51
|
Ma MR, Hu ZW, Zhao YF, Chen YX, Li YM. Phosphorylation induces distinct alpha-synuclein strain formation. Sci Rep 2016; 6:37130. [PMID: 27853185 PMCID: PMC5112567 DOI: 10.1038/srep37130] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/24/2016] [Indexed: 12/26/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases associated with alpha-synuclein (α-Syn) aggregation. Recently, increasing evidence has demonstrated the existence of different structural characteristics or 'strains' of α-Syn, supporting the concept that synucleinopathies share several common features with prion diseases and possibly explaining how a single protein results in different clinical phenotypes within synucleinopathies. In earlier studies, the different strains were generated through the regulation of solution conditions, temperature, or repetitive seeded fibrillization in vitro. Here, we synthesize homogeneous α-Syn phosphorylated at serine 129 (pS129 α-Syn), which is highly associated with the pathological changes, and demonstrate that phosphorylation at Ser129 induces α-Syn to form a distinct strain with different structures, propagation properties, and higher cytotoxicity compared with the wild-type α-Syn. The results are the first demonstration that post-translational modification of α-Syn can induce different strain formation, offering a new mechanism for strain formation.
Collapse
Affiliation(s)
- Meng-Rong Ma
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wen Hu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yu-Fen Zhao
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yong-Xiang Chen
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yan-Mei Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.,Beijing Institute for Brain Disorders, Beijing 100069, P. R. China
| |
Collapse
|
52
|
Dikiy I, Fauvet B, Jovičić A, Mahul-Mellier AL, Desobry C, El-Turk F, Gitler AD, Lashuel HA, Eliezer D. Semisynthetic and in Vitro Phosphorylation of Alpha-Synuclein at Y39 Promotes Functional Partly Helical Membrane-Bound States Resembling Those Induced by PD Mutations. ACS Chem Biol 2016; 11:2428-37. [PMID: 27356045 DOI: 10.1021/acschembio.6b00539] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alpha-synuclein is a presynaptic protein of poorly understood function that is linked to both genetic and sporadic forms of Parkinson's disease. We have proposed that alpha-synuclein may function specifically at synaptic vesicles docked at the plasma membrane, and that the broken-helix state of the protein, comprising two antiparallel membrane-bound helices connected by a nonhelical linker, may target the protein to such docked vesicles by spanning between the vesicle and the plasma membrane. Here, we demonstrate that phosphorylation of alpha-synuclein at tyrosine 39, carried out by c-Abl in vivo, may facilitate interconversion of synuclein from the vesicle-bound extended-helix state to the broken-helix state. Specifically, in the presence of lipid vesicles, Y39 phosphorylation leads to decreased binding of a region corresponding to helix-2 of the broken-helix state, potentially freeing this region of the protein to interact with other membrane surfaces. This effect is largely recapitulated by the phosphomimetic mutation Y39E, and expression of this mutant in yeast results in decreased membrane localization. Intriguingly, the effects of Y39 phosphorylation on membrane binding closely resemble those of the recently reported disease linked mutation G51D. These findings suggest that Y39 phosphorylation could modulate functional aspects of alpha-synuclein and perhaps influence pathological aggregation of the protein as well.
Collapse
Affiliation(s)
- Igor Dikiy
- Department
of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Bruno Fauvet
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | - Ana Jovičić
- Department
of Genetics, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Anne-Laure Mahul-Mellier
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | - Carole Desobry
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | - Farah El-Turk
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | - Aaron D. Gitler
- Department
of Genetics, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Hilal A. Lashuel
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
- Qatar Biomedical Research Institute (QBRI), Doha, Qatar
| | - David Eliezer
- Department
of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York 10065, United States
| |
Collapse
|
53
|
Komatsu T, Virdee S. ICBS and ECBS Chemical Biology Meeting 2015 - Let Them Come to Berlin! ACS Chem Biol 2016; 11:1159-66. [PMID: 27198933 DOI: 10.1021/acschembio.6b00268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Toru Komatsu
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- JST PRESTO, Tokyo, Japan
| | - Satpal Virdee
- MRC
Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
54
|
Bah A, Forman-Kay JD. Modulation of Intrinsically Disordered Protein Function by Post-translational Modifications. J Biol Chem 2016; 291:6696-705. [PMID: 26851279 DOI: 10.1074/jbc.r115.695056] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications (PTMs) produce significant changes in the structural properties of intrinsically disordered proteins (IDPs) by affecting their energy landscapes. PTMs can induce a range of effects, from local stabilization or destabilization of transient secondary structure to global disorder-to-order transitions, potentially driving complete state changes between intrinsically disordered and folded states or dispersed monomeric and phase-separated states. Here, we discuss diverse biological processes that are dependent on PTM regulation of IDPs. We also present recent tools for generating homogenously modified IDPs for studies of PTM-mediated IDP regulatory mechanisms.
Collapse
Affiliation(s)
- Alaji Bah
- From the Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Julie D Forman-Kay
- From the Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
55
|
Fauvet B, Lashuel HA. Semisynthesis and Enzymatic Preparation of Post-translationally Modified α-Synuclein. Methods Mol Biol 2016; 1345:3-20. [PMID: 26453202 DOI: 10.1007/978-1-4939-2978-8_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Posttranslational modifications (PTMs) serve as molecular switches for regulating protein folding, function, and interactome and have been implicated in the misfolding and amyloid formation by several proteins linked to neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Understanding the role of individual PTMs in protein misfolding and aggregation requires the preparation of site-specifically modified proteins, as well as the identification of the enzymes involved in regulating these PTMs. Recently, our group has pioneered the development of enzymatic, synthetic, and semisynthetic strategies that allow site-specific introduction of PTMs at single or multiple sites and generation of modified proteins in milligram quantities. In this chapter, we provide detailed description of enzymatic and semisynthetic strategies for the generation of the phosphorylated α-Synuclein (α-Syn) at S129, (pS129), which has been identified as a pathological hallmark of Parkinson's disease. The semisynthetic method described for generation of α-Syn-pS129 requires expertise with protein chemical ligation, but can be used to incorporate other PTMs (single or multiple) within the α-Syn C-terminus if desired. On the other hand, the in vitro kinase-mediated phosphorylation strategy does not require any special setup and is rather easy to apply, but its application is restricted to the generation of α-Syn_pS129. These methods have the potential to increase the availability of pure and homogenous modified α-Syn reagents, which may be used as standards in numerous applications, including the search for potential biomarkers of synucleinopathies.
Collapse
Affiliation(s)
- Bruno Fauvet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, AI 2.151, Station 19, 1015, Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, AI 2.151, Station 19, 1015, Lausanne, Switzerland.
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
56
|
O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson's disease. Nat Chem 2015; 7:913-20. [PMID: 26492012 PMCID: PMC4618406 DOI: 10.1038/nchem.2361] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/28/2015] [Indexed: 01/02/2023]
Abstract
Several aggregation-prone proteins associated with neurodegenerative diseases can be modified by O-linked N-acetyl-glucosamine (O-GlcNAc) in vivo. One of these proteins, α-synuclein, is a toxic aggregating protein associated with synucleinopathies, including Parkinson's disease. However, the effect of O-GlcNAcylation on α-synuclein is not clear. Here, we use synthetic protein chemistry to generate both unmodified α-synuclein and α-synuclein bearing a site-specific O-GlcNAc modification at the physiologically relevant threonine residue 72. We show that this single modification has a notable and substoichiometric inhibitory effect on α-synuclein aggregation, while not affecting the membrane binding or bending properties of α-synuclein. O-GlcNAcylation is also shown to affect the phosphorylation of α-synuclein in vitro and block the toxicity of α-synuclein that was exogenously added to cells in culture. These results suggest that increasing O-GlcNAcylation may slow the progression of synucleinopathies and further support a general function for O-GlcNAc in preventing protein aggregation.
