51
|
Liang H, Lu M, Mahmood Z, Li Z, Chen Z, Chen G, Li MD, Huo Y, Ji S. Efficient Intersystem Crossing and Long-lived Charge-Separated State Induced by Through-Space Intramolecular Charge Transfer in a Parallel Geometry Carbazole-Bodipy Dyad. Angew Chem Int Ed Engl 2023; 62:e202312600. [PMID: 37654187 DOI: 10.1002/anie.202312600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
The design of efficient heavy atom-free triplet photosensitizers (PSs) based on through bond charge transfer (TBCT) features is a formidable challenge due to the criteria of orthogonal donor-acceptor geometry. Herein, we propose using parallel (face-to-face) conformation carbazole-bodipy donor-acceptor dyads (BCZ-1 and BCZ-2) featuring through space intramolecular charge transfer (TSCT) process as efficient triplet PS. Efficient intersystem crossing (ΦΔ =61 %) and long-lived triplet excited state (τT =186 μs) were observed in the TSCT dyad BCZ-1 compared to BCZ-3 (ΦΔ =0.4 %), the dyad involving TBCT, demonstrating the superiority of the TSCT approach over conventional donor-acceptor system. Moreover, the transient absorption study revealed that TSCT dyads have a faster charge separation and slower intersystem crossing process induced by charge recombination compared to TBCT dyad. A long-lived charge-separated state (CSS) was observed in the BCZ-1 (τCSS =24 ns). For the first time, the TSCT dyad was explored for the triplet-triplet annihilation upconversion, and a high upconversion quantum yield of 11 % was observed. Our results demonstrate a new avenue for designing efficient PSs and open up exciting opportunities for future research in this field.
Collapse
Affiliation(s)
- Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Manlin Lu
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Zafar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zheng Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zeduan Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Guowei Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
52
|
Lv F, Feng E, Lv S, Liu D, Song F. Metal-Coordination-Mediated H-Aggregates of Cyanine Dyes for Effective Photothermal Therapy. Chemistry 2023; 29:e202301483. [PMID: 37407428 DOI: 10.1002/chem.202301483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
Integration of cyanine dyes and metal ions into one nanoplatform via metal-coordination interactions is an effective strategy to build multimodality phototheranostics. The multifunctionalities of the formed nanoscale metal-organic particles (NMOPs) have been widely explored. However, the effect of metal-coordination interaction on the aggregation behavior of cyanine dyes is rarely reported. Herein, we reported the H-aggregation behavior of cyanine dye Cy-3COOH induced by different metal ions M (Fe2+ or Mn2+ ). Moreover, the extent of H-aggregates varied with different metal-coordination interactions. Upon NIR irradiation, H-aggregates of Cy-3COOH remarkably promoted photothermal conversion efficiency. Interestingly, we also find that H-aggregates of Cy-3COOH induced by metal ions can generate the reactive oxygen species (ROS) involving singlet oxygen (1 O2 ) and superoxide anion radical (O2 - ⋅) upon light irradiation. In addition, the ROS efficiency varies depending on the extent of H-aggregates. Additionally, the photoinduced ROS could disassemble aggregates and decompose cyanine dye Cy-3COOH, which limits the photothermal capability of Cy-3COOH/M NPs. Therefore, the photothermal performance of Cy-3COOH/M NPs could be manipulated by the degree of H-aggregation. This would provide a new insight to develop efficient phototheranostics NMOPs for cancer treatment.
Collapse
Affiliation(s)
- Fangyuan Lv
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of, Shenzhen, 518057, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Erting Feng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
- State Key Laboratory of Fine Chemical, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, China
| | - Shibo Lv
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Dapeng Liu
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of, Shenzhen, 518057, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Fengling Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
- State Key Laboratory of Fine Chemical, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, China
| |
Collapse
|
53
|
Zhou X, Shi C, Long S, Yao Q, Ma H, Chen K, Du J, Sun W, Fan J, Liu B, Wang L, Chen X, Sui L, Yuan K, Peng X. Highly Efficient Photosensitizers with Molecular Vibrational Torsion for Cancer Photodynamic Therapy. ACS CENTRAL SCIENCE 2023; 9:1679-1691. [PMID: 37637741 PMCID: PMC10451034 DOI: 10.1021/acscentsci.3c00611] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/29/2023]
Abstract
The development of highly effective photosensitizers (PSs) for photodynamic therapy remains a great challenge at present. Most PSs rely on the heavy-atom effect or the spin-orbit charge-transfer intersystem crossing (SOCT-ISC) effect to promote ISC, which brings about additional cytotoxicity, and the latter is susceptible to the interference of solvent environment. Herein, an immanent universal property named photoinduced molecular vibrational torsion (PVT)-enhanced spin-orbit coupling (PVT-SOC) in PSs has been first revealed. PVT is verified to be a widespread intrinsic property of quinoid cyanine (QCy) dyes that occurs on an extremely short time scale (10-10 s) and can be captured by transient spectra. The PVT property can provide reinforced SOC as the occurrence of ISC predicted by the El Sayed rules (1ππ*-3nπ*), which ensures efficient photosensitization ability for QCy dyes. Hence, QTCy7-Ac exhibited the highest singlet oxygen yield (13-fold higher than that of TCy7) and lossless fluorescence quantum yield (ΦF) under near-infrared (NIR) irradiation. The preeminent photochemical properties accompanied by high biosecurity enable it to effectively perform photoablation in solid tumors. The revelation of this property supplies a new route for constructing high-performance PSs for achieving enhanced cancer phototherapy.
Collapse
Affiliation(s)
- Xiao Zhou
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Chao Shi
- College
of Chemistry and Chemical Engineering, Yantai
University, Yantai 264005, P. R. China
| | - Saran Long
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Qichao Yao
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - He Ma
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Kele Chen
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jianjun Du
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Wen Sun
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jiangli Fan
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Bin Liu
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Lei Wang
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaoqiang Chen
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Laizhi Sui
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Kaijun Yuan
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiaojun Peng
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
54
|
Gu QS, Yang ZC, Chao JJ, Li L, Mao GJ, Xu F, Li CY. Tumor-Targeting Probe for Dual-Modal Imaging of Cysteine In Vivo. Anal Chem 2023; 95:12478-12486. [PMID: 37555783 DOI: 10.1021/acs.analchem.3c02134] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Cysteine (Cys) is a crucial biological thiol that has a vital function in preserving redox homeostasis in organisms. Studies have shown that Cys is closely related to the development of cancer. Thus, it is necessary to design an efficient method to detect Cys for an effective cancer diagnosis. In this work, a novel tumor-targeting probe (Bio-Cy-S) for dual-modal (NIR fluorescence and photoacoustic) Cys detection is designed. The probe exhibits high selectivity and sensitivity toward Cys. After reaction with Cys, both NIR fluorescence and photoacoustic signals are activated. Bio-Cy-S has been applied for the dual-modal detection of Cys levels in living cells, and it can be used to distinguish normal cells from cancer cells by different Cys levels. In addition, the probe is capable of facilitating dual-modal imaging for monitoring changes in Cys levels in tumor-bearing mice. More importantly, the excellent tumor-targeting ability of the probe greatly improves the signal-to-noise ratio of imaging. To the best of our knowledge, this is the first Cys probe to combine targeting and dual-modal imaging performance for cancer diagnosis.
