51
|
Babler KM, Amirali A, Sharkey ME, Williams SL, Boone MM, Cosculluela GA, Currall BB, Grills GS, Laine J, Mason CE, Reding BD, Schürer SC, Stevenson M, Vidovic D, Solo-Gabriele HM. Comparison of Electronegative Filtration to Magnetic Bead-Based Concentration and V2G-qPCR to RT-qPCR for Quantifying Viral SARS-CoV-2 RNA from Wastewater. ACS ES&T WATER 2022; 2:2004-2013. [PMID: 37601294 PMCID: PMC10438908 DOI: 10.1021/acsestwater.2c00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Methods of wastewater concentration (electronegative filtration (ENF) versus magnetic bead-based concentration (MBC)) were compared for the analysis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), beta-2 microglobulin, and human-coronavirus OC43. Using ENF as the concentration method, two quantitative Polymerase Chain Reaction (qPCR) analytical methods were also compared: Volcano 2nd Generation (V2G)-qPCR and reverse transcriptase (RT)-qPCR measuring three different targets of the virus responsible for the COVID-19 illness (N1, modified N3, and ORF1ab). Correlations between concentration methods were strong and statistically significant for SARS-CoV-2 (r=0.77, p<0.001) and B2M (r=0.77, p<0.001). Comparison of qPCR analytical methods indicate that, on average, each method provided equivalent results with average ratios of 0.96, 0.96 and 1.02 for N3 to N1, N3 to ORF1ab, and N1 to ORF1ab and were supported by significant (p<0.001) correlation coefficients (r =0.67 for V2G (N3) to RT (N1), r =0.74 for V2G (N3) to RT (ORF1ab), r = 0.81 for RT (N1) to RT (ORF1ab)). Overall results suggest that the two concentration methods and qPCR methods provide equivalent results, although variability is observed for individual measurements. Given the equivalency of results, additional advantages and disadvantages, as described in the discussion, are to be considered when choosing an appropriate method.
Collapse
Affiliation(s)
- Kristina M. Babler
- Department of Chemical, Environmental and Materials Engineering, Coral Gables, FL USA
| | - Ayaaz Amirali
- Department of Chemical, Environmental and Materials Engineering, Coral Gables, FL USA
| | - Mark E. Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Sion L. Williams
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
| | - Melinda M. Boone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
| | | | - Benjamin B. Currall
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
| | - George S. Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
| | - Jennifer Laine
- Department of Physiology and Biophysics and the WorldQuant Initiative, Weill Cornell Medicine, New York City, NY USA
| | | | - Brian D. Reding
- Department of Physiology and Biophysics and the WorldQuant Initiative, Weill Cornell Medicine, New York City, NY USA
| | - Stephan C. Schürer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL USA
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicines, Miami, FL USA
- Institute for Data Science & Computing, University of Miami, Coral Gables, FL USA
| | - Mario Stevenson
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Dusica Vidovic
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicines, Miami, FL USA
| | | |
Collapse
|
52
|
Wartell BA, Ballare S, Ghandehari SS, Arcellana PD, Proano C, Kaya D, Niemeier D, Kjellerup BV. Relationship between SARS-CoV-2 in wastewater and clinical data from five wastewater sheds. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100159. [PMID: 36619827 PMCID: PMC9448702 DOI: 10.1016/j.hazadv.2022.100159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 01/17/2023]
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a global pandemic starting in 2019 with nearly 500 million confirmed cases as of April 2022. Infection with SARS-CoV-2 is accompanied by shedding of virus in stool, and its presence in wastewater samples has been documented globally. Therefore, monitoring of SARS-CoV-2 in wastewater offers a promising approach to assess the pandemic situation covering pre-symptomatic and asymptomatic cases in areas with limited clinical testing. In this study, the presence of SARS-CoV-2 RNA in wastewater from five wastewater resource recovery facilities (WRRFs), located in two adjacent counties, was investigated and compared with the number of clinical COVID-19 cases during a 2020-2021 outbreak in United States. Statistical correlation analyses of SARS-CoV-2 viral abundance in wastewater and COVID-19 daily vs weekly clinical cases was performed. While a weak correlation on a daily basis was observed, this correlation improved when weekly clinical case data were applied. The viral fecal indicator Pepper Mild Mottle Virus (PMMoV) was furthermore used to assess the effects of normalization and the impact of dilution due to infiltration in the wastewater sheds. Normalization did not improve the correlations with clinical data. However, PMMoV provided important information about infiltration and presence of industrial wastewater discharge in the wastewater sheds. This study showed the utility of WBE to assist in public health responses to COVID-19, emphasizing that routine monitoring of large WRRFs could provide sufficient information for large-scale dynamics.