Collapse
|
57
|
Robust production of recombinant phosphoproteins using cell-free protein synthesis. Nat Commun 2015; 6:8168. [PMID: 26350765 PMCID: PMC4566161 DOI: 10.1038/ncomms9168] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/25/2015] [Indexed: 01/18/2023] Open
Abstract
Understanding the functional and structural consequences of site-specific protein phosphorylation has remained limited by our inability to produce phosphoproteins at high yields. Here we address this limitation by developing a cell-free protein synthesis (CFPS) platform that employs crude extracts from a genomically recoded strain of Escherichia coli for site-specific, co-translational incorporation of phosphoserine into proteins. We apply this system to the robust production of up to milligram quantities of human MEK1 kinase. Then, we recapitulate a physiological signalling cascade in vitro to evaluate the contributions of site-specific phosphorylation of mono- and doubly phosphorylated forms on MEK1 activity. We discover that only one phosphorylation event is necessary and sufficient for MEK1 activity. Our work sets the stage for using CFPS as a rapid high-throughput technology platform for direct expression of programmable phosphoproteins containing multiple phosphorylated residues. This work will facilitate study of phosphorylation-dependent structure–function relationships, kinase signalling networks and kinase inhibitor drugs. The inability to produce recombinant phosphoproteins has hindered research into their structure and function. Here the authors develop a cell-free protein synthesis platform to site-specifically incorporate phosphoserine into proteins at high yields, and recapitulate a MEK1 kinase signalling cascade.
Collapse
|
58
|
Takahashi R, Ono K, Takamura Y, Mizuguchi M, Ikeda T, Nishijo H, Yamada M. Phenolic compounds prevent the oligomerization of α-synuclein and reduce synaptic toxicity. J Neurochem 2015; 134:943-55. [PMID: 26016728 DOI: 10.1111/jnc.13180] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 12/15/2022]
Abstract
Lewy bodies, mainly composed of α-synuclein (αS), are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies. Epidemiological studies showed that green tea consumption or habitual intake of phenolic compounds reduced Parkinson's disease risk. We previously reported that phenolic compounds inhibited αS fibrillation and destabilized preformed αS fibrils. Cumulative evidence suggests that low-order αS oligomers are neurotoxic and critical species in the pathogenesis of α-synucleinopathies. To develop disease modifying therapies for α-synucleinopathies, we examined effects of phenolic compounds (myricetin (Myr), curcumin, rosmarinic acid (RA), nordihydroguaiaretic acid, and ferulic acid) on αS oligomerization. Using methods such as photo-induced cross-linking of unmodified proteins, circular dichroism spectroscopy, the electron microscope, and the atomic force microscope, we showed that Myr and RA inhibited αS oligomerization and secondary structure conversion. The nuclear magnetic resonance analysis revealed that Myr directly bound to the N-terminal region of αS, whereas direct binding of RA to monomeric αS was not detected. Electrophysiological assays for long-term potentiation in mouse hippocampal slices revealed that Myr and RA ameliorated αS synaptic toxicity by inhibition of αS oligomerization. These results suggest that Myr and RA prevent the αS aggregation process, reducing the neurotoxicity of αS oligomers. To develop disease modifying therapies for α-synucleinopathies, we examined effects of phenolic compounds on α-synuclein (αS) oligomerization. Phenolic compounds, especially Myricetin (Myr) and Rosmarinic acid (RA), inhibited αS oligomerization and secondary structure conversion. Myr and RA ameliorated αS synaptic toxicity on the experiment of long-term potentiation. Our results suggest that Myr and RA prevent αS aggregation process and reduce the neurotoxicity of αS oligomers. Phenolic compounds are good candidates of disease modifying drugs for α-synucleinopathies.
Collapse
Affiliation(s)
- Ryoichi Takahashi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | | | - Tokuhei Ikeda
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
- Department of Neurology, National Hospital Organization Iou Hospital, Kanazawa, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
59
|
Kiely AP, Ling H, Asi YT, Kara E, Proukakis C, Schapira AH, Morris HR, Roberts HC, Lubbe S, Limousin P, Lewis PA, Lees AJ, Quinn N, Hardy J, Love S, Revesz T, Houlden H, Holton JL. Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation. Mol Neurodegener 2015; 10:41. [PMID: 26306801 PMCID: PMC4549856 DOI: 10.1186/s13024-015-0038-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We and others have described the neurodegenerative disorder caused by G51D SNCA mutation which shares characteristics of Parkinson's disease (PD) and multiple system atrophy (MSA). The objective of this investigation was to extend the description of the clinical and neuropathological hallmarks of G51D mutant SNCA-associated disease by the study of two additional cases from a further G51D SNCA kindred and to compare the features of this group with a SNCA duplication case and a H50Q SNCA mutation case. RESULTS All three G51D patients were clinically characterised by parkinsonism, dementia, visual hallucinations, autonomic dysfunction and pyramidal signs with variable age at disease onset and levodopa response. The H50Q SNCA mutation case had a clinical picture that mimicked late-onset idiopathic PD with a good and sustained levodopa response. The SNCA duplication case presented with a clinical phenotype of frontotemporal dementia with marked behavioural changes, pyramidal signs, postural hypotension and transiently levodopa responsive parkinsonism. Detailed post-mortem neuropathological analysis was performed in all cases. All three G51D cases had abundant α-synuclein pathology with characteristics of both PD and MSA. These included widespread cortical and subcortical neuronal α-synuclein inclusions together with small numbers of inclusions resembling glial cytoplasmic inclusions (GCIs) in oligodendrocytes. In contrast the H50Q and SNCA duplication cases, had α-synuclein pathology resembling idiopathic PD without GCIs. Phosphorylated α-synuclein was present in all inclusions types in G51D cases but was more restricted in SNCA duplication and H50Q mutation. Inclusions were also immunoreactive for the 5G4 antibody indicating their highly aggregated and likely fibrillar state. CONCLUSIONS Our characterisation of the clinical and neuropathological features of the present small series of G51D SNCA mutation cases should aid the recognition of this clinico-pathological entity. The neuropathological features of these cases consistently share characteristics of PD and MSA and are distinct from PD patients carrying the H50Q or SNCA duplication.
Collapse
Affiliation(s)
- Aoife P Kiely
- Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK.
| | - Helen Ling
- Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK.
| | - Yasmine T Asi
- Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK.
| | - Eleanna Kara
- Alzheimer's Disease Research Centre, Harvard medical school & Massachusetts General Hospital, 114 16th Street, Charlestown, MA, 02129, USA.
| | - Christos Proukakis
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK.
| | - Anthony H Schapira
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK.
| | - Huw R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK.
| | - Helen C Roberts
- Academic Geriatric Medicine, University of Southampton, Southampton, UK.
| | - Steven Lubbe
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK.
