51
|
Häfliger F, Truong NP, Wang HS, Anastasaki A. Fate of the RAFT End-Group in the Thermal Depolymerization of Polymethacrylates. ACS Macro Lett 2023; 12:1207-1212. [PMID: 37615956 PMCID: PMC10515620 DOI: 10.1021/acsmacrolett.3c00418] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Thermal RAFT depolymerization has recently emerged as a promising methodology for the chemical recycling of polymers. However, while much attention has been given to the regeneration of monomers, the fate of the RAFT end-group after depolymerization has been unexplored. Herein, we identify the dominant small molecules derived from the RAFT end-group of polymethacrylates. The major product was found to be a unimer (DP = 1) RAFT agent, which is not only challenging to synthesize using conventional single-unit monomer insertion strategies, but also a highly active RAFT agent for methyl methacrylate, exhibiting faster consumption and yielding polymers with lower dispersities compared to the original, commercially available 2-cyano-2-propyl dithiobenzoate. Solvent-derived molecules were also identified predominantly at the beginning of the depolymerization, thus suggesting a significant mechanistic contribution from the solvent. Notably, the formation of both the unimer and the solvent-derived products remained consistent regardless of the RAFT agent, monomer, or solvent employed.
Collapse
Affiliation(s)
- Florian Häfliger
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 399 Royal
Parade, Parkville, VIC 3152, Australia
| | - Hyun Suk Wang
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
52
|
Whitfield R, Jones GR, Truong NP, Manring LE, Anastasaki A. Solvent-Free Chemical Recycling of Polymethacrylates made by ATRP and RAFT polymerization: High-Yielding Depolymerization at Low Temperatures. Angew Chem Int Ed Engl 2023; 62:e202309116. [PMID: 37523176 DOI: 10.1002/anie.202309116] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Although controlled radical polymerization is an excellent tool to make precision polymeric materials, reversal of the process to retrieve the starting monomer is far less explored despite the significance of chemical recycling. Here, we investigate the bulk depolymerization of RAFT and ATRP-synthesized polymers under identical conditions. RAFT-synthesized polymers undergo a relatively low-temperature solvent-free depolymerization back to monomer thanks to the partial in situ transformation of the RAFT end-group to macromonomer. Instead, ATRP-synthesized polymers can only depolymerize at significantly higher temperatures (>350 °C) through random backbone scission. To aid a more complete depolymerization at even lower temperatures, we performed a facile and quantitative end-group modification strategy in which both ATRP and RAFT end-groups were successfully converted to macromonomers. The macromonomers triggered a lower temperature bulk depolymerization with an onset at 150 °C yielding up to 90 % of monomer regeneration. The versatility of the methodology was demonstrated by a scalable depolymerization (≈10 g of starting polymer) retrieving 84 % of the starting monomer intact which could be subsequently used for further polymerization. This work presents a new low-energy approach for depolymerizing controlled radical polymers and creates many future opportunities as high-yielding, solvent-free and scalable depolymerization methods are sought.
Collapse
Affiliation(s)
- Richard Whitfield
- Laboratory of Polymeric Materials, D-MATL, ETH Zurich, Vladimir-Prelog-Weg-5, 8093, Zurich, Switzerland
| | - Glen R Jones
- Laboratory of Polymeric Materials, D-MATL, ETH Zurich, Vladimir-Prelog-Weg-5, 8093, Zurich, Switzerland
| | - Nghia P Truong
- Laboratory of Polymeric Materials, D-MATL, ETH Zurich, Vladimir-Prelog-Weg-5, 8093, Zurich, Switzerland
| | | | - Athina Anastasaki
- Laboratory of Polymeric Materials, D-MATL, ETH Zurich, Vladimir-Prelog-Weg-5, 8093, Zurich, Switzerland
| |
Collapse
|
53
|
Reid M, Teskey CJ. Highlights from the 56th Bürgenstock Conference on Stereochemistry 2023. Chem Sci 2023; 14:9244-9247. [PMID: 37712042 PMCID: PMC10498497 DOI: 10.1039/d3sc90151c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Herein, we share an overview of the scientific highlights from speakers at the latest edition of the longstanding Bürgenstock Conference.