Collapse
Affiliation(s)
- Brian A Wartell
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| | - Sudheer Ballare
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| | - Shahrzad Saffari Ghandehari
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| | - Patricia Dotingco Arcellana
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| | - Camila Proano
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| | - Devrim Kaya
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Oregon State University, Department of Chemical, Biological, and Environmental Engineering, 116 Johnson Hall, Corvallis, OR 97331, United States
| | - Debra Niemeier
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| | - Birthe V Kjellerup
- University of Maryland College Park, Department of Civil and Environmental Engineering, 1147 Glenn L. Martin Hall, College Park, MD 20742, United States
- Maryland Transportation Institute, 3244 Jeong H. Kim Engineering Building (UMD Campus), College Park, MD 20742, United States
| |
Collapse
|
53
|
Lu Z, Brunton AE, Mohebnasab M, Deloney A, Williamson KJ, Layton BA, Mansell S, Brawley-Chesworth A, Abrams P, Wilcox KA, Franklin FA, McWeeney SK, Streblow DN, Fan G, Hansel DE. Community-Based SARS-CoV-2 Testing Using Saliva or Nasopharyngeal Swabs to Compare the Performance of Weekly COVID-19 Screening to Wastewater SARS-CoV-2 Signals. ACS ES&T WATER 2022; 2:1667-1677. [PMID: 37552730 PMCID: PMC9528017 DOI: 10.1021/acsestwater.2c00177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 08/10/2023]
Abstract
Multiple studies worldwide have confirmed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA can be detected in wastewater. However, there is a lack of data directly comparing the wastewater SARS-CoV-2 RNA concentration with the prevalence of coronavirus disease 2019 (COVID-19) in individuals living in sewershed areas. Here, we correlate wastewater SARS-CoV-2 signals with SARS-CoV-2 positivity rates in symptomatic and asymptomatic individuals and compare positivity rates in two underserved communities in Portland, Oregon to those reported in greater Multnomah County. 403 individuals were recruited via two COVID-19 testing sites over a period of 16 weeks. The weekly SARS-CoV-2 positivity rate in our cohort ranged from 0 to 21.7% and trended higher than symptomatic positivity rates reported by Multnomah County (1.9-8.7%). Among the 362 individuals who reported symptom status, 76 were symptomatic and 286 were asymptomatic. COVID-19 was detected in 35 participants: 24 symptomatic, 9 asymptomatic, and 2 of unknown symptomatology. Wastewater testing yielded 0.33-149.9 viral RNA genomic copies/L/person and paralleled community COVID-19 positive test rates. In conclusion, wastewater sampling accurately identified increased SARS-CoV-2 within a community. Importantly, the rate of SARS-CoV-2 positivity in underserved areas is higher than positivity rates within the County as a whole, suggesting a disproportionate burden of SARS-CoV-2 in these communities.