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience and Movement Disorders, Unit of Functional Neurosurgery, UCL Institute of Neurology, UCL, London, UK.
| | - Patrick A Lewis
- Department of Molecular Neuroscience and Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK. .,School of Pharmacy, University of Reading, Whiteknights, Reading, UK.
| | - Andrew J Lees
- Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK. .,Department of Molecular Neuroscience and Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK.
| | - Niall Quinn
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
| | - John Hardy
- Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK. .,Department of Molecular Neuroscience and Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK.
| | - Seth Love
- Clinical Neurosciences, University of Bristol, Bristol, UK.
| | - Tamas Revesz
- Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK.
| | - Henry Houlden
- Department of Molecular Neuroscience and Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK.
| | - Janice L Holton
- Department of Molecular Neuroscience, Queen Square Brain Bank, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK.
| |
Collapse
|
60
|
Xu Y, Deng Y, Qing H. The phosphorylation of α-synuclein: development and implication for the mechanism and therapy of the Parkinson's disease. J Neurochem 2015; 135:4-18. [PMID: 26134497 DOI: 10.1111/jnc.13234] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is cited to be the second most common neuronal degenerative disorders; however, the exact mechanism of PD is still unclear. α-synuclein is one of the key proteins in PD pathogenesis as it's the main component of the PD hallmark Lewy bodies (LBs). Nowadays, the study of α-synuclein phosphorylation mechanism related to the PD pathology has become a research hotspot, given that 90% of α-synuclein deposition in LBs is phosphorylated at Ser129, whereas in normal brains, only 4% or less of α-synuclein is phosphorylated at the residue. Here, we review the related study of PD pathological mechanism involving the phosphorylation of α-synuclein mainly at Ser129, Ser87, and Tyr125 residues in recent years, as well as some explorations relating to potential clinical application, in an attempt to describe the development and implication for the mechanism and therapy of PD. Given that some of the studies have yielded paradoxical results, there is need for more comprehensive research in the field. The phosphorylation of α-synuclein might provide a breakthrough for PD mechanism study and even supply a new therapeutic strategy. The milestone study on the phosphorylation of α-synuclein mainly at Ser129, Ser87, and Tyr125 relating to PD in recent years as well as some clinical application exploration are overviewed. The potential pathways of the phosphorylated α-synuclein related to PD are also summarized. The review may supply more ideas and thinking on this issue for the scientists in related research field.
Collapse
Affiliation(s)
- Yan Xu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
61
|
Rogerson DT, Sachdeva A, Wang K, Haq T, Kazlauskaite A, Hancock SM, Huguenin-Dezot N, Muqit MMK, Fry AM, Bayliss R, Chin JW. Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat Chem Biol 2015; 11:496-503. [PMID: 26030730 PMCID: PMC4830402 DOI: 10.1038/nchembio.1823] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/15/2015] [Indexed: 11/09/2022]
Abstract
Serine phosphorylation is a key post-translational modification that regulates diverse biological processes. Powerful analytical methods have identified thousands of phosphorylation sites, but many of their functions remain to be deciphered. A key to understanding the function of protein phosphorylation is access to phosphorylated proteins, but this is often challenging or impossible. Here we evolve an orthogonal aminoacyl-tRNA synthetase/tRNACUA pair that directs the efficient incorporation of phosphoserine (pSer (1)) into recombinant proteins in Escherichia coli. Moreover, combining the orthogonal pair with a metabolically engineered E. coli enables the site-specific incorporation of a nonhydrolyzable analog of pSer. Our approach enables quantitative decoding of the amber stop codon as pSer, and we purify, with yields of several milligrams per liter of culture, proteins bearing biologically relevant phosphorylations that were previously challenging or impossible to access--including phosphorylated ubiquitin and the kinase Nek7, which is synthetically activated by a genetically encoded phosphorylation in its activation loop.
Collapse
Affiliation(s)
- Daniel T. Rogerson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH
| | - Amit Sachdeva
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH
| | - Kaihang Wang
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH
| | - Tamanna Haq
- Department of Biochemistry, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN
| | - Agne Kazlauskaite
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow Street Dundee DD1 5EH, UK
| | - Susan M. Hancock
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH
| | - Nicolas Huguenin-Dezot
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH
| | - Miratul M. K. Muqit
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dow Street Dundee DD1 5EH, UK
- College of Medicine, Dentistry and Nursing, University of Dundee
| | - Andrew M. Fry
- Department of Biochemistry, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN
| | - Richard Bayliss
- Department of Biochemistry, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN
| | - Jason W. Chin
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH
| |
Collapse
|
62
|
Pratt MR, Abeywardana T, Marotta NP. Synthetic Proteins and Peptides for the Direct Interrogation of α-Synuclein Posttranslational Modifications. Biomolecules 2015; 5:1210-27. [PMID: 26120904 PMCID: PMC4598748 DOI: 10.3390/biom5031210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/17/2015] [Accepted: 06/09/2015] [Indexed: 01/28/2023] Open
Abstract
α-Synuclein is the aggregation-prone protein associated with Parkinson’s disease (PD) and related neurodegenerative diseases. Complicating both its biological functions and toxic aggregation are a variety of posttranslational modifications. These modifications have the potential to either positively or negatively affect α-synuclein aggregation, raising the possibility that the enzymes that add or remove these modifications could be therapeutic targets in PD. Synthetic protein chemistry is uniquely positioned to generate site-specifically and homogeneously modified proteins for biochemical study. Here, we review the application of synthetic peptides and proteins towards understanding the effects of α-synuclein posttranslational modifications.
Collapse
Affiliation(s)
- Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | | | - Nicholas P Marotta
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
63
|
Burai R, Ait-Bouziad N, Chiki A, Lashuel HA. Elucidating the Role of Site-Specific Nitration of α-Synuclein in the Pathogenesis of Parkinson's Disease via Protein Semisynthesis and Mutagenesis. J Am Chem Soc 2015; 137:5041-52. [PMID: 25768729 DOI: 10.1021/ja5131726] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and the presence of intraneuronal inclusions consisting of aggregated and post-translationally modified α-synuclein (α-syn). Despite advances in the chemical synthesis of α-syn and other proteins, the generation of site-specifically nitrated synthetic proteins has not been reported. Consequently, it has not been possible to determine the roles of nitration at specific residues in regulating the physiological and pathogenic properties of α-syn. Here we report, for the first time, the site-specific incorporation of 3-nitrotyrosine at different regions of α-syn using native chemical ligation combined with a novel desulfurization strategy. This strategy enabled us to investigate the role of nitration at single or multiple tyrosine residues in regulating α-syn structure, membrane binding, oligomerization, and fibrils formation. We demonstrate that different site-specifically nitrated α-syn species exhibit distinct structural and aggregation properties and exhibit reduced affinity to negatively charged vesicle membranes. We provide evidence that intermolecular interactions between the N- and C-terminal regions of α-syn play critical roles in mediating nitration-induced α-syn oligomerization. For example, when Y39 is not available for nitration (Y39F and Y39/125F), the extent of cross-linking is limited mostly to dimer formation, whereas mutants in which Y39 along with one or multiple C-terminal tyrosines (Y125F, Y133F, Y136F and Y133/136F) can still undergo nitration readily to form higher-order oligomers. Our semisynthetic strategy for generating site-specifically nitrated proteins opens up new possibilities for investigating the role of nitration in regulating protein structure and function in health and disease.
Collapse
Affiliation(s)
- Ritwik Burai
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nadine Ait-Bouziad
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
64
|
Kardos J, Kiss B, Micsonai A, Rovó P, Menyhárd DK, Kovács J, Váradi G, Tóth GK, Perczel A. Phosphorylation as conformational switch from the native to amyloid state: Trp-cage as a protein aggregation model. J Phys Chem B 2015; 119:2946-55. [PMID: 25625571 DOI: 10.1021/jp5124234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The 20 residue long Trp-cage miniprotein is an excellent model for both computational and experimental studies of protein folding and stability. Recently, great attention emerged to study disease-related protein misfolding, aggregation, and amyloid formation, with the aim of revealing their structural and thermodynamic background. Trp-cage is sensitive to both environmental and structure-modifying effects. It aggregates with ease upon structure destabilization, and thus it is suitable for modeling aggregation and amyloid formation. Here, we characterize the amyloid formation of several sequence modified and side-chain phosphorylated Trp-cage variants. We applied NMR, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopies, molecular dynamics (MD) simulations, and transmission electron microscopy (TEM) in conjunction with thioflavin-T (ThT) fluorescence measurements to reveal the structural consequences of side-chain phosphorylation. We demonstrate that the native fold is destabilized upon serine phosphorylation, and the resultant highly dynamic structures form amyloid-like ordered aggregates with high intermolecular β-structure content. The only exception is the D9S(P) variant, which follows an alternative aggregation process by forming thin fibrils, presenting a CD spectrum of PPII helix, and showing low ThT binding capability. We propose a complex aggregation model for these Trp-cage miniproteins. This model assumes an additional aggregated state, a collagen triple helical form that can precede amyloid formation. The phosphorylation of a single serine residue serves as a conformational switch, triggering aggregation, otherwise mediated by kinases in cell. We show that Trp-cage miniprotein is indeed a realistic model of larger globular systems of composite folding and aggregation landscapes and helps us to understand the fundamentals of deleterious protein aggregation and amyloid formation.
