51
|
Zhao CX, Yu L, Liu JN, Wang J, Yao N, Li XY, Chen X, Li BQ, Zhang Q. Working Zinc–Air Batteries at 80oC. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Legeng Yu
- Tsinghua University Chemical Engineering CHINA
| | | | - Juan Wang
- Beijing Institute of Technology AMIRS CHINA
| | - Nan Yao
- Tsinghua University Chemical Engineering CHINA
| | - Xi-Yao Li
- Tsinghua University Chemical Engineering CHINA
| | - Xiang Chen
- Tsinghua University Chemical Engineering CHINA
| | - Bo-Quan Li
- Beijing Institute of Technology AMIRS CHINA
| | - Qiang Zhang
- Tsinghua University Department of Chemical Engineering No.1, Tsinghua Road 100084 Beijing CHINA
| |
Collapse
|
52
|
Wan L, Xu Z, Cao Q, Liao Y, Wang B, Liu K. Nanoemulsion-Coated Ni-Fe Hydroxide Self-Supported Electrode as an Air-Breathing Cathode for High-Performance Zinc-Air Batteries. NANO LETTERS 2022; 22:4535-4543. [PMID: 35587778 DOI: 10.1021/acs.nanolett.2c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To improve the energy conversion efficiency and durability of zinc-air batteries (ZABs) for large-scale implementations, here we propose an "air-breathing" strategy to significantly enlarge triple-interfaces with intensified mass transfer. By dip-coating the aerophilic perfluorochemical compounds (PFC) and amphiphilic ionomers into the self-supported electrodes, (1) the high solubility of O2 in the PFC nanoemulsions greatly increases triple-phase boundaries and facilitates the efficient supply/removal of O2 from the electrolyte; (2) the ionomers with hydrophobic and hydrophilic functionalities enable fast gas, water, and ion transport to the triple-phase boundaries; and (3) the self-supported electrode without binder ensures fast electron transfer while the firm integration prevents catalyst shedding. By applying this strategy, the ZABs show a high power density of 115 mW cm-2 and a narrow discharge/charge gap of 0.64 V at 10 mA cm-2 and a long-cycling durability (over 1000 h). This work provides a universal approach to promote gas-evolving reactions for electrochemical applications.
Collapse
Affiliation(s)
- Lei Wan
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ziang Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qingbin Cao
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yiwen Liao
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Baoguo Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Kai Liu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
53
|
He B, Zhang Q, Pan Z, Li L, Li C, Ling Y, Wang Z, Chen M, Wang Z, Yao Y, Li Q, Sun L, Wang J, Wei L. Freestanding Metal-Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chem Rev 2022; 122:10087-10125. [PMID: 35446541 PMCID: PMC9185689 DOI: 10.1021/acs.chemrev.1c00978] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Metal–organic
frameworks (MOFs) have recently emerged as
ideal electrode materials and precursors for electrochemical energy
storage and conversion (EESC) owing to their large specific surface
areas, highly tunable porosities, abundant active sites, and diversified
choices of metal nodes and organic linkers. Both MOF-based and MOF-derived
materials in powder form have been widely investigated in relation
to their synthesis methods, structure and morphology controls, and
performance advantages in targeted applications. However, to engage
them for energy applications, both binders and additives would be
required to form postprocessed electrodes, fundamentally eliminating
some of the active sites and thus degrading the superior effects of
the MOF-based/derived materials. The advancement of freestanding electrodes
provides a new promising platform for MOF-based/derived materials
in EESC thanks to their apparent merits, including fast electron/charge
transmission and seamless contact between active materials and current
collectors. Benefiting from the synergistic effect of freestanding
structures and MOF-based/derived materials, outstanding electrochemical
performance in EESC can be achieved, stimulating the increasing enthusiasm
in recent years. This review provides a timely and comprehensive overview
on the structural features and fabrication techniques of freestanding
MOF-based/derived electrodes. Then, the latest advances in freestanding
MOF-based/derived electrodes are summarized from electrochemical energy
storage devices to electrocatalysis. Finally, insights into the currently
faced challenges and further perspectives on these feasible solutions
of freestanding MOF-based/derived electrodes for EESC are discussed,
aiming at providing a new set of guidance to promote their further
development in scale-up production and commercial applications.
