51
|
Sun Y, Tao Q, Wu X, Zhang L, Liu Q, Wang L. The Utility of Exosomes in Diagnosis and Therapy of Diabetes Mellitus and Associated Complications. Front Endocrinol (Lausanne) 2021; 12:756581. [PMID: 34764939 PMCID: PMC8576340 DOI: 10.3389/fendo.2021.756581] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus and the associated complications are metabolic diseases with high morbidity that result in poor quality of health and life. The lack of diagnostic methods for early detection results in patients losing the best treatment opportunity. Oral hypoglycemics and exogenous insulin replenishment are currently the most common therapeutic strategies, which only yield temporary glycemic control rather than curing the disease and its complications. Exosomes are nanoparticles containing bioactive molecules reflecting individual physiological status, regulating metabolism, and repairing damaged tissues. They function as biomarkers of diabetes mellitus and diabetic complications. Considering that exosomes are bioactive molecules, can be obtained from body fluid, and have cell-type specificity, in this review, we highlight the multifold effects of exosomes in the pathology and therapy of diabetes mellitus and diabetic complications.
Collapse
Affiliation(s)
- Yaoxiang Sun
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xueqin Wu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Ling Zhang
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qi Liu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Lei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
52
|
Prattichizzo F, Matacchione G, Giuliani A, Sabbatinelli J, Olivieri F, de Candia P, De Nigris V, Ceriello A. Extracellular vesicle-shuttled miRNAs: a critical appraisal of their potential as nano-diagnostics and nano-therapeutics in type 2 diabetes mellitus and its cardiovascular complications. Am J Cancer Res 2021; 11:1031-1045. [PMID: 33391519 PMCID: PMC7738884 DOI: 10.7150/thno.51605] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex multifactorial disease causing the development of a large range of cardiovascular (CV) complications. Lifestyle changes and pharmacological therapies only partially halt T2DM progression, and existing drugs are unable to completely suppress the increased CV risk of T2DM patients. Extracellular vesicles (EV)s are membrane-coated nanoparticles released by virtually all living cells and are emerging as novel mediators of T2DM and its CV complications. As a matter of fact, several preclinical models suggest a key involvement of EVs in the initiation and/or progression of insulin resistance, β-cell dysfunction, diabetic dyslipidaemia, atherosclerosis, and other T2DM complications. In addition, preliminary findings also suggest that EV-associated molecular cargo, and in particular the miRNA repertoire, may provide with useful diagnostic and/or prognostic information for the management of T2DM. Here, we review the latest findings showing that EV biology is altered during the entire trajectory of T2DM, i.e. from diagnosis to development of CV complications. We also critically highlight the potential of this emerging research field, by describing both preclinical and clinical observations, and the limitations that must be overcome to translate the preclinical findings into the development of EV-based nano-diagnostic and/or nano-therapeutic tools. Finally, we summarize how two lifestyle changes known to prevent or limit T2DM, i.e. diet and exercise, affect EV number and composition, with a focus on the possible role of EVs contained in food in shaping metabolic responses, a promising approach still in its infancy.
Collapse
|
53
|
Guo XB, Zhai JW, Xia H, Yang JK, Zhou JH, Guo WB, Yang C, Xia M, Xue KY, Liu CD, Zhou QZ. Protective effect of bone marrow mesenchymal stem cell-derived exosomes against the reproductive toxicity of cyclophosphamide is associated with the p38MAPK/ERK and AKT signaling pathways. Asian J Androl 2021; 23:386-391. [PMID: 33565424 PMCID: PMC8269825 DOI: 10.4103/aja.aja_98_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spermatogenic dysfunction caused by cyclophosphamide (CP) chemotherapy has seriously influenced the life quality of patients. Unfortunately, treatments for CP-induced testicular spermatogenic dysfunction are limited, and the molecular mechanisms are not fully understood. For the first time, here, we explored the effects of bone marrow mesenchymal stem cell-derived exosomes (BMSC-exos) on CP-induced testicular spermatogenic dysfunction in vitro and in vivo. BMSC-exos could be taken up by spermatogonia (GC1-spg cells). CP-injured GC1-spg cells and BMSC-exos were cocultured at various doses, and then, cell proliferation was measured using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. In addition, photophosphorylation of extracellular-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK), and protein kinase B (AKT) proteins was evaluated by western blotting as well as apoptosis in GC1-spg cells measured using flow cytometry. Treatment with BMSC-exos enhanced cell proliferation and reduced apoptosis of CP-injured GCI-spg cells. Phosphorylated levels of ERK, AKT, and p38MAPK proteins were reduced in CP-injured spermatogonia when co-treated with BMSC-exos, indicating that BMSC-exos acted against the reproductive toxicity of CP via the p38MAPK/ERK and AKT signaling pathways. In experiments in vivo, CP-treated rats received BMSC-exos by injection into the tail vein, and testis morphology was compared between treated and control groups. Histology showed that transfusion of BMSC-exos inhibited the pathological changes in CP-injured testes. Thus, BMSC-exos could counteract the reproductive toxicity of CP via the p38MAPK/ERK and AKT signaling pathways. The findings provide a potential treatment for CP-induced male spermatogenic dysfunction using BMSC-exos.
Collapse
Affiliation(s)
- Xiao-Bin Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jia-Wen Zhai
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Hui Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jian-Kun Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jun-Hao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Wen-Bin Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Cheng Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ming Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Kang-Yi Xue
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Cun-Dong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Qi-Zhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
54
|
Xiong J, Hu H, Guo R, Wang H, Jiang H. Mesenchymal Stem Cell Exosomes as a New Strategy for the Treatment of Diabetes Complications. Front Endocrinol (Lausanne) 2021; 12:646233. [PMID: 33995278 PMCID: PMC8117220 DOI: 10.3389/fendo.2021.646233] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease, now prevalent worldwide, which is characterized by a relative or absolute lack of insulin secretion leading to chronically increased blood glucose levels. Diabetic patients are often accompanied by multiple macrovascular complications, such as coronary heart disease, hypertension, macrovascular arteriosclerosis, and microvascular complications. Microvascular complications include diabetic kidney injury, diabetic encephalopathy, and diabetic foot, which reduce the quality of life and survival status of patients. Mesenchymal stem cell exosomes (MSC-Exos) possess repair functions similar to MSCs, low immunogenicity, and ease of storage and transport. MSC-Exos have been proven to possess excellent repair effects in repairing various organ damages. This study reviews the application of MSC-Exos in the treatment of DM and its common complications. MSC-Exos may be used as an effective treatment for DM and its complications.
