51
|
Ribeiro M, de Sousa T, Sabença C, Poeta P, Bagulho AS, Igrejas G. Advances in quantification and analysis of the celiac-related immunogenic potential of gluten. Compr Rev Food Sci Food Saf 2021; 20:4278-4298. [PMID: 34402581 DOI: 10.1111/1541-4337.12828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
Gluten-free products have emerged in response to the increasing prevalence of gluten-related disorders, namely celiac disease. Therefore, the quantification of gluten in products intended for consumption by individuals who may suffer from these pathologies must be accurate and reproducible, in a way that allows their proper labeling and protects the health of consumers. Immunochemical methods have been the methods of choice for quantifying gluten, and several kits are commercially available. Nevertheless, they still face problems such as the initial extraction of gluten in complex matrices or the use of a standardized reference material to validate the results. Lately, other methodologies relying mostly on mass spectrometry-based techniques have been explored, and that may allow, in addition to quantitative analysis, the characterizationof gluten proteins. On the other hand, although the level of 20 mg/kg of gluten detected by these methods is sufficient for a product to be considered gluten-free, its immunogenic potential for celiac patients has not been clinically validated. In this sense, in vitro and in vivo models, such as the organoid technology applied in gut-on-chip devices and the transgenic humanized mouse models, respectively, are being developed for investigating both the gluten-induced pathogenesis and the treatment of celiac disease. Due to the ubiquitous nature of gluten in the food industry, as well as the increased prevalence of gluten-related disorders, here we intend to summarize the available methods for gluten quantification in food matrices and for the evaluation of its immunogenic potential concerning the development of novel therapies for celiac disease to highlight active research and discuss knowledge gaps and current challenges in this field.
Collapse
Affiliation(s)
- Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Carolina Sabença
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Patrícia Poeta
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Ana Sofia Bagulho
- National Institute for Agrarian and Veterinarian Research, Elvas, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| |
Collapse
|
52
|
Chen X, Deng X, Zhang Y, Wu Y, Yang K, Li Q, Wang J, Yao W, Tong J, Xie T, Hou S, Yao J. Computational Design and Crystal Structure of a Highly Efficient Benzoylecgonine Hydrolase. Angew Chem Int Ed Engl 2021; 60:21959-21965. [PMID: 34351032 DOI: 10.1002/anie.202108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/26/2021] [Indexed: 11/05/2022]
Abstract
Benzoylecgonine (BZE) is the major toxic metabolite of cocaine and is responsible for the long-term cocaine-induced toxicity owing to its long residence time in humans. BZE is also the main contaminant following cocaine consumption. Here, we identified the bacterial cocaine esterase (CocE) as a BZE-metabolizing enzyme (BZEase), which can degrade BZE into biological inactive metabolites (ecgonine and benzoic acid). CocE was redesigned by a reactant-state-based enzyme design theory. An encouraging mutant denoted as BZEase2, presented a >400-fold improved catalytic efficiency against BZE compared with wild-type (WT) CocE. In vivo, a single dose of BZEase2 (1 mg kg-1 , IV) could eliminate nearly all BZE within only two minutes, suggesting the enzyme has the potential for cocaine overdose treatment and BZE elimination in the environment by accelerating BZE clearance. The crystal structure of a designed BZEase was also determined.