Collapse
Affiliation(s)
- Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang 330200, China
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 Singapore
| | - Lei Li
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Chaowei Li
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, China
| | - Ying Ling
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Mengxiao Chen
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yagang Yao
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 Singapore.,Institute of Materials Research and Engineering, A*Star, Singapore 138634, Singapore
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
54
|
Zhao CX, Liu JN, Wang J, Wang C, Guo X, Li XY, Chen X, Song L, Li BQ, Zhang Q. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. SCIENCE ADVANCES 2022; 8:eabn5091. [PMID: 35294235 PMCID: PMC8926326 DOI: 10.1126/sciadv.abn5091] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 05/20/2023]
Abstract
Rechargeable zinc-air batteries call for high-performance bifunctional oxygen electrocatalysts. Transition metal single-atom catalysts constitute a promising candidate considering their maximum atom efficiency and high intrinsic activity. However, the fabrication of atomically dispersed transition metal sites is highly challenging, creating a need for for new design strategies and synthesis methods. Here, a clicking confinement strategy is proposed to efficiently predisperse transitional metal atoms in a precursor directed by click chemistry and ensure successful construction of abundant single-atom sites. Concretely, cobalt-coordinated porphyrin units are covalently clicked on the substrate for the confinement of the cobalt atoms and affording a Co-N-C electrocatalyst. The Co-N-C electrocatalyst exhibits impressive bifunctional oxygen electrocatalytic performances with an activity indicator ΔE of 0.79 V. This work extends the approach to prepare transition metal single-atom sites for efficient bifunctional oxygen electrocatalysis and inspires the methodology on precise synthesis of catalytic materials.
Collapse
Affiliation(s)
- Chang-Xin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jia-Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Juan Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Changda Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Xin Guo
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Xi-Yao Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Corresponding author. (B.-Q.L.); (Q.Z.)
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Corresponding author. (B.-Q.L.); (Q.Z.)
| |
Collapse
|
55
|
Jiang Y, Deng YP, Liang R, Chen N, King G, Yu A, Chen Z. Linker-Compensated Metal-Organic Framework with Electron Delocalized Metal Sites for Bifunctional Oxygen Electrocatalysis. J Am Chem Soc 2022; 144:4783-4791. [PMID: 35192369 DOI: 10.1021/jacs.1c10295] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks with tailorable coordination chemistry are propitious for regulating catalytic performance and deciphering genuine mechanisms. Herein, a linker compensation strategy is proposed to alter the intermediate adsorption free energy on the Co-Fe zeolitic imidazolate framework (CFZ). This grants zinc-air battery superior high current density capability with a small discharge-charge voltage gap of 0.88 V at 35 mA cm-2 and an hourly fading rate of less than 0.01% for over 500 h. Systematic characterization and theoretical modeling reveal that the performance elevation is closely correlated with the compensation of CFZ unsaturated metal nodes by S-bridging heterogeneous linkers, which exhibit electron-withdrawing characteristic that drives the delocalization of d-orbital electrons. These rearrangements of electronic structures establish a favorable adsorption/desorption pathway for key intermediates (OH*) and a stable coordination environment in bifunctional oxygen electrocatalysis.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ya-Ping Deng
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ruilin Liang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ning Chen
- Canadian Light Source, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0X4, Canada
| | - Graham King
- Canadian Light Source, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0X4, Canada
| | - Aiping Yu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
56
|
|
57
|
Zhou C, Chen X, Liu S, Han Y, Meng H, Jiang Q, Zhao S, Wei F, Sun J, Tan T, Zhang R. Superdurable Bifunctional Oxygen Electrocatalyst for High-Performance Zinc-Air Batteries. J Am Chem Soc 2022; 144:2694-2704. [PMID: 35104401 DOI: 10.1021/jacs.1c11675] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of high-efficiency and durable bifunctional electrocatalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is critical for the widespread application of rechargeable zinc-air (Zn-air) batteries. This calls for rational screening of targeted ORR/OER components and precise control of their atomic and electronic structures to produce synergistic effects. Here, we report a Mn-doped RuO2 (Mn-RuO2) bimetallic oxide with atomic-scale dispersion of Mn atoms into the RuO2 lattice, which exhibits remarkable activity and super durability for both the ORR and OER, with a very low potential difference (ΔE) of 0.64 V between the half-wave potential of ORR (E1/2) and the OER potential at 10 mA cm-2 (Ej10) and a negligible decay of E1/2 and Ej10 after 250 000 and 30 000 CV cycles for ORR and OER, respectively. Moreover, Zn-air batteries using the Mn-RuO2 catalysts exhibit a high power density of 181 mW cm-2, low charge/discharge voltage gaps of 0.69/0.96/1.38 V, and ultralong lifespans of 15 000/2800/1800 cycles (corresponding to 2500/467/300 h operation time) at a current density of 10/50/100 mA cm-2, respectively. Theoretical calculations reveal that the excellent performances of Mn-RuO2 is mainly due to the precise optimization of valence state and d-band center for appropriate adsorption energy of the oxygenated intermediates.