Collapse
Affiliation(s)
| | | | | | - Hui Wang
- *Correspondence: Hui Wang, ; Hua Jiang,
| | - Hua Jiang
- *Correspondence: Hui Wang, ; Hua Jiang,
| |
Collapse
|
55
|
Li FXZ, Lin X, Xu F, Shan SK, Guo B, Lei LM, Zheng MH, Wang Y, Xu QS, Yuan LQ. The Role of Mesenchymal Stromal Cells-Derived Small Extracellular Vesicles in Diabetes and Its Chronic Complications. Front Endocrinol (Lausanne) 2021; 12:780974. [PMID: 34987478 PMCID: PMC8721875 DOI: 10.3389/fendo.2021.780974] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are applied in regenerative medicine of several tissues and organs nowadays by virtue of their self-renewal capabilities, multiple differentiation capacity, potent immunomodulatory properties, and their ability to be favourably cultured and manipulated. With the continuous development of "cell-free therapy" research, MSC-derived small extracellular vesicles (MSC-sEVs) have increasingly become a research hotspot in the treatment of various diseases. Small extracellular vesicles (SEVs) are membrane vesicles with diameters of 30 to 150 nm that mediate signal transduction between adjacent or distal cells or organs by delivering non-coding RNA, protein, and DNA. The contents and effects of sEVs vary depending on the properties of the originating cell. In recent years, MSC-sEVs have been found to play an important role in the occurrence and development of diabetes mellitus as a new way of communication between cells. Diabetes mellitus is a common metabolic disease in clinic. Its complications of the heart, brain, kidney, eyes, and peripheral nerves are a serious threat to human health and has been a hot issue for clinicians. MSC-sEVs could be applied to repair or prevent damage from the complications of diabetes mellitus through anti-inflammatory effects, reduction of endoplasmic reticulum-related protein stress, polarization of M2 macrophages, and increasing autophagy. Therefore, we highly recommend that MSC-sEVs-based therapies to treat diabetes mellitus and its chronic complication be further explored. The analysis of the role and molecular mechanisms of MSC-sEVs in diabetes and its related complications will provide new idea and insights for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan,
| |
Collapse
|
56
|
Hou J, He C, He W, Yang M, Luo X, Li C. Obesity and Bone Health: A Complex Link. Front Cell Dev Biol 2020; 8:600181. [PMID: 33409277 PMCID: PMC7779553 DOI: 10.3389/fcell.2020.600181] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
So far, the connections between obesity and skeleton have been extensively explored, but the results are inconsistent. Obesity is thought to affect bone health through a variety of mechanisms, including body weight, fat volume, bone formation/resorption, proinflammatory cytokines together with bone marrow microenvironment. In this review, we will mainly describe the effects of adipokines secreted by white adipose tissue on bone cells, as well as the interaction between brown adipose tissue, bone marrow adipose tissue, and bone metabolism. Meanwhile, this review also reviews the evidence for the effects of adipose tissue and its distribution on bone mass and bone-related diseases, along with the correlation between different populations with obesity and bone health. And we describe changes in bone metabolism in patients with anorexia nervosa or type 2 diabetes. In summary, all of these findings show that the response of skeleton to obesity is complex and depends on diversified factors, such as mechanical loading, obesity type, the location of adipose tissue, gender, age, bone sites, and secreted cytokines, and that these factors may exert a primary function in bone health.
Collapse
Affiliation(s)
- Jing Hou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
57
|
He C, He W, Hou J, Chen K, Huang M, Yang M, Luo X, Li C. Bone and Muscle Crosstalk in Aging. Front Cell Dev Biol 2020; 8:585644. [PMID: 33363144 PMCID: PMC7758235 DOI: 10.3389/fcell.2020.585644] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and sarcopenia are two age-related diseases that affect the quality of life in the elderly. Initially, they were thought to be two independent diseases; however, recently, increasing basic and clinical data suggest that skeletal muscle and bone are both spatially and metabolically connected. The term "osteosarcopenia" is used to define a condition of synergy of low bone mineral density with muscle atrophy and hypofunction. Bone and muscle cells secrete several factors, such as cytokines, myokines, and osteokines, into the circulation to influence the biological and pathological activities in local and distant organs and cells. Recent studies reveal that extracellular vesicles containing microRNAs derived from senescent skeletal muscle and bone cells can also be transported and aid in regulating bone-muscle crosstalk. In this review, we summarize the age-related changes in the secretome and extracellular vesicle-microRNAs secreted by the muscle and bone, and discuss their interactions between muscle and bone cells during aging.
Collapse
Affiliation(s)
- Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
58
|
Peng H, Guo Q, Su T, Xiao Y, Li CJ, Huang Y, Luo XH. Identification of SCARA3 with potential roles in metabolic disorders. Aging (Albany NY) 2020; 13:2149-2167. [PMID: 33318306 PMCID: PMC7880357 DOI: 10.18632/aging.202228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/22/2020] [Indexed: 04/11/2023]
Abstract
Obesity is characterized by the expansion of adipose tissue which is partially modulated by adipogenesis. In the present study, we identified five differentially expressed genes by incorporating two adipogenesis-related datasets from the GEO database and their correlation with adipogenic markers. However, the role of scavenger receptor class A member 3 (SCARA3) in obesity-related disorders has been rarely reported. We found that Scara3 expression in old adipose tissue-derived mesenchymal stem cells (Ad-MSCs) was lower than it in young Ad-MSCs. Obese mice caused by deletion of the leptin receptor gene (db/db) or by a high-fat diet both showed reduced Scara3 expression in inguinal white adipose tissue. Moreover, hypermethylation of SCARA3 was observed in patients with type 2 diabetes and atherosclerosis. Data from the CTD database indicated that SCARA3 is a potential target for metabolic diseases. Mechanistically, JUN was predicted as a transcriptional factor of SCARA3 in different databases which is consistent with our further bioinformatics analysis. Collectively, our study suggested that SCARA3 is potentially associated with age-related metabolic dysfunction, which provided new insights into the pathogenesis and treatment of obesity as well as other obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
59
|
Ma Q, Zhang J, Zhang M, Lan H, Yang Q, Li C, Zeng L. MicroRNA-29b targeting of cell division cycle 7-related protein kinase (CDC7) regulated vascular smooth muscle cell (VSMC) proliferation and migration. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1496. [PMID: 33313241 PMCID: PMC7729318 DOI: 10.21037/atm-20-6856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Proliferation and migration of vascular smooth muscle cells (VSMCs) are vital processes in vascular remodeling and pathology. This study aimed to explore the expression of miR-29b and cell division cycle 7-related protein kinase (CDC7) in patients with cerebral aneurysm (CA) and their effects on the proliferation and mobility of human umbilical artery smooth muscle cells (HUASMCs). Methods RNA levels of miR-29b and CDC7 were evaluated in the CA tissues and adjacent normal cerebral arteries from 18 patients undergoing surgery for CA rupture. The targeting of CDC7 by miR-29b was verified with luciferase reporter assay. Both CDC7 and miR-29b overexpression and silencing vectors were introduced to validate their effects on the proliferation and mobility of HUASMCs. Results The mRNA level of miR-29b was down-regulated (P<0.05), while the mRNA level of CDC7 was markedly elevated in CA patients (P<0.05). A Luciferase reporter assay showed CDC7 is a target gene of miR-29b, and miR-29b mimic down-regulated the mRNA and protein levels of CDC7 (P<0.05). Furthermore, miR-29b mimic inhibited, while miR-29b inhibitor or CDC7 over-expression promoted the proliferation and mobility of HUASMCs (P<0.05). Conclusions miR-29-3p inhibits cell proliferation and mobility via directly targeting CDC7, which could be a potential therapeutic target for vascular dysfunction related diseases, including atherosclerosis and CA.
