51
|
Viles JH. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer's Disease. Angew Chem Int Ed Engl 2023; 62:e202215785. [PMID: 36876912 PMCID: PMC10953358 DOI: 10.1002/anie.202215785] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
The accumulation of the amyloid-β peptides (Aβ) is central to the development of Alzheimer's disease. The mechanism by which Aβ triggers a cascade of events that leads to dementia is a topic of intense investigation. Aβ self-associates into a series of complex assemblies with different structural and biophysical properties. It is the interaction of these oligomeric, protofibril and fibrillar assemblies with lipid membranes, or with membrane receptors, that results in membrane permeability and loss of cellular homeostasis, a key event in Alzheimer's disease pathology. Aβ can have an array of impacts on lipid membranes, reports have included: a carpeting effect; a detergent effect; and Aβ ion-channel pore formation. Recent advances imaging these interactions are providing a clearer picture of Aβ induced membrane disruption. Understanding the relationship between different Aβ structures and membrane permeability will inform therapeutics targeting Aβ cytotoxicity.
Collapse
Affiliation(s)
- John H. Viles
- Department of Biochemistry, SBBS, Queen MaryUniversity of LondonUK
| |
Collapse
|
52
|
Fang M, Wang X, Su K, Jia X, Guan P, Hu X. Inhibition Effect and Molecular Mechanisms of Quercetin on the Aβ42 Dimer: A Molecular Dynamics Simulation Study. ACS OMEGA 2023; 8:18009-18018. [PMID: 37251196 PMCID: PMC10210038 DOI: 10.1021/acsomega.3c01208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023]
Abstract
Amyloid-β (Aβ) dimer as the smallest oligomer has recently been drawing attention due to its neurotoxicity, transient nature, and heterogeneity. The inhibition of Aβ dimer's aggregation is the key to primary intervention of Alzheimer's disease. Previous experimental studies have reported that quercetin, the widespread polyphenolic constituent of multiple fruits and vegetables, can hamper the formation of Aβ protofibrils and disaggregate Aβ fibrils. However, the molecular mechanisms of quercetin in the suppression of the Aβ(1-42) dimer's conformational changes still remain elusive. In this work, to investigate the inhibitory mechanisms of quercetin molecules on the Aβ(1-42) dimer, an Aβ(1-42) dimer based on monomeric the Aβ(1-42) peptide with enriched coil structures is constructed. The early molecular mechanisms of quercetin molecules on inhibiting the Aβ(1-42) dimer at two different Aβ42-to-quercetin molar ratios (1:5 and 1:10) are explored via all-atom molecular dynamics simulations. The results indicate that quercetin molecules can impede the configurational change of the Aβ(1-42) dimer. The interactions and the binding affinity between the Aβ(1-42) dimer and quercetin molecules in the Aβ42 dimer + 20 quercetin system are stronger in comparison with that in the Aβ42 dimer + 10 quercetin system. Our work may be helpful in developing new drug candidates for preventing the conformational transition and further aggregation of the Aβ dimer.
Collapse
|
53
|
Firouzi R, Sowlati-Hashjin S, Chávez-García C, Ashouri M, Karimi-Jafari MH, Karttunen M. Identification of Catechins' Binding Sites in Monomeric A β42 through Ensemble Docking and MD Simulations. Int J Mol Sci 2023; 24:ijms24098161. [PMID: 37175868 PMCID: PMC10179585 DOI: 10.3390/ijms24098161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
The assembly of the amyloid-β peptide (Aβ) into toxic oligomers and fibrils is associated with Alzheimer's disease and dementia. Therefore, disrupting amyloid assembly by direct targeting of the Aβ monomeric form with small molecules or antibodies is a promising therapeutic strategy. However, given the dynamic nature of Aβ, standard computational tools cannot be easily applied for high-throughput structure-based virtual screening in drug discovery projects. In the current study, we propose a computational pipeline-in the framework of the ensemble docking strategy-to identify catechins' binding sites in monomeric Aβ42. It is shown that both hydrophobic aromatic interactions and hydrogen bonding are crucial for the binding of catechins to Aβ42. Additionally, it has been found that all the studied ligands, especially EGCG, can act as potent inhibitors against amyloid aggregation by blocking the central hydrophobic region of Aβ. Our findings are evaluated and confirmed with multi-microsecond MD simulations. Finally, it is suggested that our proposed pipeline, with low computational cost in comparison with MD simulations, is a suitable approach for the virtual screening of ligand libraries against Aβ.
Collapse
Affiliation(s)
- Rohoullah Firouzi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran 1496813151, Iran
| | | | - Cecilia Chávez-García
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Mitra Ashouri
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran P.O. Box 14155-6619, Iran
| | - Mohammad Hossein Karimi-Jafari
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran P.O. Box 14155-6619, Iran
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
54
|
Chowdhury UD, Paul A, Bhargava BL. Interaction of the tau fibrils with the neuronal membrane. Biophys Chem 2023; 298:107024. [PMID: 37104971 DOI: 10.1016/j.bpc.2023.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Tau proteins are recently gaining a lot of interest due to their active role in causing a range of tauopathies. Molecular mechanisms underlying the tau interaction with the neuronal membrane are hitherto unknown and difficult to characterize using experimental methods. Using the cryo-EM structure of the tau-fibrils we have used atomistic molecular dynamics simulation to model the tau fibril and neuronal membrane interaction using explicit solvation. The dynamics and structural characteristics of the tau fibril with the neuronal membrane are compared to the tau fibril in the aqueous phase to corroborate the effect of the neuronal membrane in the tau structure. Tau fibrils have been modelled using CHARMM-36m force field and the six component neuronal membrane composition is taken from the earlier simulation results. The timescale conceivable in our molecular dynamics simulations is of the order of microseconds which captures the onset of the interaction of the tau fibrils with the neuronal membrane. This interaction is found to impact the tau pathogenesis that finally causes neuronal toxicity. Our study initiates the understanding of tau conformational ensemble in the presence of neuronal membrane and sheds the light on the significant tau-membrane interactions.
Collapse
Affiliation(s)
- Unmesh D Chowdhury
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| | - Arnav Paul
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| | - B L Bhargava
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
55
|
Gupta S, Dasmahapatra AK. Enhanced stability of a disaggregated Aβ fibril on removal of ligand inhibits refibrillation: An all atom Molecular Dynamics simulation study. Int J Biol Macromol 2023; 240:124481. [PMID: 37076062 DOI: 10.1016/j.ijbiomac.2023.124481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The extraneuronally deposited senile plaques, composed of neurotoxic aggregates of Aβ fibril, define Alzheimer's disease (AD). Natural compounds have been tested for their destabilization potential on Aβ fibril, thereby curing AD. However, the resultant destabilized Aβ fibril, needs to be checked for its irreversibility to the native organized state after removal of the ligand. Herein, we assessed the stability of a destabilized fibril after the ligand (ellagic acid represented as REF) is removed from the complex. The study has been conducted via Molecular Dynamics (MD) simulation of 1 μs for both Aβ-Water (control) and Aβ-REF″ (test or REF removed) system. The increased value of RMSD, Rg, SASA, lower β-sheet content and reduced number of H-bonds explains enhanced destabilization observed in Aβ-REF″ system. The increased inter-chain distance demonstrates breaking of the residual contacts, testifying the drift of terminal chains from the pentamer. The increased SASA along with the ∆Gps(polar solvation energy) accounts for the reduced interaction amongst residues, and more with solvent molecules, governing irreversibility to native state. The higher Gibb's free energy of the misaligned structure of Aβ-REF″ ensures irreversibility to the organized structure due to its inability to cross such high energy barrier. The observed stability of the disaggregated structure, despite ligand elimination, establishes the effectiveness of the destabilization technique as a promising therapeutic approach towards treating AD.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
56
|
Nguyen PH, Sterpone F, Derreumaux P. Metastable alpha-rich and beta-rich conformations of small Aβ42 peptide oligomers. Proteins 2023. [PMID: 37038252 DOI: 10.1002/prot.26495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 03/23/2023] [Indexed: 04/12/2023]
Abstract
Probing the structures of amyloid-β (Aβ) peptides in the early steps of aggregation is extremely difficult experimentally and computationally. Yet, this knowledge is extremely important as small oligomers are the most toxic species. Experiments and simulations on Aβ42 monomer point to random coil conformations with either transient helical or β-strand content. Our current conformational description of small Aβ42 oligomers is funneled toward amorphous aggregates with some β-sheet content and rare high energy states with well-ordered assemblies of β-sheets. In this study, we emphasize another view based on metastable α-helix bundle oligomers spanning the C-terminal residues, which are predicted by the machine-learning AlphaFold2 method and supported indirectly by low-resolution experimental data on many amyloid polypeptides. This finding has consequences in developing novel chemical tools and to design potential therapies to reduce aggregation and toxicity.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, Paris, 75005, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, Paris, 75005, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, Paris, 75005, France
- Institut Universitaire de France (IUF), Paris, 75005, France
| |
Collapse
|
57
|
Song Z, Gatch A, Sun Y, Ding F. Differential Binding and Conformational Dynamics of Tau Microtubule-Binding Repeats with a Preformed Amyloid-β Fibril Seed. ACS Chem Neurosci 2023; 14:1321-1330. [PMID: 36975100 PMCID: PMC10119806 DOI: 10.1021/acschemneuro.3c00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Both senile plaques formed by amyloid-β (Aβ) and neurofibrillary tangles (NFTs) comprised of tau are pathological hallmarks of Alzheimer's disease (AD). The accumulation of NFTs better correlates with the loss of cognitive function than senile plaques, but NFTs are rarely observed without the presence of senile plaques. Hence, cross-seeding of tau by preformed Aβ amyloid fibril seeds has been proposed to drive the aggregation of tau and exacerbate AD progression, but the molecular mechanism remains unknown. Here, we first identified cross-interaction hotspots between Aβ and tau using atomistic discrete molecular dynamics simulations (DMD) and confirmed the critical role of the four microtubule-binding repeats of tau (R1-R4) in the cross-interaction with Aβ. We further investigated the binding structure and dynamics of each tau repeat with a preformed Aβ fibril seed. Specifically, R1 and R3 preferred to bind the Aβ fibril lateral surface instead of the elongation end. In contrast, R2 and R4 had higher binding propensities to the fibril elongation end than the lateral surface, enhancing β-sheet content by forming hydrogen bonds with the exposed hydrogen bond donors and acceptors. Together, our results suggest that the four repeats play distinct roles in driving the binding of tau to different surfaces of an Aβ fibril seed. Binding of tau to the lateral surface of Aβ fibril can increase the local concentration, while the binding to the elongation surface promotes β-sheet formation, both of which reduce the free energy barrier for tau aggregation nucleation and subsequent fibrillization.