Collapse
Affiliation(s)
- József Kardos
- Department of Biochemistry, ‡MTA-ELTE NAP B Neuroimmunology Research Group, and §Department of Anatomy, Cell and Developmental Biology, Institute of Biology Eötvös Loránd University , Pázmány P. sétány 1/C, Budapest, H-1117 Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Tanco S, Gevaert K, Van Damme P. C-terminomics: Targeted analysis of natural and posttranslationally modified protein and peptide C-termini. Proteomics 2014; 15:903-14. [PMID: 25316308 DOI: 10.1002/pmic.201400301] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/03/2014] [Accepted: 10/09/2014] [Indexed: 01/03/2023]
Abstract
The C-terminus (where C is carboxyl) of a protein can serve as a recognition signature for a variety of biological processes, including protein trafficking and protein complex formation. Hence, the identity of the in vivo protein C-termini provides valuable information about biological processes. Analysis of protein C-termini is also crucial for the study of C-terminal PTMs, particularly for monitoring proteolytic processing by endopeptidases and carboxypeptidases. Although technical difficulties have limited the study of C-termini, a range of technologies have been proposed in the last couple of years. Here, we review the current proteomics technologies for C-terminal analysis, with a focus on the biological information that can be derived from C-terminomics studies.
Collapse
Affiliation(s)
- Sebastian Tanco
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
66
|
Kosten J, Binolfi A, Stuiver M, Verzini S, Theillet FX, Bekei B, van Rossum M, Selenko P. Efficient modification of alpha-synuclein serine 129 by protein kinase CK1 requires phosphorylation of tyrosine 125 as a priming event. ACS Chem Neurosci 2014; 5:1203-8. [PMID: 25320964 DOI: 10.1021/cn5002254] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
S129-phosphorylated alpha-synuclein (α-syn) is abundantly found in Lewy-body inclusions of Parkinson's disease patients. Residues neighboring S129 include the α-syn tyrosine phosphorylation sites Y125, Y133, and Y136. Here, we use time-resolved NMR spectroscopy to delineate atomic resolution insights into the modification behaviors of different serine and tyrosine kinases targeting these sites and show that Y125 phosphorylation constitutes a necessary priming event for the efficient modification of S129 by CK1, both in reconstituted kinase reactions and mammalian cell lysates. These results suggest that α-syn Y125 phosphorylation augments S129 modification under physiological in vivo conditions.
Collapse
Affiliation(s)
- Jonas Kosten
- In-Cell NMR Laboratory, Department
of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | - Andres Binolfi
- In-Cell NMR Laboratory, Department
of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | - Marchel Stuiver
- In-Cell NMR Laboratory, Department
of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | - Silvia Verzini
- In-Cell NMR Laboratory, Department
of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | - Francois-Xavier Theillet
- In-Cell NMR Laboratory, Department
of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | - Beata Bekei
- In-Cell NMR Laboratory, Department
of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | - Marleen van Rossum
- In-Cell NMR Laboratory, Department
of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | - Philipp Selenko
- In-Cell NMR Laboratory, Department
of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
67
|
Snead D, Eliezer D. Alpha-synuclein function and dysfunction on cellular membranes. Exp Neurobiol 2014; 23:292-313. [PMID: 25548530 PMCID: PMC4276801 DOI: 10.5607/en.2014.23.4.292] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/15/2014] [Accepted: 11/16/2014] [Indexed: 11/19/2022] Open
Abstract
Alpha-synuclein is a small neuronal protein that is closely associated with the etiology of Parkinson's disease. Mutations in and alterations in expression levels of alpha-synuclein cause autosomal dominant early onset heredity forms of Parkinson's disease, and sporadic Parkinson's disease is defined in part by the presence of Lewy bodies and Lewy neurites that are composed primarily of alpha-synuclein deposited in an aggregated amyloid fibril state. The normal function of alpha-synuclein is poorly understood, and the precise mechanisms by which it leads to toxicity and cell death are also unclear. Although alpha-synuclein is a highly soluble, cytoplasmic protein, it binds to a variety of cellular membranes of different properties and compositions. These interactions are considered critical for at least some normal functions of alpha-synuclein, and may well play critical roles in both the aggregation of the protein and its mechanisms of toxicity. Here we review the known features of alpha-synuclein membrane interactions in the context of both the putative functions of the protein and of its pathological roles in disease.
Collapse
Affiliation(s)
- David Snead
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
68
|
Lázaro DF, Rodrigues EF, Langohr R, Shahpasandzadeh H, Ribeiro T, Guerreiro P, Gerhardt E, Kröhnert K, Klucken J, Pereira MD, Popova B, Kruse N, Mollenhauer B, Rizzoli SO, Braus GH, Danzer KM, Outeiro TF. Systematic comparison of the effects of alpha-synuclein mutations on its oligomerization and aggregation. PLoS Genet 2014; 10:e1004741. [PMID: 25393002 PMCID: PMC4230739 DOI: 10.1371/journal.pgen.1004741] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/09/2014] [Indexed: 12/15/2022] Open
Abstract
Aggregation of alpha-synuclein (ASYN) in Lewy bodies and Lewy neurites is the typical pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Furthermore, mutations in the gene encoding for ASYN are associated with familial and sporadic forms of PD, suggesting this protein plays a central role in the disease. However, the precise contribution of ASYN to neuronal dysfunction and death is unclear. There is intense debate about the nature of the toxic species of ASYN and little is known about the molecular determinants of oligomerization and aggregation of ASYN in the cell. In order to clarify the effects of different mutations on the propensity of ASYN to oligomerize and aggregate, we assembled a panel of 19 ASYN variants and compared their behaviour. We found that familial mutants linked to PD (A30P, E46K, H50Q, G51D and A53T) exhibited identical propensities to oligomerize in living cells, but had distinct abilities to form inclusions. While the A30P mutant reduced the percentage of cells with inclusions, the E46K mutant had the opposite effect. Interestingly, artificial proline mutants designed to interfere with the helical structure of the N-terminal domain, showed increased propensity to form oligomeric species rather than inclusions. Moreover, lysine substitution mutants increased oligomerization and altered the pattern of aggregation. Altogether, our data shed light into the molecular effects of ASYN mutations in a cellular context, and established a common ground for the study of genetic and pharmacological modulators of the aggregation process, opening new perspectives for therapeutic intervention in PD and other synucleinopathies. The accumulation of aggregated proteins in the brain is common across several neurodegenerative disorders. In Parkinson's disease (PD), the protein alpha-synuclein (ASYN) is the major component of aggregates known as Lewy bodies. It is currently unclear whether protein aggregates are protective or detrimental for neuronal function and survival. The present hypothesis is that smaller aggregated species, known as oligomers, might constitute the toxic forms of ASYN. Several mutations in ASYN cause familial forms of PD. In the laboratory, artificial mutations have been designed to enable the study of the aggregation process. However, different studies relied on the use of different model systems, compromising the interpretation of the effects of the mutations. Here, we addressed this by (i) assembling a panel of 19 ASYN variants and (ii) by performing a systematic comparison of the effects of the mutations in mammalian cell models. Interestingly, our study enabled us to correlate oligomerization and aggregation of ASYN in cells. Altogether, our data shed light into the molecular determinants of ASYN aggregation, opening novel avenues for the identification of modulators of ASYN aggregation, which conceal great hopes towards the development of strategies for therapeutic intervention in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Diana F. Lázaro
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain University Medical Goettingen, Goettingen, Germany
| | - Eva F. Rodrigues
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain University Medical Goettingen, Goettingen, Germany