Collapse
Affiliation(s)
- Qing-Song Gu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Zhi-Chao Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Jing-Jing Chao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Li Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Fen Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
55
|
Zeng S, Liu X, Kafuti YS, Kim H, Wang J, Peng X, Li H, Yoon J. Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: recent progress, challenges, and prospects. Chem Soc Rev 2023; 52:5607-5651. [PMID: 37485842 DOI: 10.1039/d2cs00799a] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since their inception, rhodamine dyes have been extensively applied in biotechnology as fluorescent markers or for the detection of biomolecules owing to their good optical physical properties. Accordingly, they have emerged as a powerful tool for the visualization of living systems. In addition to fluorescence bioimaging, the molecular design of rhodamine derivatives with disease therapeutic functions (e.g., cancer and bacterial infection) has recently attracted increased research attention, which is significantly important for the construction of molecular libraries for diagnostic and therapeutic integration. However, reviews focusing on integrated design strategies for rhodamine dye-based diagnosis and treatment and their wide application in disease treatment are extremely rare. In this review, first, a brief history of the development of rhodamine fluorescent dyes, the transformation of rhodamine fluorescent dyes from bioimaging to disease therapy, and the concept of optics-based diagnosis and treatment integration and its significance to human development are presented. Next, a systematic review of several excellent rhodamine-based derivatives for bioimaging, as well as for disease diagnosis and treatment, is presented. Finally, the challenges in practical integration of rhodamine-based diagnostic and treatment dyes and the future outlook of clinical translation are also discussed.
Collapse
Affiliation(s)
- Shuang Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaosheng Liu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Yves S Kafuti
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning 110042, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
56
|
Udrea AM, Smarandache A, Dinache A, Mares C, Nistorescu S, Avram S, Staicu A. Photosensitizers-Loaded Nanocarriers for Enhancement of Photodynamic Therapy in Melanoma Treatment. Pharmaceutics 2023; 15:2124. [PMID: 37631339 PMCID: PMC10460031 DOI: 10.3390/pharmaceutics15082124] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Malignant melanoma poses a significant global health burden. It is the most aggressive and lethal form of skin cancer, attributed to various risk factors such as UV radiation exposure, genetic modifications, chemical carcinogens, immunosuppression, and fair complexion. Photodynamic therapy is a promising minimally invasive treatment that uses light to activate a photosensitizer, resulting in the formation of reactive oxygen species, which ultimately promote cell death. When selecting photosensitizers for melanoma photodynamic therapy, the presence of melanin should be considered. Melanin absorbs visible radiation similar to most photosensitizers and has antioxidant properties, which undermines the reactive species generated in photodynamic therapy processes. These characteristics have led to further research for new photosensitizing platforms to ensure better treatment results. The development of photosensitizers has advanced with the use of nanotechnology, which plays a crucial role in enhancing solubility, optical absorption, and tumour targeting. This paper reviews the current approaches (that use the synergistic effect of different photosensitizers, nanocarriers, chemotherapeutic agents) in the photodynamic therapy of melanoma.
Collapse
Affiliation(s)
- Ana Maria Udrea
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Adriana Smarandache
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| | - Andra Dinache
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| | - Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Simona Nistorescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Angela Staicu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| |
Collapse
|
57
|
Fang L, Han M, Zhang Y, Song Y, Liu B, Cai M, Jiang M, Hu L, Zheng R, Lian X, Yan F, Huang K, Feng S. Single Component Organic Photosensitizer with NIR-I Emission Realizing Type-I Photodynamic and GSH-Depletion Caused Ferroptosis Synergistic Theranostics. Adv Healthc Mater 2023; 12:e2300134. [PMID: 37070469 DOI: 10.1002/adhm.202300134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Phototheranostic agents have thrived as prominent tools for tumor luminescence imaging and therapies. Herein, a series of organic photosensitizers (PSs) with donor-acceptors (D-A) are elaborately designed and synthesized. In particular, PPR-2CN exhibits stable near infrared-I (NIR-I) emission, excellent free radicals generation and phototoxicity. Experimental analysis and calculations imply that a small singlet-triplet energy gap (ΔES1-T1 ) and large spin-orbit coupling (SOC) constant boost the intersystem crossing (ISC), leading to type-I photodynamic therapy (PDT). Additionally, the specific glutamate (Glu) and glutathione (GSH) consumption abilities of PPR-2CN inhibit the intracellular biosynthesis of GSH, resulting in redox dyshomeostasis and GSH-depletion causing ferroptosis. This work first realizes that single component organic PS could be simultaneously used as a type-I photodynamic agent and metal-free ferroptosis inducer for NIR-I imaging-guided multimodal synergistic therapy.
Collapse
Affiliation(s)
- Laiping Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Mingda Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Yue Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Botong Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Minmin Cai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Mengpei Jiang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Liyun Hu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Ran Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Xin Lian
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
58
|
Guan L, Zhou Y, Li X, Mao Y, Li A, Fu Y, Liu W, Dong S, Liang Z, Zhang Y, Zhao Q, Zhang L. ON-OFF Fluorescent Cyanine Dye Based on a Benzothiophenyl Rotor Enables Selective Illumination of G-Quadruplexes in Mitochondria. Anal Chem 2023. [PMID: 37290004 DOI: 10.1021/acs.analchem.3c01153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conventional cyanine dyes exist as "always-on" fluorescent probes leading to inevitable background signals which often limit their performance and scope of applications. To develop specific fluorescent probes with high sensitivity and robust OFF/ON switching for targeting G4s, we introduced aromatic heterocycles through conjugation with polymethine chains to construct a rotor-π system. Here, a universal strategy is presented to synthesize pentamethine cyanines with different aromatic heterocycle substituents on the meso-polymethine chain. In these probes, SN-Cy5-S is self-quenched in aqueous solution due to H-aggregation. The structure indicates that SN-Cy5-S with a flexible meso-benzothiophenyl rotor conjugated to the cyanine backbone matches adaptively with G-tetrad planes, enhancing π-π stacking and resulting in triggered fluorescence. This allows recognition of G-quadruplexes due to the synergy of disaggregation-induced emission (DIE) and inhibited twisted intramolecular charge-transfer effects. This combination leads to a robust lighting-up fluorescence response for c-myc G4 with superior fluorescence enhancement (98-fold), allowing for a low detection limit of 1.51 nM, which is much more sensitive than the previously reported DIE-based G4 probes (22-83.5 nM). In addition, the superior imaging properties and rapid internalization time (5 min) in mitochondria allow SN-Cy5-S to also have a high potential for mitochondrially targeting anti-cancer therapy.
Collapse
Affiliation(s)
- Li Guan
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yanyan Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongbao Mao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yile Fu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sheying Dong
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
59
|
Tovtik R, Muchová E, Štacková L, Slavíček P, Klán P. Spin-Vibronic Control of Intersystem Crossing in Iodine-Substituted Heptamethine Cyanines. J Org Chem 2023. [PMID: 37146036 DOI: 10.1021/acs.joc.3c00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Spin-orbit coupling between electronic states of different multiplicity can be strongly coupled to molecular vibrations, and this interaction is becoming recognized as an important mechanism for controlling the course of photochemical reactions. Here, we show that the involvement of spin-vibronic coupling is essential for understanding the photophysics and photochemistry of heptamethine cyanines (Cy7), bearing iodine as a heavy atom in the C3' position of the chain and/or a 3H-indolium core, as potential triplet sensitizers and singlet oxygen producers in methanol and aqueous solutions. The sensitization efficiency was found to be an order of magnitude higher for the chain-substituted than the 3H-indolium core-substituted derivatives. Our ab initio calculations demonstrate that while all optimal structures of Cy7 are characterized by negligible spin-orbit coupling (tenths of cm-1) with no dependence on the position of the substituent, molecular vibrations lead to its significant increase (tens of cm-1 for the chain-substituted cyanines), which allowed us to interpret the observed position dependence.