Collapse
Affiliation(s)
- Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Adam Gatch
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
58
|
Liu X, Li X, Qiao Q, Li F, Wei G. ALS-Linked A315T and A315E Mutations Enhance β-Barrel Formation of the TDP-43 307-319 Hexamer: A REST2 Simulation Study. ACS Chem Neurosci 2023; 14:1310-1320. [PMID: 36888995 DOI: 10.1021/acschemneuro.3c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Pathogenic mutations of transactivation response element DNA-binding protein 43 (TDP-43) are closely linked with amyotrophic lateral sclerosis (ALS). It was recently reported that two ALS-linked familial mutants A315T and A315E of TDP-43307-319 peptides can self-assemble into oligomers including tetramers, hexamers, and octamers, among which hexamers were suggested to form the β-barrel structure. However, due to the transient nature of oligomers, their conformational properties and the atomic mechanisms underlying the β-barrel formation remain largely elusive. Herein, we investigated the hexameric conformational distributions of the wild-type (WT) TDP-43307-319 fragment and its A315T and A315E mutants by performing all-atom explicit-solvent replica exchange with solute tempering 2 simulations. Our simulations reveal that each peptide can self-assemble into diverse conformations including ordered β-barrels, bilayer β-sheets and/or monolayer β-sheets, and disordered complexes. A315T and A315E mutants display higher propensity to form β-barrel structures than the WT, which provides atomic explanation for their enhanced neurotoxicity reported previously. Detailed interaction analysis shows that A315T and A315E mutations increase inter-molecular interactions. Also, the β-barrel structures formed by the three different peptides are stabilized by distinct inter-peptide side-chain hydrogen bonding, hydrophobic, and aromatic stacking interactions. This study demonstrates the enhanced β-barrel formation of the TDP-43307-319 hexamer by the pathogenic A315T and A315E mutations and reveals the underlying molecular determinants, which may be helpful for in-depth understanding of the ALS-mutation-induced neurotoxicity of TDP-43 protein.
Collapse
Affiliation(s)
- Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qin Qiao
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Shanghai 200032, China
| | - Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| |
Collapse
|
59
|
Nguyen PH, Derreumaux P. An S-Shaped Aβ42 Cross-β Hexamer Embedded into a Lipid Bilayer Reveals Membrane Disruption and Permeability. ACS Chem Neurosci 2023; 14:936-946. [PMID: 36757886 DOI: 10.1021/acschemneuro.2c00785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
The interactions of amyloid oligomers with membranes are known to contribute to cellular toxicity. Numerous in vitro experimental studies reported on the insertion of oligomers of different sizes that can induce cell membrane disruption, extract lipids, and form ion-permeable transmembrane pores. The current repertoire of amyloid-beta (Aβ) membrane-inserted folds that was subject to high-resolution structure NMR spectroscopy and computer simulations is devoid of any cross-β fibrillar structure. In this study, we explored the dynamics of an S-shaped Aβ42 cross-β hexamer model inserted into a lipid bilayer membrane by two atomistic molecular dynamics simulations. The initial model is characterized by the hydrophobic residues at the central hydrophobic core (residues 17-21, CHC) and the C-terminus (residues 30-42) embedded into the membrane. We observed major structural secondary, tertiary, and quaternary rearrangements leading to two distinct species, hexamer and two trimers, accompanied by membrane disruption and water permeation. The simulations show that some configurations, but not the majority, have the CHC and C-terminus hydrophobic residues exposed to the solvent. Overall, our computational results offer new perspectives to understand the relationship between Aβ42 assemblies and membrane permeability.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Fondation Edmond de Rothschild, Université Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, UPR 9080, Laboratoire de Biochimie Théorique, Fondation Edmond de Rothschild, Université Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
60
|
Kalita S, Bergman H, Dubey KD, Shaik S. How Can Static and Oscillating Electric Fields Serve in Decomposing Alzheimer's and Other Senile Plaques? J Am Chem Soc 2023; 145:3543-3553. [PMID: 36735972 PMCID: PMC9936589 DOI: 10.1021/jacs.2c12305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease is one of the most common neurodegenerative conditions, which are ascribed to extracellular accumulation of β-amyloid peptides into plaques. This phenomenon seems to typify other related neurodegenerative diseases. The present study uses classical molecular-dynamics simulations to decipher the aggregation-disintegration behavior of β-amyloid peptide plaques in the presence of static and oscillating oriented external electric fields (OEEFs). A long-term disintegration of such plaques is highly desirable since this may improve the prospects of therapeutic treatments of Alzheimer's disease and of other neurodegenerative diseases typified by senile plaques. Our study illustrates the spontaneous aggregation of the β-amyloid, its prevention and breakdown when OEEF is applied, and the fate of the broken aggregate when the OEEF is removed. Notably, we demonstrate that the usage of an oscillating OEEF on β-amyloid aggregates appears to lead to an irreversible disintegration. Insight is provided into the root causes of the various modes of aggregation, as well as into the different fates of OEEF-induced disintegration in oscillating vs static fields. Finally, our simulation results are compared to the well-established TTFields and the Deep Brain Stimulation (DBS) therapies, which are currently used options for treatments of Alzheimer's disease and other related neurodegenerative diseases.
Collapse
Affiliation(s)
- Surajit Kalita
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), The Hebrew University of Jerusalem, Hadassah Medical Faculty, Jerusalem, Israel 91120
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
61
|
Disassembly of Amyloid Fibril with Infrared Free Electron Laser. Int J Mol Sci 2023; 24:ijms24043686. [PMID: 36835098 PMCID: PMC9967569 DOI: 10.3390/ijms24043686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Amyloid fibril causes serious amyloidosis such as neurodegenerative diseases. The structure is composed of rigid β-sheet stacking conformation which makes it hard to disassemble the fibril state without denaturants. Infrared free electron laser (IR-FEL) is an intense picosecond pulsed laser that is oscillated through a linear accelerator, and the oscillation wavelengths are tunable from 3 μm to 100 μm. Many biological and organic compounds can be structurally altered by the mode-selective vibrational excitations due to the wavelength variability and the high-power oscillation energy (10-50 mJ/cm2). We have found that several different kinds of amyloid fibrils in amino acid sequences were commonly disassembled by the irradiation tuned to amide I (6.1-6.2 μm) where the abundance of β-sheet decreased while that of α-helix increased by the vibrational excitation of amide bonds. In this review, we would like to introduce the IR-FEL oscillation system briefly and describe combination studies of experiments and molecular dynamics simulations on disassembling amyloid fibrils of a short peptide (GNNQQNY) from yeast prion and 11-residue peptide (NFLNCYVSGFH) from β2-microglobulin as representative models. Finally, possible applications of IR-FEL for amyloid research can be proposed as a future outlook.