Collapse
Affiliation(s)
- Zhengchun Lu
- Department of Pathology & Laboratory Medicine,
Oregon Health & Science University, Portland,
Oregon97239, United States
| | - Amanda E. Brunton
- School of Public Health, Oregon Health
& Science University—Portland State University, Portland,
Oregon97239, United States
| | - Maedeh Mohebnasab
- Department of Pathology & Laboratory Medicine,
Oregon Health & Science University, Portland,
Oregon97239, United States
| | - Anthony Deloney
- Self Enhancement, Inc.,
Portland, Oregon97227, United States
| | - Kenneth J. Williamson
- Department of Research and Innovation,
Clean Water Services, Hillsboro, Oregon97123, United
States
| | - Blythe A. Layton
- Department of Research and Innovation,
Clean Water Services, Hillsboro, Oregon97123, United
States
| | - Scott Mansell
- Department of Research and Innovation,
Clean Water Services, Hillsboro, Oregon97123, United
States
| | | | - Peter Abrams
- City of Portland Bureau of Environmental
Services, Portland, Oregon97204, United States
| | - Kimberly A. Wilcox
- Department of Pathology & Laboratory Medicine,
Oregon Health & Science University, Portland,
Oregon97239, United States
| | - F. Abron Franklin
- School of Public Health, Epidemiology Division,
Oregon Health & Science University—Portland State
University, Portland, Oregon97239, United States
- Departments of Community Health and Preventive Medicine
and Graduate Education in Public Health, Morehouse School of
Medicine, Atlanta, Georgia30310, United States
| | - Shannon K. McWeeney
- Knight Cancer Institute, Oregon Health
and Science University, Portland, Oregon97239, United
States
- Division of Bioinformatics and Computational Biology,
Department of Medical Informatics and Clinical Epidemiology, Oregon Health
and Science University, Portland, Oregon97239, United
States
| | - Daniel N. Streblow
- Vaccine & Gene Therapy Institute,
Oregon Health & Science University, Beaverton,
Oregon97006United States
- Division of Pathobiology and Immunology,
Oregon National Primate Research Center, Beaverton,
Oregon97006, United States
| | - Guang Fan
- Department of Pathology & Laboratory Medicine,
Oregon Health & Science University, Portland,
Oregon97239, United States
| | - Donna E. Hansel
- Department of Pathology & Laboratory Medicine,
Oregon Health & Science University, Portland,
Oregon97239, United States
| |
Collapse
|
54
|
Mercier E, D'Aoust PM, Thakali O, Hegazy N, Jia JJ, Zhang Z, Eid W, Plaza-Diaz J, Kabir MP, Fang W, Cowan A, Stephenson SE, Pisharody L, MacKenzie AE, Graber TE, Wan S, Delatolla R. Municipal and neighbourhood level wastewater surveillance and subtyping of an influenza virus outbreak. Sci Rep 2022; 12:15777. [PMID: 36138059 DOI: 10.1101/2022.06.28.22276884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 05/27/2023] Open
Abstract
Recurrent influenza epidemics and pandemic potential are significant risks to global health. Public health authorities use clinical surveillance to locate and monitor influenza and influenza-like cases and outbreaks to mitigate hospitalizations and deaths. Currently, global integration of clinical surveillance is the only reliable method for reporting influenza types and subtypes to warn of emergent pandemic strains. The utility of wastewater surveillance (WWS) during the COVID-19 pandemic as a less resource intensive replacement or complement for clinical surveillance has been predicated on analyzing viral fragments in wastewater. We show here that influenza virus targets are stable in wastewater and partitions favorably to the solids fraction. By quantifying, typing, and subtyping the virus in municipal wastewater and primary sludge during a community outbreak, we forecasted a citywide flu outbreak with a 17-day lead time and provided population-level viral subtyping in near real-time to show the feasibility of influenza virus WWS at the municipal and neighbourhood levels in near real time using minimal resources and infrastructure.
Collapse
Affiliation(s)
- Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Sean E Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
55
|
Mercier E, D'Aoust PM, Thakali O, Hegazy N, Jia JJ, Zhang Z, Eid W, Plaza-Diaz J, Kabir MP, Fang W, Cowan A, Stephenson SE, Pisharody L, MacKenzie AE, Graber TE, Wan S, Delatolla R. Municipal and neighbourhood level wastewater surveillance and subtyping of an influenza virus outbreak. Sci Rep 2022; 12:15777. [PMID: 36138059 PMCID: PMC9493155 DOI: 10.1038/s41598-022-20076-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Recurrent influenza epidemics and pandemic potential are significant risks to global health. Public health authorities use clinical surveillance to locate and monitor influenza and influenza-like cases and outbreaks to mitigate hospitalizations and deaths. Currently, global integration of clinical surveillance is the only reliable method for reporting influenza types and subtypes to warn of emergent pandemic strains. The utility of wastewater surveillance (WWS) during the COVID-19 pandemic as a less resource intensive replacement or complement for clinical surveillance has been predicated on analyzing viral fragments in wastewater. We show here that influenza virus targets are stable in wastewater and partitions favorably to the solids fraction. By quantifying, typing, and subtyping the virus in municipal wastewater and primary sludge during a community outbreak, we forecasted a citywide flu outbreak with a 17-day lead time and provided population-level viral subtyping in near real-time to show the feasibility of influenza virus WWS at the municipal and neighbourhood levels in near real time using minimal resources and infrastructure.
Collapse
Affiliation(s)
- Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Sean E Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|