Collapse
Affiliation(s)
- Qunhua Ma
- RICU&MICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Zhang
- Emergency Observation Ward, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ming Zhang
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Lan
- Department of Cardiovascular Medicine, Southwest Medical University, Luzhou, China
| | - Qian Yang
- School of Nursing, Chengdu Medical College, Chengdu, China
| | - Chengping Li
- Emergency Observation Ward, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Zeng
- Department of Nursing, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
60
|
MSC-Derived Exosomes Protect Vertebral Endplate Chondrocytes against Apoptosis and Calcification via the miR-31-5p/ATF6 Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:601-614. [PMID: 33230460 PMCID: PMC7569190 DOI: 10.1016/j.omtn.2020.09.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Apoptosis and calcification of endplate chondrocytes (EPCs) can exacerbate intervertebral disc degeneration (IVDD). Mesenchymal stem cell-derived exosomes (MSC-exosomes) are reported to have the therapeutic potential in IVDD. However, the effects and related mechanisms of MSC-exosomes on EPCs are still unclear. We aimed to investigate the role of MSC-exosomes on EPCs with a tert-butyl hydroperoxide (TBHP)-induced oxidative stress cell model and IVDD rat model. First, our study revealed that TBHP could result in apoptosis and calcification of EPCs, and MSC-exosomes could inhibit the detrimental effects. We also found that these protective effects were inhibited after miroRNA (miR)-31-5p levels were downregulated in MSC-exosomes. The target relationship between miR-31-5p and ATF6 was tested. miR-31-5p negatively regulated ATF6-related endoplasmic reticulum (ER) stress and inhibited apoptosis and calcification in EPCs. Our in vivo experiments indicated that sub-endplate injection of MSC-exosomes can ameliorate IVDD; however, after miR-31-5p levels were downregulated in MSC-exosomes, these protective effects were inhibited. In conclusion, MSC-exosomes reduced apoptosis and calcification in EPCs, and the underlying mechanism may be related to miR-31-5p/ATF6/ER stress pathway regulation.
Collapse
|
61
|
Meng QS, Liu J, Wei L, Fan HM, Zhou XH, Liang XT. Senescent mesenchymal stem/stromal cells and restoring their cellular functions. World J Stem Cells 2020; 12:966-985. [PMID: 33033558 PMCID: PMC7524698 DOI: 10.4252/wjsc.v12.i9.966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have various properties that make them promising candidates for stem cell-based therapies in clinical settings. These include self-renewal, multilineage differentiation, and immunoregulation. However, recent studies have confirmed that aging is a vital factor that limits their function and therapeutic properties as standardized clinical products. Understanding the features of senescence and exploration of cell rejuvenation methods are necessary to develop effective strategies that can overcome the shortage and instability of MSCs. This review will summarize the current knowledge on characteristics and functional changes of aged MSCs. Additionally, it will highlight cell rejuvenation strategies such as molecular regulation, non-coding RNA modifications, and microenvironment controls that may enhance the therapeutic potential of MSCs in clinical settings.
Collapse
Affiliation(s)
- Qing-Shu Meng
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Lu Wei
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Hui-Min Fan
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Hui Zhou
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Ting Liang
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| |
Collapse
|
62
|
Wang L, Wang Y, Quan J. Exosomal miR-223 derived from natural killer cells inhibits hepatic stellate cell activation by suppressing autophagy. Mol Med 2020; 26:81. [PMID: 32873229 PMCID: PMC7465359 DOI: 10.1186/s10020-020-00207-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background Activation of hepatic stellate cells (HSCs) is a prominent driver of liver fibrosis. We previously demonstrated that exosomes derived from natural killer (NK) cells (NK-Exo) attenuated TGF-β1-induced HSC activation. Herein, this study was designed to investigate the mechanism underlying the action of NK-Exo. Methods NK-Exo was isolated from NK-92MI cells and then administered into TGF-β1-treated LX-2 (human HSC line) cells. MiR-223 expression in NK-Exo was downregulated by transfecting NK-92MI cells with miR-223 inhibitor followed by exosome isolation. The HSC activation was evaluated by determining cell proliferation using CCK-8 assay and measuring the protein levels of α-SMA and CoL1A1 using western blot in LX-2 cells. The expression of miR-223 was detected by qRT-PCR. The interaction between miR-223 and ATG7 was analyzed by a dual-luciferase activity assay. The autophagy was evaluated by measuring the autophagy-related proteins using western blot. Results miR-223 was highly expressed in NK-Exo and inhibition of miR-223 expression in NK-Exo abrogated the inhibitory effect of NK-Exo on TGF-β-induced HSC activation. ATG7 was confirmed as a direct target of miR-223. Furthermore, treatment with the autophagy activator rapamycin and ATG7 overexpression in LX-2 cells abolished the HSC activation-suppressive effect of NK-Exo. Conclusion NK-Exo attenuated TGF-β-induced HSC activation by transferring miR-223 that inhibited autophagy via targeting ATG7.
Collapse
Affiliation(s)
- Ling Wang
- Department of Infectious Diseases, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yinghao Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jun Quan
- Department of Infectious Diseases, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
63
|
Li F, Zhang J, Liao R, Duan Y, Tao L, Xu Y, Chen A. Mesenchymal stem cell‑derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR‑210‑3p expression. Mol Med Rep 2020; 22:3813-3821. [PMID: 33000190 PMCID: PMC7533502 DOI: 10.3892/mmr.2020.11454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/29/2020] [Indexed: 12/24/2022] Open
Abstract
Neural stem cells (NSCs) have the potential to give rise to offspring cells and hypoxic injury can impair the function of NSCs. The present study investigated the effects of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) on NSC injury, as well as the underlying mechanisms. MSC-EVs were isolated and identified via morphological and particle size analysis. Cobalt chloride was used to establish a hypoxic injury model in NSCs. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay was conducted to detect apoptosis. Reverse transcription-quantitative PCR was performed to detect the expression levels of miR-210-3p, and western blotting was used to detect the expression levels of apoptosis-inducing factor (AIF) and Bcl-2 19 kDa interacting protein (BNIP3). Compared with the control group, NSC apoptosis, and the expression of miR-210-3p, AIF and BNIP3 were significantly higher in the cobalt chloride-induced hypoxia group. By contrast, treatment with MSC-EVs further increased miR-210-3p expression levels, but reduced NSC apoptosis and the expression levels of AIF and BNIP3 compared with the model group (P<0.05). In addition, miR-210-3p inhibitor reduced miR-210-3p expression, but promoted hypoxia-induced apoptosis and the expression levels of AIF and BNIP3 compared with the model group (P<0.05). Collectively, the results suggested that MSC-EVs prevented NSC hypoxia injury by promoting miR-210-3p expression, which might reduce AIF and BNIP3 expression levels and NSC apoptosis.
