51
|
Wang Z, Gao P, Lin E, Li B. Stereodefined Skipped Dienes through Iridium‐Catalyzed Formal Addition of Tertiary Allylic C−H Bonds to Alkynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zi‐Xuan Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Peng‐Chao Gao
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - En‐Ze Lin
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bi‐Jie Li
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
52
|
Zhao L, Du Z, Ji G, Wang Y, Cai W, He C, Duan C. Eosin Y-Containing Metal-Organic Framework as a Heterogeneous Catalyst for Direct Photoactivation of Inert C-H Bonds. Inorg Chem 2022; 61:7256-7265. [PMID: 35507831 DOI: 10.1021/acs.inorgchem.1c03813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xanthene dyes as a class of ideal organic homogeneous photocatalyst have received significant attention in C-H bond activation; however, the inherent nature of fast carrier recombination/deactivation and low stability limits their practical applications. Herein, by the ingenious decoration of eosin Y into a porous metal-organic framework (MOF), a high-performance heterogeneous MOF-based photocatalyst was prepared to efficiently activate inert C-H bonds on the reactants via the hydrogen atom transfer pathway for the functionalization of the C-H bonds. Taking advantage of the fixation effect of a rigid framework, the incorporation of eosin Y into MOF leads to great enhancement of their chemical durability. More importantly, by the introduction of the second auxiliary ligand, the carbonyl groups of xanthene on the eosin Y dyes were perfectly retained and periodically aligned within the confined channels of this rigid framework, which could effectively form excited state radicals to prompt inert C-H bond activation, promoting reaction efficiency by the host-guest supramolecular interaction. New eosin Y-based MOFs were recyclable for six times without reducing photocatalytic activity. This eosin Y functionalized MOF-based heterogeneous photocatalytic system provides an availably catalytic avenue to develop a scalable and sustainable synthetic strategy for the practical application of organic dyes.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yefei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
53
|
Li L, Song X, Qi MF, Sun B. Weak Brønsted Base-Promoted Photoredox Catalysis for C–H Alkylation of Heteroarenes Mediated by Triplet Excited Diaryl Ketone. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
54
|
Kim M, You E, Kim J, Hong S. Site‐Selective Pyridylic C–H Functionalization by Photocatalytic Radical Cascades. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Myojeong Kim
- KAIST: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Euna You
- KAIST: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Jieun Kim
- KAIST: Korea Advanced Institute of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Sungwoo Hong
- Korea Advanced Institute of Science and Technology KAIST Department of Chemistry Yusung Gu (KAIST) 34141 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
55
|
Choi H, Mathi GR, Hong S, Hong S. Enantioselective functionalization at the C4 position of pyridinium salts through NHC catalysis. Nat Commun 2022; 13:1776. [PMID: 35365667 PMCID: PMC8975994 DOI: 10.1038/s41467-022-29462-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
A catalytic method for the enantioselective and C4-selective functionalization of pyridine derivatives is yet to be developed. Herein, we report an efficient method for the asymmetric β-pyridylations of enals that involve N-heterocyclic carbene (NHC) catalysis with excellent control over enantioselectivity and pyridyl C4-selectivity. The key strategy for precise stereocontrol involves enhancing interactions between the chiral NHC-bound homoenolate and pyridinium salt in the presence of hexafluorobenzene, which effectively differentiates the two faces of the homoenolate radical. Room temperature is sufficient for this transformation, and reaction efficiency is further accelerated by photo-mediation. This methodology exhibits broad functional group tolerance and enables facile access to a diverse range of enantioenriched β-pyridyl carbonyl compounds under mild and metal-free conditions.