Collapse
Affiliation(s)
- Radek Tovtik
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eva Muchová
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technické 5, 166 28 Prague 6, Czech Republic
| | - Lenka Štacková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technické 5, 166 28 Prague 6, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
60
|
Cheng HB, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang XJ, Yoon J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207546. [PMID: 36398522 DOI: 10.1002/adma.202207546] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Indexed: 05/05/2023]
Abstract
The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Keyue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Yang Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
61
|
He G, He M, Wang R, Li X, Hu H, Wang D, Wang Z, Lu Y, Xu N, Du J, Fan J, Peng X, Sun W. A Near‐Infrared Light‐Activated Photocage Based on a Ruthenium Complex for Cancer Phototherapy. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202218768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Guangli He
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Maomao He
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Xuezhao Li
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Hanze Hu
- Department of Biomedical Engineering Columbia University New York NY 10027 USA
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu 610054 China
| | - Ziqian Wang
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Yang Lu
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Ning Xu
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| |
Collapse
|
62
|
Zhao Y, Tian C, Liu Y, Liu Z, Li J, Wang Z, Han X. All-in-one bioactive properties of photothermal nanofibers for accelerating diabetic wound healing. Biomaterials 2023; 295:122029. [PMID: 36731368 DOI: 10.1016/j.biomaterials.2023.122029] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Diabetic wound healing has attracted widespread attention in biomedical engineering. However, the harsh hypoxic microenvironment (HME) comprising high glucose levels, local bleeding, and bacterial infection often leads to the formation of hyperplastic scars, increasing the clinical demand for wound dressings. Here, we report a comprehensive strategy using near-infrared NIR-assisted oxygen delivery combined with the bioactive nature of biopolymers for remodeling the HME. Black phosphorus (BP) nanosheets and hemoglobin (Hb) were self-assembled layerwise onto electrospun poly-l-lactide (PLLA) nanofibers using charged quaternized chitosan (QCS) and hyaluronic acid. BP converts NIR radiation into heat and stimulates Hb to release oxygen in situ. QCS is a hemostatic and broad-spectrum antibacterial material. Moderate BP-derived photothermal therapy can increase the sensitivity of bacteria to QCS. A series of composite wound dressings (coded as PQBH-n) with different numbers of layers were fabricated, and the in vivo diabetic wound healing potentials were tested. The molecular mechanism can be partly attributed to the cytokine-cytokine receptor interaction. Notably, this comprehensive strategy based on NIR-assisted oxygen delivery combined with the bioactive properties of biopolymers is not only applicable for fabricating multifunctional wound dressings but also has a great potential in expanding biomedical engineering fields.
Collapse
Affiliation(s)
- Yanan Zhao
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Chuan Tian
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Department of Interventional Medical Center, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Shandong, 266000, Qingdao, China
| | - Yiming Liu
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Li
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zijian Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan, 430071, China.
| | - Xinwei Han
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
63
|
Lu Y, Sun W, Du J, Fan J, Peng X. Immuno-photodynamic Therapy (IPDT): Organic Photosensitizers and Their Application in Cancer Ablation. JACS AU 2023; 3:682-699. [PMID: 37006765 PMCID: PMC10052235 DOI: 10.1021/jacsau.2c00591] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Photosensitizer-based photodynamic therapy (PDT) has been considered as a promising modality for fighting diverse types of cancers. PDT directly inhibits local tumors by a minimally invasive strategy, but it seems to be incapable of achieving complete eradication and fails to prevent metastasis and recurrence. Recently, increasing events proved that PDT was associated with immunotherapy by triggering immunogenic cell death (ICD). Upon a specific wavelength of light irradiation, the photosensitizers will turn the surrounding oxygen molecules into cytotoxic reactive oxygen species (ROS) for killing the cancer cells. Simultaneously, the dying tumor cells release tumor-associated antigens, which could improve immunogenicity to activate immune cells. However, the progressively enhanced immunity is typically limited by the intrinsic immunosuppressive tumor microenvironment (TME). To overcome this obstacle, immuno-photodynamic therapy (IPDT) has come to be one of the most beneficial strategies, which takes advantage of PDT to stimulate the immune response and unite immunotherapy for inducing immune-OFF tumors to immune-ON ones, to achieve systemic immune response and prevent cancer recurrence. In this Perspective, we provide a review of recent advances in organic photosensitizer-based IPDT. The general process of immune responses triggered by photosensitizers (PSs) and how to enhance the antitumor immune pathway by modifying the chemical structure or conjugating with a targeting component was discussed. In addition, future perspectives and challenges associated with IPDT strategies are also discussed. We hope this Perspective could inspire more innovative ideas and provide executable strategies for future developments in the war against cancer.
Collapse
Affiliation(s)
- Yang Lu
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
| | - Wen Sun
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| | - Jianjun Du
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| | - Jiangli Fan
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xiaojun Peng
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, Dalian University of Technology, Dalian 116024, P.R. China
- State
Key Laboratory of Fine Chemicals, College of Materials Science and
Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
64
|
Liu Y, Gu M, Ding Q, Zhang Z, Gong W, Yuan Y, Miao X, Ma H, Hong X, Hu W, Xiao Y. Highly Twisted Conformation Thiopyrylium Photosensitizers for In Vivo Near Infrared-II Imaging and Rapid Inactivation of Coronavirus. Angew Chem Int Ed Engl 2023; 62:e202214875. [PMID: 36545827 PMCID: PMC9880658 DOI: 10.1002/anie.202214875] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Despite significant effort, a majority of heavy-atom-free photosensitizers have short excitation wavelengths, thereby hampering their biomedical applications. Here, we present a facile approach for developing efficient near-infrared (NIR) heavy-atom-free photosensitizers. Based on a series of thiopyrylium-based NIR-II (1000-1700 nm) dyads, we found that the star dyad HD with a sterically bulky and electron-rich moiety exhibited configuration torsion and significantly enhanced intersystem crossing (ISC) compared to the parent dyad. The electron excitation characteristics of HD changed from local excitation (LE) to charge transfer (CT)-domain, contributing to a ≈6-fold reduction in energy gap (ΔEST ), a ≈10-fold accelerated ISC process, and a ≈31.49-fold elevated reactive oxygen species (ROS) quantum yield. The optimized SP@HD-PEG2K lung-targeting dots enabled real-time NIR-II lung imaging, which precisely guided rapid pulmonary coronavirus inactivation.
Collapse
Affiliation(s)
- Yishen Liu
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Meijia Gu
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Qihang Ding
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| | - Zhiyun Zhang
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| | - Wanxia Gong
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Jiangxi Key Laboratory of Organo-Pharmaceutical ChemistryChemistry and Chemical Engineering CollegeGannan Normal UniversityGanzhouJiangxi 341000P. R. China
- Shenzhen Institute of Wuhan UniversityShenzhen518057China
| | - Yuncong Yuan
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Xiaofei Miao
- Frontiers Science Center for Flexible Electronicsand Xi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (Nanjing Tech)Nanjing211816China
| | - Xuechuan Hong
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Jiangxi Key Laboratory of Organo-Pharmaceutical ChemistryChemistry and Chemical Engineering CollegeGannan Normal UniversityGanzhouJiangxi 341000P. R. China
- Shenzhen Institute of Wuhan UniversityShenzhen518057China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronicsand Xi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710072China
| | - Yuling Xiao
- State Key Laboratory of VirologyDepartment of CardiologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Shandong Laboratory of Yantai Drug DiscoveryBohai Rim Advanced Research Institute for Drug DiscoveryYantai264117China
| |
Collapse
|
65
|
Wang L, Qian Y. Modification of a SOCT-ISC type triphenylamine-BODIPY photosensitizer by a multipolar dendrimer design for photodynamic therapy and two-photon fluorescence imaging. Biomater Sci 2023; 11:1459-1469. [PMID: 36602169 DOI: 10.1039/d2bm01838a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, a series of multipolar triphenylamine-BODIPY photosensitizers T-BDPn (n = 1, 2, 3) was synthesized. Compared with T-BDP1 of D-A configuration, the multipolar T-BDP3 dendrimer have higher singlet oxygen efficiency (44%), better fluorescence quantum yield (7.45%), and could be used in the simulated photodynamic therapy in A-549 cells and two-photon fluorescence imaging in zebrafish. The theoretical calculation and fs-transient absorption spectra indicated that the reason of its higher singlet oxygen efficiency was that the multipolar T-BDP3 dendrimer could generate more nearly degenerate charge transfer (CT) states and triplet states, which could further increase the possibility of spin-orbit charge-transfer intersystem crossing (SOCT-ISC) process. In the simulated photodynamic therapy of A-549 cells, T-BDP3 shows good cytocompatibility, great phototoxicity with its IC50 value of 3.17 μM, and could kill cancer cells effectively with the dosage of 5 μM under 10 min irradiation in the AO/EB double-staining experiment. In the fluorescence imaging of zebrafish, the experiment results indicate that T-BDP3 could generate superoxide radical (O2˙-) in the body of zebrafish and could be applied to the two-photon fluorescence imaging under 800 nm excitation. The above experiment results shown that the multipolar dendrimer design was an effective approach to improve the key parameters of SOCT-ISC-type BODIPY photosensitizer and was ready for further two-photon photodynamic therapy in organisms.