Collapse
Affiliation(s)
- Fang Li
- Department of Emergency Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jie Zhang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rui Liao
- Department of Emergency Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yongchun Duan
- Department of Emergency Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Lili Tao
- Department of Emergency Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yuwei Xu
- Department of Emergency Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Anbao Chen
- Department of Emergency Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
64
|
Network Pharmacology-Based Strategy to Investigate the Pharmacological Mechanisms of Ginkgo biloba Extract for Aging. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8508491. [PMID: 32802136 PMCID: PMC7403930 DOI: 10.1155/2020/8508491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Aging is a main risk factor for a number of debilitating diseases and contributes to an increase in mortality. Previous studies have shown that Ginkgo biloba extract (EGb) can prevent and treat aging-related diseases, but its pharmacological effects need to be further clarified. This study aimed to propose a network pharmacology-based method to identify the therapeutic pathways of EGb for aging. The active components of EGb and targets of sample chemicals were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. Information on aging-related genes was obtained from the Human Ageing Genomic Resources database and JenAge Ageing Factor Database. Subsequently, a network containing the interactions between the putative targets of EGb and known therapeutic targets of aging was established, which was used to investigate the pharmacological mechanisms of EGb for aging. A total of 24 active components, 154 targets of active components of EGb, and 308 targets of aging were obtained. Network construction and pathway enrichment were conducted after data integration. The study found that flavonoids (quercetin, luteolin, and kaempferol) and beta-sitosterol may be the main active components of EGb. The top eight candidate targets, namely, PTGS2, PPARG, DPP4, GSK3B, CCNA2, AR, MAPK14, and ESR1, were selected as the main therapeutic targets of EGb. Pathway enrichment results in various pathways were associated with inhibition of oxidative stress, inhibition of inflammation, amelioration of insulin resistance, and regulation of cellular biological processes. Molecular docking results showed that PPARG had better binding capacity with beta-sitosterol, and PTGS2 had better binding capacity with kaempferol and quercetin. The main components of EGb may act on multiple targets, such as PTGS2, PPARG, DPP4, and GSK3B, to regulate multiple pathways, and play an antiaging role by inhibiting oxidative stress, inhibiting inflammation, and ameliorating insulin resistance.
Collapse
|
65
|
Kaur P, Kotru S, Singh S, Behera BS, Munshi A. Role of miRNAs in the pathogenesis of T2DM, insulin secretion, insulin resistance, and β cell dysfunction: the story so far. J Physiol Biochem 2020; 76:485-502. [PMID: 32749641 DOI: 10.1007/s13105-020-00760-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/29/2020] [Indexed: 01/24/2023]
Abstract
Diabetes, the most common endocrine disorder, also known as a silent killer disease, is characterized by uncontrolled hyperglycemia. According to the International Diabetes Federation, there were 451 million people with diabetes mellitus worldwide in 2017. It is a multifactorial syndrome caused by genetic as well as environmental factors. Noncoding RNAs, especially the miRNAs, play a significant role in the development as well as the progression of the disease. This is on account of insulin resistance or defects in β cell function. Various miRNAs including miR-7, miR-9, miR-16, miR-27, miR-24, miR-29, miR-124a, miR-135, miR-130a, miR-144, miR-181a, and miR-375 and many more have been associated with insulin resistance and other pathogenic conditions leading to the development of the disease. These miRNAs play significant roles in various pathways underlying insulin resistance such as PI3K, AKT/GSK, and mTOR. The main target genes of these miRNAs are FOXO1, FOXA2, STAT3, and PTEN. The miRNAs carry out important functions in insulin target tissues like the adipose tissue, liver, and muscle. MiRNAs miR-9, miR-375, and miR-124a, are also associated with the secretion of insulin from pancreatic cells. There is an interplay between the miRNAs and pancreatic cell growth, especially the miRNAs affecting development and proliferation of these cells. Most of the miRNAs target more than one gene which not only justifies their use as biomarkers but also their therapeutic potential. The current review has been compiled with an aim to discuss the role of various miRNAs involved in various pathogenic mechanisms including insulin resistance, insulin secretion, and the β cell dysfunction.
Collapse
Affiliation(s)
- Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Sushil Kotru
- Max Endocrinology, Diabetes and Obesity Care Centre, Max Superspeciality Hospital, Bathinda, 151001, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Bidwan Sekhar Behera
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
66
|
Li L, Wang B, Li Y, Li L, Dai Y, Lv G, Wu P, Li P. Celastrol regulates bone marrow mesenchymal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing PGC-1α signaling. Aging (Albany NY) 2020; 12:16887-16898. [PMID: 32723973 PMCID: PMC7521495 DOI: 10.18632/aging.103590] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 06/13/2020] [Indexed: 01/24/2023]
Abstract
Celastrol has recently been identified as a prospective new treatment for obesity and several metabolic complications. However, the effect of Celastrol in osteoporosis (OP) remains unknown. In this study, we demonstrated that Celastrol promotes osteoblast differentiation and prevents adipocyte differentiation in bone marrow mesenchymal stem cells (BM-MSCs) in vitro. Mechanistically, Celastrol was able to control the differentiation of BM-MSCs by stimulating PGC-1α signaling. Moreover, administration of Celastrol could alleviate bone loss and bone marrow adipose tissue (MAT) accumulation in ovariectomized (OVX) mice and aged mice. Together, these results recommended that Celastrol could regulate BM-MSCs fate and bone-fat balance in OP and skeletal aging by stimulating PGC-1α, which might act as a possible therapeutic target for OP and for the prevention of skeletal aging.
Collapse
Affiliation(s)
- Li Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yawei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yuliang Dai
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Pengfei Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410011, Hunan, China
| | - Pengzhi Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
67
|
Li W, Zhou X, Jiang T, He H, Wen T. Positive Effect of Gushukang on Type-H Vessel and Bone Formation. Front Cell Dev Biol 2020; 8:265. [PMID: 32671056 PMCID: PMC7326058 DOI: 10.3389/fcell.2020.00265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
Gushukang (GSK) is a traditional herbal compound used in Chinese medicine for the treatment of osteoporosis. Numerous studies have been conducted to elucidate the effects of GSK, but the mechanisms underlying these effects remain unclear. In the present study, we cultured osteoblasts and osteoclasts with low and high doses of GSK, and also administered 3-month-old mice with 4 and 8 g/kg/day of GSK solution. Gushukang was found to promote osteoblast differentiation and inhibit osteoclast differentiation in vitro. In vivo, mice in the GSK treatment groups showed an increase in bone mass, as measured by micro-computed tomography (Micro-CT). Tartrate resistant acid phosphatase (TRAP) staining and osteocalcin (OCN) staining experiments revealed decreased bone resorption and increased bone formation in the GSK treatment groups. In addition, we found a novel effect of GSK—it could induce type-H vessel formation in mice. The underlying mechanisms of these actions were further explored at the molecular level to investigate whether these effects were due to an overexpression of the hypoxia inducible factor-1 (HIF-1α). Our findings indicate the utility of GSK as a therapeutic for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Wantao Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoqing Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Tiejian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Hongbo He
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Ting Wen
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
68
|
Zhou X, Hong Y, Zhang H, Li X. Mesenchymal Stem Cell Senescence and Rejuvenation: Current Status and Challenges. Front Cell Dev Biol 2020; 8:364. [PMID: 32582691 PMCID: PMC7283395 DOI: 10.3389/fcell.2020.00364] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, mesenchymal stem cell (MSC)-based therapy has been intensively investigated and shown promising results in the treatment of various diseases due to their easy isolation, multiple lineage differentiation potential and immunomodulatory effects. To date, hundreds of phase I and II clinical trials using MSCs have been completed and many are ongoing. Accumulating evidence has shown that transplanted allogeneic MSCs lose their beneficial effects due to immunorejection. Nevertheless, the function of autologous MSCs is adversely affected by age, a process termed senescence, thus limiting their therapeutic potential. Despite great advances in knowledge, the potential mechanisms underlying MSC senescence are not entirely clear. Understanding the molecular mechanisms that contribute to MSC senescence is crucial when exploring novel strategies to rejuvenate senescent MSCs. In this review, we aim to provide an overview of the biological features of senescent MSCs and the recent progress made regarding the underlying mechanisms including epigenetic changes, autophagy, mitochondrial dysfunction and telomere shortening. We also summarize the current approaches to rejuvenate senescent MSCs including gene modification and pretreatment strategies. Collectively, rejuvenation of senescent MSCs is a promising strategy to enhance the efficacy of autologous MSC-based therapy, especially in elderly patients.
