51
|
Jiang X, Zhu Q, Zhu H, Zhu Z, Miao X. Antifouling lipid membrane coupled with silver nanoparticles for electrochemical detection of nucleic acids in biological fluids. Anal Chim Acta 2021; 1177:338751. [PMID: 34482888 DOI: 10.1016/j.aca.2021.338751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
Electrochemical method capable of detecting specific nucleic acids in complex fluid will undoubtedly advance the diagnosis of many kinds of diseases. Herein, by coupling lipid membrane with silver nanoparticles (AgNPs), we develop a new electrochemical method for sensitive and reliable detection of nucleic acids in biological fluids. The advantages of lipid membrane especially its excellent antifouling ability is employed to enhance the applicability of the method in complex environment; while the significant solid-state Ag/AgCl response of AgNPs is used to ensure the detection sensitivity of the method. The core of this method's workflow is the target-induced Y-shape structure formation, which results in the recruitment of AgNPs to the electrode surface, producing considerable electrochemical responses used for target nucleic acid detection. Taking highly upregulated in liver cancer (HULC), a liver cancer-related long non-coding RNA as a model target, the method exhibits high sensitivity, specificity, and reproducibility with a detection limit of 0.42 fM. Moreover, the method displays desirable usability in biological fluids such as serum, which will be of great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Xihui Jiang
- Department of Medical Science and Technology, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China
| | - Qian Zhu
- Department of Medical Science and Technology, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China
| | - Haoyu Zhu
- Department of Medical Science and Technology, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China
| | - Zhiqiang Zhu
- Department of Medical Science and Technology, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China
| | - Xiangyang Miao
- Department of Medical Science and Technology, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China.
| |
Collapse
|
52
|
Glökler J, Lim TS, Ida J, Frohme M. Isothermal amplifications - a comprehensive review on current methods. Crit Rev Biochem Mol Biol 2021; 56:543-586. [PMID: 34263688 DOI: 10.1080/10409238.2021.1937927] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The introduction of nucleic acid amplification techniques has revolutionized the field of medical diagnostics in the last decade. The advent of PCR catalyzed the increasing application of DNA, not just for molecular cloning but also for molecular based diagnostics. Since the introduction of PCR, a deeper understanding of molecular mechanisms and enzymes involved in DNA/RNA replication has spurred the development of novel methods devoid of temperature cycling. Isothermal amplification methods have since been introduced utilizing different mechanisms, enzymes, and conditions. The ease with which isothermal amplification methods have allowed nucleic acid amplification to be carried out has had a profound impact on the way molecular diagnostics are being designed after the turn of the millennium. With all the advantages isothermal amplification brings, the issues or complications surrounding each method are heterogeneous making it difficult to identify the best approach for an end-user. This review pays special attention to the various isothermal amplification methods by classifying them based on the mechanistic characteristics which include reaction formats, amplification information, promoter, strand break, and refolding mechanisms. We would also compare the efficiencies and usefulness of each method while highlighting the potential applications and detection methods involved. This review will serve as an overall outlook on the journey and development of isothermal amplification methods as a whole.
Collapse
Affiliation(s)
- Jörn Glökler
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Jeunice Ida
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Marcus Frohme
- Department of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| |
Collapse
|
53
|
Liu R, Hu Y, He Y, Lan T, Zhang J. Translating daily COVID-19 screening into a simple glucose test: a proof of concept study. Chem Sci 2021; 12:9022-9030. [PMID: 34276930 PMCID: PMC8261732 DOI: 10.1039/d1sc00512j] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Home testing is an attractive emerging strategy to combat the COVID-19 pandemic and prevent overloading of healthcare resources through at-home isolation, screening and monitoring of symptoms. However, current diagnostic technologies of SARS-CoV-2 still suffer from some drawbacks because of the tradeoffs between sensitivity, usability and costs, making the test unaffordable to most users at home. To address these limitations, taking advantage of clustered regularly interspaced short palindromic repeats (CRISPRs) and a portable glucose meter (PGM), we present a proof-of-concept demonstration of a target-responsive CRISPR-PGM system for translating SARS-CoV-2 detection into a glucose test. Using this system, a specific N gene, N protein, and pseudo-viruses of SARS-CoV-2 have been detected quantitatively with a PGM. Given the facile integration of various bioreceptors into the CRISPR-PGM system, the proposed method provides a starting point to provide patients with a single-device solution that can quantitatively monitor multiple COVID-19 biomarkers at home.