Collapse
|
62
|
Gupta S, Dasmahapatra AK. Destabilization of Aβ fibrils by omega-3 polyunsaturated fatty acids: a molecular dynamics study. J Biomol Struct Dyn 2023; 41:581-598. [PMID: 34856889 DOI: 10.1080/07391102.2021.2009915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The senile plaques of neurotoxic aggregates of Aβ protein, deposited extraneuronally, mark the pathological hallmark of Alzheimer's disease (AD). The natural compounds such as omega-3 (ω-3) polyunsaturated fatty acids (PUFAs), which can access blood-brain barrier, are believed to be potential disruptors of preformed Aβ fibrils to cure AD with unknown mechanism. Herein, we present the destabilization potential of three ω-3 PUFAs, viz. Eicosapentaenoic acid (EPA), Docosahexaenoic acid (HXA), and α-linolenic acid (LNL) by molecular dynamics simulation. After an initial testing of 300 ns, EPA and HXA have been considered further for extended production run time, 500 ns. The increased value of root mean square deviation (RMSD), radius of gyration, and solvent-accessible surface area (SASA), the reduced number of H-bonds and β-sheet content, and disruption of salt bridges and hydrophobic contacts establish the binding of these ligands to Aβ fibril leading to destabilization. The polar head was found to interact with positively charged lysine (K28) residue in the fibril. However, the hydrophobicity of the long aliphatic tail competes with the intrinsic hydrophobic interactions of Aβ fibril. This amphiphilic nature of EPA and HXA led to the breaking of inherent hydrophobic contacts and formation of new bonds between the tail of PUFA and hydrophobic residues of Aβ fibril, leading to the destabilization of fibril. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) results explain the binding of EPA and HXA to Aβ fibril by interacting with different residues. The destabilization potential of EPA and HXA establishes them as promising drug leads to cure AD, and encourages prospecting of other fatty acids for therapeutic intervention in AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
63
|
Kabir ER, Chowdhury NM, Yasmin H, Kabir MT, Akter R, Perveen A, Ashraf GM, Akter S, Rahman MH, Sweilam SH. Unveiling the Potential of Polyphenols as Anti-Amyloid Molecules in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:787-807. [PMID: 36221865 PMCID: PMC10227919 DOI: 10.2174/1570159x20666221010113812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that mostly affects the elderly population. Mechanisms underlying AD pathogenesis are yet to be fully revealed, but there are several hypotheses regarding AD. Even though free radicals and inflammation are likely to be linked with AD pathogenesis, still amyloid-beta (Aβ) cascade is the dominant hypothesis. According to the Aβ hypothesis, a progressive buildup of extracellular and intracellular Aβ aggregates has a significant contribution to the AD-linked neurodegeneration process. Since Aβ plays an important role in the etiology of AD, therefore Aβ-linked pathways are mainly targeted in order to develop potential AD therapies. Accumulation of Aβ plaques in the brains of AD individuals is an important hallmark of AD. These plaques are mainly composed of Aβ (a peptide of 39-42 amino acids) aggregates produced via the proteolytic cleavage of the amyloid precursor protein. Numerous studies have demonstrated that various polyphenols (PPHs), including cyanidins, anthocyanins, curcumin, catechins and their gallate esters were found to markedly suppress Aβ aggregation and prevent the formation of Aβ oligomers and toxicity, which is further suggesting that these PPHs might be regarded as effective therapeutic agents for the AD treatment. This review summarizes the roles of Aβ in AD pathogenesis, the Aβ aggregation pathway, types of PPHs, and distribution of PPHs in dietary sources. Furthermore, we have predominantly focused on the potential of food-derived PPHs as putative anti-amyloid drugs.
Collapse
Affiliation(s)
- Eva Rahman Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | | | - Hasina Yasmin
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md. Tanvir Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, Virginia 22030, USA
| | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| |
Collapse
|
64
|
Zhang N, Yan C, Yin C, Hu X, Guan P, Cheng Y. Structural Remodeling Mechanism of the Toxic Amyloid Fibrillary Mediated by Epigallocatechin-3-gallate. ACS OMEGA 2022; 7:48047-48058. [PMID: 36591187 PMCID: PMC9798747 DOI: 10.1021/acsomega.2c05995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Numerous therapeutic agents and strategies were designed targeting the therapies of Alzheimer's disease, but many have been suspended due to their severe clinical side effects (such as encephalopathy) on patients. The attractiveness for small molecules with good biocompatibility is therefore restarted. Epigallocatechin-3-gallate (EGCG), extracted from green tea, is expected to be a promising small-molecule drug candidate, which can remodel the structure of preformed β-sheet-rich oligomers/fibrils and then effectively interfere with neurodegenerative processes. However, as the structure of non-fibrillary aggregates cannot be directly characterized, the atomic details of the underlying inhibitory and destructive mechanisms still remain elusive to date. Here, all-atom molecular dynamics simulations and experiments were carried out to elucidate the EGCG-induced remodeling mechanism of amyloid β (Aβ) fibrils. We showed that EGCG was indeed an effective Aβ fibril inhibitor. EGCG was capable of mediating conformational rearrangement of Aβ1-42 fibrils (from a β-sheet to a random coil structure) and triggering the disintegration of fibrils in a dose-dependent manner. EGCG redirected the structure of Aβ by breaking the β-sheet structure and hydrogen bonds between peptide chains within the Aβ protofibrils, especially the parallel β-strand (L17VFFAEDVGS26). Moreover, reduced solvent exposure and multisite binding patterns all tended to induce the conformation conversion of Aβ17-42 pentameric protofibrils, destroying pre-formed fibrils and inhibiting continued fibril growth. Detailed data analysis revealed that structural features of EGCG with abundant benzene ring and phenolic hydroxyl moieties preferentially interact with the parallel β-strands to effectually hinder the interaction of the interpeptide chain and the growth of the ordered β-sheet structure. Furthermore, experimental studies confirmed that EGCG was able to disaggregate the preformed fibrils and alter the protein structure. This study will enable a deeper understanding of fundamental principles for design of structural-based inhibitors.
Collapse
Affiliation(s)
- Nan Zhang
- School
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Chaoren Yan
- School
of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention
Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, China
| | - Changji Yin
- Monash
Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China
- Department
of Materials Science and Engineering, Monash
University, Melbourne 3800, Victoria, Australia
| | - Xiaoling Hu
- School
of Chemistry and Chemical Engineering, Northwestern
Polytechnical University, Xi’an 710072, China
| | - Ping Guan
- School
of Chemistry and Chemical Engineering, Northwestern
Polytechnical University, Xi’an 710072, China
| | - Yuan Cheng
- Monash
Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China
- Department
of Materials Science and Engineering, Monash
University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
65
|
Wang K, Shao X, Cai W. Binding Models of Aβ42 Peptide with Membranes Explored by Molecular Simulations. J Chem Inf Model 2022; 62:6482-6493. [PMID: 35984710 DOI: 10.1021/acs.jcim.2c00444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the factors contributing to the toxicity of amyloid-β (Aβ) peptides is the destruction of membrane integrity through Aβ peptide-membrane interactions. The binding of Aβ peptides to membranes has been studied by experiments and theoretical simulations extensively. The exact binding mechanism, however, still remains elusive. In the present study, the molecular basis of the peptide-bilayer binding mechanism of the full-length Aβ42 monomer with POPC/POPS/CHOL bilayers is investigated by all-atom (AA) simulations. Three main binding models in coil, bend, and turn structures are obtained. Model 1 of the three models with the central hydrophobic core (CHC) buried inside the membrane is the dominant binding model. The structural features of the peptide, the peptide-bilayer interacting regions, the intrapeptide interactions, and peptide-water interactions are studied. The binding of the Aβ42 monomer to the POPC/POPS/CHOL bilayer is also explored by coarse-grained (CG) simulations as a complement. Both the AA and CG simulations show that residues in CHC prefer forming interactions with the bilayer, indicating the crucial role of CHC in peptide-bilayer binding. Our results can provide new insights for the investigation of the peptide-bilayer binding mechanism of the Aβ peptide.
Collapse
Affiliation(s)
- Ke Wang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
66
|
Nguyen PH, Derreumaux P. Insights into the Mixture of Aβ24 and Aβ42 Peptides from Atomistic Simulations. J Phys Chem B 2022; 126:10689-10696. [PMID: 36493347 DOI: 10.1021/acs.jpcb.2c07321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloid-β (Aβ) oligomers play a central role in Alzheimer's disease (AD). Plaques of AD patients consist of Aβ40 and Aβ42 peptides and truncated Aβ peptides. The Aβ24 peptide, identified in human AD brains, was found to impair Aβ42 clearance through the brain-blood barrier. The Aβ24 peptide was also shown to reduce Aβ42 aggregation kinetics in pure buffer, but the underlying mechanism is unknown at atomistic level. In this study, we explored the conformational ensemble of the equimolar mixture of Aβ24 and Aβ42 by replica exchange molecular dynamics simulations and compared it to our previous results on the pure Aβ42 dimer. Our simulations demonstrate that the truncation at residue 24 changes the secondary, tertiary, and quaternary structures of the dimer, offering an explanation of the slower aggregation kinetics of the mixture.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Université Paris Cité, UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Université Paris Cité, UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
67
|
Wu KY, Doan D, Medrano M, Chang CEA. Modeling structural interconversion in Alzheimers' amyloid beta peptide with classical and intrinsically disordered protein force fields. J Biomol Struct Dyn 2022; 40:10005-10022. [PMID: 34152264 DOI: 10.1080/07391102.2021.1939163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A comprehensive understanding of the aggregation mechanism in amyloid beta 42 (Aβ42) peptide is imperative for developing therapeutic drugs to prevent or treat Alzheimer's disease. Because of the high flexibility and lack of native tertiary structures of Aβ42, molecular dynamics (MD) simulations may help elucidate the peptide's dynamics with atomic details and collectively improve ensembles not seen in experiments. We applied microsecond-timescale MD simulations to investigate the dynamics and conformational changes of Aβ42 by using a newly developed Amber force field (ff14IDPSFF). We compared the ff14IDPSFF and the regular ff14SB force field by examining the conformational changes of two distinct Aβ42 monomers in explicit solvent. Conformational ensembles obtained by simulations depend on the force field and initial structure, Aβ42α-helix or Aβ42β-strand. The ff14IDPSFF sampled a high ratio of disordered structures and diverse β-strand secondary structures; in contrast, ff14SB favored helicity during the Aβ42α-helix simulations. The conformations obtained from Aβ42β-strand simulations maintained a balanced content in the disordered and helical structures when simulated by ff14SB, but the conformers clearly favored disordered and β-sheet structures simulated by ff14IDPSFF. The results obtained with ff14IDPSFF qualitatively reproduced the NMR chemical shifts well. In-depth peptide and cluster analysis revealed some characteristic features that may be linked to early onset of the fibril-like structure. The C-terminal region (mainly M35-V40) featured in-registered anti-parallel β-strand (β-hairpin) conformations with tested systems. Our work should expand the knowledge of force field and structure dependency in MD simulations and reveals the underlying structural mechanism-function relationship in Aβ42 peptides. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kingsley Y Wu