| | | | - Hedieh Shahpasandzadeh
- Georg August University, Institute for Microbiology and Genetics Dept. of Molecular Microbiology and Genetics, Goettingen, Germany
| | - Thales Ribeiro
- Laboratório de Citotoxicidade e Genotoxicidade, Departamento de Bioquímica - Instituto de Química Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Guerreiro
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain University Medical Goettingen, Goettingen, Germany
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ellen Gerhardt
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain University Medical Goettingen, Goettingen, Germany
| | - Katharina Kröhnert
- Department of Neuro and Sensory Physiology, University of Göttingen Medical Center c/o European Neuroscience Institute Göttingen, Göttingen, Germany
| | - Jochen Klucken
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangan, Germany
| | - Marcos D. Pereira
- Laboratório de Citotoxicidade e Genotoxicidade, Departamento de Bioquímica - Instituto de Química Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Blagovesta Popova
- Georg August University, Institute for Microbiology and Genetics Dept. of Molecular Microbiology and Genetics, Goettingen, Germany
| | - Niels Kruse
- Institute for Neuropathology, University Medical Center Goettingen, Goettingen, Germany
| | - Brit Mollenhauer
- Institute for Neuropathology, University Medical Center Goettingen, Goettingen, Germany
- The Department for neurosurgery at UMG and Paracelsus-Elena-Klinik, Kassel, Germany
| | - Silvio O. Rizzoli
- Department of Neuro and Sensory Physiology, University of Göttingen Medical Center c/o European Neuroscience Institute Göttingen, Göttingen, Germany
| | - Gerhard H. Braus
- Georg August University, Institute for Microbiology and Genetics Dept. of Molecular Microbiology and Genetics, Goettingen, Germany
| | | | - Tiago F. Outeiro
- Department of NeuroDegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain University Medical Goettingen, Goettingen, Germany
- Laboratório de Citotoxicidade e Genotoxicidade, Departamento de Bioquímica - Instituto de Química Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
69
|
Banerjee PR, Deniz AA. Shedding light on protein folding landscapes by single-molecule fluorescence. Chem Soc Rev 2014; 43:1172-88. [PMID: 24336839 DOI: 10.1039/c3cs60311c] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-molecule (SM) fluorescence methods have been increasingly instrumental in our current understanding of a number of key aspects of protein folding and aggregation landscapes over the past decade. With the advantage of a model free approach and the power of probing multiple subpopulations and stochastic dynamics directly in a heterogeneous structural ensemble, SM methods have emerged as a principle technique for studying complex systems such as intrinsically disordered proteins (IDPs), globular proteins in the unfolded basin and during folding, and early steps of protein aggregation in amyloidogenesis. This review highlights the application of these methods in investigating the free energy landscapes, folding properties and dynamics of individual protein molecules and their complexes, with an emphasis on inherently flexible systems such as IDPs.
Collapse
Affiliation(s)
- Priya R Banerjee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
| | | |
Collapse
|
70
|
Zheng JS, Chen X, Tang S, Chang HN, Wang FL, Zuo C. A New Method for Synthesis of Peptide Thioesters via Irreversible N-to-S Acyl Transfer. Org Lett 2014; 16:4908-11. [DOI: 10.1021/ol5024213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ji-Shen Zheng
- High
Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin Chen
- Tsinghua-Peking
Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Tang
- Tsinghua-Peking
Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hao-Nan Chang
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Feng-Liang Wang
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chao Zuo
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
71
|
Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014; 114:6661-714. [PMID: 24901537 PMCID: PMC4095937 DOI: 10.1021/cr400695p] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Francois-Xavier Theillet
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andres Binolfi
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Tamara Frembgen-Kesner
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Karan Hingorani
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Mohona Sarkar
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Ciara Kyne
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Conggang Li
- Key Laboratory
of Magnetic Resonance in Biological Systems, State Key Laboratory
of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center
for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Lila Gierasch
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Gary J. Pielak
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Adrian H. Elcock
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Anne Gershenson
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Philipp Selenko
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
72
|
Khalaf O, Fauvet B, Oueslati A, Dikiy I, Mahul-Mellier AL, Ruggeri FS, Mbefo MK, Vercruysse F, Dietler G, Lee SJ, Eliezer D, Lashuel HA. The H50Q mutation enhances α-synuclein aggregation, secretion, and toxicity. J Biol Chem 2014; 289:21856-76. [PMID: 24936070 DOI: 10.1074/jbc.m114.553297] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over the last two decades, the identification of missense mutations in the α-synuclein (α-Syn) gene SNCA in families with inherited Parkinson disease (PD) has reinforced the central role of α-Syn in PD pathogenesis. Recently, a new missense mutation (H50Q) in α-Syn was described in patients with a familial form of PD and dementia. Here we investigated the effects of this novel mutation on the biophysical properties of α-Syn and the consequences for its cellular function. We found that the H50Q mutation affected neither the structure of free or membrane-bound α-Syn monomer, its interaction with metals, nor its capacity to be phosphorylated in vitro. However, compared with the wild-type (WT) protein, the H50Q mutation accelerated α-Syn fibrillization in vitro. In cell-based models, H50Q mutation did not affect α-Syn subcellular localization or its ability to be phosphorylated by PLK2 and GRK6. Interestingly, H50Q increased α-Syn secretion from SHSY5Y cells into culture medium and induced more mitochondrial fragmentation in hippocampal neurons. Although the transient overexpression of WT or H50Q did not induce toxicity, both species induced significant cell death when added to the culture medium of hippocampal neurons. Strikingly, H50Q exhibited more toxicity, suggesting that the H50Q-related enhancement of α-Syn aggregation and secretion may play a role in the extracellular toxicity of this mutant. Together, our results provide novel insight into the mechanism by which this newly described PD-associated mutation may contribute to the pathogenesis of PD and related disorders.
Collapse
Affiliation(s)
- Ossama Khalaf
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| | - Bruno Fauvet
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| | - Abid Oueslati
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| | - Igor Dikiy
- Department of Biochemistry, Program in Structural Biology, Weill Cornell Medical College, New York, New York 10065, and
| | - Anne-Laure Mahul-Mellier
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| | - Francesco Simone Ruggeri
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Martial K Mbefo
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| | - Filip Vercruysse
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Seung-Jae Lee
- Department of Biomedical Science and Technology, Konkuk University, Seoul 143-701, South Korea
| | - David Eliezer
- Department of Biochemistry, Program in Structural Biology, Weill Cornell Medical College, New York, New York 10065, and
| | - Hilal A Lashuel
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| |
Collapse
|
73
|
Fauvet B, Butterfield SM, Fuks J, Brik A, Lashuel HA. One-pot total chemical synthesis of human α-synuclein. Chem Commun (Camb) 2014; 49:9254-6. [PMID: 23995579 DOI: 10.1039/c3cc45353g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Post-translational modifications (PTMs) regulate key aspects of the physiological and pathogenic properties of Parkinson's disease-associated presynaptic protein α-synuclein. We herein describe a one-pot total chemical synthesis that should enable site-specific introduction of single or multiple PTMs or small molecule probes essentially at any site within the protein.