Collapse
Affiliation(s)
- Xiabin Chen
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xingyu Deng
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yun Zhang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yanan Wu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Kang Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, Zhejiang, 310053, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, Zhejiang, 310053, China
| | - Junsen Tong
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shurong Hou
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jianzhuang Yao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| |
Collapse
|
53
|
Pultz IS, Hill M, Vitanza JM, Wolf C, Saaby L, Liu T, Winkle P, Leffler DA. Gluten Degradation, Pharmacokinetics, Safety, and Tolerability of TAK-062, an Engineered Enzyme to Treat Celiac Disease. Gastroenterology 2021; 161:81-93.e3. [PMID: 33741317 DOI: 10.1053/j.gastro.2021.03.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Celiac disease (CeD) is an immune-mediated disorder triggered by the ingestion of gluten. Despite adhering to a gluten-free diet (the only management option available to patients with CeD), many patients continue to experience symptoms and intestinal injury. Degradation of immunogenic fractions of gluten peptides in the stomach has been proposed as an approach to reduce toxicity of ingested gluten; however, no enzymes evaluated to date have demonstrated sufficient gluten degradation in complex meals. TAK-062 is a novel, computationally designed endopeptidase under development for the treatment of patients with CeD. METHODS Pharmacokinetics, safety, and tolerability of TAK-062 100-900 mg were evaluated in a phase I dose escalation study in healthy participants and patients with CeD. Gluten degradation by TAK-062 was evaluated under simulated gastric conditions in vitro and in healthy participants in the phase I study, with and without pretreatment with a proton pump inhibitor. Residual gluten (collected through gastric aspiration in the phase I study) was quantified using R5 and G12 monoclonal antibody enzyme-linked immunosorbent assays. RESULTS In vitro, TAK-062 degraded more than 99% of gluten (3 g and 9 g) within 10 minutes. In the phase I study, administration of TAK-062 was well tolerated and resulted in a median gluten degradation ranging from 97% to more than 99% in complex meals containing 1-6 g gluten at 20-65 minutes postdose. CONCLUSIONS TAK-062 is well tolerated and rapidly and effectively degrades large amounts of gluten, supporting the development of this novel enzyme as an oral therapeutic for patients with CeD. (ClinicalTrials.gov: NCT03701555, https://clinicaltrials.gov/ct2/show/NCT03701555.).
Collapse
Affiliation(s)
| | | | | | | | | | - Tina Liu
- Takeda Pharmaceuticals International Co, Cambridge, Massachusetts
| | | | - Daniel A Leffler
- Takeda Pharmaceuticals International Co, Cambridge, Massachusetts.
| |
Collapse
|
54
|
Dellas N, Liu J, Botham RC, Huisman GW. Adapting protein sequences for optimized therapeutic efficacy. Curr Opin Chem Biol 2021; 64:38-47. [PMID: 33933937 DOI: 10.1016/j.cbpa.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Therapeutic proteins alleviate disease pathology by supplementing missing or defective native proteins, sequestering superfluous proteins, or by acting through designed non-natural mechanisms. Although therapeutic proteins often have the same amino acid sequence as their native counterpart, their maturation paths from expression to the site of physiological activity are inherently different, and optimizing protein sequences for properties that 100s of millions of years of evolution did not need to address presents an opportunity to develop better biological treatments. Because therapeutic proteins are inherently non-natural entities, optimization for their desired function should be considered analogous to that of small molecule drug candidates, which are optimized through expansive combinatorial variation by the medicinal chemist. Here, we review recent successes and challenges of protein engineering for optimized therapeutic efficacy.
Collapse
Affiliation(s)
- Nikki Dellas
- Codexis Inc., 200 Penobscot Dr, Redwood City, CA, 94063, USA.
| | - Joyce Liu
- Codexis Inc., 200 Penobscot Dr, Redwood City, CA, 94063, USA
| | - Rachel C Botham
- Codexis Inc., 200 Penobscot Dr, Redwood City, CA, 94063, USA
| | - Gjalt W Huisman
- Codexis Inc., 200 Penobscot Dr, Redwood City, CA, 94063, USA
| |
Collapse
|
55
|
Lamacchia C, Landriscina L, Severini C, Caporizzi R, Derossi A. Characterizing the Rheological and Bread-Making Properties of Wheat Flour Treated by "Gluten Friendly TM" Technology. Foods 2021; 10:foods10040751. [PMID: 33916141 PMCID: PMC8066065 DOI: 10.3390/foods10040751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
After discovering an innovative technology for the reshaping of gluten proteins—the “Gluten FriendlyTM” system—that confers to wheat flour some unprecedented characteristics, such as reduced epitope antigenicity and a positive modulation of the gut microbiota, its effects on the production and quality of bread have been studied. Mainly, we have investigated the chemical, rheological and pasting properties of Gluten Friendly Flour (GFF) and of control flour (CF) with the aim of analyzing and interpreting potential differences. Furthermore, the bread made from GFF and CF was evaluated in terms of microstructure properties and sensory quality. The experiments demonstrated that GFF became soluble in aqueous solution, making it unfeasible to isolate using the Glutomatic apparatus. Although the water absorption of GFF increased by 10% compared to CF, dough elasticity was reduced, and dough stability decreased from 5 to 2 min. A significant increase in the alveograph index (P/L) from 0.63 to 6.31 was detected, whereas pasting properties did not change from the control flour. Despite these profound modifications in the rheological properties, GFF exhibited a high ability to shape dough and to produce bread with high quality and negligible differences from the control bread in terms of appearance, taste, aroma, color and texture.