Collapse
Affiliation(s)
- Lingfeng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
66
|
Xu Y, Yu J, Hu J, Sun K, Lu W, Zeng F, Chen J, Liu M, Cai Z, He X, Wei W, Sun B. Tumor-Targeting Near-Infrared Dimeric Heptamethine Cyanine Photosensitizers With an Aromatic Diphenol Linker for Imaging-Guided Cancer Phototherapy. Adv Healthc Mater 2023:e2203080. [PMID: 36745881 DOI: 10.1002/adhm.202203080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/22/2023] [Indexed: 02/08/2023]
Abstract
Phototherapy is considered a promising alternative to conventional tumor treatments due to its noninvasive modality and effective therapeutic effect. However, designing a photosensitizer with satisfactory therapeutic effect and high security remains a considerable challenge. Herein, a series of dimeric heptamethine cyanine photosensitizers with an aromatic diphenol linker at the meso position is developed to improve the photothermal conversion efficiency (PCE). Thanks to the extended conjugate system and high steric hindrance, the screened 26NA-NIR and 44BP-NIR exhibit high PCE (≈35%), bright near-infrared (NIR) fluorescence, excellent reactive oxygen species (ROS) generation capability, and improved photostability. Furthermore, their outstanding performance on imaging-guided PDT-PTT synergistic therapy is demonstrated by in vivo and in vitro experiments. In conclusion, this study designs a series of dimeric heptamethine cyanine photosensitizers and presents two compounds for potential clinical applications. The strategy provides a new method to design NIR photosensitizers for imaging-guided cancer treatment.
Collapse
Affiliation(s)
- Yang Xu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Kai Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Wenjun Lu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Fenglian Zeng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Xiaofan He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Wanying Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| |
Collapse
|
67
|
Chen Y, Xiong T, Zhao X, Du J, Sun W, Fan J, Peng X. Tumor Cell-Responsive Photodynamic Immunoagent for Immunogenicity-Enhanced Orthotopic and Remote Tumor Therapy. Adv Healthc Mater 2023; 12:e2202085. [PMID: 36377488 DOI: 10.1002/adhm.202202085] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Combining photodynamic therapy (PDT) and immune checkpoint blockades is an efficient method to maximize immunotherapeutic outcome by boosting tumor immunogenicity and modulating the immunosuppressive tumor microenvironment. However, the always-on bioactivity of photosensitizers or immune checkpoint inhibitors leads to uncontrollable side effects, limiting the in vivo therapeutic efficacy of treatments. An activatable strategy is of great importance for improving the selectivity during cancer therapy. In this study, a photodynamic immunomodulator, ICy-NLG, is developed by conjugating the photosensitizer ICy-NH2 with the indoleamine 2,3-dioxygenase 1 inhibitor NLG919 through a glutathione (GSH)-cleavable linker to achieve activatable photodynamic immunotherapy. The conjugation considerably suppresses both the PDT effect and the activity of the inhibitor. After ICy-NLG is activated by high levels of GSH in tumor cells, the PDT effect is restored and leads to immunogenic tumor cell death. The released tumor-associated antigens in conjunction with the activated immune checkpoint inhibitor induce a synergistic antitumor immune response, resulting in the growth inhibition of primary and distant tumors and the prevention of lung metastasis in mouse xenograft models.
Collapse
Affiliation(s)
- Yingchao Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Tao Xiong
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Xueze Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.,Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South Fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.,Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South Fourth Road, Nanshan District, Shenzhen, 518057, China
| |
Collapse
|
68
|
Pan HM, Wu CC, Lin CY, Hsu CS, Tsai YC, Chowdhury P, Wang CH, Chang KH, Yang CH, Liu MH, Chen YC, Su SP, Lee YJ, Chiang HK, Chan YH, Chou PT. Rational Design of Asymmetric Polymethines to Attain NIR(II) Bioimaging at >1100 nm. J Am Chem Soc 2023; 145:516-526. [PMID: 36562565 DOI: 10.1021/jacs.2c10860] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Organic molecules having emission in the NIR(II) region are emergent and receiving enormous attention. Unfortunately, attaining accountable organic emission intensity around the NIR(II) region is hampered by the dominant internal conversion operated by the energy gap law, where the emission energy gap and the associated internal reorganization energy λint play key roles. Up to the current stage, the majority of the reported organic NIR(II) emitters belong to those polymethines terminated by two symmetric chromophores. Such a design has proved to have a small λint that greatly suppresses the internal conversion. However, the imposition of symmetric chromophores is stringent, limiting further development of organic NIR(II) dyes in diversity and versatility. Here, we propose a new concept where as far as the emissive state of the any asymmetric polymethines contains more or less equally transition density between two terminated chromophores, λint can be as small as that of the symmetric polymethines. To prove the concept, we synthesize a series of new polymethines terminated by xanthen-9-yl-benzoic acid and 2,4-diphenylthiopyrylium derivatives, yielding AJBF1112 and AEBF1119 that reveal emission peak wavelength at 1112 and 1119 nm, respectively. The quantum yield is higher than all synthesized symmetric polymethines of 2,4-diphenylthiopyrylium derivatives (SC1162, 1182, 1185, and 1230) in this study. λint were calculated to be as small as 6.2 and 7.3 kcal/mol for AJBF1112 and AEBF1119, respectively, proving the concept. AEBF1119 was further prepared as a polymer dot to demonstrate its in vitro specific cellular imaging and in vivo tumor/bone targeting in the NIR(II) region.