Collapse
Affiliation(s)
- Bruno Fauvet
- École Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
74
|
In vitro phosphorylation does not influence the aggregation kinetics of WT α-synuclein in contrast to its phosphorylation mutants. Int J Mol Sci 2014; 15:1040-67. [PMID: 24434619 PMCID: PMC3907855 DOI: 10.3390/ijms15011040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/17/2022] Open
Abstract
The aggregation of alpha-synuclein (α-SYN) into fibrils is characteristic for several neurodegenerative diseases, including Parkinson's disease (PD). Ninety percent of α-SYN deposited in Lewy Bodies, a pathological hallmark of PD, is phosphorylated on serine129. α-SYN can also be phosphorylated on tyrosine125, which is believed to regulate the membrane binding capacity and thus possibly its normal function. A better understanding of the effect of phosphorylation on the aggregation of α-SYN might shed light on its role in the pathogenesis of PD. In this study we compare the aggregation properties of WT α-SYN with the phospho-dead and phospho-mimic mutants S129A, S129D, Y125F and Y125E and in vitro phosphorylated α-SYN using turbidity, thioflavin T and circular dichroism measurements as well as transmission electron microscopy. We show that the mutants S129A and S129D behave similarly compared to wild type (WT) α-SYN, while the mutants Y125F and Y125E fibrillate significantly slower, although all mutants form fibrillar structures similar to the WT protein. In contrast, in vitro phosphorylation of α-SYN on either S129 or Y125 does not significantly affect the fibrillization kinetics. Moreover, FK506 binding proteins (FKBPs), enzymes with peptidyl-prolyl cis-trans isomerase activity, still accelerate the aggregation of phosphorylated α-SYN in vitro, as was shown previously for WT α-SYN. In conclusion, our results illustrate that phosphorylation mutants can display different aggregation properties compared to the more biologically relevant phosphorylated form of α-SYN.
Collapse
|
75
|
Facile “stop codon” method reveals elevated neuronal toxicity by discrete S87p-α-synuclein oligomers. Biochem Biophys Res Commun 2014; 443:1085-91. [DOI: 10.1016/j.bbrc.2013.12.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 12/19/2013] [Indexed: 12/13/2022]
|
76
|
Boll E, Drobecq H, Ollivier N, Raibaut L, Desmet R, Vicogne J, Melnyk O. A novel PEG-based solid support enables the synthesis of >50 amino-acid peptide thioesters and the total synthesis of a functional SUMO-1 peptide conjugate. Chem Sci 2014. [DOI: 10.1039/c3sc53509f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bis(2-sulfanylethyl)amino PEG resin gives access to large peptide thioester segments and to functional SUMO-1 conjugates.
Collapse
Affiliation(s)
- Emmanuelle Boll
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| | - Hervé Drobecq
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| | - Nathalie Ollivier
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| | - Laurent Raibaut
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| | - Rémi Desmet
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| | - Jérome Vicogne
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| | - Oleg Melnyk
- UMR CNRS 8161
- Université Lille Nord de France
- Institut Pasteur de Lille
- 59021 Lille, France
| |
Collapse
|
77
|
Abstract
The chemical synthesis of peptides or small proteins is often an important step in many research projects and has stimulated the development of numerous chemical methodologies. The aim of this review is to give a substantial overview of the solid phase methods developed for the production or purification of polypeptides. The solid phase peptide synthesis (SPPS) technique has facilitated considerably the access to short peptides (<50 amino acids). However, its limitations for producing large homogeneous peptides have stimulated the development of solid phase covalent or non-covalent capture purification methods. The power of the native chemical ligation (NCL) reaction for protein synthesis in aqueous solution has also been adapted to the solid phase by the combination of novel linker technologies, cysteine protection strategies and thioester or N,S-acyl shift thioester surrogate chemistries. This review details pioneering studies and the most recent publications related to the solid phase chemical synthesis of large peptides and proteins.
Collapse
|
78
|
Dikiy I, Eliezer D. N-terminal acetylation stabilizes N-terminal helicity in lipid- and micelle-bound α-synuclein and increases its affinity for physiological membranes. J Biol Chem 2013; 289:3652-65. [PMID: 24338013 DOI: 10.1074/jbc.m113.512459] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Parkinson disease protein α-synuclein is N-terminally acetylated, but most in vitro studies have been performed using unacetylated α-synuclein. Binding to lipid membranes is considered key to the still poorly understood function of α-synuclein. We report the effects of N-terminal acetylation on α-synuclein binding to lipid vesicles of different composition and curvature and to micelles composed of the detergents β-octyl-glucoside (BOG) and SDS. In the presence of SDS, N-terminal acetylation results in a slightly increased helicity for the N-terminal ~10 residues of the protein, likely due to the stabilization of N-terminal fraying through the formation of a helix cap motif. In the presence of BOG, a detergent used in previous isolations of helical oligomeric forms of α-synuclein, the N-terminally acetylated protein adopts a novel conformation in which the N-terminal ~30 residues bind the detergent micelle in a partly helical conformation, whereas the remainder of the protein remains unbound and disordered. Binding of α-synuclein to lipid vesicles with high negative charge content is essentially unaffected by N-terminal acetylation irrespective of curvature, but binding to vesicles of lower negative charge content is increased, with stronger binding observed for vesicles with higher curvature. Thus, the naturally occurring N-terminally acetylated form of α-synuclein exhibits stabilized helicity at its N terminus and increased affinity for lipid vesicles similar to synaptic vesicles, a binding target of the protein in vivo. Furthermore, the novel BOG-bound state of N-terminally acetylated α-synuclein may serve as a model of partly helical membrane-bound intermediates with a role in α-synuclein function and dysfunction.
Collapse
Affiliation(s)
- Igor Dikiy
- From the Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York 10065
| | | |
Collapse
|
79
|
Abstract
This protocol provides a detailed procedure for the chemical synthesis of proteins through native chemical ligation of peptide hydrazides. The two crucial stages of this protocol are (i) the solid-phase synthesis of peptide hydrazides via Fmoc chemistry and (ii) the native chemical ligation of peptide hydrazides through in situ NaNO2 activation and thiolysis. This protocol may be of help in the synthesis of proteins that are not easily produced by recombinant technology and that include acid-sensitive modifications; it also does not involve the use of hazardous HF. The utility of the protocol is shown for the total synthesis of 140-aa-long α-synuclein, a protein that has an important role in the development of Parkinson's disease. The whole synthesis of the target protein α-synuclein in milligram scale takes ~30 working days.
Collapse
|
80
|
Synthetic polyubiquitinated α-Synuclein reveals important insights into the roles of the ubiquitin chain in regulating its pathophysiology. Proc Natl Acad Sci U S A 2013; 110:17726-31. [PMID: 24043770 DOI: 10.1073/pnas.1315654110] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ubiquitination regulates, via different modes of modifications, a variety of biological processes, and aberrations in the process have been implicated in the pathogenesis of several neurodegenerative diseases. However, our ability to dissect the pathophysiological relevance of the ubiquitination code has been hampered due to the lack of methods that allow site-specific introduction of ubiquitin (Ub) chains to a specific substrate. Here, we describe chemical and semisynthetic strategies for site-specific incorporation of K48-linked di- or tetra-Ub chains onto the side chain of Lys12 of α-Synuclein (α-Syn). These advances provided unique opportunities to elucidate the role of ubiquitination and Ub chain length in regulating α-Syn stability, aggregation, phosphorylation, and clearance. In addition, we investigated the cross-talk between phosphorylation and ubiquitination, the two most common α-Syn pathological modifications identified within Lewy bodies and Parkinson disease. Our results suggest that α-Syn functions under complex regulatory mechanisms involving cross-talk among different posttranslational modifications.