Collapse
|
56
|
Liu YY, Lee CC, Hsu JH, Leu WM, Meng M. Efficient Hydrolysis of Gluten-Derived Celiac Disease-Triggering Immunogenic Peptides by a Bacterial Serine Protease from Burkholderia gladioli. Biomolecules 2021; 11:biom11030451. [PMID: 33802942 PMCID: PMC8002681 DOI: 10.3390/biom11030451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
Celiac disease is an autoimmune disorder triggered by toxic peptides derived from incompletely digested glutens in the stomach. Peptidases that can digest the toxic peptides may formulate an oral enzyme therapy to improve the patients’ health condition. Bga1903 is a serine endopeptidase secreted by Burkholderia gladioli. The preproprotein of Bga1903 consists of an N-terminal signal peptide, a propeptide region, and an enzymatic domain that belongs to the S8 subfamily. Bga1903 could be secreted into the culture medium when it was expressed in E. coli. The purified Bga1903 is capable of hydrolyzing the gluten-derived toxic peptides, such as the 33- and 26-mer peptides, with the preference for the peptide bonds at the carbonyl site of glutamine (P1 position). The kinetic assay of Bga1903 toward the chromogenic substrate Z-HPQ-pNA at 37 °C, pH 7.0, suggests that the values of Km and kcat are 0.44 ± 0.1 mM and 17.8 ± 0.4 s−1, respectively. The addition of Bga1903 in the wort during the fermentation step of beer could help in making gluten-free beer. In summary, Bga1903 is usable to reduce the gluten content in processed foods and represents a good candidate for protein engineering/modification aimed to efficiently digest the gluten at the gastric condition.
Collapse
Affiliation(s)
- Yu-You Liu
- Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan;
| | - Cheng-Cheng Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan; (C.-C.L.); (J.-H.H.); (W.-M.L.)
| | - Jun-Hao Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan; (C.-C.L.); (J.-H.H.); (W.-M.L.)
| | - Wei-Ming Leu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan; (C.-C.L.); (J.-H.H.); (W.-M.L.)
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan; (C.-C.L.); (J.-H.H.); (W.-M.L.)
- Correspondence: ; Tel.: +886-4-22840328
| |
Collapse
|
57
|
Kivelä L, Caminero A, Leffler DA, Pinto-Sanchez MI, Tye-Din JA, Lindfors K. Current and emerging therapies for coeliac disease. Nat Rev Gastroenterol Hepatol 2021; 18:181-195. [PMID: 33219355 DOI: 10.1038/s41575-020-00378-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Coeliac disease is a common enteropathy that occurs in genetically susceptible individuals in response to the ingestion of gluten proteins present in wheat, rye and barley. Currently, the only available treatment for the condition is a strict, life-long gluten-free diet that, despite being safe and often effective, is associated with several challenges. Due to the high cost, particularly restrictive nature and perception of decreased quality of life associated with the diet, some patients are continuously exposed to gluten, which prevents an adequate disease control. Moreover, a subgroup of patients does not respond to the diet adequately, and healing of the small-bowel mucosa can be incomplete. Thus, there is a need for alternative treatment forms. The increasingly understood pathogenetic process of coeliac disease has enabled the identification of various targets for future therapies. Multiple investigational therapies ranging from tolerogenic to immunological approaches are in the pipeline, and several drug candidates have entered phase II/III clinical trials. This Review gives a broad overview of the different investigative treatment modalities for coeliac disease and summarizes the latest advances in this field.