Collapse
Affiliation(s)
- Chenhui Zhou
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shuo Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ying Han
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haibing Meng
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Siming Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jie Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
58
|
Xie X, Sun P, Liu W, Gong T, Lv X, Fang L, Wei Y, Sun X. Novel Fe 2.55Sb 2 alloy nanoparticles incorporated in N-doped carbon as a bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. NEW J CHEM 2022. [DOI: 10.1039/d2nj01697d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel Fe2.55Sb2 alloy nanoparticles are incorporated in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable Zn-air battery.
Collapse
Affiliation(s)
- Xing Xie
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Panpan Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Weitao Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Tao Gong
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Xiaowei Lv
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Liang Fang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Yongan Wei
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Xiaohua Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| |
Collapse
|
59
|
Liu Q, Ranocchiari M, van Bokhoven JA. Catalyst overcoating engineering towards high-performance electrocatalysis. Chem Soc Rev 2021; 51:188-236. [PMID: 34870651 DOI: 10.1039/d1cs00270h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clean and sustainable energy needs the development of advanced heterogeneous catalysts as they are of vital importance for electrochemical transformation reactions in renewable energy conversion and storage devices. Advances in nanoscience and material chemistry have afforded great opportunities for the design and optimization of nanostructured electrocatalysts with high efficiency and practical durability. In this review article, we specifically emphasize the synthetic methodologies for the versatile surface overcoating engineering reported to date for optimal electrocatalysts. We discuss the recent progress in the development of surface overcoating-derived electrocatalysts potentially applied in polymer electrolyte fuel cells and water electrolyzers by correlating catalyst intrinsic structures with electrocatalytic properties. Finally, we present the opportunities and perspectives of surface overcoating engineering for the design of advanced (electro)catalysts and their deep exploitation in a broad scope of applications.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
60
|
Zhou C, Zhao S, Meng H, Han Y, Jiang Q, Wang B, Shi X, Zhang W, Zhang L, Zhang R. RuCoO x Nanofoam as a High-Performance Trifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries and Water Splitting. NANO LETTERS 2021; 21:9633-9641. [PMID: 34761938 DOI: 10.1021/acs.nanolett.1c03407] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designing high-performance trifunctional electrocatalysts for ORR/OER/HER with outstanding activity and stability for each reaction is quite significant yet challenging for renewable energy technologies. Herein, a highly efficient and durable trifunctional electrocatalyst RuCoOx is prepared by a unique one-pot glucose-blowing approach. Remarkably, RuCoOx catalyst exhibits a small potential difference (ΔE) of 0.65 V and low HER overpotential of 37 mV (10 mA cm-2), as well as a negligible decay of overpotential after 200 000/10 000/10 000 CV cycles for ORR/OER/HER, all of which show overwhelming superiorities among the advanced trifunctional electrocatalysts. When used in liquid rechargeable Zn-air batteries and water splitting electrolyzer, RuCoOx exhibits high efficiency and outstanding durability even at quite large current density. Such excellent performance can be attributed to the rational combination of targeted ORR/OER/HER active sites into one electrocatalyst based on the double-phase coupling strategy, which induces sufficient electronic structure modulation and synergistic effect for enhanced trifunctional properties.
Collapse
Affiliation(s)
- Chenhui Zhou
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Siming Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haibing Meng
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Han
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Baoshun Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaofei Shi
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenshuo Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Liang Zhang
- Center for Combustion Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
61
|
Zhang T, Bian J, Zhu Y, Sun C. FeCo Nanoparticles Encapsulated in N-Doped Carbon Nanotubes Coupled with Layered Double (Co, Fe) Hydroxide as an Efficient Bifunctional Catalyst for Rechargeable Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103737. [PMID: 34553487 DOI: 10.1002/smll.202103737] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Low-cost bifunctional nonprecious metal catalysts toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical for the commercialization of rechargeable zinc-air batteries (ZABs). However, the preparation of highly active and durable bifunctional catalysts is still challenging. Herein, an efficient catalyst is reported consisting of FeCo nanoparticles embedded in N-doped carbon nanotubes (FeCo NPs-N-CNTs) by an in situ catalytic strategy. Due to the encapsulation and porous structure of N-doped carbon nanotubes, the catalyst shows high activity toward ORR and excellent durability. Furthermore, to enhance the OER activity, CoFe-layer double hydroxide (CoFe-LDH) is coupled with FeCo NPs-N-CNTs by in situ reaction approach. As the air electrode for rechargeable ZABs, the cell with CoFe-LDH@FeCo NPs-N-CNTs catalyst exhibits high open-circuit potential (OCP) of 1.51 V, high power density of 116 mW cm-2 , and remarkable durability up to 100 h, demonstrating its great promise for the practical application of the rechargeable ZABs.