Collapse
|
81
|
Schmid AW, Fauvet B, Moniatte M, Lashuel HA. Alpha-synuclein post-translational modifications as potential biomarkers for Parkinson disease and other synucleinopathies. Mol Cell Proteomics 2013; 12:3543-58. [PMID: 23966418 DOI: 10.1074/mcp.r113.032730] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of novel therapies against neurodegenerative disorders requires the ability to detect their early, presymptomatic manifestations in order to enable treatment before irreversible cellular damage occurs. Precocious signs indicative of neurodegeneration include characteristic changes in certain protein levels, which can be used as diagnostic biomarkers when they can be detected in fluids such as blood plasma or cerebrospinal fluid. In the case of synucleinopathies, cerebrospinal alpha-synuclein (α-syn) has attracted great interest as a potential biomarker; however, there is ongoing debate regarding the association between cerebrospinal α-syn levels and neurodegeneration in Parkinson disease and synucleinopathies. Post-translational modifications (PTMs) have emerged as important determinants of α-syn's physiological and pathological functions. Several PTMs are enriched within Lewy bodies and exist at higher levels in α-synucleinopathy brains, suggesting that certain modified forms of α-syn might be more relevant biomarkers than the total α-syn levels. However, the quantification of PTMs in bodily fluids poses several challenges. This review describes the limitations of current immunoassay-based α-syn quantification methods and highlights how these limitations can be overcome using novel mass-spectrometry-based assays. In addition, we describe how advances in chemical synthesis, which have enabled the preparation of α-syn proteins that are site-specifically modified at single or multiple residues, can facilitate the development of more accurate assays for detecting and quantifying α-syn PTMs in health and disease.
Collapse
Affiliation(s)
- Adrien W Schmid
- Proteomics Core Facility, School of Life Sciences, Station 19, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
82
|
Deleersnijder A, Gerard M, Debyser Z, Baekelandt V. The remarkable conformational plasticity of alpha-synuclein: blessing or curse? Trends Mol Med 2013; 19:368-77. [DOI: 10.1016/j.molmed.2013.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 12/21/2022]
|
83
|
Kiely AP, Asi YT, Kara E, Limousin P, Ling H, Lewis P, Proukakis C, Quinn N, Lees AJ, Hardy J, Revesz T, Houlden H, Holton JL. α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson's disease and multiple system atrophy? Acta Neuropathol 2013; 125:753-69. [PMID: 23404372 PMCID: PMC3681325 DOI: 10.1007/s00401-013-1096-7] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/01/2013] [Indexed: 12/15/2022]
Abstract
We report a British family with young-onset Parkinson's disease (PD) and a G51D SNCA mutation that segregates with the disease. Family history was consistent with autosomal dominant inheritance as both the father and sister of the proband developed levodopa-responsive parkinsonism with onset in their late thirties. Clinical features show similarity to those seen in families with SNCA triplication and to cases of A53T SNCA mutation. Post-mortem brain examination of the proband revealed atrophy affecting frontal and temporal lobes in addition to the caudate, putamen, globus pallidus and amygdala. There was severe loss of pigmentation in the substantia nigra and pallor of the locus coeruleus. Neuronal loss was most marked in frontal and temporal cortices, hippocampal CA2/3 subregions, substantia nigra, locus coeruleus and dorsal motor nucleus of the vagus. The cellular pathology included widespread and frequent neuronal α-synuclein immunoreactive inclusions of variable morphology and oligodendroglial inclusions similar to the glial cytoplasmic inclusions of multiple system atrophy (MSA). Both inclusion types were ubiquitin and p62 positive and were labelled with phosphorylation-dependent anti-α-synuclein antibodies In addition, TDP-43 immunoreactive inclusions were observed in limbic regions and in the striatum. Together the data show clinical and neuropathological similarities to both the A53T SNCA mutation and multiplication cases. The cellular neuropathological features of this case share some characteristics of both PD and MSA with additional unique striatal and neocortical pathology. Greater understanding of the disease mechanism underlying the G51D mutation could aid in understanding of α-synuclein biology and its impact on disease phenotype.
Collapse
Affiliation(s)
- Aoife P. Kiely
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Yasmine T. Asi
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Eleanna Kara
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, UCL Institute of Neurology, London, UK
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, UK
| | - Helen Ling
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - Patrick Lewis
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | - Christos Proukakis
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| | - Niall Quinn
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Andrew J. Lees
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - John Hardy
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - Tamas Revesz
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - Janice L. Holton
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
84
|
Wissner RF, Batjargal S, Fadzen CM, Petersson EJ. Labeling proteins with fluorophore/thioamide Förster resonant energy transfer pairs by combining unnatural amino acid mutagenesis and native chemical ligation. J Am Chem Soc 2013; 135:6529-40. [PMID: 23594264 DOI: 10.1021/ja4005943] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently shown that p-cyanophenylalanine (Cnf) and a thioamide can be used as a minimally perturbing Förster resonant energy transfer (FRET) pair to monitor protein conformation. We have also shown that thioamide analogues of natural amino acids can be incorporated into full-sized proteins through native chemical ligation. For intermolecular studies with Cnf/thioamide FRET pairs, Cnf can be incorporated into proteins expressed in Escherichia coli through unnatural amino acid mutagenesis using a Cnf-specific tRNA synthetase. For intramolecular studies, a Cnf-labeled protein fragment can be expressed in E. coli and then ligated to a thioamide-labeled peptide synthesized on solid phase. This combination of methods allows for rapid access to double-labeled proteins with a minimum of unnecessary chemical synthesis. We demonstrate the utility of this approach by studying the binding of peptides to the protein calmodulin and by determining the orientation of the N- and C-termini in the amyloidogenic protein α-synuclein.
Collapse
Affiliation(s)
- Rebecca F Wissner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | |
Collapse
|
85
|
Schildknecht S, Gerding HR, Karreman C, Drescher M, Lashuel HA, Outeiro TF, Di Monte DA, Leist M. Oxidative and nitrative alpha-synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. J Neurochem 2013; 125:491-511. [PMID: 23452040 DOI: 10.1111/jnc.12226] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/21/2013] [Accepted: 02/21/2013] [Indexed: 12/22/2022]
Abstract
Alpha-synuclein (ASYN) is a major constituent of the typical protein aggregates observed in several neurodegenerative diseases that are collectively referred to as synucleinopathies. A causal involvement of ASYN in the initiation and progression of neurological diseases is suggested by observations indicating that single-point (e.g., A30P, A53T) or multiplication mutations of the gene encoding for ASYN cause early onset forms of Parkinson's disease (PD). The relative regional specificity of ASYN pathology is still a riddle that cannot be simply explained by its expression pattern. Also, transgenic over-expression of ASYN in mice does not recapitulate the typical dopaminergic neuronal death observed in PD. Thus, additional factors must contribute to ASYN-related toxicity. For instance, synucleinopathies are usually associated with inflammation and elevated levels of oxidative stress in affected brain areas. In turn, these conditions favor oxidative modifications of ASYN. Among these modifications, nitration of tyrosine residues, formation of covalent ASYN dimers, as well as methionine sulfoxidations are prominent examples that are observed in post-mortem PD brain sections. Oxidative modifications can affect ASYN aggregation, as well as its binding to biological membranes. This would affect neurotransmitter recycling, mitochondrial function and dynamics (fission/fusion), ASYN's degradation within a cell and, possibly, the transfer of modified ASYN to adjacent cells. Here, we propose a model on how covalent modifications of ASYN link energy stress, altered proteostasis, and oxidative stress, three major pathogenic processes involved in PD progression. Moreover, we hypothesize that ASYN may act physiologically as a catalytically regenerated scavenger of oxidants in healthy cells, thus performing an important protective role prior to the onset of disease or during aging.