Collapse
Affiliation(s)
- Marc Reid
- WestCHEM Department of Pure & Applied Chemistry, University of Strathclyde Glasgow UK
| | - Christopher J Teskey
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
54
|
De Luca
Bossa F, Yilmaz G, Matyjaszewski K. Fast Bulk Depolymerization of Polymethacrylates by ATRP. ACS Macro Lett 2023; 12:1173-1178. [PMID: 37531639 PMCID: PMC10433507 DOI: 10.1021/acsmacrolett.3c00389] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Fast bulk depolymerization of poly(n-butyl methacrylate) and poly(methyl methacrylate), prepared by atom transfer radical polymerization (ATRP), is reported in the temperature range between 150 and 230 °C. Depolymerization of Cl-terminated polymethacrylates was catalyzed by a CuCl2/TPMA complex (0.022 or 0.22 equiv vs P-Cl) and was studied using TGA, also under isothermal conditions. Relatively rapid 5-20 min depolymerization was observed at 230 and 180 °C. The preparative scale reactions were carried out using a short-path distillation setup with up to 84% depolymerization within 15 min at 230 °C.
Collapse
Affiliation(s)
- Ferdinando De Luca
Bossa
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gorkem Yilmaz
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
55
|
Korpusik AB, Adili A, Bhatt K, Anatot JE, Seidel D, Sumerlin BS. Degradation of Polyacrylates by One-Pot Sequential Dehydrodecarboxylation and Ozonolysis. J Am Chem Soc 2023; 145:10480-10485. [PMID: 37155970 DOI: 10.1021/jacs.3c02497] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We establish a synthetically convenient method to degrade polyacrylate homopolymers. Carboxylic acids are installed along the polymer backbone by partial hydrolysis of the ester side chains, and then, in a one-pot sequential procedure, the carboxylic acids are converted into alkenes and oxidatively cleaved. This process enables the robustness and properties of polyacrylates to be maintained during their usable lifetime. The ability to tune the degree of degradation was demonstrated by varying the carboxylic acid content of the polymers. This method is compatible with a wide range of polymers prepared from vinyl monomers through copolymerization of acrylic acid with different monomers including acrylates, acrylamides, and styrenics.
Collapse
Affiliation(s)
- Angie B Korpusik
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alafate Adili
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kamal Bhatt
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jacqueline E Anatot
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
56
|
Jones GR, Wang HS, Parkatzidis K, Whitfield R, Truong NP, Anastasaki A. Reversed Controlled Polymerization (RCP): Depolymerization from Well-Defined Polymers to Monomers. J Am Chem Soc 2023; 145:9898-9915. [PMID: 37127289 PMCID: PMC10176471 DOI: 10.1021/jacs.3c00589] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Controlled polymerization methods are well-established synthetic protocols for the design and preparation of polymeric materials with a high degree of precision over molar mass and architecture. Exciting recent work has shown that the high end-group fidelity and/or functionality inherent in these techniques can enable new routes to depolymerization under relatively mild conditions. Converting polymers back to pure monomers by depolymerization is a potential solution to the environmental and ecological concerns associated with the ultimate fate of polymers. This perspective focuses on the emerging field of depolymerization from polymers synthesized by controlled polymerizations including radical, ionic, and metathesis polymerizations. We provide a critical review of current literature categorized according to polymerization technique and explore numerous concepts and ideas which could be implemented to further enhance depolymerization including lower temperature systems, catalytic depolymerization, increasing polymer scope, and controlled depolymerization.
Collapse
Affiliation(s)
- Glen R Jones
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Hyun Suk Wang
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Kostas Parkatzidis
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Richard Whitfield
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P Truong
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
57
|
Bagheri A. Application of RAFT in 3D Printing: Where Are the Future Opportunities? Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Ali Bagheri
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
58
|
Li XL, Ma K, Xu F, Xu TQ. Advances in the Synthesis of Chemically Recyclable Polymers. Chem Asian J 2023; 18:e202201167. [PMID: 36623942 DOI: 10.1002/asia.202201167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Indexed: 01/11/2023]
Abstract
The development of modern society is closely related to polymer materials. However, the accumulation of polymer materials and their evolution in the environment causes not only serious environmental problems, but also waste of resources. Although physical processing can be used to reuse polymers, the properties of the resulting polymers are significantly degraded. Chemically recyclable polymers, a type of polymer that degrades into monomers, can be an effective solution to the degradation of polymer properties caused by physical recycling of polymers. The ideal chemical recycling of polymers, i. e., quantitative conversion of the polymer to monomers at low energy consumption and repolymerization of the formed monomers into polymers with comparable properties to the original, is an attractive research goal. In recent years, significant progress has been made in the design of recyclable polymers, enabling the regulation of the "polymerization-depolymerization" equilibrium and closed-loop recycling under mild conditions. This review will focus on the following aspects of closed-loop recycling of poly(sulfur) esters, polycarbonates, polyacetals, polyolefins, and poly(disulfide) polymer, illustrate the challenges in this area, and provide an outlook on future directions.