Collapse
Affiliation(s)
- Tongrui Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Juanjuan Bian
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Yuanqin Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Chunwen Sun
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
62
|
Facile controlled formation of CoNi alloy and CoO embedded in N-doped carbon as advanced electrocatalysts for oxygen evolution and zinc-air battery. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
63
|
Shao X, Yang Y, Liu Y, Yan P, Zhou S, Taylor Isimjan T, Yang X. Oxygen vacancy-rich N-doped carbon encapsulated BiOCl-CNTs heterostructures as robust electrocatalyst synergistically promote oxygen reduction and Zn-air batteries. J Colloid Interface Sci 2021; 607:826-835. [PMID: 34536937 DOI: 10.1016/j.jcis.2021.08.210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023]
Abstract
The development of non-precious metal catalysts for oxygen reduction reactions (ORR) is vital for promising clean energy technologies such as fuel cells, and zinc-air batteries. Herein, we present a stepwise synthesis of N-doped and carbon encapsulated BiOCl-CNTs heterostructures. Electrocatalytic ORR studies show that the optimized catalyst has a high half-wave potential (E1/2) of 0.85 V (vs. RHE), large limiting current density (-5.34 mA cm-2@0.6 V) in alkaline medium, and nearly perfect 4e- reduction characteristics, even surpassing commercial Pt/C. Meanwhile, the catalyst has exceptional durability (above 97.5 % after 40000 s) and strong resistance towards methanol poisoning. The good ORR activity also results in high-performance zinc-air batteries with a specific capacity (724 mAh g-1@10 mA cm-2), a high open-circuit potential of 1.51 V and a peak power density of 170.7 mW cm-2, as well as an ultra-long charge-discharge cycle stability (155 h), comparable with the Pt/C catalyst. The catalytic mechanism reveals that the excellent electrocatalytic performance originates from the synergistic effect of N doping, oxygen vacancies, and BiOCl sites.
Collapse
Affiliation(s)
- Xue Shao
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuting Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yi Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Puxuan Yan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shuqing Zhou
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
64
|
Molten-salt-assisted synthesis of onion-like Co/CoO@FeNC materials with boosting reversible oxygen electrocatalysis for rechargeable Zn-air battery. J Colloid Interface Sci 2021; 596:206-214. [PMID: 33845228 DOI: 10.1016/j.jcis.2021.03.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 11/21/2022]
Abstract
A melt-salt-assisted method is utilized to construct an onion-like hybrid with Co/CoO nanoparticles embedded in graphitic Fe-N-doped carbon shells (Co/CoO@FeNC) as a bifunctional electrocatalyst. The iron-polypyrrole (Fe-PPy) is firstly prepared with a reverse emulsion. Direct pyrolysis of Fe-PPy yields turbostratic Fe-N-doped carbon (FeNC) with excellent oxygen reduction reaction (ORR) electrocatalysis, while the melt salt (CoCl2) mediated pyrolysis of Fe-PPy obtains onion-like Co/CoO@FeNC with a reversible overvoltage value of 0.695 V, largely superior to Pt/C and IrO2 (0.771 V) and other Co-based catalysts reported so far. The ORR activity is mainly due to the graphitic FeNC and further enhanced by CoNx bonds, whereas the oxygen evolution reaction (OER) activity is principally due to the Co/CoO composite. Concurrently, Co/CoO@FeNC as cathode catalyst enables Zn-air battery with a high open circuit voltage of 1.42 V, a peak power density of 132.8 mW cm-2, a specific capacity of 813 mAh gZn-1, and long-term stability.
Collapse
|
65
|
Chen YP, Lin SY, Sun RM, Wang AJ, Zhang L, Ma X, Feng JJ. FeCo/FeCoP encapsulated in N, Mn-codoped three-dimensional fluffy porous carbon nanostructures as highly efficient bifunctional electrocatalyst with multi-components synergistic catalysis for ultra-stable rechargeable Zn-air batteries. J Colloid Interface Sci 2021; 605:451-462. [PMID: 34340032 DOI: 10.1016/j.jcis.2021.07.082] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023]
Abstract
Currently, it is critical but a tricky point to develop economical, high-efficiency, and durable non-precious metal electrocatalysts towards oxygen reduction and oxygen evolution reaction (ORR/OER) in rechargeable Zn-air batteries. Herein, N, Mn-codoped three-dimensional (3D) fluffy porous carbon nanostructures encapsulating FeCo/FeCoP alloyed nanoparticles (FeCo/FeCoP@NMn-CNS) are prepared by one-step pyrolysis of the metal precursors and polyinosinic acid. The optimized hybrid nanocomposite (obtained at 800 °C, named as FeCo/FeCoP@NMn-CNS-800) exhibits outstanding catalytic performance in the alkaline electrolyte with a half-wave potential (E1/2) of 0.84 V for the ORR and an overpotential of 325 mV towards the OER at 10 mA cm-2. Impressively, the FeCo/FeCoP@NMn-CNS-800-assembled rechargeable Zn-air battery presents an open-circuit voltage of 1.522 V (vs. RHE), a peak power density of 135.0 mW cm-2, and long-term durability by charge-discharge cycling for 200 h, surpassing commercial Pt/C + RuO2 based counterpart. This work affords valuable guidelines for exploring advanced bifunctional ORR and OER catalysts in rational construction of high-quality Zn-air batteries.