- Department of Chemistry, University of California, Riverside, CA, USA
| | - David Doan
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Marco Medrano
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, CA, USA
| |
Collapse
|
68
|
Nguyen PH, Sterpone F, Derreumaux P. Self-Assembly of Amyloid-Beta (Aβ) Peptides from Solution to Near In Vivo Conditions. J Phys Chem B 2022; 126:10317-10326. [PMID: 36469912 DOI: 10.1021/acs.jpcb.2c06375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the atomistic resolution changes during the self-assembly of amyloid peptides or proteins is important to develop compounds or conditions to alter the aggregation pathways and suppress the toxicity and potentially aid in the development of drugs. However, the complexity of protein aggregation and the transient order/disorder of oligomers along the pathways to fibril are very challenging. In this Perspective, we discuss computational studies of amyloid polypeptides carried out under various conditions, including conditions closely mimicking in vivo and point out the challenges in obtaining physiologically relevant results, focusing mainly on the amyloid-beta Aβ peptides.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| |
Collapse
|
69
|
Boopathi S, Garduño‐Juárez R. Calcium inhibits penetration of Alzheimer's Aβ 1 - 42 monomers into the membrane. Proteins 2022; 90:2124-2143. [PMID: 36321654 PMCID: PMC9804374 DOI: 10.1002/prot.26403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
Calcium ion regulation plays a crucial role in maintaining neuronal functions such as neurotransmitter release and synaptic plasticity. Copper (Cu2+ ) coordination to amyloid-β (Aβ) has accelerated Aβ1-42 aggregation that can trigger calcium dysregulation by enhancing the influx of calcium ions by extensive perturbing integrity of the membranes. Aβ1-42 aggregation, calcium dysregulation, and membrane damage are Alzheimer disease (AD) implications. To gain a detail of calcium ions' role in the full-length Aβ1-42 and Aβ1-42 -Cu2+ monomers contact, the cellular membrane before their aggregation to elucidate the neurotoxicity mechanism, we carried out 2.5 μs extensive molecular dynamics simulation (MD) to rigorous explorations of the intriguing feature of the Aβ1-42 and Aβ1-42 -Cu2+ interaction with the dimyristoylphosphatidylcholine (DMPC) bilayer in the presence of calcium ions. The outcome of the results compared to the same simulations without calcium ions. We surprisingly noted robust binding energies between the Aβ1-42 and membrane observed in simulations containing without calcium ions and is two and a half fold lesser in the simulation with calcium ions. Therefore, in the case of the absence of calcium ions, N-terminal residues of Aβ1-42 deeply penetrate from the surface to the center of the bilayer; in contrast to calcium ions presence, the N- and C-terminal residues are involved only in surface contacts through binding phosphate moieties. On the other hand, Aβ1-42 -Cu2+ actively participated in surface bilayer contacts in the absence of calcium ions. These contacts are prevented by forming a calcium bridge between Aβ1-42 -Cu2+ and the DMPC bilayer in the case of calcium ions presence. In a nutshell, Calcium ions do not allow Aβ1-42 penetration into the membranes nor contact of Aβ1-42 -Cu2+ with the membranes. These pieces of information imply that the calcium ions mediate the membrane perturbation via the monomer interactions but do not damage the membrane; they agree with the western blot experimental results of a higher concentration of calcium ions inhibit the membrane pore formation by Aβ peptides.
Collapse
Affiliation(s)
- Subramanian Boopathi
- Instituto de Ciencias FísicasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Ramón Garduño‐Juárez
- Instituto de Ciencias FísicasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
| |
Collapse
|
70
|
Premkumar T, Sajitha Lulu S. Molecular Mechanisms of Emerging Therapeutic Targets in Alzheimer’s Disease: A Systematic Review. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
71
|
Jiang Y, Zeng Z, Yao J, Guan Y, Jia P, Zhao X, Xu L. Treatment of Alzheimer's disease with small-molecule photosensitizers. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
72
|
Rahman A, Saikia B, Gogoi CR, Baruah A. Advances in the understanding of protein misfolding and aggregation through molecular dynamics simulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:31-48. [PMID: 36044970 DOI: 10.1016/j.pbiomolbio.2022.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Aberrant protein folding known as protein misfolding is counted as one of the striking factors of neurodegenerative diseases. The extensive range of pathologies caused by protein misfolding, aggregation and subsequent accumulation are mainly classified into either gain of function diseases or loss of function diseases. In order to seek for novel strategies for treatment and diagnosis of neurodegenerative diseases, insights into the mechanism of misfolding and aggregation is essential. A comprehensive knowledge on the factors influencing misfolding and aggregation is required as well. An extensive experimental study on protein aggregation is somewhat challenging due to the insoluble and noncrystalline nature of amyloid fibrils. Thus there has been a growing use of computational approaches including Monte Carlo simulation, docking simulation, molecular dynamics simulation in the study of protein misfolding and aggregation. The review presents a discussion on molecular dynamics simulation alone as to how it has emerged as a promising tool in the understanding of protein misfolding and aggregation in general, detailing upon three different aspects considering four misfold prone proteins in particular. It is noticeable that all four proteins considered in this review i.e prion, superoxide dismutase1, huntingtin and amyloid β are linked to chronic neurodegenerative diseases with debilitating effects. Initially the review elaborates on the factors influencing the misfolding and aggregation. Next, it addresses our current understanding of the amyloid structures and the associated aggregation mechanisms, finally, summarizing the contribution of this computational tool in the search for therapeutic strategies against the respective protein-deposition diseases.
Collapse
Affiliation(s)
- Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Chimi Rekha Gogoi
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| |
Collapse
|
73
|
Pham T, Cheng KH. Exploring the binding kinetics and behaviors of self-aggregated beta-amyloid oligomers to phase-separated lipid rafts with or without ganglioside-clusters. Biophys Chem 2022; 290:106874. [PMID: 36067650 DOI: 10.1016/j.bpc.2022.106874] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022]
Abstract
Lipid binding kinetics and energetics of self-aggregated and disordered beta-amyloid oligomers of various sizes, from solution to lipid raft surfaces, were investigated using MD simulations. Our systems include small (monomers to tetramers) and larger (octamers and dodecamers) oligomers. Our lipid rafts contain saturated and unsaturated phosphatidylcholine (PC), cholesterol, and with or without asymmetrically distributed monosialotetrahexosylganglioside (GM1). All rafts exhibited dynamic and structurally diversified domains including liquid-ordered (Lo), liquid-disordered (Ld), and interfacial Lod domains. For rafts without GM1, all oligomers bound to the Lod domain. For GM1-containing rafts, all small oligomers and most larger oligomers bound specifically to the GM1-clusters embedded in the Lo domain. Lipid-protein binding energies followed an order of GM1 >> unsaturated PC > saturated PC > cholesterol for all rafts. In addition, protein-induced membrane structural disruption increased progressively with the size of the oligomer for the annular lipids surrounding the membrane-bound protein in non-GM1-containing rafts. We propose that the tight binding of beta-amyloid oligomers to the GM1-clusters and the structural perturbation of lipids surrounding the membrane-bound proteins at the Lod domain are early molecular events of the beta-amyloid aggregation process on neuronal membrane surfaces that trigger the onset of Alzheimer's.
Collapse
Affiliation(s)
- Thuong Pham
- Department of Physics, Trinity University, United States of America
| | - Kwan H Cheng
- Department of Physics, Trinity University, United States of America; Department of Neuroscience, Trinity University, United States of America.
| |
Collapse
|
74
|
Xu Z, Gong Y, Zou Y, Wan J, Tang J, Zhan C, Wei G, Zhang Q. Dissecting the Inhibitory Mechanism of the αB-Crystallin Domain against Aβ 42 Aggregation and Its Effect on Aβ 42 Protofibrils: A Molecular Dynamics Simulation Study. ACS Chem Neurosci 2022; 13:2842-2851. [PMID: 36153964 DOI: 10.1021/acschemneuro.2c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alzheimer's disease (AD) is related to the misfolding and aggregation of amyloid-β (Aβ) protein, and its major pathological hallmark is fibrillary β-amyloid plaques. Impeding the formation of Aβ β-structure-rich aggregates and dissociating Aβ fibrils are considered potent strategies to suppress the onset and progression of AD. As a molecular chaperone, human αB-crystallin has received extensive attention in the inhibition of protein aggregation. Previous experiments reported that the structured core region of αB-crystallin (αBC) exhibits a better preventive effect on Aβ aggregation and toxicity than the full-length protein. However, the molecular mechanism behind the effect of inhibition remains mostly unknown. Herein, we carried out six 500 ns molecular dynamics (MD) simulations to investigate the inhibitory mechanism of αBC on Aβ42 aggregation. Our simulations show that αBC greatly impedes the formation of β-structure contents. We find that the binding of αBC to the Aβ42 monomer is driven by polar, hydrophobic, and H-bonding interactions. To explore whether αBC could destabilize Aβ42 protofibrils, we also carried out MD simulations of Aβ42 protofibrils with and without αBC. The results show that αBC interacts with three binding sites of the Aβ42 protofibril, and the binding is mainly driven by polar and H-bonding interactions. The binding of αBC at these three sites has a preferred dissociation effect on the β-structure content, kink angle, and K28-A42 salt bridges. Overall, this study not only discloses the molecular mechanism of αBC against Aβ42 aggregation but also demonstrates the disruption effects of αBC on Aβ42 protofibrils, which yields an avenue for designing anti-AD drug candidates.