Collapse
Affiliation(s)
- Hangyeol Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Gangadhar Rao Mathi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seonghyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
56
|
Wang M, Zhang Y, Yang X, Sun P. Phenanthrenequinone (PQ) catalyzed cross-dehydrogenative coupling of alkanes with quinoxalin-2(1 H)-ones and simple N-heteroarenes under visible light irradiation. Org Biomol Chem 2022; 20:2467-2472. [PMID: 35262545 DOI: 10.1039/d2ob00278g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A direct and convenient strategy to 3-alkylquinoxalin-2(1H)-ones and other alkyl N-heteroarenes via a photocatalyzed alkylation of quinoxalin-2(1H)-ones and other N-heterocycles with commercially available, low-cost alkanes under ambient conditions using phenanthrenequinone (PQ) as a photocatalyst was developed. This transformation has advantages of environment-friendly protocol, mild conditions, good functional-group tolerance, and high yields of products.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China. .,Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Xinyu Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of chemistry, Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
57
|
Wang Z, Zeng L, He C, Duan C. Metal-Organic Framework-Encapsulated Anthraquinone for Efficient Photocatalytic Hydrogen Atom Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7980-7989. [PMID: 35119261 DOI: 10.1021/acsami.1c22872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anthraquinone (AQ) as an effective hydrogen atom transfer catalyst was limited in photocatalysis application due to the dimerization of reduced AQ. Sr-NDI@AQ, encapsulating AQ into the channel of Sr-NDI, paved a new way for solving the problem of dimerization of reduced AQ and improving the catalytic efficiency owing to the fast electron transfer from reduced AQ to the ligand through host-guest interaction. The structure of Sr-NDI@AQ was determined by single-crystal X-ray diffraction, and the value for distance and torsion angle between the ligand and AQ was calculated. The photochemical and electrochemical properties for Sr-NDI@AQ were characterized through a series of experiments. The coupling reaction between aldehyde and phenyl vinyl sulfone and photoacetalization reaction were carried out, displaying the improving catalytic efficiency of Sr-NDI@AQ compared to Sr-NDI and AQ. The reaction mechanisms were proposed through radical capture and electron paramagnetic resonance experiments.
Collapse
Affiliation(s)
- Zhonghe Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Le Zeng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
58
|
Kwon K, Simons RT, Nandakumar M, Roizen JL. Strategies to Generate Nitrogen-centered Radicals That May Rely on Photoredox Catalysis: Development in Reaction Methodology and Applications in Organic Synthesis. Chem Rev 2022; 122:2353-2428. [PMID: 34623809 PMCID: PMC8792374 DOI: 10.1021/acs.chemrev.1c00444] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
For more than 70 years, nitrogen-centered radicals have been recognized as potent synthetic intermediates. This review is a survey designed for use by chemists engaged in target-oriented synthesis. This review summarizes the recent paradigm shift in access to and application of N-centered radicals enabled by visible-light photocatalysis. This shift broadens and streamlines approaches to many small molecules because visible-light photocatalysis conditions are mild. Explicit attention is paid to innovative advances in N-X bonds as radical precursors, where X = Cl, N, S, O, and H. For clarity, key mechanistic data is noted, where available. Synthetic applications and limitations are summarized to illuminate the tremendous utility of photocatalytically generated nitrogen-centered radicals.
Collapse
Affiliation(s)
- Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - R Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| | - Jennifer L Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708-0354, United States
| |
Collapse
|
59
|
Ji G, Zhao L, Wei J, Cai J, He C, Du Z, Cai W, Duan C. A Metal–Organic Framework as a Multiphoton Excitation Regulator for the Activation of Inert C(sp
3
)−H Bonds and Oxygen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guanfeng Ji
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Junkai Cai
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Cheng He
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology Dalian 116024 China
| |
Collapse
|
60
|
Vellakkaran M, Kim T, Hong S. Visible-Light-Induced C4-Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022; 61:e202113658. [PMID: 34734455 DOI: 10.1002/anie.202113658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/12/2022]
Abstract
The site-selective C-H functionalization of heteroarenes is of considerable importance for streamlining the rapid modification of bioactive molecules. Herein, we report a general strategy for visible-light-induced β-carbonyl alkylation at the C4 position of pyridines with high site selectivity using various cyclopropanols and N-amidopyridinium salts. In this process, hydrogen-atom transfer between the generated sulfonamidyl radicals and O-H bonds of cyclopropanols generates β-carbonyl radicals, providing efficient access to synthetically valuable β-pyridylated (aryl)ketones, aldehydes, and esters with broad functional-group tolerance. In addition, the mild method serves as an effective tool for the site-selective late-stage functionalization of complex and medicinally relevant molecules.
Collapse
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS).,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
61
|
Vellakkaran M, Kim T, Hong S. Visible‐Light‐Induced C4‐Selective Functionalization of Pyridinium Salts with Cyclopropanols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mari Vellakkaran
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Taehwan Kim
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS)
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
62
|
Xu J, Chen D, Liu C. Recent advances of aminoazanium salts as amination reagents in organic synthesis. Org Biomol Chem 2022; 20:8353-8365. [DOI: 10.1039/d2ob01312f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review summarizes the utilization of aminoazaniums as amination reagents in organic synthesis, including the amination of aldehydes, boronic esters, olefins, etc.
Collapse
Affiliation(s)
- Jianeng Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Du Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
63
|
Zhang Z, He Q, Zhang X, Yang C. Photoredox-Catalysed Regioselective Synthesis of C-4-Alkylated Pyridines with N -(Acyloxy)phthalimides. Org Biomol Chem 2022; 20:1969-1973. [DOI: 10.1039/d2ob00123c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method of direct C-4 selective alkylation of pyridine under visible light irradiation at room temperature was reported, using simple maleate-derived pyridinium salts as pyridine precursors, and the readily available...
