strong thiol-activated fluorescence, which was produced by hydrolysis of OPs in the presence of alkali. The thiol-responsive AIEgen (maleimide-functionalized tetraphenylethylene) was non-emissive in both solution and the solid state but could be readily lighted up by the click addition of thiol to its MI pendant. An android application "Detection" has been developed on the basis of the gray value to analyze the different concentration levels of OPs in vegetable samples. The gray value was linearly related with the concentration of five kinds of organophosphorus residue, ranging from 0 to 20 μg/mL. It was also applied for determination of OPs residue in the leaves of cowpea, celery, and Chinese cabbage. Different from acetylcholinesterase enzyme-based sensors for poor stability under high temperature, the proposed method was a direct detection method for OPs and can be used for rapid monitoring of OPs residue concentration levels before LC-MS analysis.
Collapse
Affiliation(s)
- Zhe Jiao
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zongning Guo
- Huangpu Customs District Technology Center, Dongguan 523000, China
| | - Xuelin Huang
- Huangpu Customs District Technology Center, Dongguan 523000, China
| | - Jialing Yang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jianxiang Huang
- Institute of Quality Standard and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yong Liu
- AIE Institute, Guangzhou 510530, China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence for Nanoscale Biophotonics, Faculty of Engineering, University of New South Wales, Sydney 2052, Australia
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
91
|
Yang J, Zhang Y, Wu X, Dai W, Chen D, Shi J, Tong B, Peng Q, Xie H, Cai Z, Dong Y, Zhang X. Rational design of pyrrole derivatives with aggregation-induced phosphorescence characteristics for time-resolved and two-photon luminescence imaging. Nat Commun 2021; 12:4883. [PMID: 34385449 PMCID: PMC8361132 DOI: 10.1038/s41467-021-25174-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Pure organic room-temperature phosphorescent (RTP) materials have been suggested to be promising bioimaging materials due to their good biocompatibility and long emission lifetime. Herein, we report a class of RTP materials. These materials are developed through the simple introduction of an aromatic carbonyl to a tetraphenylpyrrole molecule and also exhibit aggregation-induced emission (AIE) properties. These molecules show non-emission in solution and purely phosphorescent emission in the aggregated state, which are desirable properties for biological imaging. Highly crystalline nanoparticles can be easily fabricated with a long emission lifetime (20 μs), which eliminate background fluorescence interference from cells and tissues. The prepared nanoparticles demonstrate two-photon absorption characteristics and can be excited by near infrared (NIR) light, making them promising materials for deep-tissue optical imaging. This integrated aggregation-induced phosphorescence (AIP) strategy diversifies the existing pool of bioimaging agents to inspire the development of bioprobes in the future.
Collapse
Affiliation(s)
- Jianhui Yang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yahui Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Xinghui Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Wenbo Dai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Dan Chen
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, People's Republic of China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haiyan Xie
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Xin Zhang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, People's Republic of China.
| |
Collapse
|
92
|
Guo H, Lin J, Zheng L, Yang F. An effective fluorescent sensor for ClO - in aqueous media based on thiophene-cyanostilbene Schiff-base. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119744. [PMID: 33819762 DOI: 10.1016/j.saa.2021.119744] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Although some reports on sensing ClO- had been presented, the ClO- sensor with high selectivity and sensitivity in aqueous media was still expected. Herein, an effective fluorescent sensor for ClO- in aqueous media was designed and synthesized by simple procedure based on cyanostilbene derivative (TCS). TCS exhibited strong fluorescence in aqueous media, which could be selectively quenched by ClO- among various species. The detection limit was as low as 3.2 × 10-8 M. The sensing mechanism of the oxidation of sulfur in thiophene unit was confirmed by the FT-IR spectrum, fluorescence Job's plot, 1H NMR spectrum and MS spectrum. This sensor was successfully applied on detecting ClO- in real sample and living-cell imaging, suggesting its potential application for sensing ClO- in both vitro assay and vivo environment.
Collapse
Affiliation(s)
- Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China
| | - Jianrong Lin
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China
| | - Linlu Zheng
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352106, PR China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, PR China.
| |
Collapse
|
93
|
Deshmukh S, Biradar MR, Kharat K, Bhosale SV. Aggregation induced emission (AIE) materials for mitochondria imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 184:179-204. [PMID: 34749973 DOI: 10.1016/bs.pmbts.2021.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondria are energy producing organelle of the eukaryotic cells. The main activities of mitochondria monitored by various marker molecules are autophagy detection, estimation of Reactive Oxygen Species (ROS), mitochondrial death and Photodynamic therapy in cancer cells. Due to the advantages of specificity and sensitivity, aggregation induced emission (AIE) is now popular for the mitochondria labeling. In this chapter, we would like to discuss three major types of AIEgens probe used in mitochondrial staining. There are three different types of AIEgens available for mitochondrial detection and sensing based on their different structural motifs. The first type of AIEgens is tetraphenylethene (TPE) based molecules. Due to simple engineering architecture, TPE based AIEgens are widely employed in bioimaging applications. AIEgen such as triphenylphosphine (TPP), and triphenylamine (TPA) are also employed as a novel building block. These are successfully used as exceptional lipid droplet (LD)-specific bio probes in cell imaging, assurance of cell combination, and photodynamic cancer cell removal. The third group is the miscellaneous AIEgens probe involved in mitochondria imaging.