Collapse
Affiliation(s)
- Hsiu-Min Pan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu30050, Taiwan, R.O.C
| | - Chi-Chi Wu
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan, R.O.C
| | - Chun-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu30050, Taiwan, R.O.C
| | - Chao-Shian Hsu
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan, R.O.C
| | - Yi-Chen Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu30050, Taiwan, R.O.C
| | - Partha Chowdhury
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu30050, Taiwan, R.O.C
| | - Chih-Hsing Wang
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan, R.O.C
| | - Kai-Hsin Chang
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan, R.O.C
| | - Chieh-Hsuan Yang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu30050, Taiwan, R.O.C
| | - Ming-Ho Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu30050, Taiwan, R.O.C
| | - Yan-Chang Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu30050, Taiwan, R.O.C
| | - Shih-Po Su
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei11221, Taiwan, R.O.C
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei11221, Taiwan, R.O.C
| | - Huihua Kenny Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei11221, Taiwan, R.O.C
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu30050, Taiwan, R.O.C.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu30010, Taiwan, R.O.C.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung80708, Taiwan, R.O.C
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan, R.O.C
| |
Collapse
|
69
|
Crawford H, Dimitriadi M, Bassin J, Cook MT, Abelha TF, Calvo‐Castro J. Mitochondrial Targeting and Imaging with Small Organic Conjugated Fluorophores: A Review. Chemistry 2022; 28:e202202366. [PMID: 36121738 PMCID: PMC10092527 DOI: 10.1002/chem.202202366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/30/2022]
Abstract
The last decade has seen an increasingly large number of studies reporting on the development of novel small organic conjugated systems for mitochondrial imaging exploiting optical signal transduction pathways. Mitochondria are known to play a critical role in a number of key biological processes, including cellular metabolism. Importantly, irregularities on their working function are nowadays understood to be intimately linked to a range of clinical conditions, highlighting the importance of targeting mitochondria for therapeutic benefits. In this work we carry out an in-depth evaluation on the progress to date in the field to pave the way for the realization of superior alternatives to those currently existing. The manuscript is structured by commonly used chemical scaffolds and comprehensively covers key aspects factored in design strategies such as synthetic approaches as well as photophysical and biological characterization, to foster collaborative work among organic and physical chemists as well as cell biologists.
Collapse
Affiliation(s)
- Hannah Crawford
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Maria Dimitriadi
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Jatinder Bassin
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Michael T. Cook
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Thais Fedatto Abelha
- Department of Pharmacology, Toxicology and Therapeutic ChemistryFaculty of Pharmacy and Food ScienceUniversity of Barcelona08028BarcelonaSpain
- Institute of Nanoscience and NanotechnologyUniversity of Barcelona (IN2UB)08028BarcelonaSpain
| | - Jesus Calvo‐Castro
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| |
Collapse
|
70
|
Mariewskaya KA, Krasilnikov MS, Korshun VA, Ustinov AV, Alferova VA. Near-Infrared Dyes: Towards Broad-Spectrum Antivirals. Int J Mol Sci 2022; 24:ijms24010188. [PMID: 36613629 PMCID: PMC9820607 DOI: 10.3390/ijms24010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Broad antiviral activity in vitro is known for many organic photosensitizers generating reactive oxygen species under irradiation with visible light. Low tissue penetration of visible light prevents further development of antiviral therapeutics based on these compounds. One possible solution to this problem is the development of photosensitizers with near-infrared absorption (NIR dyes). These compounds found diverse applications in the photodynamic therapy of tumors and bacterial infections, but they are scarcely mentioned as antivirals. In this account, we aimed to evaluate the therapeutic prospects of various NIR-absorbing and singlet oxygen-generating chromophores for the development of broad-spectrum photosensitizing antivirals.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-4957246715
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
71
|
Yang M, Li J, Liu Z, Zhang H, Liu J, Liu Y, Zhuang A, Zhou H, Gu P, Fan X. An injectable vitreous substitute with sustained release of metformin for enhanced uveal melanoma immunotherapy. Biomater Sci 2022; 10:7077-7092. [PMID: 36326609 DOI: 10.1039/d2bm01058e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular malignant tumor in adults with a high rate of metastasis. Conventional treatments have limited effects on metastasis and cause permanent ocular tissue defects. Here, a novel strategy based on an injectable vitreous substitute with sustained metformin release ability (IVS-Met) was reported for efficient UM therapy as well as for repairing vitreous deficiency and preserving visual function. IVS-Met showed an excellent long-term anti-tumor effect by direct tumor attack and modulation of the tumor microenvironment (TME). IVS-Met reduced the proportion of pro-tumor M2 tumor-associated macrophages and induced the pro-inflammatory M1 phenotype, thus reversing the immunosuppressive TME and eliciting robust anti-tumor immune responses. Notably, IVS-Met demonstrated high performance in the inhibition of UM metastasis and significantly extended the survival time of mice. In addition, the vitreous substitute achieved facile administration via direct injection and exhibited excellent rheological and optical properties with the key parameters very close to those of the vitreous body to repair vitreous deficiency and preserve visual function. In summary, this strategy has realized effective UM treatment while retaining eyeballs and vision for the first time, revealing great potential for translation to clinical practice.
Collapse
Affiliation(s)
- Muyue Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Zeyang Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jin Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yan Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
72
|
Cao W, Zhu Y, Wu F, Tian Y, Chen Z, Xu W, Liu S, Liu T, Xiong H. Three Birds with One Stone: Acceptor Engineering of Hemicyanine Dye with NIR-II Emission for Synergistic Photodynamic and Photothermal Anticancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204851. [PMID: 36300919 DOI: 10.1002/smll.202204851] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
It is challenging to develop a near-infrared (NIR) small molecular photosensitizer for synergistic phototherapy in deep tissues. Herein, first, a heavy-atom-free NIR hemicyanine photosensitizer (BHcy) for 808 nm light-mediated synergistic photodynamic therapy/photothermal therapy (PDT/PTT) anticancer therapy by leveraging the acceptor engineering strategy is reported. This strategy endows BHcy with a more planar and larger π-conjugated structure, resulting in long NIR absorption/emission at 770/915-1200 nm as well as enhanced singlet oxygen (1 O2 ) generation ability and photothermal effect, which is ascribed to the reduced energy levels of excited singlet/triplet states and the promoted intersystem crossing process. Notably, BHcy-based nanoparticles (BHcy-NPs) exhibit efficient 1 O2 yield (12.9%) and high photothermal conversion efficiency (55.1%). More importantly, BHcy-NPs are able to significantly kill cancer cells by destroying main organelles and inhibit tumor growth in vivo after a single irradiation. Overall, this study provides a strategy to design new heavy-atom-free PDT/PTT agents for potential clinical applications.