Collapse
|
64
|
Zhang X, Zeng R. Neutrally Photoinduced MgCl2-Catalyzed Alkenylation and Imidoylation of Alkanes. Org Chem Front 2022. [DOI: 10.1039/d2qo01003h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a practical protocol for oxidation of the chloride ion (Cl-) to chlorine radical (Cl.) via a photoinduced MgCl2 catalysis, avoiding the use of strong acid, formal oxidant, and...
Collapse
|
65
|
Lu J, Tong Y, Hao N, Zhang L, Wei J, Zhang Z, Fu Q, Yi D, Wang J, Mu Y, Pan X, Yang L, Wei S, Zhong L. Photocatalytic redox-neutral arylation of cyclopropanols with cyanoarenes via radical-mediated C–C and C–CN bond cleavage. Org Chem Front 2022. [DOI: 10.1039/d1qo01844b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-arylated ketones widely exist in many biologically active molecules and natural products. Herein, we disrcibled a photocatalytic redox-neutral arylation of cyclopropanols with cyanoarenes via radical-mediated C–C and C–CN bond cleavage...
Collapse
|
66
|
Kim M, Shin S, Koo Y, Jung S, Hong S. Regiodivergent Conversion of Alkenes to Branched or Linear Alkylpyridines. Org Lett 2021; 24:708-713. [PMID: 34965147 DOI: 10.1021/acs.orglett.1c04156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein we report a practical protocol for the visible-light-induced regiodivergent radical hydropyridylation of unactivated alkenes using pyridinium salts. This approach provides a unified synthetic platform to control the regioselectivity of the synthesis of linear or branched C4-alkylated pyridines. A remarkable selectivity switch from the anti-Markovnikov to the Markovnikov product can be achieved by the addition of tetrabutylammonium bromide. The versatility of this protocol is further demonstrated based on the late-stage functionalization in pharmaceuticals.
Collapse
Affiliation(s)
- Minseok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sanghoon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Yejin Koo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
67
|
Kato T, Maruoka K. Selective functionalization of benzylic C-H bonds of two different benzylic ethers by bowl-shaped N-hydroxyimide derivatives as efficient organoradical catalysts. Chem Commun (Camb) 2021; 58:1021-1024. [PMID: 34951412 DOI: 10.1039/d1cc06425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient, site-selective benzylic C-H bond amination of two different benzylic ether substrates was described by using bowl-shaped N-hydroxyimide organoradical catalysts with diethyl azodicarboxylate. The synthetic utility of this approach is demonstrated by the subsequent transformation of the amination products into the corresponding aldehydes and alkylhydrazines.
Collapse
Affiliation(s)
- Terumasa Kato
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
68
|
Kweon B, Kim C, Kim S, Hong S. Remote C−H Pyridylation of Hydroxamates through Direct Photoexcitation of
O
‐Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Changha Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seonyul Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
69
|
Kweon B, Kim C, Kim S, Hong S. Remote C-H Pyridylation of Hydroxamates through Direct Photoexcitation of O-Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021; 60:26813-26821. [PMID: 34636478 DOI: 10.1002/anie.202112364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 01/22/2023]
Abstract
Herein, we report an efficient strategy for the remote C-H pyridylation of hydroxamates with excellent ortho-selectivity by designing a new class of photon-absorbing O-aryl oxime pyridinium salts generated in situ from the corresponding pyridines and hydroxamates. When irradiated by visible light, the photoexcitation of oxime pyridinium intermediates generates iminyl radicals via the photolytic N-O bond cleavage, which does not require an external photocatalyst. The efficiency of light absorption and N-O bond cleavage of the oxime pyridinium salts can be modulated through the electronic effect of substitution on the O-aryl ring. The resultant iminyl radicals enable the installation of pyridyl rings at the γ-CN position, which yields synthetically valuable C2-substituted pyridyl derivatives. This novel synthetic approach provides significant advantages in terms of both efficiency and simplicity and exhibits broad functional group tolerance in complex settings under mild and metal-free conditions.