Collapse
Affiliation(s)
- Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Yuansheng Hu
- The Third Affiliated Hospital of Anhui Medical University, Binhu Hospital of Hefei City Hefei 230022 China
| | - Ying He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Tian Lan
- GlucoSentient, Inc. 2100 S. Oak Street, Suite 101 Champaign IL 61820 USA
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| |
Collapse
|
54
|
Alafeef M, Moitra P, Dighe K, Pan D. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat Protoc 2021; 16:3141-3162. [PMID: 33931780 DOI: 10.1038/s41596-021-00546-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) highlights the shortcomings of the current testing paradigm for viral disease diagnostics. Here, we report a stepwise protocol for an RNA-extraction-free nano-amplified colorimetric test for rapid and naked-eye molecular diagnosis of COVID-19. The test employs a unique dual-prong approach that integrates nucleic acid (NA) amplification and plasmonic sensing for point-of-care detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with a sample-to-assay response time of <1 h. The RNA-extraction-free nano-amplified colorimetric test utilizes plasmonic gold nanoparticles capped with antisense oligonucleotides (ASOs) as a colorimetric reporter to detect the amplified nucleic acid from the COVID-19 causative virus, SARS-CoV-2. The ASOs are specific for the SARS-CoV-2 N-gene, and binding of the ASOs to their target sequence results in the aggregation of the plasmonic gold nanoparticles. This highly specific agglomeration step leads to a change in the plasmonic response of the nanoparticles. Furthermore, when tested using clinical samples, the accuracy, sensitivity and specificity of the test were found to be >98.4%, >96.6% and 100%, respectively, with a detection limit of 10 copies/μL. The test can easily be adapted to diagnose other viral infections with a simple modification of the ASOs and primer sequences. It also provides a low-cost, rapid approach requiring minimal instrumentation that can be used as a screening tool for the diagnosis of COVID-19 at point-of-care settings in resource-poor situations. The colorimetric readout of the test can even be monitored using a handheld optical reader to obtain a quantitative response. Therefore, we anticipate that this protocol will be widely useful for the development of biosensors for the molecular diagnostics of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Maha Alafeef
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, Jordan.,Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Parikshit Moitra
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Ketan Dighe
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA. .,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
55
|
Abstract
Selective and sensitive detection of nucleic acid biomarkers is of great significance in early-stage diagnosis and targeted therapy. Therefore, the development of diagnostic methods capable of detecting diseases at the molecular level in biological fluids is vital to the emerging revolution in the early diagnosis of diseases. However, the vast majority of the currently available ultrasensitive detection strategies involve either target/signal amplification or involve complex designs. Here, using a p53 tumor suppressor gene whose mutation has been implicated in more than 50% of human cancers, we show a background-free ultrasensitive detection of this gene on a simple platform. The sensor exhibits a relatively static mid-FRET state in the absence of a target that can be attributed to the time-averaged fluorescence intensity of fast transitions among multiple states, but it undergoes continuous dynamic switching between a low- and a high-FRET state in the presence of a target, allowing a high-confidence detection. In addition to its simple design, the sensor has a detection limit down to low femtomolar (fM) concentration without the need for target amplification. We also show that this sensor is highly effective in discriminating against single-nucleotide polymorphisms (SNPs). Given the generic hybridization-based detection platform, the sensing strategy developed here can be used to detect a wide range of nucleic acid sequences enabling early diagnosis of diseases and screening genetic disorders.
Collapse
Affiliation(s)
- Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kalani M Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
56
|
Leon F, Pinchon E, Temurok N, Morvan F, Vasseur JJ, Clot M, Foulongne V, Cantaloube JF, Vande Perre P, Molès JP, Daynès A, Fournier-Wirth C. Diagnostic Performance of a Magnetic Field-Enhanced Agglutination Readout in Detecting Either Viral Genomes or Host Antibodies in Arbovirus Infection. Microorganisms 2021; 9:microorganisms9040674. [PMID: 33805173 PMCID: PMC8064388 DOI: 10.3390/microorganisms9040674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Arbovirus diagnostics on blood from donors and travelers returning from endemic areas is increasingly important for better patient management and epidemiological surveillance. We developed a flexible approach based on a magnetic field-enhanced agglutination (MFEA) readout to detect either genomes or host-derived antibodies. Dengue viruses (DENVs) were selected as models. For genome detection, a pan-flavivirus amplification was performed before capture of biotinylated amplicons between magnetic nanoparticles (MNPs) grafted with DENV probes and anti-biotin antibodies. Magnetization cycles accelerated this chaining process to within 5 min while simple turbidimetry measured the signal. This molecular MFEA readout was evaluated on 43 DENV RNA(+) and 32 DENV RNA(−) samples previously screened by real-time RT-PCR. The sensitivity and the specificity were 88.37% (95% CI, 78.76%–97.95%) and 96.87% (95% CI, 90.84%–100%), respectively. For anti-DENV antibody detection, 103 plasma samples from donors were first screened using ELISA assays. An immunological MFEA readout was then performed by adding MNPs grafted with viral antigens to the samples. Anti-DENV antibodies were detected with a sensitivity and specificity of 90.62% (95% CI, 83.50%–97.76%) and 97.44% (95% CI, 92.48%–100%), respectively. This adaptable approach offers flexibility to platforms dedicated to the screening of emerging infections.