Collapse
Affiliation(s)
- Satish Deshmukh
- Department of Chemistry, MSPMs' Deogiri College, Aurangabad, India
| | - Madan R Biradar
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | | | - Sidhanath Vishwanath Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
94
|
Doi M, Muto K, Nara M, Liang N, Sano K, Mori H, Ishige R, Ando S. Photoluminescence Properties of Copolyimides Containing Naphthalene Core and Analysis of Excitation Energy Transfer between the Dianhydride Moieties. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marina Doi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology
| | - Koichiro Muto
- Department of Chemical Science and Engineering, Tokyo Institute of Technology
| | - Mayuko Nara
- Department of Chemical Science and Engineering, Tokyo Institute of Technology
| | - Naiqiang Liang
- Department of Chemical Science and Engineering, Tokyo Institute of Technology
| | - Kosuke Sano
- Chemical Research Laboratory, JFE Chemical Corporation
| | - Hiroaki Mori
- Chemical Research Laboratory, JFE Chemical Corporation
| | - Ryohei Ishige
- Department of Chemical Science and Engineering, Tokyo Institute of Technology
| | - Shinji Ando
- Department of Chemical Science and Engineering, Tokyo Institute of Technology
| |
Collapse
|
95
|
|
96
|
Crown-ether-bridging bis-diphenylacrylonitrile macrocycle: The effective fluorescence sensor for oxytetracycline. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
97
|
Bhosle AA, Hiremath SD, Bhasikuttan AC, Banerjee M, Chatterjee A. Solvent-free mechanochemical synthesis of a novel benzothiazole-azine based ESIPT-coupled orange AIEgen for the selective recognition of Cu2+ ions in solution and solid phase. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113265] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
98
|
Li X, Yu W, Zhao H, Fan Z, Xiao M, Xi R, Xu Y, Meng M. Fluorogenic Biosensors Constructed via Aggregation-Induced Emission based on Enzyme-Catalyzed Coupling Reactions for Detection of Hydrogen Peroxide. ANAL SCI 2021; 37:1275-1279. [PMID: 33896877 DOI: 10.2116/analsci.20p463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hydrogen peroxide (H2O2) is a main reactive oxygen by-product produced in the metabolism of organisms and a common biomarker of oxidative stress. Aggregation-induced emission (AIE) probes for H2O2 have been proposed. Such AIEgens mostly use benzeneboronic acid as a recognition group. Recently, a strategy involving enzyme-catalyzed polymerization of AIE compounds shows great potential in AIEgens design. We herein modify the AIE motif, tetraphenylethene (TPE) with o-phenylenediamine (TPE-TAF), which can be oxidated by H2O2 in HRP to form an intramolecular phenazine structure. Compared with a similar approach, the proposed strategy is simple and the TPE-TAF showed a sensitive "turn-on" fluorescence with H2O2. The detection limit (LOD) is 3.39 μM and the probe is highly specific against H2O2. We further verified the reaction mechanism of the enzyme-catalyzed coupling reaction. The probe is a promising candidate as a stable and safe fluorescent substrate in H2O2 sensing.
Collapse
Affiliation(s)
- Xiaogang Li
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases
| | - Wenxiu Yu
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University
| | - Hongjie Zhao
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University
| | - Zhiwen Fan
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University
| | - Meng Xiao
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases.,Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences
| | - Rimo Xi
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University
| | - Yingchun Xu
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases.,Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences
| | - Meng Meng
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University
| |
Collapse
|
99
|
Imaging, Identification and Inhibition of Microorganisms Using AIEgens. Top Curr Chem (Cham) 2021; 379:21. [PMID: 33835299 DOI: 10.1007/s41061-021-00333-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022]
Abstract
Microorganisms, including bacteria, viruses and fungi, are ubiquitous in nature. Some are extremely beneficial to life on Earth, whereas some cause diseases and disrupt normal human physiology. Pathogenic microorganisms can also undergo mutations and develop resistance to antimicrobial agents, which complicates diagnostic and therapeutic regimens. This calls for continuing efforts to develop new strategies and tools that can provide fast, sensitive and accurate diagnosis, as well as effective treatment of ever-evolving infectious diseases. Aggregation-induced emission luminogens (AIEgens) have shown promise in imaging, identification and inhibition of various microbial species. Compared to conventional organic fluorophores, AIEgens can offer improved photostability, and have found utilities in imaging microorganisms. AIEgens have been shown to detect microbial viability and differentiate among different microbial strains. Theranostic AIEgens that integrate imaging and killing of microbes have also been developed. This review highlights examples in the literature where AIEgens have been employed as molecular probes in the imaging, discrimination and killing of bacteria, viruses and fungi.
Collapse
|
100
|
Zhong X, Yang Q, Chen Y, Jiang Y, Dai Z. Aggregation-induced fluorescence probe for hypochlorite imaging in mitochondria of living cells and zebrafish. J Mater Chem B 2021; 8:7375-7381. [PMID: 32647844 DOI: 10.1039/d0tb01496f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypochlorite is an important active oxygen species formed in living organisms, and rapid and highly sensitive detection of trace hypochlorite is of great significance for understanding the mechanism of diseases caused by abnormal hypochlorite concentrations at an early stage. Although aggregation-induced emission (AIE) probes are highly important for analyte de-tection in living organisms, there is a lack of AIE probes for hypochlorite detection. In this study, two AIE probes based on benzothiazole derivatives (BTD-1 and BTD-2) were designed and synthesized. Both probes exhibited good AIE charac-teristics and allowed different visual detection for hypochlorite. Additionally, the two probes could be used to detect endogenous hypochlorite in mitochondria and were successfully applied for in vivo hypochlorite imaging in zebrafish.
Collapse
Affiliation(s)
- Xiuli Zhong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | | | | | | | | |
Collapse
|