Collapse
Affiliation(s)
- Zhengdong Xu
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Yehong Gong
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China.,School of Sports Science and Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yu Zou
- Department Sport and Exercise Science, College of Education, Zhejiang University, 148 Tianmenshan Road, Hangzhou 310007, Zhejiang, People's Republic of China
| | - Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| | - Chendi Zhan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
75
|
Sonar K, Mancera RL. Characterization of the Conformations of Amyloid Beta 42 in Solution That May Mediate Its Initial Hydrophobic Aggregation. J Phys Chem B 2022; 126:7916-7933. [PMID: 36179370 DOI: 10.1021/acs.jpcb.2c04743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intrinsically disordered peptides, such as amyloid β42 (Aβ42), lack a well-defined structure in solution. Aβ42 can undergo abnormal aggregation and amyloidogenesis in the brain, forming fibrillar plaques, a hallmark of Alzheimer's disease. The insoluble fibrillar forms of Aβ42 exhibit well-defined, cross β-sheet structures at the molecular level and are less toxic than the soluble, intermediate disordered oligomeric forms. However, the mechanism of initial interaction of monomers and subsequent oligomerization is not well understood. The structural disorder of Aβ42 adds to the challenges of determining the structural properties of its monomers, making it difficult to understand the underlying molecular mechanism of pathogenic aggregation. Certain regions of Aβ42 are known to exhibit helical propensity in different physiological conditions. NMR spectroscopy has shown that the Aβ42 monomer at lower pH can adopt an α-helical conformation and as the pH is increased, the peptide switches to β-sheet conformation and aggregation occurs. CD spectroscopy studies of aggregation have shown the presence of an initial spike in the amount of α-helical content at the start of aggregation. Such an increase in α-helical content suggests a mechanism wherein the peptide can expose critical non-polar residues for interaction, leading to hydrophobic aggregation with other interacting peptides. We have used molecular dynamics simulations to characterize in detail the conformational landscape of monomeric Aβ42 in solution to identify molecular properties that may mediate the early stages of oligomerization. We hypothesized that conformations with α-helical structure have a higher probability of initiating aggregation because they increase the hydrophobicity of the peptide. Although random coil conformations were found to be the most dominant, as expected, α-helical conformations are thermodynamically accessible, more so than β-sheet conformations. Importantly, for the first time α-helical conformations are observed to increase the exposure of aromatic and hydrophobic residues to the aqueous solvent, favoring their hydrophobically driven interaction with other monomers to initiate aggregation. These findings constitute a first step toward characterizing the mechanism of formation of disordered, low-order oligomers of Aβ42.
Collapse
Affiliation(s)
- Krushna Sonar
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University, P. O. Box U1987, Perth, Western Australia6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Computation, Curtin University, P. O. Box U1987, Perth, Western Australia6845, Australia
| |
Collapse
|
76
|
REMD Simulations of Full-Length Alpha-Synuclein Together with Ligands Reveal Binding Region and Effect on Amyloid Conversion. Int J Mol Sci 2022; 23:ijms231911545. [PMID: 36232847 PMCID: PMC9569888 DOI: 10.3390/ijms231911545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Alpha-synuclein is a key protein involved in the development and progression of Parkinson’s disease and other synucleinopathies. The intrinsically disordered nature of alpha-synuclein hinders the computational screening of new drug candidates for the treatment of these neurodegenerative diseases. In the present work, replica exchange molecular dynamics simulations of the full-length alpha-synuclein together with low-molecular ligands were utilized to predict the binding site and effect on the amyloid-like conversion of the protein. This approach enabled an accurate prediction of the binding sites for three tested compounds (fasudil, phthalocyanine tetrasulfonate, and spermine), giving good agreement with data from experiments by other groups. Lots of information about the binding and protein conformational ensemble enabled the suggestion of a putative effect of the ligands on the amyloid-like conversion of alpha-synuclein and the mechanism of anti- and pro-amyloid activity of the tested compounds. Therefore, this approach looks promising for testing new drug candidates for binding with alpha-synuclein or other intrinsically disordered proteins and at the same time the estimation of the effect on protein behavior, including amyloid-like aggregation.
Collapse
|
77
|
Umar T, Meena RP, Mustehasan, Kumar P, Khan AA. Recent Updates in Development of Small Molecules as Potential Clinical Candidates for Alzheimer's Disease: A Review. Chem Biol Drug Des 2022; 100:674-681. [PMID: 35996229 DOI: 10.1111/cbdd.14133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 12/08/2022]
Abstract
Alzheimer's disease (AD) is one of the prominent causes for disability and lowered quality of life worldwide in elderly population. It has fostered immense burden to AD patients, families and society. Burgeoning progress in the field of pathogenesis over last two decades has persuaded the investigation of novel pharmacological therapeutics that focuses towards the pathophysiological events of AD. Miscellaneous clinical trials, development and testing of interventions aimed at various targets, such as anti-tau and anti-amyloid interventions, neurotransmitter modification, neuroprotection and anti-neuroinflammation interventions, cognitive enhancement, and interventions to palliate behavioral symptoms have been carried out. Despite massive efforts to find disease modifying therapies there lingers a vital need for continuing the advancement in progress of the AD research. This review features the new developments of small molecule compounds that will be beneficial in evolution of new AD therapies. In particular, this review briefly describes summary of mechanistic causes chiefly associated with AD and focuses on medicinal approach via small molecule inhibitors that can manage cognitive impairment and dysfunction and may combat Alzheimer's development.
Collapse
Affiliation(s)
- Tarana Umar
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| | - R P Meena
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| | - Mustehasan
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| | - Pawan Kumar
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine, 61-65, Institutional Area. Opp. D Block. Janakpuri, New Delhi, India
| |
Collapse
|
78
|
Chong CM, Tan Y, Tong J, Ke M, Zhang K, Yan L, Cen X, Lu JH, Chen G, Su H, Qin D. Presenilin-1 F105C mutation leads to tau accumulation in human neurons via the Akt/mTORC1 signaling pathway. Cell Biosci 2022; 12:131. [PMID: 35965317 PMCID: PMC9375916 DOI: 10.1186/s13578-022-00874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background The mammalian target of rapamycin (mTOR) plays a critical role in controlling cellular homeostasis, and its dysregulation has been implicated in Alzheimer’s disease (AD). Presenilin-1 (PS1) mutations account for the most common causes of familial Alzheimer’s disease (FAD); however, whether PS1 mutation causes mTOR dysregulation in human neurons remains a key unresolved issue. Methods We generated heterozygotes and homozygotes of PS1 F105C knock-in mutation in human induced pluripotent stem cells (iPSCs) via CRISPR/Cas9/piggyback-based gene editing and differentiated them into human neurons. Secreted Aβ and tau accumulation were determined by ELISA assay, immunofluorescence staining, and western blotting analysis. mTOR signaling was evaluated by western blotting analysis, immunofluorescence staining, and co-immunoprecipitation. Autophagy/lysosome activities were determined by LC3-based assay, LysoTracker Red staining, and DQ-Red BSA staining. Results Through comparison among these isogenic neurons, PS1 F105C mutant neurons exhibited elevated Aβ and tau accumulation. In addition, we found that the response of mTORC1 to starvation decreases in PS1 F105C mutant neurons. The Akt/mTORC1/p70S6K signaling pathway remained active upon EBSS starvation, leading to the co-localization of the vast majority of mTOR with lysosomes. Consistently, PS1 F105C neurons displayed a significant decline in starvation-induced autophagy. Notably, Torin1, a mTOR inhibitor, could efficiently reduce prominent tau pathology that occurred in PS1 F105C neurons. Conclusion We demonstrate that Chinese PS1 F105C mutation causes dysregulation of mTORC1 signaling, contributing to tau accumulation in human neurons. This study on inherited FAD PS1 mutation provides unprecedented insights into our understanding of the molecular mechanisms of AD. It supports that pharmaceutical blocking of mTOR is a promising therapeutic strategy for the treatment of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00874-8.
Collapse
|
79
|
Chowdhury UD, Paul A, Bhargava BL. The effect of lipid composition on the dynamics of tau fibrils. Proteins 2022; 90:2103-2115. [DOI: 10.1002/prot.26401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Unmesh Dutta Chowdhury
- School of Chemical Sciences National Institute of Science Education & Research‐Bhubaneswar, OCC of Homi Bhabha National Institute Khurda Odisha India
| | - Arnav Paul
- School of Chemical Sciences National Institute of Science Education & Research‐Bhubaneswar, OCC of Homi Bhabha National Institute Khurda Odisha India
| | - B. L. Bhargava
- School of Chemical Sciences National Institute of Science Education & Research‐Bhubaneswar, OCC of Homi Bhabha National Institute Khurda Odisha India
| |
Collapse
|
80
|
Lu Y, Salsbury F, Derreumaux P. Impact of A2T and D23N mutations on C99 homodimer conformations. J Chem Phys 2022; 157:085102. [DOI: 10.1063/5.0101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The proteolytic cleavage of C99 by γ-secretase is the last step in the production of amyloid-β (Aβ) peptides. Previous studies have shown that membrane lipid composition, cholesterol concentration, and mutation in the transmembrane helix modified the structures and fluctuations of C99. In this study, we performed atomistic molecular dynamics simulations of the homodimer of the 55-residue congener of the C-terminal domain of the amyloid protein precursor, C99(1-55), in a POPC-cholesterol lipid bilayer, and we compared the conformational ensemble of WT sequence to those of the A2T and D23N variants. These mutations are particularly interesting as the protective Alzheimer's disease (AD) A2T mutation is known to decrease Aβ production, whereas the early onset AD D23N mutation does not affect Aβ production. We found noticeable differences in the structural ensembles of the three sequences. In particular, A2T varies from both WT and D23N by having long-range effects on the population of the extracellular justamembrane helix, the interface between the G29xxx-G33xxx-G37 motifs and the fluctuations of the transmembrane helical topologies.