Collapse
Affiliation(s)
- Xin-Lei Li
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kai Ma
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fei Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tie-Qi Xu
- State Key Laboratory of Fine Chemicals Department of Chemistry School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
59
|
Uchiyama M, Murakami Y, Satoh K, Kamigaito M. Synthesis and Degradation of Vinyl Polymers with Evenly Distributed Thioacetal Bonds in Main Chains: Cationic DT Copolymerization of Vinyl Ethers and Cyclic Thioacetals. Angew Chem Int Ed Engl 2023; 62:e202215021. [PMID: 36369911 PMCID: PMC10107285 DOI: 10.1002/anie.202215021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/15/2022]
Abstract
We report a novel method to synthesize degradable poly(vinyl ether)s with cleavable thioacetal bonds periodically arranged in the main chains using controlled cationic copolymerization of vinyl ethers with a 7-membered cyclic thioacetal (7-CTA) via degenerative chain transfer (DT) to the internal thioacetal bonds. The thioacetal bonds, which are introduced into the main chain by cationic ring-opening copolymerization of 7-CTA with vinyl ethers, serve as in-chain dormant species to allow homogeneous propagation of vinyl ethers for all internal segments to afford copolymers with controlled overall and segmental molecular weights. The obtained polymers can be degraded into low- and controlled-molecular-weight polymers with narrow molecular weight distributions via hydrolysis. Various vinyl ethers with hydrophobic, hydrophilic, and functional pendants are available. Finally, one-pot synthesis of multiblock copolymers and their degradation into diblock copolymers are also achieved.
Collapse
Affiliation(s)
- Mineto Uchiyama
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yukihiro Murakami
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
60
|
Bellotti V, Parkatzidis K, Wang HS, De Alwis Watuthanthrige N, Orfano M, Monguzzi A, Truong NP, Simonutti R, Anastasaki A. Light-accelerated depolymerization catalyzed by Eosin Y. Polym Chem 2023; 14:253-258. [PMID: 36760607 PMCID: PMC9843692 DOI: 10.1039/d2py01383e] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Retrieving the starting monomers from polymers synthesized by reversible deactivation radical polymerization has recently emerged as an efficient way to increase the recyclability of such materials and potentially enable their industrial implementation. To date, most methods have primarily focused on utilizing high temperatures (typically from 120 °C to 180 °C) to trigger an efficient depolymerization reaction. In this work, we show that, in the presence of Eosin Y under light irradiation, a much faster depolymerization of polymers made by reversible addition-fragmentation chain-transfer (RAFT) polymerization can be triggered even at a lower temperature (i.e. 100 °C). For instance, green light, in conjunction with ppm amounts of Eosin Y, resulted in the accelerated depolymerization of poly(methyl methacrylate) from 16% (thermal depolymerization at 100 °C) to 37% within 1 hour, and finally 80% depolymerization after 8 hours, as confirmed by both 1H-NMR and SEC analyses. The enhanced depolymerization rate was attributed to the activation of a macroCTA by Eosin Y, thus resulting in a faster macroradical generation. Notably, this method was found to be compatible with different wavelengths (e.g. blue, red and white light irradiation), solvents, and RAFT agents, thus highlighting the potential of light to significantly improve current depolymerization approaches.