Collapse
Affiliation(s)
- Wenwen Cao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Zhu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhaoming Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weijia Xu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tingting Liu
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First, Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
73
|
Zhao X, He S, Chi W, Liu X, Chen P, Sun W, Du J, Fan J, Peng X. An Approach to Developing Cyanines with Upconverted Photosensitive Efficiency Enhancement for Highly Efficient NIR Tumor Phototheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202885. [PMID: 36095253 PMCID: PMC9631065 DOI: 10.1002/advs.202202885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/02/2022] [Indexed: 05/19/2023]
Abstract
Upconverted reactive oxygen species (ROS) photosensitization with one-photon excitation mode is a promising tactic to elongate the excitation wavelengths of photosensitive dyes to near-infrared (NIR) light region without the requirement of coherent high-intensity light sources. However, the photosensitization efficiencies are still finite by the unilateral improvement of excited-state intersystem crossing (ISC) via heavy-atom-effect, since the upconverted efficiency also plays a decisive role in upconverted photosensitization. Herein, a NIR light initiated one-photon upconversion heavy-atom-free small molecule system is reported. The meso-rotatable anthracene in pentamethine cyanine (Cy5) is demonstrated to enrich the populations in high vibrational-rotational energy levels and subsequently improve the hot-band absorption (HBA) efficiency. Moreover, the spin-orbit charge transfer intersystem crossing (SOCT-ISC) caused by electron donated anthracene can further amplify the triplet yield. Benefiting from the above two aspects, the 1 O2 generation significantly increases with over 2-fold improved performance compared with heavy-atom-modified method under upconverted light excitation, which obtains efficient in vivo phototheranostic results and provides new opportunities for other applications such as photocatalysis and fine chemical synthesis.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
| | - Shan He
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental MaterialsDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
| | - Weijie Chi
- Fluorescence Research GroupSingapore University of Technology and DesignSingapore487372Singapore
| | - Xiaogang Liu
- Fluorescence Research GroupSingapore University of Technology and DesignSingapore487372Singapore
| | - Pengzhong Chen
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- Ningbo Institute of Dalian University of TechnologyNingbo315016P. R. China
| | - Wen Sun
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- Ningbo Institute of Dalian University of TechnologyNingbo315016P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- Ningbo Institute of Dalian University of TechnologyNingbo315016P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- Ningbo Institute of Dalian University of TechnologyNingbo315016P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart Materials Oriented Chemical EngineeringDalian University of TechnologyDalian116024P. R. China
- State Key Laboratory of Fine Chemicals, College of Materials Science and EngineeringShenzhen UniversityShenzhen518057P. R. China
| |
Collapse
|
74
|
Wang J, Li J, Yu Z, Zhu X, Yu J, Wu Z, Wang S, Zhou H. Molecular Tailoring Based on Forster Resonance Energy Transfer for Initiating Two-Photon Theranostics with Amplified Reactive Oxygen Species. Anal Chem 2022; 94:14029-14037. [PMID: 36173258 DOI: 10.1021/acs.analchem.2c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fabrication of multifunctional photosensitizers (PSs) with abundant Type I/II ROS for efficient theranostics in the "therapeutic window" (700-900 nm) is an appealing yet significantly challenging task. We herein report a molecular tailoring strategy based on intramolecular two-photon Forster Resonance Energy Transfer (TP-FRET) to obtain a novel theranostic agent (Lyso-FRET), featuring the amplified advantage of energy donor (NH) and acceptor (COOH), because of the reuse of fluorescence energy with high efficiency of FRET (∼83%). Importantly, under the excitation by the near-infrared (840 nm) window, Lyso-FRET can not only penetrate the deeper tissue with a higher resolution for fluorescence imaging due to the nonlinear optical (NLO) nature, but also generate more Type I (superoxide anion) and Type II (singlet oxygen) reactive oxygen species for hypoxic PDT. Moreover, Lyso-FRET targeting lysosomes further promotes the effect of treatment. The experiments in vitro and in vivo also verify that the developed TP-FRET PS is conducive to treating deep hypoxic tumors. This strategy provides new and significant insights into the design and fabrication of advanced multifunctional PSs.
Collapse
Affiliation(s)
- Junjun Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Jinsong Li
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Zhipeng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Jianhua Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Zhichao Wu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Hefei 230601, People's Republic of China
| |
Collapse
|
75
|
Cao M, Zhu T, Zhao M, Meng F, Liu Z, Wang J, Niu G, Yu X. Structure Rigidification Promoted Ultrabright Solvatochromic Fluorescent Probes for Super-Resolution Imaging of Cytosolic and Nuclear Lipid Droplets. Anal Chem 2022; 94:10676-10684. [DOI: 10.1021/acs.analchem.2c00964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mingyue Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, P. R. China
- Suzhou Research Institute, Shandong University, Suzhou 215123, P. R. China
| | - Ting Zhu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Mengying Zhao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Fanda Meng
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Guangle Niu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, P. R. China
- Suzhou Research Institute, Shandong University, Suzhou 215123, P. R. China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
76
|
Ding J, Kang X, Feng M, Tan J, Feng Q, Wang X, Wang J, Liu J, Li Z, Guan W, Qiao T. A novel active mitochondrion-selective fluorescent probe for the NIR fluorescence imaging and targeted photodynamic therapy of gastric cancer. Biomater Sci 2022; 10:4756-4763. [PMID: 35837996 DOI: 10.1039/d2bm00684g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The annual morbidity and mortality due to gastric cancer are still high across the world, posing a serious threat to public health. Improving the diagnosis rate of gastric cancer and exploring new treatments are urgent issues in the clinical field. In recent years, photosensitizer (PS)-based photodynamic therapy (PDT) has proven to be an effective cancer treatment strategy and can be used to treat a variety of cancers. Developing PSs with tumor-targeting ability and high singlet oxygen yield (Φ(1O2)) is the key to improving the PDT effect. Herein, we developed a novel diagnosis and treatment system (Cy1395-NPs). Our active thio-photosensitizer is based on the sulfur substitution strategy as it can reduce the S1-T1 energy gap, which can promote the process of intersystem crossing (ISC), thus resulting in high ROS generation efficiency. Cy1395-NPs exhibited stable spectral characteristics, satisfactory biocompatibility and high 1O2 yield under laser irradiation due to the introduction of the sulfur atom. In cellular studies, Cy1395-NPs could specifically target MKN45 cells via integrin αvβ3-mediated cRGD endocytosis and selectively aggregate in the mitochondria. Cy1395-NPs had no obvious cytotoxicity for MKN45 cells and exerted obvious phototoxicity due to the production of 1O2 under laser irradiation. The in vivo results showed that the fluorescence signal from the tumor site was obviously enhanced in 16-48 h, and Cy1395-NPs could selectively target solid tumors with a retention time of about 32 h. Under laser irradiation, Cy1395-NPs significantly inhibited tumor growth and led to significant tumor suppression and apoptosis. In summary, the developed Cy1395-NPs could actively target tumors and exert mitochondrial selectivity, showing an excellent fluorescence imaging effect. Under the irradiation of an 808 nm laser, Cy1395-NPs achieved good inhibition of gastric cancer cells both in vitro and in vivo, thus displaying the functions of tumor targeting, mitochondrial selectivity, fluorescence imaging and tumor inhibition. Our strategy provides a new diagnostic and treatment method for gastric cancers in clinical settings.
Collapse
Affiliation(s)
- Jie Ding
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China. .,Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Xing Kang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jiangkun Tan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| | - Qingzhao Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Xingzhou Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jiafeng Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jiang Liu
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210004, China
| | - Zan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
77
|
Miao J, Huo Y, Yao G, Feng Y, Weng J, Zhao W, Guo W. Heavy Atom‐Free, Mitochondria‐Targeted, and Activatable Photosensitizers for Photodynamic Therapy with Real‐Time In‐Situ Therapeutic Monitoring. Angew Chem Int Ed Engl 2022; 61:e202201815. [DOI: 10.1002/anie.202201815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Junfeng Miao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Yingying Huo
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Guangxiao Yao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Yu Feng
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Jiajin Weng
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Wei Zhao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Wei Guo
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| |
Collapse
|
78
|
Chen D, Dai H, Wang W, Cai Y, Mou X, Zou J, Shao J, Mao Z, Zhong L, Dong X, Zhao Y. Proton-Driven Transformable 1 O 2 -Nanotrap for Dark and Hypoxia Tolerant Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200128. [PMID: 35435332 PMCID: PMC9189669 DOI: 10.1002/advs.202200128] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/12/2022] [Indexed: 05/11/2023]
Abstract
Despite the clinical potential, photodynamic therapy (PDT) relying on singlet oxygen (1 O2 ) generation is severely limited by tumor hypoxia and endosomal entrapment. Herein, a proton-driven transformable 1 O2 -nanotrap (ANBDP NPs) with endosomal escape capability is presented to improve hypoxic tumor PDT. In the acidic endosomal environment, the protonated 1 O2 -nanotrap ruptures endosomal membranes via a "proton-sponge" like effect and undergoes a drastic morphology-and-size change from nanocubes (≈94.1 nm in length) to nanospheres (≈12.3 nm in diameter). Simultaneously, anthracenyl boron dipyrromethene-derived photosensitizer (ANBDP) in nanospheres transforms to its protonated form (ANBDPH) and switches off its charge-transfer state to achieve amplified 1 O2 photogeneration capability. Upon 730 nm photoirradiation, ANBDPH prominently produces 1 O2 and traps generated-1 O2 in the anthracene group to form endoperoxide (ANOBDPH). Benefitting from the hypoxia-tolerant 1 O2 -release property of ANOBDPH in the dark, the 1 O2 -nanotrap brings about sustained therapeutic effect without further continuous irradiation, thereby achieving remarkable antitumor performance.