Collapse
Affiliation(s)
- Yan Lu
- School of Physics, Xidian University, China
| | | | | |
Collapse
|
81
|
Kanemitsu S, Morita K, Tominaga Y, Nishimura K, Yashiro T, Sakurai H, Yamamoto Y, Kurisaki I, Tanaka S, Matsui M, Ooya T, Tamura A, Maruyama T. Inhibition of Melittin Activity Using a Small Molecule with an Indole Ring. J Phys Chem B 2022; 126:5793-5802. [PMID: 35913127 DOI: 10.1021/acs.jpcb.2c03595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated d-amino acids as potential inhibitors targeting l-peptide toxins. Among the l- and d-amino acids tested, we found that d-tryptophan (d-Trp) acted as an inhibitor of melittin-induced hemolysis. We then evaluated various Trp derivatives and found that 5-chlorotryptamine (5CT) had the largest inhibitory effect on melittin. The indole ring, amino group, and steric hindrance of an inhibitor played important roles in the inhibition of melittin activity. Despite the small size and simple molecular structure of 5CT, its IC50 was approximately 13 μg/mL. Fluorescence quenching, circular dichroism measurements, and size-exclusion chromatography revealed that 5CT interacted with Trp19 in melittin and affected the formation of the melittin tetramer involved in hemolysis. Molecular dynamics simulation of melittin also indicated that the interaction of 5CT with Trp19 in melittin affected the formation of the tetramer.
Collapse
Affiliation(s)
- Sayuki Kanemitsu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yudai Tominaga
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kanon Nishimura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tomoko Yashiro
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Haruka Sakurai
- Graduate School of Science, Department of Chemistry, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yumemi Yamamoto
- Graduate School of Science, Department of Chemistry, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Ikuo Kurisaki
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Masaki Matsui
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tooru Ooya
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Atsuo Tamura
- Graduate School of Science, Department of Chemistry, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
82
|
Shaikh SF, Uparkar JJ, Pavale GS, Ramana MMV. Synthesis and Evaluation of 1,3-Dimethylbarbituric Acid Based Enamine Derivatives as Anti-Alzheimer Agent. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
83
|
Thu TTM, Li MS. Protein aggregation rate depends on mechanical stability of fibrillar structure . J Chem Phys 2022; 157:055101. [DOI: 10.1063/5.0088689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The formation of the fibrillar structure of amyloid proteins/peptides is believed to be associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, etc. Since the rate of aggregation can influence neurotoxicity, finding the key factors that control this rate is of paramount importance. It was recently found evidence that the rate of protein aggregation is related to the mechanical stability of the fibrillar structure, such that the higher the mechanical stability, the faster the fibril is formed. However, this conclusion was supported by a limited dataset. In this work, we expand the previous study to a larger dataset, including the wild type of Aβ42 peptide and its 20 mutants, the aggregation rate of which was measured experimentally. By using all-atom steered molecular dynamics (SMD) simulations we can access the mechanical stability of the fibril structure, which is characterized by the rupture force, pulling work and unbinding free energy barrier. Our result confirms that mechanical stability is indeed related to the aggregation rate. Since estimation of the aggregation rate using all-atom simulations is almost forbidden by the current computational capabilities, our result is useful for predicting it based on information obtained from fast SMD simulations for fibrils.
Collapse
Affiliation(s)
| | - Mai Suan Li
- Theoretical Physics, Institute of Physics, Polish Academy of Sciences, Poland
| |
Collapse
|
84
|
Uparkar JJ, Dhavan PP, Jadhav BL, Pawar SD. Design, synthesis and biological evaluation of furan based α-aminophosphonate derivatives as anti-Alzheimer agent. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02515-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
85
|
Spiegel M, Marino T, Prejanò M, Russo N. Antioxidant and copper-chelating power of new molecules suggested as multiple target agents against Alzheimer's disease. A theoretical comparative study. Phys Chem Chem Phys 2022; 24:16353-16359. [PMID: 35762619 DOI: 10.1039/d2cp01918c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this study, the scavenging activity against OOH radicals and the copper-chelating ability of two new synthesized molecules (named L1 and L2) that can act as multiple target agents against Alzheimer's disease have been investigated at the density functional theory level. The pKa and molar fractions at physiological pH have been predicted. The main antioxidant reaction mechanisms in lipid-like and water environments have been considered and the relative rate constants determined. The copper-chelating ability of the two compounds has also been explored at different coordination sites and computing the complexation kinetic constants. Results show the L1 compound is a more effective radical scavenging and copper-chelating agent than L2.
Collapse
Affiliation(s)
- Maciej Spiegel
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136 Rende, CS, Italy.
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136 Rende, CS, Italy.
| | - Mario Prejanò
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87136 Rende, CS, Italy.
| |
Collapse
|
86
|
Scalone E, Broggini L, Visentin C, Erba D, Bačić Toplek F, Peqini K, Pellegrino S, Ricagno S, Paissoni C, Camilloni C. Multi-eGO: An in silico lens to look into protein aggregation kinetics at atomic resolution. Proc Natl Acad Sci U S A 2022; 119:e2203181119. [PMID: 35737839 PMCID: PMC9245614 DOI: 10.1073/pnas.2203181119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/17/2022] [Indexed: 12/25/2022] Open
Abstract
Protein aggregation into amyloid fibrils is the archetype of aberrant biomolecular self-assembly processes, with more than 50 associated diseases that are mostly uncurable. Understanding aggregation mechanisms is thus of fundamental importance and goes in parallel with the structural characterization of the transient oligomers formed during the process. Oligomers have been proven elusive to high-resolution structural techniques, while the large sizes and long time scales, typical of aggregation processes, have limited the use of computational methods to date. To surmount these limitations, we here present multi-eGO, an atomistic, hybrid structure-based model which, leveraging the knowledge of monomers conformational dynamics and of fibril structures, efficiently captures the essential structural and kinetics aspects of protein aggregation. Multi-eGO molecular dynamics simulations can describe the aggregation kinetics of thousands of monomers. The concentration dependence of the simulated kinetics, as well as the structural features of the resulting fibrils, are in qualitative agreement with in vitro experiments carried out on an amyloidogenic peptide from Transthyretin, a protein responsible for one of the most common cardiac amyloidoses. Multi-eGO simulations allow the formation of primary nuclei in a sea of transient lower-order oligomers to be observed over time and at atomic resolution, following their growth and the subsequent secondary nucleation events, until the maturation of multiple fibrils is achieved. Multi-eGO, combined with the many experimental techniques deployed to study protein aggregation, can provide the structural basis needed to advance the design of molecules targeting amyloidogenic diseases.
Collapse
Affiliation(s)
- Emanuele Scalone
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Luca Broggini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Cristina Visentin
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Davide Erba
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fran Bačić Toplek
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Kaliroi Peqini
- Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Cristina Paissoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
87
|
Liu X, Lao Z, Li X, Dong X, Wei G. ALS-associated A315E and A315pT variants exhibit distinct mechanisms in inducing irreversible aggregation of TDP-43 312-317 peptides. Phys Chem Chem Phys 2022; 24:16263-16273. [PMID: 35758309 DOI: 10.1039/d2cp01625g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is intensively associated with insoluble aggregates formed by transactivation response element DNA-binding protein 43 (TDP-43) in the cytoplasm of neuron cells. A recent experimental study reported that two ALS-linked familial variants, A315E and A315pT (pT, phosphorylated threonine), can induce irreversible aggregation of the TDP-43 312NFGAFS317 segment (TDP-43312-317). However, the underlying molecular mechanism remains largely elusive. Here, we investigated the early aggregation process of the wild type (WT) 312NFGAFS317 segment and its A315E and A315pT variants by performing multiple microsecond all-atom molecular dynamics simulations. Our simulations show that the two variants display lower fluidity than WT, consistent with their decreased labilities observed in previous denaturation assay experiments. Despite each of the two variants carrying one negative charge, unexpectedly, we find that both A315E mutation and A315pT phosphorylation enhance intermolecular interactions and result in the formation of more compact oligomers. Compared to WT, A315E oligomers possess low β-sheet content but a compact hydrophobic core, while A315pT oligomers have high β-sheet content and large β-sheets. Side chain hydrogen-bonding and hydrophobic interactions as well as N312-E315 salt bridges contribute most to the increased aggregation propensity of the A315E mutant. By contrast, main chain and side chain hydrogen-bonding interactions, side chain hydrophobic and aromatic interactions, are crucial to the enhanced aggregation capability of the A315pT variant. These results indicate that glutamate mutation and phosphorylation at position 315 induce the irreversible aggregation of TDP-43312-317 peptides through differential mechanisms, which remind us that we should be careful in the investigation of the phosphorylation effect on protein aggregation by using phosphomimetic substitutions. This study provides mechanistic insights into the A315E/A315pT-induced irreversible aggregation of TDP-43312-317, which may be helpful for the in-depth understanding of ALS-mutation/phosphorylation-associated liquid-to-solid phase transition of TDP-43 protein aggregates.