Collapse
Affiliation(s)
- Valentina Bellotti
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Hyun Suk Wang
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | | | - Matteo Orfano
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Angelo Monguzzi
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| | - Roberto Simonutti
- Department of Material Science, University of Milano-Bicocca Via R. Cozzi 55 20125 Milan Italy
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir-Prelog-Weg-5 Zurich Switzerland
| |
Collapse
|
61
|
Ma Y, Jiang X, Yin J, Weder C, Berrocal JA, Shi Z. Chemical Upcycling of Conventional Polyureas into Dynamic Covalent Poly(aminoketoenamide)s. Angew Chem Int Ed Engl 2023; 62:e202212870. [PMID: 36394348 DOI: 10.1002/anie.202212870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
The chemical upcycling of polymers is an emerging strategy to transform post-consumer waste into higher-value chemicals and materials. However, on account of the high stability of the chemical bonds that constitute their main chains, the chemical modification of many polymers proves to be difficult. Here, we report a versatile approach for the upcycling of linear and cross-linked polyureas, which are widely used because of their high chemical stability. The treatment of these polymers or their composites with acetylacetone affords di-vinylogous amide-terminated compounds in good yield. These products can be reacted with aromatic isocyanates, and the resulting aminoketoenamide bonds are highly dynamic at elevated temperatures. We show here that this conversion scheme can be exploited for the preparation of dynamic covalent poly(aminoketoenamide) networks, which are healable and reprocessable through thermal treatment without any catalyst.
Collapse
Affiliation(s)
- Youwei Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Xuesong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - José Augusto Berrocal
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Zixing Shi
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
62
|
Young JB, Bowman JI, Eades CB, Wong AJ, Sumerlin BS. Photoassisted Radical Depolymerization. ACS Macro Lett 2022; 11:1390-1395. [PMID: 36469937 DOI: 10.1021/acsmacrolett.2c00603] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Controlled radical polymerization techniques enable the synthesis of polymers with predetermined molecular weights, narrow molecular weight distributions, and controlled architectures. Moreover, these polymerization approaches have been routinely shown to result in retained end-group functionality that can be reactivated to continue polymerization. However, reactivation of these end groups under conditions that instead promote depropagation is a viable route to initiate depolymerization and potentially enable closed-loop recycling from polymer to monomer. In this report, we investigate light as a trigger for thermal depolymerization of polymers prepared by reversible-addition-fragmentation chain-transfer (RAFT) polymerization. We study the role of irradiation wavelength by targeting the n → π* and π → π* electronic transitions of the thiocarbonylthio end-groups of RAFT-generated polymers to enhance depolymerization via terminal bond homolysis. Specifically, we explore depolymerization of polymers with trithiocarbonate, dithiocarbamate, and p-substituted dithiobenzoate end groups with the purpose of increasing depolymerization efficiency with light. As the wavelength decreases from the visible range to the UV range, the rate of depolymerization is dramatically increased. This method of photoassisted depolymerization allows up to 87% depolymerization efficiency within 1 h, results that may further the advancement of recyclable materials and life-cycle circularity.
Collapse
Affiliation(s)
- James B Young
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jared I Bowman
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Cabell B Eades
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alexander J Wong
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
63
|
Jung E, Yim D, Kim H, Peterson GI, Choi T. Depolymerization of poly(α‐methyl styrene) with ball‐mill grinding. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Eunsong Jung
- Department of Chemistry Seoul National University Seoul Republic of Korea
| | - Daniel Yim
- Department of Chemistry and Research Institutes of Basic Sciences Incheon National University Incheon Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Research Institutes of Basic Sciences Incheon National University Incheon Republic of Korea
| | - Gregory I. Peterson
- Department of Chemistry and Research Institutes of Basic Sciences Incheon National University Incheon Republic of Korea
| | - Tae‐Lim Choi
- Department of Chemistry Seoul National University Seoul Republic of Korea
| |
Collapse
|
64
|
Fortenberry AW, Jankoski PE, Stacy EK, McCormick CL, Smith AE, Clemons TD. A Perspective on the History and Current Opportunities of Aqueous RAFT Polymerization. Macromol Rapid Commun 2022; 43:e2200414. [PMID: 35822936 PMCID: PMC10697073 DOI: 10.1002/marc.202200414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Indexed: 02/06/2023]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerization has proven itself as a powerful polymerization technique affording facile control of molecular weight, molecular weight distribution, architecture, and chain end groups - while maintaining a high level of tolerance for solvent and monomer functional groups. RAFT is highly suited to water as a polymerization solvent, with aqueous RAFT now utilized for applications such as controlled synthesis of ultra-high molecular weight polymers, polymerization induced self-assembly, and biocompatible polymerizations, among others. Water as a solvent represents a non-toxic, cheap, and environmentally friendly alternative to organic solvents traditionally utilized for polymerizations. This, coupled with the benefits of RAFT polymerization, makes for a powerful combination in polymer science. This perspective provides a historical account of the initial developments of aqueous RAFT polymerization at the University of Southern Mississippi from the McCormick Research Group, details practical considerations for conducting aqueous RAFT polymerizations, and highlights some of the recent advances aqueous RAFT polymerization can provide. Finally, some of the future opportunities that this versatile polymerization technique in an aqueous environment can offer are discussed, and it is anticipated that the aqueous RAFT polymerization field will continue to realize these, and other exciting opportunities into the future.