Collapse
Affiliation(s)
- Yu-Ping Chen
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Shi-Yi Lin
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Rui-Min Sun
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaohong Ma
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
66
|
Lan Y, Luo H, Ma Y, Hua Y, Liao T, Yang J. Synergy between copper and iron sites inside carbon nanofibers for superior electrocatalytic denitrification. NANOSCALE 2021; 13:10108-10115. [PMID: 34060572 DOI: 10.1039/d1nr01489g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing low-cost electrocatalysts for the nitrate reduction reaction (NO3RR) with superior performance is of great significance for wastewater treatment. Herein, we synthesized bimetal Cu/Fe nanoparticles encased in N-doped carbon nanofibers (Cu/Fe@NCNFs) through simple electrospinning followed by a pyrolysis reduction strategy. Metallic copper is beneficial for reducing nitrate to nitrite, and the existence of Fe is conducive to convert nitrate and nitrite into nitrogen. Additionally, the nitrogen-doped carbon nanofibers also facilitate the adsorption of nitrate, and the continuous and complete fiber structure enhances the stability of the catalyst and prevents the corrosion of the active sites. Therefore, the synergetic effect of bimetal Cu/Fe and N-doped carbon fiber plays a key role in promoting the efficiency of nitrate reduction. The obtained Cu/Fe@NCNF catalyst exhibits a satisfactory nitrate conversion efficiency of 76%, removal capacity of 5686 mg N g-1 Cu/Fe and nitrogen selectivity of 94%.
Collapse
Affiliation(s)
- Yue Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
| | | | | | | | | | | |
Collapse
|
67
|
Wang X, Raghupathy RKM, Querebillo CJ, Liao Z, Li D, Lin K, Hantusch M, Sofer Z, Li B, Zschech E, Weidinger IM, Kühne TD, Mirhosseini H, Yu M, Feng X. Interfacial Covalent Bonds Regulated Electron-Deficient 2D Black Phosphorus for Electrocatalytic Oxygen Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008752. [PMID: 33939200 PMCID: PMC11469023 DOI: 10.1002/adma.202008752] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Developing resource-abundant and sustainable metal-free bifunctional oxygen electrocatalysts is essential for the practical application of zinc-air batteries (ZABs). 2D black phosphorus (BP) with fully exposed atoms and active lone pair electrons can be promising for oxygen electrocatalysts, which, however, suffers from low catalytic activity and poor electrochemical stability. Herein, guided by density functional theory (DFT) calculations, an efficient metal-free electrocatalyst is demonstrated via covalently bonding BP nanosheets with graphitic carbon nitride (denoted BP-CN-c). The polarized PN covalent bonds in BP-CN-c can efficiently regulate the electron transfer from BP to graphitic carbon nitride and significantly promote the OOH* adsorption on phosphorus atoms. Impressively, the oxygen evolution reaction performance of BP-CN-c (overpotential of 350 mV at 10 mA cm-2 , 90% retention after 10 h operation) represents the state-of-the-art among the reported BP-based metal-free catalysts. Additionally, BP-CN-c exhibits a small half-wave overpotential of 390 mV for oxygen reduction reaction, representing the first bifunctional BP-based metal-free oxygen catalyst. Moreover, ZABs are assembled incorporating BP-CN-c cathodes, delivering a substantially higher peak power density (168.3 mW cm-2 ) than the Pt/C+RuO2 -based ZABs (101.3 mW cm-2 ). The acquired insights into interfacial covalent bonds pave the way for the rational design of new and affordable metal-free catalysts.