Collapse
Affiliation(s)
- Dapeng Chen
- Clinical Research InstituteZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhou310014P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Hanming Dai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Weili Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yu Cai
- Clinical Research InstituteZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhou310014P. R. China
| | - Xiaozhou Mou
- Clinical Research InstituteZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhou310014P. R. China
| | - Jianhua Zou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Liping Zhong
- National Center for International Biotargeting TheranosticsGuangxi Key Laboratory of Biotargeting TheranosticsCollaborative Innovation Center for Targeting Tumor TheranosticsGuangxi Medical UniversityGuangxi530021P. R. China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yongxiang Zhao
- National Center for International Biotargeting TheranosticsGuangxi Key Laboratory of Biotargeting TheranosticsCollaborative Innovation Center for Targeting Tumor TheranosticsGuangxi Medical UniversityGuangxi530021P. R. China
| |
Collapse
|
79
|
Li MY, Mi L, Meerovich G, Soe TW, Chen T, Than NN, Yan YJ, Chen ZL. The biological activities of 5,15-diaryl-10,20-dihalogeno porphyrins for photodynamic therapy. J Cancer Res Clin Oncol 2022; 148:2335-2346. [PMID: 35522290 DOI: 10.1007/s00432-022-04037-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Esophageal cancer is the most common gastrointestinal tumor and is difficult to be eradicated with conventional treatment. Porphyrin-based photosensitizers (PSs) mediated photodynamic therapy (PDT) could kill tumor cells with less damage to normal cells. As the most widely used porphyrin-based photosensitizer in clinics, Photofrin II has excellent anti-tumor effect. However, it has some disadvantages such as weak absorption at near infrared region, the complexity of components and prolonged skin photosensitivity. Here series novel 5,15-diaryl-10,20-dihalogeno porphyrin derivatives were afforded and evaluated to develop more effective and safer photosensitizers for tumor therapy. METHODS The photophysical properties and singlet oxygen generation rates of 5,15-diaryl-10,20-dihalogeno porphyrins (I1-6, II1-4) were tested. The cytotoxicity of I1-6 and II1-4 were measured by MTT assay. The pathway of cell death was studied by flow cytometry. In vivo photodynamic efficacy of I3 and II2-4 in Eca-109 tumor-bearing BABL/c nude mice were measured and histopathological analysis were examined. RESULTS 5,15-Diaryl-10,20-dihalogeno porphyrins I1-6 and II1-4 were synthesized. The longest absorption wavelength of these halogenated porphyrins (λmax = 660 nm) displayed a red shift around 30 nm compared to the unhalogenated porphyrins PS1 (λmax = 630 nm). The singlet oxygen generation rates of I1-6 and II1-4 were significantly higher than PS1 and HMME. All PSs mediated PDT showed obvious cytotoxic effect against Eca-109 cells compared to HMME in vitro and in vivo. Among these PSs, II4 exhibited appropriate absorption in the phototherapeutic window, higher 1O2 generation rate (k = 0.0061 s-1), the strongest phototoxicity (IC50 = 0.4 μM), lower dark toxicity, high generation of intracellular ROS in Eca-109 cells and excellent photodynamic anti-tumor efficacy in vivo. Besides, cell necrosis was induced by compound II4 mediated PDT. CONCLUSION All new compounds have obvious photodynamic anti-esophageal cancer effects. Among them, the photosensitizer II4 showed excellent efficacy in vitro and in vivo, which has the potential to become a photodynamic anti-tumor drug.
Collapse
Affiliation(s)
- Man Yi Li
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, China
| | - Le Mi
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, China
| | - Gennady Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119435, Russia
| | - Thin Wut Soe
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, China.,Department of Chemistry, University of Yangon, Yangon, 11041, Myanmar
| | - Ting Chen
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, China
| | - Ni Ni Than
- Department of Chemistry, University of Yangon, Yangon, 11041, Myanmar
| | - Yi Jia Yan
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, China.
| | - Zhi Long Chen
- Department of Pharmaceutical Science and Technology, College of Chemistry and Biology, Donghua University, Shanghai, 201620, China. .,Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
80
|
Miao J, Huo Y, Yao G, Feng Y, Weng J, Zhao W, Guo W. Heavy Atom‐Free, Mitochondria‐Targeted, and Activatable Photosensitizers for Photodynamic Therapy with Real‐Time In‐Situ Therapeutic Monitoring. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Junfeng Miao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Yingying Huo
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Guangxiao Yao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Yu Feng
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Jiajin Weng
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Wei Zhao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Wei Guo
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| |
Collapse
|
81
|
Wang Y, Li J, Zhou R, Zeng X, Zhao H, Chen Q, Wu P. Universal "Three-in-One" Matrix to Maximize Reactive Oxygen Species Generation from Food and Drug Administration-Approved Photosensitizers for Photodynamic Inactivation of Biofilms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15059-15068. [PMID: 35343225 DOI: 10.1021/acsami.2c02376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biofilms, an accumulation of microorganisms, cause persistent bacterial infection and low cure rate due to the remarkable drug resistance. Photodynamic inactivation (PDI) is a promising treatment modality for bacterial infections, but the formation of biofilms raises new challenges for photosensitizers (PSs), particularly the reactive oxygen species (ROS) generation efficiency. Herein, through targeting the Jablonski energy diagram, we proposed a universal "three-in-one" matrix of Gd3+-ADP assembly for encapsulation and fixing of PSs to inhibit non-radiative transitions and promoting intersystem crossing (ISC) by the heavy atom and paramagnetic effects of Gd3+, eventually resulted in boosted ROS generation from the existing PSs (1.5-9.0-fold). Particularly, photophysical studies indicated that the matrix resulted in simultaneous ISC promotion and triplet-state lifetime lengthening, which is essential for ROS boosting. The PDI performance of the matrix was confirmed through fast and effective elimination of bacterial biofilms in 10-30 min. Moreover, successful therapy of a Pseudomonas aeruginosa biofilm-infected all-thickness third-degree burn wound was achieved within 11 days with Ce 6@CNs (matrix) but not feasible for matrix-free PSs (Ce 6 only), which highlighted the role of "three-in-one" matrix in ROS boosting.
Collapse
Affiliation(s)
- Ying Wang
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Jiazhuo Li
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Wu
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
82
|
Chanmungkalakul S, Wang C, Miao R, Chi W, Tan D, Qiao Q, Ang ECX, Tan CH, Fang Y, Xu Z, Liu X. A Descriptor for Accurate Predictions of Host Molecules Enabling Ultralong Room-Temperature Phosphorescence in Guest Emitters. Angew Chem Int Ed Engl 2022; 61:e202200546. [PMID: 35107202 DOI: 10.1002/anie.202200546] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 12/18/2022]
Abstract
Although doping can induce room-temperature phosphorescence (RTP) in heavy-atom free organic systems, it is often challenging to match the host and guest components to achieve efficient intersystem crossing for activating RTP. In this work, we developed a simple descriptor ΔE to predict host molecules for matching the guest RTP emitters, based on the intersystem crossing via higher excited states (ISCHES) mechanism. This descriptor successfully predicted five commercially available host components to pair with naphthalimide (NA) and naphtho[2,3-c]furan-1,3-dione (2,3-NA) emitters with a high accuracy of 83 %. The yielded pairs exhibited bright yellow and green RTP with the quantum efficiency up to 0.4 and lifetime up to 1.67 s, respectively. Using these RTP pairs, we successfully achieved multi-layer message encryption. The ΔE descriptor could provide an efficient way for developing doping-induced RTP materials.