Collapse
Affiliation(s)
| | - Penelope E Jankoski
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Evan K Stacy
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Charles L McCormick
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Adam E Smith
- Department of Chemical Engineering, The University of Mississippi, Oxford, MS, 38677, USA
| | - Tristan D Clemons
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
65
|
Martinez MR, Schild D, De Luca Bossa F, Matyjaszewski K. Depolymerization of Polymethacrylates by Iron ATRP. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Martinez
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Dirk Schild
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ferdinando De Luca Bossa
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
66
|
Wang HS, Truong NP, Jones GR, Anastasaki A. Investigating the Effect of End-Group, Molecular Weight, and Solvents on the Catalyst-Free Depolymerization of RAFT Polymers: Possibility to Reverse the Polymerization of Heat-Sensitive Polymers. ACS Macro Lett 2022; 11:1212-1216. [PMID: 36174124 PMCID: PMC9583609 DOI: 10.1021/acsmacrolett.2c00506] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/28/2022] [Indexed: 12/01/2022]
Abstract
Reversing reversible deactivation radical polymerization (RDRP) to regenerate the original monomer is an attractive prospect for both fundamental research and industry. However, current depolymerization strategies are often applied to highly heat-tolerant polymers with a specific end-group and can only be performed in a specific solvent. Herein, we depolymerize a variety of poly(methyl methacrylate) materials made by reversible addition-fragmentation chain-transfer (RAFT) polymerization and terminated by various end groups (dithiobenzoate, trithiocarbonate, and pyrazole carbodithioate). The effect of the nature of the solvent on the depolymerization conversion was also investigated, and key solvents such as dioxane, xylene, toluene, and dimethylformamide were shown to facilitate efficient depolymerization reactions. Notably, our approach could selectively regenerate pure heat-sensitive monomers (e.g., tert-butyl methacrylate and glycidyl methacrylate) in the absence of previously reported side reactions. This work pushes the boundaries of reversing RAFT polymerization and considerably expands the chemical toolbox for recovering starting materials under relatively mild conditions.
Collapse
Affiliation(s)
- Hyun Suk Wang
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Glen R. Jones
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
67
|
Wang Z, Yoon S, Wang J. Breaking the Paradox between Grafting-Through and Depolymerization to Access Recyclable Graft Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zeyu Wang
- School of Polymer Science and Polymer Engineering, the University of Akron, Akron, Ohio 44325, United States
| | - Seiyoung Yoon
- School of Polymer Science and Polymer Engineering, the University of Akron, Akron, Ohio 44325, United States
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, the University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
68
|
Adili A, Korpusik AB, Seidel D, Sumerlin BS. Photocatalytic Direct Decarboxylation of Carboxylic Acids to Derivatize or Degrade Polymers. Angew Chem Int Ed Engl 2022; 61:e202209085. [DOI: 10.1002/anie.202209085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 01/02/2023]
Affiliation(s)
- Alafate Adili
- Center for Heterocyclic Compounds Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Angie B. Korpusik
- George & Josephine Butler Polymer Research Laboratory Center for Macromolecular Science & Engineering Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory Center for Macromolecular Science & Engineering Department of Chemistry University of Florida Gainesville FL 32611 USA
| |
Collapse
|
69
|
Chemically recyclable polyurethanes based on bio-renewable γ-butyrolactone: From thermoplastics to elastomers. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
70
|
Zhao JZ, Yue TJ, Ren BH, Liu Y, Ren WM, Lu XB. Recyclable Sulfur-Rich Polymers with Enhanced Thermal, Mechanical, and Optical Performance. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin-Zhuo Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Tian-Jun Yue
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
71
|