Collapse
Affiliation(s)
- Xia Wang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 4Dresden01062Germany
| | - Ramya Kormath Madam Raghupathy
- Dynamics of Condensed Matter and Center for Sustainable Systems DesignChair of Theoretical ChemistryUniversity of PaderbornWarburger Str. 100Paderborn33098Germany
| | - Christine Joy Querebillo
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 4Dresden01062Germany
- Institute for Complex MateSrialsLeibniz‐Institute for Solid State and Materials Research (IFW)Dresden01069Germany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS)Maria‐Reiche‐Strasse 2Dresden01109Germany
| | - Dongqi Li
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 4Dresden01062Germany
| | - Kui Lin
- Shenzhen Key Laboratory of Power Battery Safety and Shenzhen Geim Graphene CenterTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Martin Hantusch
- Institute for Complex MateSrialsLeibniz‐Institute for Solid State and Materials Research (IFW)Dresden01069Germany
| | - Zdeněk Sofer
- Department of Inorganic ChemistryUniversity of Chemistry and Technology PragueTechnická 5Prague 616628Czech Republic
| | - Baohua Li
- Shenzhen Key Laboratory of Power Battery Safety and Shenzhen Geim Graphene CenterTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Ehrenfried Zschech
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS)Maria‐Reiche‐Strasse 2Dresden01109Germany
| | - Inez M. Weidinger
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 4Dresden01062Germany
| | - Thomas D. Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems DesignChair of Theoretical ChemistryUniversity of PaderbornWarburger Str. 100Paderborn33098Germany
| | - Hossein Mirhosseini
- Dynamics of Condensed Matter and Center for Sustainable Systems DesignChair of Theoretical ChemistryUniversity of PaderbornWarburger Str. 100Paderborn33098Germany
| | - Minghao Yu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 4Dresden01062Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 4Dresden01062Germany
| |
Collapse
|
68
|
Xie L, Zhang X, Zhao B, Li P, Qi J, Guo X, Wang B, Lei H, Zhang W, Apfel U, Cao R. Enzyme‐Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xue‐Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xinai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
69
|
Xie D, Yu D, Hao Y, Han S, Li G, Wu X, Hu F, Li L, Chen HY, Liao YF, Peng S. Dual-Active Sites Engineering of N-Doped Hollow Carbon Nanocubes Confining Bimetal Alloys as Bifunctional Oxygen Electrocatalysts for Flexible Metal-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007239. [PMID: 33590684 DOI: 10.1002/smll.202007239] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Indexed: 05/23/2023]
Abstract
Since the sluggish kinetic process of oxygen reduction (ORR)/evolution (OER) reactions, the design of highly-efficient, robust, and cost-effective catalysts for flexible metal-air batteries is desired but challenging. Herein, bimetallic nanoparticles encapsulated in the N-doped hollow carbon nanocubes (e.g., FeCo-NPs/NC, FeNi-NPs/NC, and CoNi-NPs/NC) are rationally designed via a general heat-treatment strategy of introducing NH3 pyrolysis of dopamine-coated metal-organic frameworks. Impressively, the resultant FeCo-NPs/NC hybrid exhibits superior bifunctional electrocatalytic performance for ORR/OER, manifesting exceptional discharging performance, outstanding lifespan, and prime flexibility for both Zn/Al-air batteries, superior to those of state-of-the-art Pt/C and RuO2 catalysts. X-ray absorption near edge structure and density functional theory indicate that the strong synergy between FeCo alloy and N-doped carbon frameworks has a distinctive activation effect on bimetallic Fe/Co atoms to synchronously modify the electronic structure and afford abundant dual-active Fe/Co-Nx sites, large surface area, high nitrogen doping level, and conductive carbon frameworks to boost the reversible oxygen electrocatalysis. Such N-doped carbon with bimetallic alloy bonds provides new pathways for the rational creation of high-efficiency energy conversion and storage equipment.