Collapse
Affiliation(s)
- Laura Kivelä
- Tampere Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland.,Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alberto Caminero
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Daniel A Leffler
- Harvard Celiac Disease Research Program, Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Maria Ines Pinto-Sanchez
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jason A Tye-Din
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, and Gastroenterology Department, The Royal Melbourne Hospital, Parkville, Australia
| | - Katri Lindfors
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
58
|
Kurki A, Kemppainen E, Laurikka P, Kaukinen K, Lindfors K. The use of peripheral blood mononuclear cells in celiac disease diagnosis and treatment. Expert Rev Gastroenterol Hepatol 2021; 15:305-316. [PMID: 33176106 DOI: 10.1080/17474124.2021.1850262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Celiac disease is characterized by an abnormal immune activation driven by the ingestion of gluten from wheat, barley, and rye. Gluten-specific CD4+ T cells play an important role in disease pathogenesis and are detectable among peripheral blood mononuclear cells (PBMCs). Areas covered: This review summarizes the use of celiac disease patient PBMCs in clinical applications focusing on their exploitation in the development of diagnostic approaches and novel drugs to replace or complement gluten-free diet. Expert opinion: The most used PBMC-based methods applied in celiac disease research include ELISpot and HLA-DQ:gluten tetramer technology. ELISpot has been utilized particularly in research aiming to develop a celiac disease vaccine and in studies addressing the toxicity of different grains in celiac disease. HLA-DQ:gluten tetramer technology on the other hand initially focused on improving current diagnostics but in combination with additional markers it is also a useful outcome measure in clinical trials to monitor the efficacy of drug candidates. In addition, the technology serves well in the more detailed characterization of celiac disease-specific T cells, thereby possibly revealing novel therapeutic targets. Future studies may also reveal clinical applications for PBMC microRNAs and/or dendritic cells or monocytes present among PBMCs.
Collapse
Affiliation(s)
- Alma Kurki
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland
| | - Esko Kemppainen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland
| | - Pilvi Laurikka
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland
| | - Katri Kaukinen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital , Tampere, Finland
| | - Katri Lindfors
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University , Tampere, Finland
| |
Collapse
|
59
|
Bradauskiene V, Vaiciulyte-Funk L, Shah B, Cernauskas D, Tita M. Recent Advances in Biotechnological Methods for Wheat Gluten Immunotoxicity Abolishment – a Review. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/132853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
60
|
Leonard MM, Silvester JA, Leffler D, Fasano A, Kelly CP, Lewis SK, Goldsmith JD, Greenblatt E, Kwok WW, McAuliffe WJ, Galinsky K, Siegelman J, Chow IT, Wagner JA, Sapone A, Smithson G. Evaluating Responses to Gluten Challenge: A Randomized, Double-Blind, 2-Dose Gluten Challenge Trial. Gastroenterology 2021; 160:720-733.e8. [PMID: 33130104 PMCID: PMC7878429 DOI: 10.1053/j.gastro.2020.10.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Gluten challenge is used to diagnose celiac disease (CeD) and for clinical research. Sustained gluten exposure reliably induces histologic changes but is burdensome. We investigated the relative abilities of multiple biomarkers to assess disease activity induced by 2 gluten doses, and aimed to identify biomarkers to supplement or replace histology. METHODS In this randomized, double-blind, 2-dose gluten-challenge trial conducted in 2 US centers (Boston, MA), 14 adults with biopsy-proven CeD were randomized to 3 g or 10 g gluten/d for 14 days. The study was powered to detect changes in villous height to crypt depth, and stopped at planned interim analysis on reaching this end point. Additional end points included gluten-specific cluster of differentiation (CD)4 T-cell analysis with HLA-DQ2-gluten tetramers and enzyme-linked immune absorbent spot, gut-homing CD8 T cells, interleukin-2, symptoms, video capsule endoscopy, intraepithelial leukocytes, and tissue multiplex immunofluorescence. RESULTS All assessments showed changes with gluten challenge. However, time to maximal change, change magnitude, and gluten dose-response relationship varied. Villous height to crypt depth, video capsule endoscopy enteropathy score, enzyme-linked immune absorbent spot, gut-homing CD8 T cells, intraepithelial leukocyte counts, and HLA-DQ2-restricted gluten-specific CD4 T cells showed significant changes from baseline at 10 g gluten only; symptoms were significant at 3 g. Symptoms and plasma interleukin-2 levels increased significantly or near significantly at both doses. Interleukin-2 appeared to be the earliest, most sensitive marker of acute gluten exposure. CONCLUSIONS Modern biomarkers are sensitive and responsive to gluten exposure, potentially allowing less invasive, lower-dose, shorter-duration gluten ingestion. This work provides a preliminary framework for rational design of gluten challenge for CeD research. ClinicalTrials.gov number, NCT03409796.