Collapse
Affiliation(s)
- Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, P. R. China.
| | - Zenghui Lao
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, P. R. China.
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, P. R. China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, P. R. China.
| |
Collapse
|
88
|
Nguyen TH, Tran PT, Pham NQA, Hoang VH, Hiep DM, Ngo ST. Identifying Possible AChE Inhibitors from Drug-like Molecules via Machine Learning and Experimental Studies. ACS OMEGA 2022; 7:20673-20682. [PMID: 35755364 PMCID: PMC9219098 DOI: 10.1021/acsomega.2c00908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/27/2022] [Indexed: 05/30/2023]
Abstract
Acetylcholinesterase (AChE) is one of the most important drug targets for Alzheimer's disease (AD) treatment. In this work, a machine learning model was trained to rapidly and accurately screen large chemical databases for the potential inhibitors of AChE. The obtained results were then validated via in vitro enzyme assay. Moreover, atomistic simulations including molecular docking and molecular dynamics simulations were then used to understand molecular insights into the binding process of ligands to AChE. In particular, two compounds including benzyl trifluoromethyl ketone and trifluoromethylstyryl ketone were indicated as highly potent inhibitors of AChE because they established IC50 values of 0.51 and 0.33 μM, respectively. The obtained IC50 of two compounds is significantly lower than that of galantamine (2.10 μM). The predicted log(BB) suggests that the compounds may be able to traverse the blood-brain barrier. A good agreement between computational and experimental studies was observed, indicating that the hybrid approach can enhance AD therapy.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory
of Theoretical and Computational Biophysics, Advanced Institute of
Materials Science, Ton Duc Thang
University, Ho Chi Minh City, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuong-Thao Tran
- Hanoi
University of Pharmacy, 13-15 Le Thanh Tong, Hanoi 008404, Vietnam
| | - Ngoc Quynh Anh Pham
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
| | - Van-Hai Hoang
- Faculty
of Pharmacy, Phenikka University, Hanoi 008404, Vietnam
- Phenikka
Institute for Advanced Study, Phenikka University, Hanoi 008404, Vietnam
| | - Dinh Minh Hiep
- Department
of Agriculture and Rural Development, Ho Chi Minh City 700000, Vietnam
| | - Son Tung Ngo
- Laboratory
of Theoretical and Computational Biophysics, Advanced Institute of
Materials Science, Ton Duc Thang
University, Ho Chi Minh City, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
89
|
Löhr T, Kohlhoff K, Heller GT, Camilloni C, Vendruscolo M. A Small Molecule Stabilizes the Disordered Native State of the Alzheimer's Aβ Peptide. ACS Chem Neurosci 2022; 13:1738-1745. [PMID: 35649268 PMCID: PMC9204762 DOI: 10.1021/acschemneuro.2c00116] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
The stabilization of native states of proteins is a powerful drug discovery strategy. It is still unclear, however, whether this approach can be applied to intrinsically disordered proteins. Here, we report a small molecule that stabilizes the native state of the Aβ42 peptide, an intrinsically disordered protein fragment associated with Alzheimer's disease. We show that this stabilization takes place by a disordered binding mechanism, in which both the small molecule and the Aβ42 peptide remain disordered. This disordered binding mechanism involves enthalpically favorable local π-stacking interactions coupled with entropically advantageous global effects. These results indicate that small molecules can stabilize disordered proteins in their native states through transient non-specific interactions that provide enthalpic gain while simultaneously increasing the conformational entropy of the proteins.
Collapse
Affiliation(s)
- Thomas Löhr
- Department
of Chemistry, University of Cambridge, CB2 1EW Cambridge, UK
| | - Kai Kohlhoff
- Google
Research, Mountain
View, California 94043, United States
| | - Gabriella T. Heller
- Department
of Chemistry, University of Cambridge, CB2 1EW Cambridge, UK
- Department
of Structural and Molecular Biology, University
College London, WC1E 6BT London, UK
| | - Carlo Camilloni
- Dipartimento
di Bioscienze, Università degli Studi
di Milano, 20133 Milano, Italy
| | | |
Collapse
|
90
|
Leguizamon Herrera VL, Buell AK, Willbold D, Barz B. Interaction of Therapeutic d-Peptides with Aβ42 Monomers, Thermodynamics, and Binding Analysis. ACS Chem Neurosci 2022; 13:1638-1650. [PMID: 35580288 DOI: 10.1021/acschemneuro.2c00102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aggregation of the amyloid-β (Aβ) peptide is a major hallmark of Alzheimer's disease. This peptide can aggregate into oligomers, proto-fibrils, and mature fibrils, which eventually assemble into amyloid plaques. The peptide monomers are the smallest assembly units and play an important role in most of the individual processes involved in amyloid fibril formation, such as primary and secondary nucleation and elongation. Several d-peptides have been confirmed as promising candidates to inhibit the aggregation of Aβ into toxic oligomers and fibrils by specifically interacting with monomeric species. In this work, we elucidate the structural interaction and thermodynamics of binding between three d-peptides (D3, ANK6, and RD2) and Aβ42 monomers by means of enhanced molecular dynamics simulations. Our study derives thermodynamic energies in good agreement with experimental values and suggests that there is an enhanced binding for D3 and ANK6, which leads to more stable complexes than for RD2. The binding of D3 to Aβ42 is shown to be weakly exothermic and mainly entropically driven, whereas the complex formation between the ANK6 and RD2 with the Aβ42 free monomer is weakly endothermic. In addition, the changes in the solvent-accessible surface area and the radius of gyration support that the binding between Aβ42 and d-peptides is mainly driven by electrostatic and hydrophobic interactions and leads to more compact conformations.
Collapse
Affiliation(s)
| | - Alexander K. Buell
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Dieter Willbold
- Institute of Biological Information Processing-Structural Biochemistry (IBI-7), Research Centre Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Bogdan Barz
- Institute of Biological Information Processing-Structural Biochemistry (IBI-7), Research Centre Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
91
|
Nguyen HL, Linh HQ, Krupa P, La Penna G, Li MS. Amyloid β Dodecamer Disrupts the Neuronal Membrane More Strongly than the Mature Fibril: Understanding the Role of Oligomers in Neurotoxicity. J Phys Chem B 2022; 126:3659-3672. [PMID: 35580354 PMCID: PMC9150093 DOI: 10.1021/acs.jpcb.2c01769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The amyloid cascade
hypothesis states that senile plaques, composed
of amyloid β (Aβ) fibrils, play a key role in Alzheimer’s
disease (AD). However, recent experiments have shown that Aβ
oligomers are more toxic to neurons than highly ordered fibrils. The
molecular mechanism underlying this observation remains largely unknown.
One of the possible scenarios for neurotoxicity is that Aβ peptides
create pores in the lipid membrane that allow Ca2+ ions
to enter cells, resulting in a signal of cell apoptosis. Hence, one
might think that oligomers are more toxic due to their higher ability
to create ion channels than fibrils. In this work, we study the effect
of Aβ42 dodecamer and fibrils on a neuronal membrane, which
is similar to that observed in AD patients, using all-atom molecular
dynamics simulations. Due to short simulation times, we cannot observe
the formation of pores, but useful insight on the early events of
this process has been obtained. Namely, we showed that dodecamer distorts
the lipid membrane to a greater extent than fibrils, which may indicate
that ion channels can be more easily formed in the presence of oligomers.
Based on this result, we anticipate that oligomers are more toxic
than mature fibrils, as observed experimentally. Moreover, the Aβ–membrane
interaction was found to be governed by the repulsive electrostatic
interaction between Aβ and the ganglioside GM1 lipid. We calculated
the bending and compressibility modulus of the membrane in the absence
of Aβ and obtained good agreement with the experiment. We predict
that the dodecamer will increase the compressibility modulus but has
little effect on the bending modulus. Due to the weak interaction
with the membrane, fibrils insignificantly change the membrane elastic
properties.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam.,Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 740500, Vietnam.,Vietnam National University, Ho Chi Minh City 71300, Vietnam
| | - Huynh Quang Linh
- Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 740500, Vietnam.,Vietnam National University, Ho Chi Minh City 71300, Vietnam
| | - Pawel Krupa
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw 02-668, Poland
| | - Giovanni La Penna
- National Research Council of Italy (CNR), Institute for Chemistry of Organometallic Compounds (ICCOM), Florence 50019, Italy.,National Institute for Nuclear Physics (INFN), Section of Roma-Tor Vergata, Rome 00815, Italy
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw 02-668, Poland
| |
Collapse
|
92
|
Arrigoni F, Di Carlo C, Rovetta A, De Gioia L, Zampella G, Bertini L. Superoxide reduction by Cu‐Amyloid Beta peptide complexes. A Density Functional Theory study. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Federica Arrigoni
- Università degli Studi di Milano-Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Chiara Di Carlo
- Università degli Studi di Milano-Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Alberto Rovetta
- University of Milano–Bicocca University Library: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Luca De Gioia
- University of Milan–Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Giuseppe Zampella
- University of Milan–Bicocca: Universita degli Studi di Milano-Bicocca Biotecnology and Biosciences ITALY
| | - Luca Bertini
- Universita' degli studi di MIlano-Bicocca Biotecnologie e Bioscienze Piazza della Scienza 2 20127 Milano ITALY
| |
Collapse
|
93
|
Landrieu I, Dupré E, Sinnaeve D, El Hajjar L, Smet-Nocca C. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Front Chem 2022; 10:886382. [PMID: 35646824 PMCID: PMC9133342 DOI: 10.3389/fchem.2022.886382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called amyloid fibrils is closely associated to human disorders such as neurodegenerative diseases including Alzheimer's and Parkinson's diseases, or systemic diseases like type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have biological functions. High-resolution structures of amyloids fibrils from cryo-electron microscopy have very recently highlighted their ultrastructural organization and polymorphisms. However, the molecular mechanisms and the role of co-factors (posttranslational modifications, non-proteinaceous components and other proteins) acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be elucidated. Furthermore, such aberrant protein-protein interactions challenge the search of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this review, we describe how chemical biology tools contribute to new insights on the mode of action of amyloidogenic proteins and peptides, defining their structural signature and aggregation pathways by capturing their molecular details and conformational heterogeneity. Challenging the imagination of scientists, this constantly expanding field provides crucial tools to unravel mechanistic detail of amyloid formation such as semisynthetic proteins and small-molecule sensors of conformational changes and/or aggregation. Protein engineering methods and bioorthogonal chemistry for the introduction of protein chemical modifications are additional fruitful strategies to tackle the challenge of understanding amyloid formation.