Collapse
Affiliation(s)
- Supphachok Chanmungkalakul
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Chao Wang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Esther Cai Xia Ang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Choon-Hong Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
83
|
Zhao Z, Niu F, Li P, Wang H, Zhang Z, Meyer GJ, Hu K. Visible Light Generation of a Microsecond Long-Lived Potent Reducing Agent. J Am Chem Soc 2022; 144:7043-7047. [PMID: 35271254 DOI: 10.1021/jacs.2c00422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Photoexcitation of molecular radicals can produce strong reducing agents; however, the limited lifetimes of the doublet excited states preclude many applications. Herein, we propose and demonstrate a general strategy to translate a highly energetic electron from a doublet excited state to a ZrO2 insulator, thereby increasing the lifetime by about 6 orders of magnitude while maintaining a reducing potential less than -2.4 V vs SCE. Specifically, red light excitation of a salicylic acid modified perylene diimide radical anion PDI•- anchored to a ZrO2 insulator yields a ZrO2(e-)|PDI charge separated state with an ∼10 μs lifetime in 23% yield. The ZrO2(e-)s were shown to drive CO2 → CO reduction with a Re catalyst present in micromolar concentrations. More broadly, this strategy provides new opportunities to reduce important reagents and catalysts at low concentrations through diffusional electron transfer.
Collapse
Affiliation(s)
- Zijian Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Fushuang Niu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Hanqi Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Zhenghao Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Ke Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| |
Collapse
|
84
|
Katayama K, Matsuura Y, Kitamura C, Nishida JI, Kawase T. 2‐Aryl‐1H‐benz[de]isoquinolinium ions: Cationic Dyes Displaying Mechanochromism and Crystallochromism. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Koji Katayama
- University of Hyogo: Hyogo Kenritsu Daigaku Graduate School of Engineering 2167Shosha 671-2280 Himeji JAPAN
| | - Yuuka Matsuura
- University of Hyogo: Hyogo Kenritsu Daigaku Graduate School of Engineering 2167Shosha 671-2280 Himeji JAPAN
| | - Chitoshi Kitamura
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku School of Engineering 2500Hassaka-cho 522-8533 Hikone JAPAN
| | - Jun-ichi Nishida
- University of Hyogo: Hyogo Kenritsu Daigaku Graduate School of Engineering 2167Shosha 671-2280 Himeji JAPAN
| | - Takeshi Kawase
- Hyogo University Materials Science and Chemistry Shosha 2167 671-2201 Himeji JAPAN
| |
Collapse
|
85
|
Chanmungkalakul S, Wang C, Miao R, Chi W, Tan D, Qiao Q, Ang ECX, Tan C, Fang Y, Xu Z, Liu X. A Descriptor for Accurate Predictions of Host Molecules Enabling Ultralong Room‐Temperature Phosphorescence in Guest Emitters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Supphachok Chanmungkalakul
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Chao Wang
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloids Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Weijie Chi
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Davin Tan
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Esther Cai Xia Ang
- School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Choon‐Hong Tan
- School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloids Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xiaogang Liu
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| |
Collapse
|
86
|
Yu Z, Wang H, Chen Z, Dong X, Zhao W, Shi Y, Zhu Q. Discovery of an Amino Acid-Modified Near-Infrared Aza-BODIPY Photosensitizer as an Immune Initiator for Potent Photodynamic Therapy in Melanoma. J Med Chem 2022; 65:3616-3631. [PMID: 35152702 DOI: 10.1021/acs.jmedchem.1c02154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhiliang Yu
- Shanghai Skin Disease Hospital, Shanghai Engineering Research Center for Topical Chinese Medicine, School of Medicine, Tongji University, Shanghai 200443, P. R. China
| | - Hong Wang
- School of Life Science and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Shanghai Engineering Research Center for Topical Chinese Medicine, School of Medicine, Tongji University, Shanghai 200443, P. R. China
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of the Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Yuling Shi
- Shanghai Skin Disease Hospital, Shanghai Engineering Research Center for Topical Chinese Medicine, School of Medicine, Tongji University, Shanghai 200443, P. R. China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Shanghai Engineering Research Center for Topical Chinese Medicine, School of Medicine, Tongji University, Shanghai 200443, P. R. China
| |
Collapse
|
87
|
Zhu Z, Zhang X, Guo X, Wu Q, Li Z, Yu C, Hao E, Jiao L, Zhao J. Orthogonally aligned cyclic BODIPY arrays with long-lived triplet excited states as efficient heavy-atom-free photosensitizers. Chem Sci 2021; 12:14944-14951. [PMID: 34820111 PMCID: PMC8597848 DOI: 10.1039/d1sc04893g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
In photosensitizers, long triplet excited state lifetimes are key to their efficient electron transfer or energy transfer processes. Herein, we report a novel class of cyclic trimeric BODIPY arrays which were efficiently generated from easily accessible meso-mesityldipyrrinone and arylboronic acids in one pot. Arylboronic acid, for the first time, was used to provide a boron source for BODIPY derivatives. Due to the well-defined and orthogonally aligned BODIPY cores as verified by X-ray crystallography, these BODIPY arrays show strong exciton coupling effects and efficient intersystem crossings, and are novel heavy-atom-free photosensitizers with a long-lived triplet excited state (lifetime up to 257.5 μs) and good reactive oxygen species generation efficiency (up to 0.72) contributed by both 1O2 and O2 -˙ under light irradiation.
Collapse
Affiliation(s)
- Zhaoyang Zhu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Xing Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Qinghua Wu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Zhongxin Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Changjiang Yu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
88
|
Su Y, Hu Q, Zhang D, Shen Y, Li S, Li R, Jiang XD, Du J. 1,7-Di-tert-butyl-Substituted aza-BODIPYs by Low-Barrier Rotation to Enhance a Photothermal-Photodynamic Effect. Chemistry 2021; 28:e202103571. [PMID: 34757667 DOI: 10.1002/chem.202103571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 01/10/2023]
Abstract
1,7-Di-tert-butyl-substituted aza-BODIPYs (tBu-azaBDP) were successfully obtained for the first time. The structures of tBu-azaBDP and Ph-azaBDP were confirmed by X-ray crystal analysis, and tBu-azaBDP 2 is more twisted than Ph-azaBDP 5. tBu-azaBDPs have significant photo-stability and enhanced water solubility. tBu-azaBDPs possess excellent optical properties, such as high molar extinction coefficients, broad full width half maxima, and large Stokes shifts, which is comparable to those of the parent dye Ph-azaBDP. Although the low-barrier rotation of the distal -tBu groups in tBu-azaBDPs results in low quantum yield, photothermal conversion efficiency and singlet oxygen generation ability of tBu-azaBDPs are more effective than those of Ph-azaBDP, which is highly desirable for a photothermal-photodynamic therapy agent.
Collapse
Affiliation(s)
- Yajun Su
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Qiao Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Dongxiang Zhang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Yue Shen
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Sicheng Li
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Ran Li
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Xin-Dong Jiang
- Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| |
Collapse
|
89
|
Gong Q, Wu Q, Guo X, Li W, Wang L, Hao E, Jiao L. Strategic Construction of Sulfur-Bridged BODIPY Dimers and Oligomers as Heavy-Atom-Free Photosensitizers. Org Lett 2021; 23:7220-7225. [PMID: 34463517 DOI: 10.1021/acs.orglett.1c02622] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An efficient strategy for building sulfur-bridged oligo-BODIPYs based on the SNAr reaction is described. These oligo-BODIPYs showed broadband and strong visible-near-infrared (NIR) light absorption, strong intramolecular exciton coupling, and efficient intersystem crossing (ISC). Generation of 1O2 as well as O2•- under irradiation was found to give high reactive oxygen species generation efficiencies for those oligomers.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.,School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Long Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|