Collapse
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Changha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seonyul Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
70
|
Yang Z, Cao K, Peng X, Lin L, Fan D, Li J, Wang J, Zhang X, Jiang H, Li J. Micellar Catalysis: Visible‐Light Mediated Imidazo[1,2‐
a
]pyridine C—H Amination with
N
‐Aminopyridinium Salt Accelerated by Surfactant in Water. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhonglie Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Kun Cao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Xiaoyan Peng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Li Lin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Danchen Fan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Jun‐Long Li
- Antibiotics Research and Re‐evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu Sichuan 610106 China
| | - Jingxia Wang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province Sichuan Institute of Atomic Energy Chengdu Sichuan 610101 China
| | - Xiaobin Zhang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province Sichuan Institute of Atomic Energy Chengdu Sichuan 610101 China
| | - Hezhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| | - Jiahong Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610041 China
| |
Collapse
|
71
|
Li J, Huang CY, Han JT, Li CJ. Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative C–C Cross-Couplings via H2 Release. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jianbin Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chia-Yu Huang
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Jing-Tan Han
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
72
|
Ji G, Zhao L, Wei J, Cai J, He C, Du Z, Cai W, Duan C. A Metal-Organic Framework as a Multiphoton Excitation Regulator for the Activation of Inert C(sp 3 )-H Bonds and Oxygen. Angew Chem Int Ed Engl 2021; 61:e202114490. [PMID: 34747102 DOI: 10.1002/anie.202114490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/07/2022]
Abstract
The activation and oxidization of inert C(sp3 )-H bonds into value-added chemicals affords attractively economic and ecological benefits as well as central challenge in modern chemistry. Inspired by the natural enzymatic transformation, herein, we report a new multiphoton excitation approach to activate the inert C(sp3 )-H bonds and oxygen by integrating the photoinduced electron transfer (PET), ligand-to-metal charge transfer (LMCT) and hydrogen atom transfer (HAT) events together into one metal-organic framework. The well-modified nicotinamide adenine dinucleotide (NAD+ ) mimics oxidized CeIII -OEt moieties to generate CeIV -OEt chromophore and its reduced state mimics NAD. via PET. The in situ formed CeIV -OEt moiety triggers a LMCT excitation to form the alkoxy radical EtO. , abstracts a hydrogen atom from the C(sp3 )-H bond, accompanying the recovery of CeIII -OEt and the formation of alkyl radicals. The formed NAD. activates oxygen to regenerate the NAD+ for next recycle, wherein, the activated oxygen species interacts with the intermediates for the oxidization functionalization, paving a catalytic avenue for developing scalable and sustainable synthetic strategy.
Collapse
Affiliation(s)
- Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Junkai Cai
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
73
|
Chen L, Hou J, Zheng M, Zhan LW, Tang WY, Li BD. Carbonylative coupling of simple alkanes and alkenes enabled by organic photoredox catalysis. Chem Commun (Camb) 2021; 57:10210-10213. [PMID: 34523655 DOI: 10.1039/d1cc04138j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-driven direct carbonylative coupling of simple alkanes and alkenes via the combination of a hydrogen atom transfer process and photoredox catalysis has been demonstrated. Employing the N-alkoxyazinium salt as the oxidant and the precursor of an oxygen radical, a variety of α,β-unsaturated ketones could be obtained in a metal-free fashion.
Collapse
Affiliation(s)
- Ling Chen
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jing Hou
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ming Zheng
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Le-Wu Zhan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Wan-Ying Tang
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Bin-Dong Li
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
74
|
Zhang H, Wang Q, Wang Y, Yuan Z, Gao F, Britton R. Selective Trifluoromethylthiolation of Unactivated C(sp
3
)−H Bonds Enabled by Excited Ketones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Han Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical isotope research center School of basic medical sciences Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
| | - Robert Britton
- Department of Chemistry Simon Fraser University Burnaby British Columbia V5 A 1S6 Canada
| |
Collapse
|
75
|
Choi J, Laudadio G, Godineau E, Baran PS. Practical and Regioselective Synthesis of C-4-Alkylated Pyridines. J Am Chem Soc 2021; 143:11927-11933. [PMID: 34318659 PMCID: PMC8721863 DOI: 10.1021/jacs.1c05278] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The direct position-selective C-4 alkylation of pyridines has been a long-standing challenge in heterocyclic chemistry, particularly from pyridine itself. Historically this has been addressed using prefunctionalized materials to avoid overalkylation and mixtures of regioisomers. This study reports the invention of a simple maleate-derived blocking group for pyridines that enables exquisite control for Minisci-type decarboxylative alkylation at C-4 that allows for inexpensive access to these valuable building blocks. The method is employed on a variety of different pyridines and carboxylic acid alkyl donors, is operationally simple and scalable, and is applied to access known structures in a rapid and inexpensive fashion. Finally, this work points to an interesting strategic departure for the use of Minisci chemistry at the earliest possible stage (native pyridine) rather than current dogma that almost exclusively employs Minisci chemistry as a late-stage functionalization technique.