Collapse
Affiliation(s)
- Xueke Zhou
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hao Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xin Li
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
69
|
Xu GP, Zhang XF, Sun L, Chen EM. Current and future uses of skeletal stem cells for bone regeneration. World J Stem Cells 2020; 12:339-350. [PMID: 32547682 PMCID: PMC7280866 DOI: 10.4252/wjsc.v12.i5.339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/07/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
The postnatal skeleton undergoes growth, modeling, and remodeling. The human skeleton is a composite of diverse tissue types, including bone, cartilage, fat, fibroblasts, nerves, blood vessels, and hematopoietic cells. Fracture nonunion and bone defects are among the most challenging clinical problems in orthopedic trauma. The incidence of nonunion or bone defects following fractures is increasing. Stem and progenitor cells mediate homeostasis and regeneration in postnatal tissue, including bone tissue. As multipotent stem cells, skeletal stem cells (SSCs) have a strong effect on the growth, differentiation, and repair of bone regeneration. In recent years, a number of important studies have characterized the hierarchy, differential potential, and bone formation of SSCs. Here, we describe studies on and applications of SSCs and/or mesenchymal stem cells for bone regeneration.
Collapse
Affiliation(s)
- Guo-Ping Xu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Xiang-Feng Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Lu Sun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, United States
| | - Er-Man Chen
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
70
|
Cai J, Wu J, Wang J, Li Y, Hu X, Luo S, Xiang D. Extracellular vesicles derived from different sources of mesenchymal stem cells: therapeutic effects and translational potential. Cell Biosci 2020; 10:69. [PMID: 32483483 PMCID: PMC7245623 DOI: 10.1186/s13578-020-00427-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) were known to have excellent properties in cell therapy. However, the risk of immune rejection associated with cell transplant therapy hampers its use. Extracellular vesicles secreted by MSCs derived from different sources that contain therapeutic molecules such as RNA and proteins, which is a novel strategy for cell-free therapy. Recently, researches show EVs from MSCs (MSC-EVs) of different sources have special functions and effects on different diseases. Here, we collected these researches and compared them to each other. In addition, their potential and possible application in clinical treatment are described.
Collapse
Affiliation(s)
- Jiaxin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Jiemin Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Yongjiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Xiongbin Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| | - Shifu Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Furong District, Changsha, Hunan China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, Hunan China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan China
| |
Collapse
|
71
|
Chen Y, Tang L. Stem Cell Senescence: the Obstacle of the Treatment of Degenerative Disk Disease. Curr Stem Cell Res Ther 2020; 14:654-668. [PMID: 31490764 DOI: 10.2174/1574888x14666190906163253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/05/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022]
Abstract
Intervertebral disc (IVD) has a pivotal role in the maintenance of flexible motion. IVD degeneration is one of the primary causes of low back pain and disability, which seriously influences patients' health, and increases the family and social economic burden. Recently, stem cell therapy has been proven to be more effective on IVD degeneration disease. However, stem cell senescence is the limiting factor in the IVD degeneration treatment. Senescent stem cells have a negative effect on the self-repair on IVD degeneration. In this review, we delineate that the factors such as telomerase shortening, DNA damage, oxidative stress, microenvironment and exosomes will induce stem cell aging. Recent studies tried to delay the aging of stem cells by regulating the expression of aging-related genes and proteins, changing the activity of telomerase, improving the survival microenvironment of stem cells and drug treatment. Understanding the mechanism of stem cell aging and exploring new approaches to delay or reverse stem cell aging asks for research on the repair of the degenerated disc.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering Chongqing University, Chongqing 400044, China
| |
Collapse
|
72
|
AbuBakr N, Haggag T, Sabry D, Salem ZA. Functional and histological evaluation of bone marrow stem cell-derived exosomes therapy on the submandibular salivary gland of diabetic Albino rats through TGFβ/ Smad3 signaling pathway. Heliyon 2020; 6:e03789. [PMID: 32382678 PMCID: PMC7203080 DOI: 10.1016/j.heliyon.2020.e03789] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/11/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To prevail over diabetes mellitus and its numerous complications, researchers are seeking new therapies. Exosomes are natural cargo of functional proteins and can be used as a therapeutic delivery of these molecules. OBJECTIVE The aim of this study was to evaluate the effect of exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs) as a therapeutic intervention in salivary gland diabetic complications. METHODS Ten adult healthy male Albino rats, weighing about 150-200 g were grouped into 2 groups. Diabetic group I: consisted of 5 streptozotocin (STZ)-induced diabetic rats. Exosomes treated group II: consisted of 5 STZ-induced diabetic rats, each animal received a single injection of exosomes (100 μg/kg/dose suspended in 0.2 ml PBS) through the tail vein. All animals were sacrificed after 5 weeks from the beginning of the experiment. Submandibular salivary gland samples were excised and processed for histological, ultrastructural examination and PCR for TGFβ, Smad2 and Smad3. Blood glucose level was monitored weekly, salivary IgA and serum amylase were evaluated before and after diabetes induction and at the end of the experiment. RESULTS Histological and ultrastructural results of the exosomes treated group were promising regarding the glandular and ductal elements with less fibrosis observed. Results of PCR supported the role of exosomes to inhibit the diabetic sequalae in salivary gland and its complications through inhibiting TGFβ and its related pathway via Smad2 and Smad3. Blood glucose levels were reduced. In addition, salivary glands' function was improved as evidenced by reduction in serum amylase and salivary IgA. CONCLUSION BM-MSC-derived exosomes could be a novel therapeutic strategy for diabetic complications involving salivary glands.
