51
|
Dong Z, Wang Y, Wang C, Meng H, Li Y, Wang C. Cationic Peptidopolysaccharide with an Intrinsic AIE Effect for Combating Bacteria and Multicolor Imaging. Adv Healthc Mater 2020; 9:e2000419. [PMID: 32431089 DOI: 10.1002/adhm.202000419] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Indexed: 12/21/2022]
Abstract
An antibacterial polymer peptidopolysaccharide (COS-AMP) that integrates antibacterial and detection functions is constructed with a simple synthetic method. The COS-AMP is constructed by simulating the structure of peptidoglycan of the bacterial cell wall with chitooligosaccharide with intrinsic aggregation-induced emission (AIE) effect as the main chain, as well as a peptide polymer grafted onto its amino group. Based on the AIE effect and excitation-dependent fluorescence of COS-AMP, it is tentatively applied to multicolor imaging and quantification of bacteria. This multicolor imaging helps to match different excitation sources of fluorescent instrument for straightforward imaging and detection. The structural similarity with the bacterial cell wall component facilitates the passage of COS-AMP across the cell wall and destroys the bacterial structure, thus it has a good broad-spectrum antibacterial activity. In addition, aromatic fluorophores are not needed, and excellent biocompatibility will make it have broad application prospects.
Collapse
Affiliation(s)
- Zhenzhen Dong
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Yandong Wang
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Chunlei Wang
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - He Meng
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Yan Li
- School of Materials Science and EngineeringBeijing Advanced Innovation Centre for Biomedical EngineeringBeihang University Beijing 100191 China
| | - Caiqi Wang
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
52
|
Wang Q, Gao F, Zhou X. Redox-responsive AIE micelles for intracellular paclitaxel delivery. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04679-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
53
|
Cuneo T, Gao H. Recent advances on synthesis and biomaterials applications of hyperbranched polymers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1640. [DOI: 10.1002/wnan.1640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/14/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Timothy Cuneo
- Department of Chemistry and Biochemistry University of Notre Dame Indiana USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry University of Notre Dame Indiana USA
| |
Collapse
|
54
|
Wang Y, Nie J, Fang W, Yang L, Hu Q, Wang Z, Sun JZ, Tang BZ. Sugar-Based Aggregation-Induced Emission Luminogens: Design, Structures, and Applications. Chem Rev 2020; 120:4534-4577. [DOI: 10.1021/acs.chemrev.9b00814] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yijia Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jingyi Nie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Wen Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ling Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
55
|
Xia B, Yan X, Fang WW, Chen S, Jiang Z, Wang J, Sun TC, Li Q, Li Z, Lu Y, He T, Cao B, Yang CT. Activatable Cell-Penetrating Peptide Conjugated Polymeric Nanoparticles with Gd-Chelation and Aggregation-Induced Emission for Bimodal MR and Fluorescence Imaging of Tumors. ACS APPLIED BIO MATERIALS 2020; 3:1394-1405. [DOI: 10.1021/acsabm.9b01049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Xu Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Sheng Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - ZhiLin Jiang
- Centre for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, People’s Republic of China
| | - JinChen Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Tian-Ci Sun
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Qing Li
- The Central Laboratory of Medical Research Centre, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230009, People’s Republic of China
| | - Zhen Li
- Centre for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, People’s Republic of China
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - BaoQiang Cao
- Department of General Surgery, Anhui No. 2 Provincial People’s Hospital, Hefei, Anhui 230041, People’s Republic of China
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
- Duke-NUS Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
56
|
Panigrahi A, Are VN, Jain S, Nayak D, Giri S, Sarma TK. Cationic Organic Nanoaggregates as AIE Luminogens for Wash-Free Imaging of Bacteria and Broad-Spectrum Antimicrobial Application. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5389-5402. [PMID: 31931570 DOI: 10.1021/acsami.9b15629] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The increase in the use of bactericides is a matter of grave concern and a serious threat to human health. The present situation demands rapid and efficient detection and elimination of antibiotic-resistant microbes. Herein, we report the synthesis of a simple C3-symmetric molecular system (TGP) with an intrinsic positive charge through a single-step Schiff base condensation. In a water-dimethyl sulfoxide (DMSO) solvent mixture (80:20 v/v), TGP molecules self-aggregate to form spherical nanoparticles with a positively charged surface that displays efficient fluorescence owing to the aggregation-induced emission (AIE) phenomenon. Both Gram-positive and Gram-negative bacteria could be effectively detected through "turn-off" fluorescence spectroscopy as the electrostatic interaction of the resultant nanoaggregates with the negatively charged bacterial surface induced quenching of fluorescence of the nanoparticles. The fluorescence analysis and steady-state lifetime studies of TGP nanoparticles suggest that a nonradiative decay through photoinduced electron transfer from the nanoparticles to the bacterial surface leads to effective fluorescence quenching. Further, the TGP nanoaggregates demonstrate potent antimicrobial activity against microbes such as multidrug-resistant bacteria and fungi at a concentration as low as 74 μg/mL. A combination of factors including ionic surface characteristics of the nanoparticles for strong electrostatic binding on the bacterial surface followed by possible photoinduced electron transfer from the nanoaggregates to the bacterial membrane and enhanced oxidative stress in the membrane resulting from reactive oxygen species (ROS) generation is found accountable for the high antimicrobial activity of the TGP nanoparticles. The effective disruption of membrane integrity in both Gram-positive and Gram-negative bacteria upon interaction with the nanoaggregates can be observed from field emission scanning electron microscopy (FESEM) studies. The development of simple pathways for the molecular design of multifunctional broad-spectrum antimicrobial systems for rapid and real-time detection, wash-free imaging, and eradication of drug-resistant microbes might be crucial to combat pathogenic agents.