Collapse
Affiliation(s)
- Dengyu Xie
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Deshuang Yu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yanan Hao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Silin Han
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Guanghua Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xiaoli Wu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Feng Hu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Linlin Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Yen-Fa Liao
- National Synchrotron Radiation Research Center, Hsinchu, 30013, Taiwan
| | - Shengjie Peng
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
70
|
Zong L, Chen X, Dou S, Fan K, Wang Z, Zhang W, Du Y, Xu J, Jia X, Zhang Q, Li X, Deng Y, Chen Y, Wang L. Stable confinement of Fe/Fe3C in Fe, N-codoped carbon nanotube towards robust zinc-air batteries. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
71
|
Xie L, Zhang XP, Zhao B, Li P, Qi J, Guo X, Wang B, Lei H, Zhang W, Apfel UP, Cao R. Enzyme-Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2021; 60:7576-7581. [PMID: 33462971 DOI: 10.1002/anie.202015478] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/14/2021] [Indexed: 12/31/2022]
Abstract
Nature uses Fe porphyrin sites for the oxygen reduction reaction (ORR). Synthetic Fe porphyrins have been extensively studied as ORR catalysts, but activity improvement is required. On the other hand, Fe porphyrins have been rarely shown to be efficient for the oxygen evolution reaction (OER). We herein report an enzyme-inspired Fe porphyrin 1 as an efficient catalyst for both ORR and OER. Complex 1, which bears a tethered imidazole for Fe binding, beats imidazole-free analogue 2, with an anodic shift of ORR half-wave potential by 160 mV and a decrease of OER overpotential by 150 mV to get the benchmark current density at 10 mA cm-2 . Theoretical studies suggested that hydroxide attack to a formal FeV =O form the O-O bond. The axial imidazole can prevent the formation of trans HO-FeV =O, which is less effective to form O-O bond with hydroxide. As a practical demonstration, we assembled rechargeable Zn-air battery with 1, which shows equal performance to that with Pt/Ir-based materials.
Collapse
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bin Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
72
|
Niu Y, Zhang C, Wang Y, Fang D, Zhang L, Wang C. Confining Chainmail-Bearing Ni Nanoparticles in N-doped Carbon Nanotubes for Robust and Efficient Electroreduction of CO 2. CHEMSUSCHEM 2021; 14:1140-1154. [PMID: 33464697 DOI: 10.1002/cssc.202002596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Indexed: 06/12/2023]
Abstract
It still remains challenging to simultaneously achieve high stability, selectivity, and activity in CO2 reduction. Herein, a dual chainmail-bearing nickel-based catalyst (Ni@NC@NCNT) was fabricated via a solvothermal-evaporation-calcination approach. In situ encapsulated N-doped carbon layers (NCs) and nanotubes (NCNTs) gave a dual protection to the metallic core. The confined space well maintained the local alkaline pH value and suppressed hydrogen evolution. Large surface area and abundant pyridinic N and Niδ+ sites ensured high CO2 adsorption capacity and strength. Benefitting from these, it delivered a CO faradaic efficiency of 94.1 % and current density of 48.0 mA cm-2 at -0.75 and -1.10 V, respectively. Moreover, the performance remained unchanged after continuous electrolysis for 43 h, far exceeding Ni@NC with single chainmail, Ni@NC/NCNT with Ni@NC sitting on the walls of NCNT, bare NCNT and most state-of-the-art catalysts, demonstrating structural superiority of Ni@NC@NCNT. This work sheds light on designing unique architectures to improve electrochemical performances.
Collapse
Affiliation(s)
- Yongjian Niu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Chunhua Zhang
- Unilever Co., Ltd., 88# Jinxiu Avenue, Economy & Technology Dev. Zone, Hefei, 230000, P. R. China
| | - Yuanyuan Wang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Dong Fang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Linlin Zhang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Cheng Wang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
73
|
Zhao CX, Liu JN, Wang J, Ren D, Li BQ, Zhang Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem Soc Rev 2021; 50:7745-7778. [DOI: 10.1039/d1cs00135c] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bifunctional oxygen reduction and evolution constitute the core processes for sustainable energy storage. The advances on noble-metal-free bifunctional oxygen electrocatalysts are reviewed.
Collapse
Affiliation(s)
- Chang-Xin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| | - Jia-Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| | - Juan Wang
- Advanced Research Institute of Multidisciplinary Science
- Beijing Institute of Technology
- Beijing 100081
- China
- School of Materials Science and Engineering
| | - Ding Ren
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science
- Beijing Institute of Technology
- Beijing 100081
- China
- School of Materials Science and Engineering
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering
- Tsinghua University
- Beijing
- China
| |
Collapse
|
74
|
Zhong Y, Dai J, Xu X, Su C, Shao Z. Facilitating Oxygen Redox on Manganese Oxide Nanosheets by Tuning Active Species and Oxygen Defects for Zinc‐Air Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.202001419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yijun Zhong
- Western Australian School of Mines: Minerals Energy and Chemical Engineering (WASM-MECE) Curtin University Perth Western Australia 6102 Australia
| | - Jie Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Xiaomin Xu
- Western Australian School of Mines: Minerals Energy and Chemical Engineering (WASM-MECE) Curtin University Perth Western Australia 6102 Australia
| | - Chao Su
- Western Australian School of Mines: Minerals Energy and Chemical Engineering (WASM-MECE) Curtin University Perth Western Australia 6102 Australia