Collapse
Affiliation(s)
- Nermeen AbuBakr
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Tahany Haggag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Zeinab A. Salem
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
73
|
Lyu H, Xiao Y, Guo Q, Huang Y, Luo X. The Role of Bone-Derived Exosomes in Regulating Skeletal Metabolism and Extraosseous Diseases. Front Cell Dev Biol 2020; 8:89. [PMID: 32258024 PMCID: PMC7090164 DOI: 10.3389/fcell.2020.00089] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Bone-derived exosomes are naturally existing nano-sized extracellular vesicles secreted by various cells, such as bone marrow stromal cells, osteoclasts, osteoblasts, and osteocytes, containing multifarious proteins, lipids, and nucleic acids. Accumulating evidence indicates that bone-derived exosomes are involved in the regulation of skeletal metabolism and extraosseous diseases through modulating intercellular communication and the transfer of materials. Following the development of research, we found that exosomes can be considered as a potential candidate as a drug delivery carrier thanks to its ability to transport molecules into targeted cells with high stability, safety, and efficiency. This review aims to discuss the emerging role of bone-derived exosomes in skeletal metabolism and extraosseous diseases as well as their potential role as candidate biomarkers or for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Huili Lyu
- Endocrinology Research Center, Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Ye Xiao
- Endocrinology Research Center, Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Qi Guo
- Endocrinology Research Center, Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Yan Huang
- Endocrinology Research Center, Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Endocrinology Research Center, Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
74
|
Boulestreau J, Maumus M, Rozier P, Jorgensen C, Noël D. Mesenchymal Stem Cell Derived Extracellular Vesicles in Aging. Front Cell Dev Biol 2020; 8:107. [PMID: 32154253 PMCID: PMC7047768 DOI: 10.3389/fcell.2020.00107] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Aging is associated with high prevalence of chronic degenerative diseases that take a large part of the increasing burden of morbidities in a growing demographic of elderly people. Aging is a complex process that involves cell autonomous and cell non-autonomous mechanisms where senescence plays an important role. Senescence is characterized by the loss of proliferative potential, resistance to cell death by apoptosis and expression of a senescence-associated secretory phenotype (SASP). SASP includes pro-inflammatory cytokines and chemokines, tissue-damaging proteases, growth factors; all contributing to tissue microenvironment alteration and loss of tissue homeostasis. Emerging evidence suggests that the changes in the number and composition of extracellular vesicles (EVs) released by senescent cells contribute to the adverse effects of senescence in aging. In addition, age-related alterations in mesenchymal stem/stromal cells (MSCs) have been associated to dysregulated functions. The loss of functional stem cells necessary to maintain tissue homeostasis likely directly contributes to aging. In this review, we will focus on the characteristics and role of EVs isolated from senescent MSCs, the potential effect of MSC-derived EVs in aging and discuss their therapeutic potential to improve age-related diseases.
Collapse
Affiliation(s)
- Jérémy Boulestreau
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Marie Maumus
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Pauline Rozier
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| | - Danièle Noël
- Institute of Regenerative Medicine and Biotherapies (IRMB), University of Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| |
Collapse
|
75
|
Liu W, Rong Y, Wang J, Zhou Z, Ge X, Ji C, Jiang D, Gong F, Li L, Chen J, Zhao S, Kong F, Gu C, Fan J, Cai W. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Neuroinflammation 2020; 17:47. [PMID: 32019561 PMCID: PMC7001326 DOI: 10.1186/s12974-020-1726-7] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background Spinal cord injury (SCI) can lead to severe motor and sensory dysfunction with high disability and mortality. In recent years, mesenchymal stem cell (MSC)-secreted nano-sized exosomes have shown great potential for promoting functional behavioral recovery following SCI. However, MSCs are usually exposed to normoxia in vitro, which differs greatly from the hypoxic micro-environment in vivo. Thus, the main purpose of this study was to determine whether exosomes derived from MSCs under hypoxia (HExos) exhibit greater effects on functional behavioral recovery than those under normoxia (Exos) following SCI in mice and to seek the underlying mechanism. Methods Electron microscope, nanoparticle tracking analysis (NTA), and western blot were applied to characterize differences between Exos and HExos group. A SCI model in vivo and a series of in vitro experiments were performed to compare the therapeutic effects between the two groups. Next, a miRNA microarray analysis was performed and a series of rescue experiments were conducted to verify the role of hypoxic exosomal miRNA in SCI. Western blot, luciferase activity, and RNA-ChIP were used to investigate the underlying mechanisms. Results Our results indicate that HExos promote functional behavioral recovery by shifting microglial polarization from M1 to M2 phenotype in vivo and in vitro. A miRNA array showed miR-216a-5p to be the most enriched in HExos and potentially involved in HExos-mediated microglial polarization. TLR4 was identified as the target downstream gene of miR-216a-5p and the miR-216a-5p/TLR4 axis was confirmed by a series of gain- and loss-of-function experiments. Finally, we found that TLR4/NF-κB/PI3K/AKT signaling cascades may be involved in the modulation of microglial polarization by hypoxic exosomal miR-216a-5p. Conclusion Hypoxia preconditioning represents a promising and effective approach to optimize the therapeutic actions of MSC-derived exosomes and a combination of MSC-derived exosomes and miRNAs may present a minimally invasive method for treating SCI.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiaxing Wang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zheng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuhui Ge
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Dongdong Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fangyi Gong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Linwei Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jian Chen
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Shujie Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fanqi Kong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Changjiang Gu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Weihua Cai
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
76
|
Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, Xu K. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation 2020; 17:46. [PMID: 32014002 PMCID: PMC6998092 DOI: 10.1186/s12974-020-1725-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are suspected to exert neuroprotective effects in brain injury, in part through the secretion of extracellular vesicles like exosomes containing bioactive compounds. We now investigate the mechanism by which bone marrow MSCs (BMSCs)-derived exosomes harboring the small non-coding RNA miR-29b-3p protect against hypoxic-ischemic brain injury in rats. METHODS We established a rat model of middle cerebral artery occlusion (MCAO) and primary cortical neuron or brain microvascular endothelial cell (BMEC) models of oxygen and glucose deprivation (OGD). Exosomes were isolated from the culture medium of BMSCs. We treated the MCAO rats with BMSC-derived exosomes in vivo, and likewise the OGD-treated neurons and BMECs in vitro. We then measured apoptosis- and angiogenesis-related features using TUNEL and CD31 immunohistochemical staining and in vitro Matrigel angiogenesis assays. RESULTS The dual luciferase reporter gene assay showed that miR-29b-3p targeted the protein phosphatase and tensin homolog (PTEN). miR-29b-3p was downregulated and PTEN was upregulated in the brain of MCAO rats and in OGD-treated cultured neurons. MCAO rats and OGD-treated neurons showed promoted apoptosis and decreased angiogenesis, but overexpression of miR-29b-3p or silencing of PTEN could reverse these alterations. Furthermore, miR-29b-3p could negatively regulate PTEN and activate the Akt signaling pathway. BMSCs-derived exosomes also exerted protective effects against apoptosis of OGD neurons and cell apoptosis in the brain samples from MCAO rats, where we also observed promotion of angiogenesis. CONCLUSION BMSC-derived exosomal miR-29b-3p ameliorates ischemic brain injury by promoting angiogenesis and suppressing neuronal apoptosis, a finding which may be of great significance in the treatment of hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Jinchuan Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Baofeng Xu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Yang Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China.