Collapse
Affiliation(s)
- Stefan Schildknecht
- Department of Biology, Doerenkamp-Zbinden Chair for In vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Gonçalves S, Outeiro TF. Assessing the subcellular dynamics of alpha-synuclein using photoactivation microscopy. Mol Neurobiol 2013; 47:1081-92. [PMID: 23389286 PMCID: PMC3637893 DOI: 10.1007/s12035-013-8406-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/08/2013] [Indexed: 11/27/2022]
Abstract
Alpha-synuclein (aSyn) is implicated in Parkinson’s disease and several other neurodegenerative disorders. To date, the function and intracellular dynamics of aSyn are still unclear. Here, we tracked the dynamics of aSyn using photoactivatable green fluorescent protein as a reporter. We found that the availability of the aSyn N terminus modulates its shuttling into the nucleus. Interestingly, familial aSyn mutations altered the dynamics at which the protein distributes throughout the cell. Both the A30P and A53T aSyn mutations increase the speed at which the protein moves between the nucleus and cytoplasm, respectively. We also found that specific kinases potentiate the shuttling of aSyn between nucleus and cytoplasm. A mutant aSyn form that blocks S129 phosphorylation, S129A, results in the formation of cytoplasmic inclusions, suggesting phosphorylation modulates aggregation in addition to modulating aSyn intracellular dynamics. Finally, we found that the molecular chaperone HSP70 accelerates the entry of aSyn into the nuclear compartment.
Collapse
Affiliation(s)
- Susana Gonçalves
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | |
Collapse
|
87
|
Chen X, Henschke L, Wu Q, Muthoosamy K, Neumann B, Weil T. Site-selective azide incorporation into endogenous RNase A via a “chemistry” approach. Org Biomol Chem 2013; 11:353-61. [DOI: 10.1039/c2ob26561c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
88
|
Marotta NP, Cherwien CA, Abeywardana T, Pratt MR. O-GlcNAc Modification Prevents Peptide-Dependent Acceleration of α-Synuclein Aggregation. Chembiochem 2012; 13:2665-70. [DOI: 10.1002/cbic.201200478] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Indexed: 12/31/2022]
|
89
|
Theillet FX, Smet-Nocca C, Liokatis S, Thongwichian R, Kosten J, Yoon MK, Kriwacki RW, Landrieu I, Lippens G, Selenko P. Cell signaling, post-translational protein modifications and NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2012; 54:217-36. [PMID: 23011410 PMCID: PMC4939263 DOI: 10.1007/s10858-012-9674-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/07/2012] [Indexed: 05/13/2023]
Abstract
Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Caroline Smet-Nocca
- CNRS UMR 8576, Universite Lille Nord de France, 59655 Villeneuve d’Ascq, France
| | - Stamatios Liokatis
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Rossukon Thongwichian
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Jonas Kosten
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Mi-Kyung Yoon
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Isabelle Landrieu
- CNRS UMR 8576, Universite Lille Nord de France, 59655 Villeneuve d’Ascq, France
| | - Guy Lippens
- CNRS UMR 8576, Universite Lille Nord de France, 59655 Villeneuve d’Ascq, France
| | - Philipp Selenko
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| |
Collapse
|
90
|
Fauvet B, Fares MB, Samuel F, Dikiy I, Tandon A, Eliezer D, Lashuel HA. Characterization of semisynthetic and naturally Nα-acetylated α-synuclein in vitro and in intact cells: implications for aggregation and cellular properties of α-synuclein. J Biol Chem 2012; 287:28243-62. [PMID: 22718772 DOI: 10.1074/jbc.m112.383711] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-terminal acetylation is a very common post-translational modification, although its role in regulating protein physical properties and function remains poorly understood. α-Synuclein (α-syn), a protein that has been linked to the pathogenesis of Parkinson disease, is constitutively N(α)-acetylated in vivo. Nevertheless, most of the biochemical and biophysical studies on the structure, aggregation, and function of α-syn in vitro utilize recombinant α-syn from Escherichia coli, which is not N-terminally acetylated. To elucidate the effect of N(α)-acetylation on the biophysical and biological properties of α-syn, we produced N(α)-acetylated α-syn first using a semisynthetic methodology based on expressed protein ligation (Berrade, L., and Camarero, J. A. (2009) Cell. Mol. Life Sci. 66, 3909-3922) and then a recombinant expression strategy, to compare its properties to unacetylated α-syn. We demonstrate that both WT and N(α)-acetylated α-syn share a similar secondary structure and oligomeric state using both purified protein preparations and in-cell NMR on E. coli overexpressing N(α)-acetylated α-syn. The two proteins have very close aggregation propensities as shown by thioflavin T binding and sedimentation assays. Furthermore, both N(α)-acetylated and WT α-syn exhibited similar ability to bind synaptosomal membranes in vitro and in HeLa cells, where both internalized proteins exhibited prominent cytosolic subcellular distribution. We then determined the effect of attenuating N(α)-acetylation in living cells, first by using a nonacetylable mutant and then by silencing the enzyme responsible for α-syn N(α)-acetylation. Both approaches revealed similar subcellular distribution and membrane binding for both the nonacetylable mutant and WT α-syn, suggesting that N-terminal acetylation does not significantly affect its structure in vitro and in intact cells.
Collapse
Affiliation(s)
- Bruno Fauvet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Station 19, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
91
|
Butterfield S, Hejjaoui M, Fauvet B, Awad L, Lashuel HA. Chemical strategies for controlling protein folding and elucidating the molecular mechanisms of amyloid formation and toxicity. J Mol Biol 2012; 421:204-36. [PMID: 22342932 DOI: 10.1016/j.jmb.2012.01.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 12/12/2022]
Abstract
It has been more than a century since the first evidence linking the process of amyloid formation to the pathogenesis of Alzheimer's disease. During the last three decades in particular, increasing evidence from various sources (pathology, genetics, cell culture studies, biochemistry, and biophysics) continues to point to a central role for the pathogenesis of several incurable neurodegenerative and systemic diseases. This is in part driven by our improved understanding of the molecular mechanisms of protein misfolding and aggregation and the structural properties of the different aggregates in the amyloid pathway and the emergence of new tools and experimental approaches that permit better characterization of amyloid formation in vivo. Despite these advances, detailed mechanistic understanding of protein aggregation and amyloid formation in vitro and in vivo presents several challenges that remain to be addressed and several fundamental questions about the molecular and structural determinants of amyloid formation and toxicity and the mechanisms of amyloid-induced toxicity remain unanswered. To address this knowledge gap and technical challenges, there is a critical need for developing novel tools and experimental approaches that will not only permit the detection and monitoring of molecular events that underlie this process but also allow for the manipulation of these events in a spatial and temporal fashion both in and out of the cell. This review is primarily dedicated in highlighting recent results that illustrate how advances in chemistry and chemical biology have been and can be used to address some of the questions and technical challenges mentioned above. We believe that combining recent advances in the development of new fluorescent probes, imaging tools that enabled the visualization and tracking of molecular events with advances in organic synthesis, and novel approaches for protein synthesis and engineering provide unique opportunities to gain a molecular-level understanding of the process of amyloid formation. We hope that this review will stimulate further research in this area and catalyze increased collaboration at the interface of chemistry and biology to decipher the mechanisms and roles of protein folding, misfolding, and aggregation in health and disease.
Collapse
Affiliation(s)
- Sara Butterfield
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
92
|
Siman P, Brik A. Chemical and semisynthesis of posttranslationally modified proteins. Org Biomol Chem 2012; 10:5684-97. [DOI: 10.1039/c2ob25149c] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|