Collapse
Affiliation(s)
- Maureen M Leonard
- Center for Celiac Research and Treatment, Massachusetts General Hospital, Boston, Massachusetts; Celiac Disease Research Program, Harvard Medical School, Boston, Massachusetts
| | - Jocelyn A Silvester
- Celiac Disease Research Program, Harvard Medical School, Boston, Massachusetts; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts; Celiac Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Daniel Leffler
- Celiac Disease Research Program, Harvard Medical School, Boston, Massachusetts; Takeda Pharmaceuticals Inc Co, Cambridge, Massachusetts
| | - Alessio Fasano
- Center for Celiac Research and Treatment, Massachusetts General Hospital, Boston, Massachusetts; Celiac Disease Research Program, Harvard Medical School, Boston, Massachusetts
| | - Ciarán P Kelly
- Celiac Disease Research Program, Harvard Medical School, Boston, Massachusetts; Celiac Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Suzanne K Lewis
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Jeffrey D Goldsmith
- Celiac Disease Research Program, Harvard Medical School, Boston, Massachusetts; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | | | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | | | | | | | - I-Ting Chow
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - John A Wagner
- Takeda Pharmaceuticals Inc Co, Cambridge, Massachusetts
| | - Anna Sapone
- Takeda Pharmaceuticals Inc Co, Cambridge, Massachusetts
| | | |
Collapse
|
61
|
Caminero A, Verdu E. Therapeutic targets based on the modulation of immune function by gut bacteria. BIOTECHNOLOGICAL STRATEGIES FOR THE TREATMENT OF GLUTEN INTOLERANCE 2021:221-237. [DOI: 10.1016/b978-0-12-821594-4.00004-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
62
|
Olshan KL, Leonard MM, Serena G, Zomorrodi AR, Fasano A. Gut microbiota in Celiac Disease: microbes, metabolites, pathways and therapeutics. Expert Rev Clin Immunol 2020; 16:1075-1092. [PMID: 33103934 DOI: 10.1080/1744666x.2021.1840354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Current evidence supports a vital role of the microbiota on health outcomes, with alterations in an otherwise healthy balance linked to chronic medical conditions like celiac disease (CD). Recent advances in microbiome analysis allow for unparalleled profiling of the microbes and metabolites. With the growing volume of data available, trends are emerging that support a role for the gut microbiota in CD pathogenesis. AREAS COVERED In this article, the authors review the relationship between factors such as genes and antibiotic exposure on CD onset and the intestinal microbiota. The authors also review other microbiota within the human body (like the oropharynx) that may play a role in CD pathogenesis. Finally, the authors discuss implications for disease modification and the ultimate goal of prevention. The authors reviewed literature from PubMed, EMBASE, and Web of Science. EXPERT OPINION CD serves as a unique opportunity to explore the role of the intestinal microbiota on the development of chronic autoimmune disease. While research to date provides a solid foundation, most studies have been case-control and thus do not have capacity to explore the mechanistic role of the microbiota in CD onset. Further longitudinal studies and integrated multi-omics are necessary for investigating CD pathogenesis.
Collapse
Affiliation(s)
- Katherine L Olshan
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Ali R Zomorrodi
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,European Biomedical Research Institute of Salerno (EBRIS) , Salerno, Italy
| |
Collapse
|
63
|
Mak WS, Wang X, Arenas R, Cui Y, Bertolani S, Deng WQ, Tagkopoulos I, Wilson DK, Siegel JB. Discovery, Design, and Structural Characterization of Alkane-Producing Enzymes across the Ferritin-like Superfamily. Biochemistry 2020; 59:3834-3843. [PMID: 32935984 DOI: 10.1021/acs.biochem.0c00665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To complement established rational and evolutionary protein design approaches, significant efforts are being made to utilize computational modeling and the diversity of naturally occurring protein sequences. Here, we combine structural biology, genomic mining, and computational modeling to identify structural features critical to aldehyde deformylating oxygenases (ADOs), an enzyme family that has significant implications in synthetic biology and chemoenzymatic synthesis. Through these efforts, we discovered latent ADO-like function across the ferritin-like superfamily in various species of Bacteria and Archaea. We created a machine learning model that uses protein structural features to discriminate ADO-like activity. Computational enzyme design tools were then utilized to introduce ADO-like activity into the small subunit of Escherichia coli class I ribonucleotide reductase. The integrated approach of genomic mining, structural biology, molecular modeling, and machine learning has the potential to be utilized for rapid discovery and modulation of functions across enzyme families.