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
77
|
Zeng Y, Cui Z, Liu J, Chen J, Tang S. MicroRNA-29b-3p Promotes Human Retinal Microvascular Endothelial Cell Apoptosis via Blocking SIRT1 in Diabetic Retinopathy. Front Physiol 2020; 10:1621. [PMID: 32063865 PMCID: PMC7000655 DOI: 10.3389/fphys.2019.01621] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/24/2019] [Indexed: 12/23/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a main complication of diabetes mellitus (DM). Recent studies have implicated microRNAs in human retinal microvascular endothelial cell (HRMEC) dysfunction. In this study, we aim to investigate the apoptotic promotion of miR-29b-3p by blocking SIRT1 in HRMEC for DR situation. Method Blood samples were obtained from DR patients and controls. Dual-luciferase reporter assay using HEK-293T cells was performed to show the direct interaction of miR-29b-3p and the 3′UTR of SIRT1. HRMECs were exposed to 5.5 mmol/L of glucose (normal control), 5.5 mmol/L of glucose and 24.5 mmol/L of mannitol (osmotic pressure control), 30 mmol/L of glucose [hyperglycemia (HG)], 150 μmol/L of CoCl2 (hypoxia), and 30 mmol/L of glucose plus 150 μmol/L of CoCl2 (HG-CoCl2). To identify the regulating relationship between miR-29b-3p and SIRT1, HRMECs were transfected with miR-29b-3p mimics/inhibitors or their negative controls. SRT1720 was used as a SIRT1 agonist. Cell viability was assessed with the cell counting kit-8 (CCK-8) assay, and apoptotic cells were stained by one-step terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay kit. Gene and protein expression were assayed by quantitative real-time reverse transcriptase-PCR (RT-qPCR) and western blotting separately. Result MiR-29b-3p was upregulated to 3.2-fold, and SIRT1 protein was downregulated to 65% in DR patients. Dual-luciferase reporter assay showed the direct interaction of miR-29b-3p and SIRT1. HRMECs were identified as >95% positive for CD31 and von Willebrand factor (vWF). MiR-29b-3p and Bax/Bcl-2 ratio was upregulated, whereas SIRT1 was downregulated in HRMECs in the HG-CoCl2 condition. Decreased cell viability and upregulated apoptosis were also found in HRMECs of the HG-CoCl2 condition. Upregulated miR-29b-3p decreased the expression of SIRT1 and increased the ratio of Bax/Bcl-2, whereas downregulated miR-29b-3p increased the expression of SIRT1 protein and downregulated the ratio of Bax/Bcl-2. SRT1720 rescued miR-29b-3p-induced HRMEC apoptosis via upregulating the expression of SIRT1 protein. Conclusion The dysregulation of miR-29b-3p/SIRT1 is a potential mechanism of HRMEC apoptosis in DR. MiR-29b-3p/SIRT1 may be a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Yong Zeng
- Aier School of Ophthalmology, Central South University, Changsha, China
| | | | - Jian Liu
- Aier Eye Institute, Changsha, China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
78
|
Noncoding RNAs in Vascular Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7914957. [PMID: 31998442 PMCID: PMC6969641 DOI: 10.1155/2020/7914957] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Increases in age are accompanied by vascular aging, which can lead to a variety of chronic diseases, including atherosclerosis and hypertension. Noncoding RNAs (ncRNAs) have become a research hotspot in different fields of life sciences in recent years. For example, these molecules have been found to have regulatory roles in many physiological and pathological processes. Many studies have shown that microRNAs (miRNAs) and long ncRNAs (lncRNAs) also play a regulatory role in vascular aging. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are important components of blood vessels, and the senescence of both cell types promotes the occurrence of vascular aging. This review provides a contemporary update on the molecular mechanisms underlying the senescence of ECs and VSMCs and the regulatory role of miRNAs and lncRNAs in this process.
Collapse
|
79
|
Huang Y, Xiao Y, Liu Y, Guo M, Guo Q, Zhou F, Liu T, Su T, Xiao Y, Luo X. MicroRNA-188 regulates aging-associated metabolic phenotype. Aging Cell 2020; 19:e13077. [PMID: 31762181 PMCID: PMC6974730 DOI: 10.1111/acel.13077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
With the increasing aging population, aging-associated diseases are becoming epidemic worldwide, including aging-associated metabolic dysfunction. However, the underlying mechanisms are poorly understood. In the present study, we aimed to investigate the role of microRNA miR-188 in the aging-associated metabolic phenotype. The results showed that the expression of miR-188 increased gradually in brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) of mice during aging. MiR-188 knockout mice were resistant to the aging-associated metabolic phenotype and had higher energy expenditure. Meanwhile, adipose tissue-specific miR-188 transgenic mice displayed the opposite phenotype. Mechanistically, we identified the thermogenic-related gene Prdm16 (encoding PR domain containing 16) as the direct target of miR-188. Notably, inhibition of miR-188 expression in BAT and iWAT of aged mice by tail vein injection of antagomiR-188 ameliorated aging-associated metabolic dysfunction significantly. Taken together, our findings suggested that miR-188 plays an important role in the regulation of the aging-associated metabolic phenotype, and targeting miR-188 could be an effective strategy to prevent aging-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Yan Huang
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Min Guo
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Fangliang Zhou
- Department of Biochemistry and Molecular BiologyHunan University of Chinese MedicineChangshaChina
| | - Ting Liu
- Department of EndocrinologyChangsha Central HospitalChangshaChina
| | - Tian Su
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Yuzhong Xiao
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Xiang‐Hang Luo
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
80
|
Lin Z, He H, Wang M, Liang J. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif 2019; 52:e12688. [PMID: 31557368 PMCID: PMC6869834 DOI: 10.1111/cpr.12688] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives With age, bone marrow mesenchymal stem cells (BMSC) have reduced ability of differentiating into osteoblasts but have increased ability of differentiating into adipocytes which leads to age‐related bone loss. MicroRNAs (miRNAs) play major roles in regulating BMSC differentiation. This paper explored the role of miRNAs in regulating BMSC differentiation swift fate in age‐related osteoporosis. Material and methods Mice and human BMSC were isolated from bone marrow, whose miR‐130a level was measured. The abilities of BMSC differentiate into osteoblast or fat cell under the transfected with agomiR‐130a or antagomiR‐130a were analysed by the level of ALP, osteocalcin, Runx2, osterix or peroxisome proliferator‐activated receptorγ (PPARγ), Fabp4. Related mechanism was verified via qT‐PCR, Western blotting (WB) and siRNA transfection. Animal phenotype intravenous injection with agomiR‐130a or agomiR‐NC was explored by Micro‐CT, immunochemistry and calcein double‐labelling. Results MiR‐130a was dramatically decreased in BMSC of advanced subjects. Overexpression of miR‐130a increased osteogenic differentiation of BMSC and attenuated adipogenic differentiation in BMSC, conversely, Inhibition of miR‐130a reduced osteogenic differentiation and facilitated lipid droplet formation. Consistently, overexpression of miR‐130a in elderly mice dropped off the bone loss. Furthermore, the protein levels of Smad regulatory factors 2 (Smurf2) and PPARγ were regulated by miR‐130a with an negative effect through directly combining the 3'UTR of Smurf2 and PPARγ. Conclusions The results indicated that miR‐130a promotes osteoblastic differentiation of BMSC by negatively regulating Smurf2 expression and suppresses adipogenic differentiation of BMSC by targeting the PPARγ, and supply a new target for clinical therapy of age‐related bone loss.