Collapse
Affiliation(s)
- Isabelle Landrieu
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Elian Dupré
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Davy Sinnaeve
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Léa El Hajjar
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| | - Caroline Smet-Nocca
- University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
- CNRS EMR9002 Integrative Structural Biology, Lille, France
| |
Collapse
|
94
|
Thai QM, Pham TNH, Hiep DM, Pham MQ, Tran PT, Nguyen TH, Ngo ST. Searching for AChE inhibitors from natural compounds by using machine learning and atomistic simulations. J Mol Graph Model 2022; 115:108230. [DOI: 10.1016/j.jmgm.2022.108230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
|
95
|
Durell SR, Kayed R, Guy HR. The amyloid concentric β‐barrel hypothesis: Models of amyloid beta 42 oligomers and annular protofibrils. Proteins 2022; 90:1190-1209. [DOI: 10.1002/prot.26301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Stewart R. Durell
- Laboratory of Cell Biology, National Cancer Institute National Institutes of Health Bethesda Maryland USA
| | - Rakez Kayed
- UTMB Mitchell Center for Neurodegenerative Diseases, Department of Neurology University of Texas Medical Branch Galveston Texas USA
| | - H. Robert Guy
- Amyloid Research Consultants (ARC) Cochiti Lake New Mexico USA
| |
Collapse
|
96
|
Nguyen PH, Derreumaux P. Molecular Dynamics Simulations of the Tau R3-R4 Domain Monomer in the Bulk Solution and at the Surface of a Lipid Bilayer Model. J Phys Chem B 2022; 126:3431-3438. [PMID: 35476504 DOI: 10.1021/acs.jpcb.2c01692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aggregation of the tau protein plays a significant role in Alzheimer's disease, and the tau R3-R4 domain spanning residues 306-378 was shown to form the amyloid fibril core of a full-length tau. The conformations of the tau R3-R4 monomer in the bulk solution and at the surface of membranes are unknown. In this study, we address these questions by means of atomistic molecular dynamics. The simulations in the bulk solution show a very heterogeneous ensemble of conformations with low β and helical contents. The tau R3-R4 monomer has the propensity to form transient β-hairpins within the R3 repeat and between the R3 and R4 repeats and parallel β-sheets spanning the R3 and R4 repeats. The simulations also show that the surface of the membrane does not induce β-sheet insertion and leads to an ensemble of structures very different from those in the bulk solution. They also reveal the dynamical properties of the membrane-bound state of the tau R3-R4 monomer, enabling insertion of the residues 306-318 and 376-378.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
97
|
Wilson CJ, Choy WY, Karttunen M. AlphaFold2: A Role for Disordered Protein/Region Prediction? Int J Mol Sci 2022; 23:4591. [PMID: 35562983 PMCID: PMC9104326 DOI: 10.3390/ijms23094591] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The development of AlphaFold2 marked a paradigm-shift in the structural biology community. Herein, we assess the ability of AlphaFold2 to predict disordered regions against traditional sequence-based disorder predictors. We find that AlphaFold2 performs well at discriminating disordered regions, but also note that the disorder predictor one constructs from an AlphaFold2 structure determines accuracy. In particular, a naïve, but non-trivial assumption that residues assigned to helices, strands, and H-bond stabilized turns are likely ordered and all other residues are disordered results in a dramatic overestimation in disorder; conversely, the predicted local distance difference test (pLDDT) provides an excellent measure of residue-wise disorder. Furthermore, by employing molecular dynamics (MD) simulations, we note an interesting relationship between the pLDDT and secondary structure, that may explain our observations and suggests a broader application of the pLDDT for characterizing the local dynamics of intrinsically disordered proteins and regions (IDPs/IDRs).
Collapse
Affiliation(s)
- Carter J. Wilson
- Department of Mathematics, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Mikko Karttunen
- Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
98
|
Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation. Molecules 2022; 27:molecules27082483. [PMID: 35458686 PMCID: PMC9030874 DOI: 10.3390/molecules27082483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease is understood to be caused by amyloid fibrils and oligomers formed by aggregated amyloid-β (Aβ) peptides. This review article presents molecular dynamics (MD) simulation studies of Aβ peptides and Aβ fragments on their aggregation, aggregation inhibition, amyloid fibril conformations in equilibrium, and disruption of the amyloid fibril by ultrasonic wave and infrared laser irradiation. In the aggregation of Aβ, a β-hairpin structure promotes the formation of intermolecular β-sheet structures. Aβ peptides tend to exist at hydrophilic/hydrophobic interfaces and form more β-hairpin structures than in bulk water. These facts are the reasons why the aggregation is accelerated at the interface. We also explain how polyphenols, which are attracting attention as aggregation inhibitors of Aβ peptides, interact with Aβ. An MD simulation study of the Aβ amyloid fibrils in equilibrium is also presented: the Aβ amyloid fibril has a different structure at one end from that at the other end. The amyloid fibrils can be destroyed by ultrasonic wave and infrared laser irradiation. The molecular mechanisms of these amyloid fibril disruptions are also explained, particularly focusing on the function of water molecules. Finally, we discuss the prospects for developing treatments for Alzheimer’s disease using MD simulations.
Collapse
|
99
|
Xie H, Rojas A, Maisuradze GG, Khelashvili G. Mechanistic Kinetic Model Reveals How Amyloidogenic Hydrophobic Patches Facilitate the Amyloid-β Fibril Elongation. ACS Chem Neurosci 2022; 13:987-1001. [PMID: 35258946 PMCID: PMC8986627 DOI: 10.1021/acschemneuro.1c00801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abnormal aggregation of amyloid β (Aβ) peptides into fibrils plays a critical role in the development of Alzheimer's disease. A two-stage "dock-lock" model has been proposed for the Aβ fibril elongation process. However, the mechanisms of the Aβ monomer-fibril binding process have not been elucidated with the necessary molecular-level precision, so it remains unclear how the lock phase dynamics leads to the overall in-register binding of the Aβ monomer onto the fibril. To gain mechanistic insights into this critical step during the fibril elongation process, we used molecular dynamics (MD) simulations with a physics-based coarse-grained UNited-RESidue (UNRES) force field and sampled extensively the dynamics of the lock phase process, in which a fibril-bound Aβ(9-40) peptide rearranged to establish the native docking conformation. Analysis of the MD trajectories with Markov state models was used to quantify the kinetics of the rearrangement process and the most probable pathways leading to the overall native docking conformation of the incoming peptide. These revealed a key intermediate state in which an intra-monomer hairpin is formed between the central core amyloidogenic patch 18VFFA21 and the C-terminal hydrophobic patch 34LMVG37. This hairpin structure is highly favored as a transition state during the lock phase of the fibril elongation. We propose a molecular mechanism for facilitation of the Aβ fibril elongation by amyloidogenic hydrophobic patches.
Collapse
Affiliation(s)
- Hengyi Xie
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, United States
| | - Ana Rojas
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Gia G. Maisuradze
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
100
|
Synthetic Sulfated Polymers Control Amyloid Aggregation of Ovine Prion Protein and Decrease Its Toxicity. Polymers (Basel) 2022; 14:polym14071478. [PMID: 35406350 PMCID: PMC9002794 DOI: 10.3390/polym14071478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
Amyloid aggregation, including aggregation and propagation of prion protein, is a key factor in numerous human diseases, so-called amyloidosis, with a very poor ability for treatment or prevention. The present work describes the effect of sulfated or sulfonated polymers (sodium dextran sulfate, polystyrene sulfonate, polyanethole sulfonate, and polyvinyl sulfate) on different stages of amyloidogenic conversion and aggregation of the prion protein, which is associated with prionopathies in humans and animals. All tested polymers turned out to induce amyloid conversion of the ovine prion protein. As suggested from molecular dynamics simulations, this effect probably arises from destabilization of the native prion protein structure by the polymers. Short polymers enhanced its further aggregation, whereas addition of high-molecular poly(styrene sulfonate) inhibited amyloid fibrils formation. According to the seeding experiments, the protein–polymer complexes formed after incubation with poly(styrene sulfonate) exhibited significantly lower amyloidogenic capacity compared with the control fibrils of the free prion protein. The cytotoxicity of soluble oligomers was completely inhibited by treatment with poly(styrene sulfonate). To summarize, sulfonated polymers are a promising platform for the formulation of a new class of anti-prion and anti-amyloidosis therapeutics.
Collapse
|