Adili A, Korpusik AB, Seidel D, Sumerlin BS. Photocatalytic Direct Decarboxylation of Carboxylic Acids to Derivatize or Degrade Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alafate Adili
- University of Florida Department of Chemistry Department of Chemistry UNITED STATES
| | - Angie B. Korpusik
- University of Florida Department of Chemistry Department of Chemistry UNITED STATES
| | - Daniel Seidel
- University of Florida Department of Chemistry Department of Chemistry UNITED STATES
| | - Brent S. Sumerlin
- University of Florida Department of Chemistry PO Box 117200 FL 32611-7200 Gainesville UNITED STATES
| |
Collapse
|
72
|
Li J, Liu F, Liu Y, Shen Y, Li Z. Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ring-Opening Polymerization of Bio-renewable Bifunctional α-Methylene-δ-valerolactone. Angew Chem Int Ed Engl 2022; 61:e202207105. [PMID: 35674460 DOI: 10.1002/anie.202207105] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 01/13/2023]
Abstract
It is a highly attractive strategy to develop chemically recyclable polymers to establish a circular plastic economy. Despite the recent advancements, chemically recyclable polymers still face challenges including high energy cost for polymer preparation or recycling, poor monomer recovery selectivity and efficiency as well as undesired material performance. In this contribution, we present the chemoselective controlled ring-opening polymerization of bio-renewable bifunctional α-methylene-δ-valerolactone (MVL) to produce exclusive functionalizable polyester using strong base/urea binary catalysts. The obtained polyester with high molar mass exhibits good tensile strength comparable to that of some commodity plastics. Remarkably, the obtained polyester can be depolymerized to recover pristine monomer with a 96 % yield by thermolysis, thus successfully establishing a closed-loop life cycle.
Collapse
Affiliation(s)
- Jiandong Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yalei Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yong Shen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.,Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
73
|
Ruiu A, Bouilhac C, Gimello O, Seaudeau-Pirouley K, Senila M, Jänisch T, Lacroix-Desmazes P. Synthesis and Phase Behavior of a Platform of CO2-Soluble Functional Gradient Copolymers Bearing Metal-Complexing Units. Polymers (Basel) 2022; 14:polym14132698. [PMID: 35808744 PMCID: PMC9269141 DOI: 10.3390/polym14132698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/10/2022] Open
Abstract
The synthesis and characterization of a platform of novel functional fluorinated gradient copolymers soluble in liquid and supercritical CO2 is reported. These functional copolymers are bearing different types of complexing units (pyridine, triphenylphosphine, acetylacetate, thioacetate, and thiol) which are well-known ligands for various metals. They have been prepared by reversible addition–fragmentation chain-transfer (RAFT) polymerization in order to obtain well-defined gradient copolymers. The copolymers have been characterized by proton nuclear magnetic resonance (1H-NMR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, thermal gravimetric analysis (TGA), dynamical scanning calorimetry (DSC) and cloud point measurements in dense CO2. All the investigated metal-complexing copolymers are soluble in dense CO2 under mild conditions (pressure lower than 30 MPa up to 65 °C), confirming their potential applications in processes such as metal-catalyzed reactions in dense CO2, metal impregnation, (e.g., preparation of supported catalysts) or metal extraction from various substrates (solid or liquid effluents). Particularly, it opens the door to greener and less energy-demanding processes for the recovery of metals from spent catalysts compared to more conventional pyro- and hydro-metallurgical methods.
Collapse
Affiliation(s)
- Andrea Ruiu
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (A.R.); (O.G.)
| | - Cécile Bouilhac
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (A.R.); (O.G.)
- Correspondence: (C.B.); (P.L.-D.)
| | - Olinda Gimello
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (A.R.); (O.G.)
| | | | - Marin Senila
- INCDO INOE 2000, Research Institute for Analytical Instrumentation, ICIA, 400293 Cluj-Napoca, Romania;
| | - Thorsten Jänisch
- Fraunhofer Institute for Chemical Technology, 76327 Pfinztal, Germany;
| | - Patrick Lacroix-Desmazes
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (A.R.); (O.G.)