Collapse
Affiliation(s)
- Wai Shun Mak
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - XiaoKang Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Rigoberto Arenas
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States.,Chemistry Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Youtian Cui
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Steve Bertolani
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Wen Qiao Deng
- California College of Arts, 1111 Eighth Street, San Francisco, California 94107, United States
| | - Ilias Tagkopoulos
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States.,Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California 95616, United States.,Department of Computer Science, University of California, Davis, Davis, California 95616, United States
| | - David K Wilson
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616, United States.,Chemistry Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States.,Department of Biochemistry and Molecular Medicine, University of California, Davis, 2700 Stockton Boulevard, Suite 2102, Sacramento, California 95817, United States.,Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, California 95616, United States
| |
Collapse
|
64
|
Serena G, D'Avino P, Fasano A. Celiac Disease and Non-celiac Wheat Sensitivity: State of Art of Non-dietary Therapies. Front Nutr 2020; 7:152. [PMID: 33015123 PMCID: PMC7506149 DOI: 10.3389/fnut.2020.00152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Gluten related disorders (GRD), which include celiac disease, non-celiac wheat sensitivity and wheat allergy are heterogeneous conditions triggered by ingestion of gluten-containing grains. Together, their prevalence is estimated to be ~5% in the general population, however, in the last years the number of diagnoses has been rapidly increasing. To this day, the gold standard treatment for these disorders is the complete removal of gluten-containing grains from the diet. Although this therapy results effective in the majority of patients, up to 30% of individuals affected by GRD continue to present persistent symptoms. In addition, gluten-free diet has been shown to have poor nutritional quality and to cause a socio-economic burden in patients' quality of life. In order to respond to these issues, the scientific community has been focusing on finding additional and adjuvant non-dietary therapies. In this review, we focus on two main gluten related disorders, celiac disease and non-celiac wheat sensitivity. We delineate the actual knowledge about potential treatments and their relative efficacy in pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Paolo D'Avino
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Vita-Salute San Raffaele University, Milan, Italy
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| |
Collapse
|
65
|
Microbiome of root vegetables-a source of gluten-degrading bacteria. Appl Microbiol Biotechnol 2020; 104:8871-8885. [PMID: 32875365 PMCID: PMC7502452 DOI: 10.1007/s00253-020-10852-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/29/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
Abstract
Abstract Gluten is a cereal protein that is incompletely digested by human proteolytic enzymes that create immunogenic peptides that accumulate in the gastrointestinal tract (GIT). Although both environmental and human bacteria have been shown to expedite gluten hydrolysis, gluten intolerance is a growing concern. Here we hypothesize that together with food, we acquire environmental bacteria that could impact our GIT with gluten-degrading bacteria. Using in vitro gastrointestinal simulation conditions, we evaluated the capacity of endophytic bacteria that inhabit root vegetables, potato (Solanum tuberosum), carrot (Daucus sativus), beet (Beta vulgaris), and topinambur (Jerusalem artichoke) (Helianthus tuberosus), to resist these conditions and degrade gluten. By 16S rDNA sequencing, we discovered that bacteria from the families Enterobacteriaceae, Bacillaceae, and Clostridiaceae most effectively multiply in conditions similar to the human GIT (microoxic conditions, 37 °C) while utilizing vegetable material and gluten as nutrients. Additionally, we used stomach simulation (1 h, pH 3) and intestinal simulation (1 h, bile salts 0.4%) treatments. The bacteria that survived this treatment retained the ability to degrade gluten epitopes but at lower levels. Four bacterial strains belonging to species Bacillus pumilus, Clostridium subterminale, and Clostridium sporogenes isolated from vegetable roots produced proteases with postproline cleaving activity that successfully neutralized the toxic immunogenic epitopes. Key points • Bacteria from root vegetables can degrade gluten. • Some of these bacteria can resist conditions mimicking gastrointestinal tract. Electronic supplementary material The online version of this article (10.1007/s00253-020-10852-0) contains supplementary material, which is available to authorized users.