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang 212100 P. R. China
| | - Zongping Shao
- Western Australian School of Mines: Minerals Energy and Chemical Engineering (WASM-MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
75
|
Chen G, Wang X, Yang C, Liang H, Wang Z. NaCl‐Promoted Hierarchically Porous Carbon Self‐Co‐Doped with Iron and Nitrogen for Efficient Oxygen Reduction. ChemistrySelect 2020. [DOI: 10.1002/slct.202001219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guodong Chen
- College of Chemistry and Chemical Engineering Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials Qingdao University Qingdao 266071 P. R. China
| | - Xilong Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Chen Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Han‐Pu Liang
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao 266101 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials Qingdao University Qingdao 266071 P. R. China
| |
Collapse
|
76
|
Tian Y, Xu L, Li M, Yuan D, Liu X, Qian J, Dou Y, Qiu J, Zhang S. Interface Engineering of CoS/CoO@N-Doped Graphene Nanocomposite for High-Performance Rechargeable Zn-Air Batteries. NANO-MICRO LETTERS 2020; 13:3. [PMID: 34138208 PMCID: PMC7988027 DOI: 10.1007/s40820-020-00526-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 05/07/2023]
Abstract
Low cost and green fabrication of high-performance electrocatalysts with earth-abundant resources for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial for the large-scale application of rechargeable Zn-air batteries (ZABs). In this work, our density functional theory calculations on the electrocatalyst suggest that the rational construction of interfacial structure can induce local charge redistribution, improve the electronic conductivity and enhance the catalyst stability. In order to realize such a structure, we spatially immobilize heterogeneous CoS/CoO nanocrystals onto N-doped graphene to synthesize a bifunctional electrocatalyst (CoS/CoO@NGNs). The optimization of the composition, interfacial structure and conductivity of the electrocatalyst is conducted to achieve bifunctional catalytic activity and deliver outstanding efficiency and stability for both ORR and OER. The aqueous ZAB with the as-prepared CoS/CoO@NGNs cathode displays a high maximum power density of 137.8 mW cm-2, a specific capacity of 723.9 mAh g-1 and excellent cycling stability (continuous operating for 100 h) with a high round-trip efficiency. In addition, the assembled quasi-solid-state ZAB also exhibits outstanding mechanical flexibility besides high battery performances, showing great potential for applications in flexible and wearable electronic devices.
Collapse
Affiliation(s)
- Yuhui Tian
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Centre for Clean Environment and Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Centre for Clean Environment and Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, Queensland, 4222, Australia.
| | - Meng Li
- Centre for Clean Environment and Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Ding Yuan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Centre for Clean Environment and Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, People's Republic of China
| | - Junchao Qian
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Yuhai Dou
- Centre for Clean Environment and Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Jingxia Qiu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shanqing Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Key Laboratory of Zhenjiang, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Centre for Clean Environment and Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, Queensland, 4222, Australia.
| |
Collapse
|
77
|
Mei S, Xu X, Priestley RD, Lu Y. Polydopamine-based nanoreactors: synthesis and applications in bioscience and energy materials. Chem Sci 2020; 11:12269-12281. [PMID: 34094435 PMCID: PMC8162453 DOI: 10.1039/d0sc04486e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Polydopamine (PDA)-based nanoreactors have shown exceptional promise as multifunctional materials due to their nanoscale dimensions and sub-microliter volumes for reactions of different systems. Biocompatibility, abundance of active sites, and excellent photothermal conversion have facilitated their extensive use in bioscience and energy storage/conversion. This minireview summarizes recent advances in PDA-based nanoreactors, as applied to the abovementioned fields. We first highlight the design and synthesis of functional PDA-based nanoreactors with structural and compositional diversity. Special emphasis in bioscience has been given to drug/protein delivery, photothermal therapy, and antibacterial properties, while for energy-related applications, the focus is on electrochemical energy storage, catalysis, and solar energy harvesting. In addition, perspectives on pressing challenges and future research opportunities regarding PDA-based nanoreactors are discussed.
Collapse
Affiliation(s)
- Shilin Mei
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
| | - Xiaohui Xu
- Department of Chemical and Biological Engineering, Princeton University New Jersey 08544 USA
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University New Jersey 08544 USA
- Princeton Institute of the Science and Technology of Materials, Princeton University New Jersey 08544 USA
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
- Institute of Chemistry, University of Potsdam 14476 Potsdam Germany
| |
Collapse
|
78
|
Tang T, Ding L, Jiang Z, Hu JS, Wan LJ. Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9835-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
79
|
Bai Z, Deng YP, Chen Z. Reviving zinc-air batteries with high-density metal particles on carbon. Sci Bull (Beijing) 2020; 65:1511-1513. [PMID: 36738063 DOI: 10.1016/j.scib.2020.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhengyu Bai
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ya-Ping Deng
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|