- Correspondence: (C.B.); (P.L.-D.)
| |
Collapse
|
74
|
Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ring‐Opening Polymerization of Bio‐renewable Bifunctional α‐Methylene‐δ‐valerolactone. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
75
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
76
|
Martinez MR, Dworakowska S, Gorczyński A, Szczepaniak G, Bossa FDL, Matyjaszewski K. Kinetic comparison of isomeric oligo(ethylene oxide) (meth)acrylates: Aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate and methyl 2‐(oligo(ethylene oxide) methyl ether)acrylate macromonomers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael R. Martinez
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Sylwia Dworakowska
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
- Department of Biotechnology and Renewable Materials, Faculty of Chemical Engineering and Technology Cracow University of Technology Cracow Poland
| | - Adam Gorczyński
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
- Faculty of Chemistry Adam Mickiewicz University Poznań Poland
| | - Grzegorz Szczepaniak
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Ferdinando De Luca Bossa
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| |
Collapse
|
77
|
Hakobyan K, Xu J, Müllner M. The challenges of controlling polymer synthesis at the molecular and macromolecular level. Polym Chem 2022. [DOI: 10.1039/d1py01581h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this Perspective, we outline advances and challenges in controlling the structure of polymers at various size regimes in the context of structural features such as molecular weight distribution, end groups, architecture, composition and sequence.
Collapse
Affiliation(s)
- Karen Hakobyan
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
78
|
Kazama A, Kohsaka Y. Diverse chemically recyclable polymers obtained by cationic vinyl and ring-opening polymerizations of the cyclic ketene acetal ester “dehydroaspirin”. Polym Chem 2022. [DOI: 10.1039/d2py01181f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemically recyclable polymers composed of carbon and/or ester backbones were prepared by vinyl and ring-opening polymerizations of a cyclic ketene acetal ester.
Collapse
Affiliation(s)
- Akane Kazama
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yasuhiro Kohsaka
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, Japan
| |
Collapse
|
79
|
Wang Z, Lan Y, Liu P, Li X, Zhao Y. Rational design of a multi-in-one heterofunctional agent for versatile topological transformation of multisite multisegmented polystyrenes. Polym Chem 2022. [DOI: 10.1039/d2py00662f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A “seven-in-one” initiating, coupling and stimuli-labile agent is designed to achieve topological transformations with reduced, similar and enhanced molar masses.
Collapse
Affiliation(s)
- Zhigang Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingjia Lan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaohong Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
80
|
Cai Z, Liu Y, Tao Y, Zhu JB. Recent Advances in Monomer Design for Recyclable Polymers. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
81
|
Huang S, Su X, Wu Y, Xiong XG, Liu Y. Promoting halogen-bonding catalyzed living radical polymerization through ion-pair strain. Chem Sci 2022; 13:11352-11359. [PMID: 36320570 PMCID: PMC9533465 DOI: 10.1039/d2sc04196k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Discovering efficient catalysts is highly desired in expanding the application of halogen-bonding catalysis. We herein report our findings on applying triaminocyclopropenium (TAC) iodides as highly potent catalysts for halogen-bonding catalyzed living radical polymerization. Promoted by the unique effect of ion-pair strain between the TAC cation and the iodide anion, the TAC iodides showed high catalytic efficiency in the halogen-bonding catalysis toward radical generation, and surpassed the previously reported organic iodide catalysts. With the TAC iodide as catalyst, radical polymerization with a living feature was successfully realized, which shows general applicability with a variety of monomers and produced block copolymers. In addition, the TAC-iodides also showed promising feasibility in catalyzing the radical depolymerization of iodo-terminated polymethacrylates. Noteworthily, the catalytic capacity of the TAC iodides is demonstrated to be closely related to the electronic properties of the TAC cation, which offers a molecular platform for further catalyst screening and optimization. Promoted by the unique effect of ion-pair strain between the triaminocyclopropenium (TAC) cation and its iodide counter-anion, the TAC iodides showed high catalytic efficiency in the halogen-bonding catalysis toward radical polymerization.![]()
Collapse
Affiliation(s)
- Shiwen Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xinjian Su
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yanzhen Wu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Gen Xiong
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yiliu Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|