Collapse
Affiliation(s)
- Jin Choi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gabriele Laudadio
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Edouard Godineau
- Process Research, Syngenta Crop Protection, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
76
|
Capaldo L, Ravelli D, Fagnoni M. Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C-H Bonds Elaboration. Chem Rev 2021; 122:1875-1924. [PMID: 34355884 PMCID: PMC8796199 DOI: 10.1021/acs.chemrev.1c00263] [Citation(s) in RCA: 456] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Direct photocatalyzed
hydrogen atom transfer (d-HAT) can be considered
a method of choice for the elaboration of
aliphatic C–H bonds. In this manifold, a photocatalyst (PCHAT) exploits the energy of a photon to trigger the homolytic
cleavage of such bonds in organic compounds. Selective C–H
bond elaboration may be achieved by a judicious choice of the hydrogen
abstractor (key parameters are the electronic character and the molecular
structure), as well as reaction additives. Different are the classes
of PCsHAT available, including aromatic ketones, xanthene
dyes (Eosin Y), polyoxometalates, uranyl salts, a metal-oxo porphyrin
and a tris(amino)cyclopropenium radical dication. The processes (mainly
C–C bond formation) are in most cases carried out under mild
conditions with the help of visible light. The aim of this review
is to offer a comprehensive survey of the synthetic applications of
photocatalyzed d-HAT.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
77
|
Alfonzo E, Hande SM. α-Heteroarylation of Thioethers via Photoredox and Weak Brønsted Base Catalysis. Org Lett 2021; 23:6115-6120. [PMID: 34297584 DOI: 10.1021/acs.orglett.1c02151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report the C-H activation of thioethers to α-thio alkyl radicals and their addition to N-methoxyheteroarenium salts for the redox-neutral synthesis of α-heteroaromatic thioethers. Studies are consistent with a two-step activation mechanism, where oxidation of thioethers to sulfide radical cations by a photoredox catalyst is followed by α-C-H deprotonation by a weak Brønsted base catalyst to afford α-thio alkyl radicals. Further, N-methoxyheteroarenium salts play additional roles as a source of methoxyl radical that contributes to α-thio alkyl radical generation and a sacrificial oxidant that regenerates the photoredox catalytic cycle.
Collapse
Affiliation(s)
- Edwin Alfonzo
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Sudhir M Hande
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
78
|
Lei G, Xu M, Chang R, Funes-Ardoiz I, Ye J. Hydroalkylation of Unactivated Olefins via Visible-Light-Driven Dual Hydrogen Atom Transfer Catalysis. J Am Chem Soc 2021; 143:11251-11261. [PMID: 34269582 DOI: 10.1021/jacs.1c05852] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical hydroalkylation of olefins enabled by hydrogen atom transfer (HAT) catalysis represents a straightforward means to access C(sp3)-rich molecules from abundant feedstock chemicals without the need for prefunctionalization. While Giese-type hydroalkylation of activated olefins initiated by HAT of hydridic carbon-hydrogen bonds is well-precedented, hydroalkylation of unactivated olefins in a similar fashion remains elusive, primarily owing to a lack of general methods to overcome the inherent polarity-mismatch in this scenario. Here, we report the use of visible-light-driven dual HAT catalysis to achieve this goal, where catalytic amounts of an amine-borane and an in situ generated thiol were utilized as the hydrogen atom abstractor and donor, respectively. The reaction is completely atom-economical and exhibits a broad scope. Experimental and computational studies support the proposed mechanism and suggest that hydrogen-bonding between the amine-borane and substrates is beneficial to improving the reaction efficiency.
Collapse
Affiliation(s)
- Guangyue Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichen Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
79
|
Jeon J, Lee C, Park I, Hong S. Regio- and Stereoselective Functionalization Enabled by Bidentate Directing Groups. CHEM REC 2021; 21:3613-3627. [PMID: 34086390 DOI: 10.1002/tcr.202100117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Chelation-assisted C-H bond and alkene functionalization using bidentate directing groups offers an elegant and versatile approach to overcome regiocontrol issues by allowing the catalyst to come into close proximity with the targeted sites. In this personal account, we highlight our recent works in developing regio- and stereocontrolled functionalizations through transition-metal catalysis enabled by bidentate directing groups. We classify our results into two categories: (1) regioselective alkene functionalization using bidentate directing groups, and (2) asymmetric C-H functionalization using chiral bidentate directing groups. Furthermore, density functional theory studies to elucidate the origin of the regio- and stereoselectivity exerted by bidentate directing groups are discussed.
Collapse
Affiliation(s)
- Jinwon Jeon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changseok Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Inyoung Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|