Collapse
Affiliation(s)
- Zhangyuan Lin
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Hongbo He
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Jieyu Liang
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
81
|
Exosomes and Their Noncoding RNA Cargo Are Emerging as New Modulators for Diabetes Mellitus. Cells 2019; 8:cells8080853. [PMID: 31398847 PMCID: PMC6721737 DOI: 10.3390/cells8080853] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetes belongs to a group of metabolic disorders characterized by long term high blood glucose levels due to either inadequate production of insulin (Type 1 diabetes, T1DM) or poor response of the recipient cell to insulin (Type 2 diabetes, T2DM). Organ dysfunctions are the main causes of morbidity and mortality due to high glucose levels. Understanding the mechanisms of organ crosstalk may help us improve our basic knowledge and find novel strategies to better treat the disease. Exosomes are part of a newly emerged research area and have attracted a great deal of attention for their capacity to regulate communications between cells. In conditions of diabetes, exosomes play important roles in the pathological processes in both T1DM and T2DM, such as connecting the immune cell response to pancreatic tissue injury, as well as adipocyte stimulation to insulin resistance of skeletal muscle or liver. Furthermore, in recent years, nucleic acids containing exosomes—especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs)—have been shown to mainly regulate communications between organs in pathological processes of diabetes, including influencing metabolic signals and insulin signals in target tissues, affecting cell viability, and modulating inflammatory pancreatic cells. Moreover, exosome miRNAs show promise in their use as biomarkers or in treatments for diabetes and diabetic complications. Thus, this paper summarizes the recent work on exosomes related to diabetes as well as the roles of exosomal miRNAs and lncRNAs in diabetic pathology and diagnosis in order to help us better understand the exact roles of exosomes in diabetes development.
Collapse
|
82
|
Kuang MJ, Huang Y, Zhao XG, Zhang R, Ma JX, Wang DC, Ma XL. Exosomes derived from Wharton's jelly of human umbilical cord mesenchymal stem cells reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis of the femoral head in rats via the miR-21-PTEN-AKT signalling pathway. Int J Biol Sci 2019; 15:1861-1871. [PMID: 31523188 PMCID: PMC6743291 DOI: 10.7150/ijbs.32262] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/01/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a common disease after long-term or high-dose glucocorticoid use. The pathogenesis of GIONFH is still controversial, and abnormal bone metabolism caused by glucocorticoids may be one of the important factors. Exosomes, owing to their positive effect on bone repair, show promising therapeutic effects on bone-related diseases. In this study, we hypothesised that exosomes reduce osteocyte apoptosis in rat GIONFH via the miR-21-PTEN-AKT signalling pathway. Methods: To evaluate the effects of exosomes in GIONFH, a dexamethasone-treated or exosome-treated in vitro cell model and a methylprednisolone-treated in vivo rat model were set up. In vitro, a CCK-8 assay and 5-ethynyl-2'-deoxyuridine staining were performed to evaluate the proliferation of osteocytes. Further, a terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, annexin V-fluorescein isothiocyanate-propidium iodide staining, and western blotting were conducted to evaluate the apoptosis of osteocytes. In vivo, we used micro-computed tomography and histological and immunohistochemical analyses to assess the effects of exosomes. Moreover, the mechanism of exosome action on osteocyte apoptosis through the miR-21-PTEN-AKT pathway was investigated by high-throughput RNA sequencing, fluorescence in situ hybridisation, luciferase reporter assays, and western blotting. Results: High-throughput RNA sequencing results showed that the AKT signalling pathway was up-regulated in the exosome group. Quantitative PCR and western blotting confirmed that the relative expression of genes in the AKT pathway was up-regulated. Western blotting revealed that AKT activated by exosomes inhibited osteocyte apoptosis. RNA fluorescence in situ hybridisation and luciferase reporter assays were performed to confirm the interaction between miR-21 and PTEN. According to the experiment in vivo, exosomes prevented GIONFH in a rat model as evidenced by micro-computed tomography scanning and histological and immunohistochemical analyses. Conclusions: Exosomes are effective at inhibiting osteocyte apoptosis (in MLO-Y4 cells) and at preventing rat GIONFH. These beneficial effects are mediated by the miR-21-PTEN-AKT signalling pathway.
Collapse
Affiliation(s)
- Ming-Jie Kuang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Ying Huang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Xi-Ge Zhao
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Rui Zhang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Jian-Xiong Ma
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Da-Chuan Wang
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong 250014, China
| | - Xin-Long Ma
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, People's Republic of China
| |
Collapse
|
83
|
Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells 2019; 8:cells8050467. [PMID: 31100966 PMCID: PMC6562906 DOI: 10.3390/cells8050467] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC)-sourced secretome, defined as the set of MSC-derived bioactive factors (soluble proteins, nucleic acids, lipids and extracellular vesicles), showed therapeutic effects similar to those observed after transplantation of MSCs. MSC-derived secretome may bypass many side effects of MSC-based therapy, including unwanted differentiation of engrafted MSCs. In contrast to MSCs which had to be expanded in culture to reach optimal cell number for transplantation, MSC-sourced secretome is immediately available for treatment of acute conditions, including fulminant hepatitis, cerebral ischemia and myocardial infarction. Additionally, MSC-derived secretome could be massively produced from commercially available cell lines avoiding invasive cell collection procedure. In this review article we emphasized molecular and cellular mechanisms that were responsible for beneficial effects of MSC-derived secretomes in the treatment of degenerative and inflammatory diseases of hepatobiliary, respiratory, musculoskeletal, gastrointestinal, cardiovascular and nervous system. Results obtained in a large number of studies suggested that administration of MSC-derived secretomes represents a new, cell-free therapeutic approach for attenuation of inflammatory and degenerative diseases. Therapeutic effects of MSC-sourced secretomes relied on their capacity to deliver genetic material, growth and immunomodulatory factors to the target cells enabling activation of anti-apoptotic and pro-survival pathways that resulted in tissue repair and regeneration.
Collapse
Affiliation(s)
| | | | - Nemanja Jovicic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland.
| | - Nebojsa Arsenijevic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.
| | - Vladislav Volarevic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.
| |
Collapse
|
84
|
Peng H, Yang M, Guo Q, Su T, Xiao Y, Xia ZY. Dendrobium officinale polysaccharides regulate age-related lineage commitment between osteogenic and adipogenic differentiation. Cell Prolif 2019; 52:e12624. [PMID: 31038249 PMCID: PMC6668967 DOI: 10.1111/cpr.12624] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives Excessive oxidative stress and diminished antioxidant defences could contribute to age‐related tissue damage and various diseases including age‐related osteoporosis. Dendrobium officinale polysaccharides (DOPs), a major ingredient from a traditional Chinese medicine, have a great potential of antioxidative activity. In this study, we explore the role of DOP in age‐related osteoporosis that remains elusive. Materials and methods Oxidative stimulation and DOP were used to treat bone marrow mesenchymal stem cells (BMSCs), whose lineage commitment was measured by adipogenic‐ and osteoblastic‐induced differentiation analysis. The oxidative stress and antioxidant capacity of BMSCs under the treatment of DOP were analysed by the level of MDA, SOD. Related mechanism studies were confirmed by qRT‐PCR, Western blotting and siRNA transfection. DOP was orally administrated in aged mice whose phenotype was confirmed by micro‐CT, immunofluorescence, immunochemistry and calcein double‐labelling analysis. Results Dendrobium officinale polysaccharide treatment markedly increased osteogenic differentiation of BMSCs, while inhibiting adipogenic differentiation. In vitro, DOP could rescue H2O2‐induced switch of BMSCs differentiation fate. However, this effect was abolished in BMSCs when interfered with Nrf2 siRNA. Furthermore, administration of DOP to aged mice significantly increased the bone mass and reduced the marrow adipose tissue (MAT) accompanied with decreased oxidative stress of BMSCs. Conclusions Our study reveals that DOP can attenuate bone loss and MAT accumulation through NRF2 antioxidant signalling, which may represent as potential therapeutic agent for age‐related osteoporosis.
Collapse
Affiliation(s)
- Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhu-Ying Xia
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|