Collapse
Affiliation(s)
- Abhiram Panigrahi
- Discipline of Chemistry , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore 453552 , India
| | - Venkata N Are
- Centre of Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore 453552 , India
| | - Siddarth Jain
- Discipline of Chemistry , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore 453552 , India
| | - Debasis Nayak
- Centre of Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore 453552 , India
| | - Santanab Giri
- School of Applied Sciences and Humanities , Haldia Institute of Technology , Haldia 721657 , West Bengal , India
| | - Tridib K Sarma
- Discipline of Chemistry , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore 453552 , India
| |
Collapse
|
57
|
Dong Z, Cui H, Wang Y, Wang C, Li Y, Wang C. Biocompatible AIE material from natural resources: Chitosan and its multifunctional applications. Carbohydr Polym 2020; 227:115338. [DOI: 10.1016/j.carbpol.2019.115338] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 12/30/2022]
|
58
|
|
59
|
Affiliation(s)
- Leonid Patsenker
- Department of Natural SciencesAriel University Ariel 40700 Israel
| | - Gary Gellerman
- Department of Natural SciencesAriel University Ariel 40700 Israel
| |
Collapse
|
60
|
Wang K, Wang MN, Wang QQ, Feng YX, Wu Y, Xing SY, Zhu BL, Zhang ZH. Needle-like supramolecular amphiphilic assembly constructed by the host–guest interaction between calixpyridinium and methotrexate disodium. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
61
|
Wang ZH, Liu JM, Li CY, Wang D, Lv H, Lv SW, Zhao N, Ma H, Wang S. Bacterial Biofilm Bioinspired Persistent Luminescence Nanoparticles with Gut-Oriented Drug Delivery for Colorectal Cancer Imaging and Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36409-36419. [PMID: 31525949 DOI: 10.1021/acsami.9b12853] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Colorectal cancer (CRC) is now one of the leading causes of cancer incidence and mortality. Although nanomaterial-based drug delivery has been used for the treatment of colorectal cancer, inferior targeting ability of existing nanocarriers leads to inefficient treatment and side effects. Moreover, the majority of intravenously administered nanomaterials aggregate into the reticuloendothelial system, leaving a certain hidden risk to human health. All those problems gave great demands for further construction of well-performed and biocompatible nanomaterials for in vivo theranostics. In the present work, from a biomimetic point of view, Lactobacillus reuteri biofilm (LRM) was coated on the surface of trackable zinc gallogermanate (ZGGO) near-infrared persistent luminescence mesoporous silica to create the bacteria bioinspired nanoparticles (ZGGO@SiO2@LRM), which hold the inherent capability of withstanding the digestion of gastric acid and targeted release 5-FU to colorectum. Through the background-free persistent luminescence bioimaging of ZGGO, the coating of LRM facilitated the localization of ZGGO@SiO2@LRM to the tumor area of colorectum for more than 24 h after intragastric administration. Furthermore, ZGGO@SiO2@LRM hardly entered the blood, which avoided possible damage to immune organs such as the liver and spleen. In vivo chemotherapy experiment demonstrated the number of tumors per mouse in ZGGO@SiO2@LRM group decreased by one-half compared with the 5-FU group (P < 0.001). To sum up, this LRM bioinspired nanoparticles could tolerate the digestion of gastric acid, avoid aggregation by the immune system, favor gut-oriented drug delivery, and targeted release oral 5-FU into colorectum for more than 24 h, which may give new application prospects for targeted delivery of oral drugs into the colorectum.
Collapse
Affiliation(s)
- Zhi-Hao Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Di Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Shi-Wen Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Hui Ma
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , China
| |
Collapse
|