Collapse
Affiliation(s)
- Fanny Leon
- Pathogénèse et Contrôle des Infections Chroniques et Emergentes, Université de Montpellier, Etablissement Français du Sang, Inserm, Université des Antilles, 34184 Montpellier, France; (F.L.); (E.P.); (V.F.); (J.-F.C.); (P.V.P.); (J.-P.M.)
| | - Elena Pinchon
- Pathogénèse et Contrôle des Infections Chroniques et Emergentes, Université de Montpellier, Etablissement Français du Sang, Inserm, Université des Antilles, 34184 Montpellier, France; (F.L.); (E.P.); (V.F.); (J.-F.C.); (P.V.P.); (J.-P.M.)
| | - Nevzat Temurok
- HORIBA Medical, 34184 Montpellier, France; (N.T.); (M.C.); (A.D.)
| | - François Morvan
- Institut des Biomolecules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (F.M.); (J.-J.V.)
| | - Jean-Jacques Vasseur
- Institut des Biomolecules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (F.M.); (J.-J.V.)
| | - Martine Clot
- HORIBA Medical, 34184 Montpellier, France; (N.T.); (M.C.); (A.D.)
| | - Vincent Foulongne
- Pathogénèse et Contrôle des Infections Chroniques et Emergentes, Université de Montpellier, Etablissement Français du Sang, Inserm, Université des Antilles, 34184 Montpellier, France; (F.L.); (E.P.); (V.F.); (J.-F.C.); (P.V.P.); (J.-P.M.)
| | - Jean-François Cantaloube
- Pathogénèse et Contrôle des Infections Chroniques et Emergentes, Université de Montpellier, Etablissement Français du Sang, Inserm, Université des Antilles, 34184 Montpellier, France; (F.L.); (E.P.); (V.F.); (J.-F.C.); (P.V.P.); (J.-P.M.)
| | - Philippe Vande Perre
- Pathogénèse et Contrôle des Infections Chroniques et Emergentes, Université de Montpellier, Etablissement Français du Sang, Inserm, Université des Antilles, 34184 Montpellier, France; (F.L.); (E.P.); (V.F.); (J.-F.C.); (P.V.P.); (J.-P.M.)
| | - Jean-Pierre Molès
- Pathogénèse et Contrôle des Infections Chroniques et Emergentes, Université de Montpellier, Etablissement Français du Sang, Inserm, Université des Antilles, 34184 Montpellier, France; (F.L.); (E.P.); (V.F.); (J.-F.C.); (P.V.P.); (J.-P.M.)
| | - Aurélien Daynès
- HORIBA Medical, 34184 Montpellier, France; (N.T.); (M.C.); (A.D.)
| | - Chantal Fournier-Wirth
- Pathogénèse et Contrôle des Infections Chroniques et Emergentes, Université de Montpellier, Etablissement Français du Sang, Inserm, Université des Antilles, 34184 Montpellier, France; (F.L.); (E.P.); (V.F.); (J.-F.C.); (P.V.P.); (J.-P.M.)
- Correspondence: ; Tel.: +33-467616457
| |
Collapse
|
57
|
Kim H, Huh HJ, Park E, Chung DR, Kang M. Multiplex Molecular Point-of-Care Test for Syndromic Infectious Diseases. BIOCHIP JOURNAL 2021; 15:14-22. [PMID: 33613852 PMCID: PMC7883532 DOI: 10.1007/s13206-021-00004-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
Point-of-care (POC) molecular diagnostics for clinical microbiology and virology has primarily focused on the detection of a single pathogen. More recently, it has transitioned into a comprehensive syndromic approach that employs multiplex capabilities, including the simultaneous detection of two or more pathogens. Multiplex POC tests provide higher accuracy to for actionable decisionmaking in critical care, which leads to pathogen-specific treatment and standardized usages of antibiotics that help prevent unnecessary processes. In addition, these tests can be simple enough to operate at the primary care level and in remote settings where there is no laboratory infrastructure. This review focuses on state-of-the-art multiplexed molecular point-of-care tests (POCT) for infectious diseases and efforts to overcome their limitations, especially related to inadequate throughput for the identification of syndromic diseases. We also discuss promising and imperative clinical POC approaches, as well as the possible hurdles of their practical applications as front-line diagnostic tests.
Collapse
Affiliation(s)
- Hanbi Kim
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, 06351 South Korea.,Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, 06355 South Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351 South Korea
| | - Eunkyoung Park
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, 06351 South Korea.,Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, 06355 South Korea
| | - Doo-Ryeon Chung
- Center for Infection Prevention and Control, Samsung Medical Center, Seoul, 06351 South Korea.,Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06367 South Korea.,Division of Infectious Diseases, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351 South Korea
| | - Minhee Kang
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, 06351 South Korea.,Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, 06355 South Korea
| |
Collapse
|
58
|
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|