Collapse
|
66
|
Gluten Degrading Enzymes for Treatment of Celiac Disease. Nutrients 2020; 12:nu12072095. [PMID: 32679754 PMCID: PMC7400306 DOI: 10.3390/nu12072095] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CeD) affects about 1% of most world populations. It presents a wide spectrum of clinical manifestations, ranging from minor symptoms to mild or severe malabsorption, and it may be associated with a wide variety of autoimmune diseases. CeD is triggered and maintained by the ingestion of gluten proteins from wheat and related grains. Gluten peptides that resist gastrointestinal digestion are antigenically presented to gluten specific T cells in the intestinal mucosa via HLA-DQ2 or HLA-DQ8, the necessary genetic predisposition for CeD. To date, there is no effective or approved treatment for CeD other than a strict adherence to a gluten-free diet, which is difficult to maintain in professional or social environments. Moreover, many patients with CeD have active disease despite diet adherence due to a high sensitivity to traces of gluten. Therefore, safe pharmacological treatments that complement the gluten-free diet are urgently needed. Oral enzyme therapy, employing gluten-degrading enzymes, is a promising therapeutic approach. A prerequisite is that such enzymes are active under gastro-duodenal conditions, quickly neutralize the T cell activating gluten peptides and are safe for human consumption. Several enzymes including prolyl endopeptidases, cysteine proteases and subtilisins can cleave the human digestion-resistant gluten peptides in vitro and in vivo. Examples are several prolyl endopeptidases from bacterial sources, subtilisins from Rothia bacteria that are natural oral colonizers and synthetic enzymes with optimized gluten-degrading activities. Without exception, these enzymes must cleave the otherwise unusual glutamine and proline-rich domains characteristic of antigenic gluten peptides. Moreover, they should be stable and active in both the acidic environment of the stomach and under near neutral pH in the duodenum. This review focuses on those enzymes that have been characterized and evaluated for the treatment of CeD, discussing their origin and activities, their clinical evaluation and challenges for therapeutic application. Novel developments include strategies like enteric coating and genetic modification to increase enzyme stability in the digestive tract.
Collapse
|
67
|
Ali M, Ishqi HM, Husain Q. Enzyme engineering: Reshaping the biocatalytic functions. Biotechnol Bioeng 2020; 117:1877-1894. [DOI: 10.1002/bit.27329] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Misha Ali
- Department of Biochemistry, Faculty of Life SciencesAligarh Muslim University Aligarh Uttar Pradesh India
| | | | - Qayyum Husain
- Department of Biochemistry, Faculty of Life SciencesAligarh Muslim University Aligarh Uttar Pradesh India
| |
Collapse
|
68
|
Scherf KA, Catassi C, Chirdo F, Ciclitira PJ, Feighery C, Gianfrani C, Koning F, Lundin KEA, Schuppan D, Smulders MJM, Tranquet O, Troncone R, Koehler P. Recent Progress and Recommendations on Celiac Disease From the Working Group on Prolamin Analysis and Toxicity. Front Nutr 2020; 7:29. [PMID: 32258047 PMCID: PMC7090026 DOI: 10.3389/fnut.2020.00029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Celiac disease (CD) affects a growing number of individuals worldwide. To elucidate the causes for this increase, future multidisciplinary collaboration is key to understanding the interactions between immunoreactive components in gluten-containing cereals and the human gastrointestinal tract and immune system and to devise strategies for CD prevention and treatment beyond the gluten-free diet. During the last meetings, the Working Group on Prolamin Analysis and Toxicity (Prolamin Working Group, PWG) discussed recent progress in the field together with key stakeholders from celiac disease societies, academia, industry and regulatory bodies. Based on the current state of knowledge, this perspective from the PWG members provides recommendations regarding clinical, analytical and legal aspects of CD. The selected key topics that require future multidisciplinary collaborative efforts in the clinical field are to collect robust data on the increasing prevalence of CD, to evaluate what is special about gluten-specific T cells, to study their kinetics and transcriptomics and to put some attention to the identification of the environmental agents that facilitate the breaking of tolerance to gluten. In the field of gluten analysis, the key topics are the precise assessment of gluten immunoreactive components in wheat, rye and barley to understand how these are affected by genetic and environmental factors, the comparison of different methods for compliance monitoring of gluten-free products and the development of improved reference materials for gluten analysis.
Collapse
Affiliation(s)
- Katharina A. Scherf
- Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Carlo Catassi
- Department of Pediatrics, Polytechnic University of Marche, Ancona, Italy
| | - Fernando Chirdo
- Instituto de Estudios Inmunologicos y Fisiopatologicos- IIFP (UNLP-CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Paul J. Ciclitira
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Italian National Council of Research, Naples, Italy
| | - Frits Koning
- Leiden University Medical Centre, Leiden, Netherlands
| | - Knut E. A. Lundin
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet and Stiftelsen KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Detlef Schuppan
- Institute for Translational Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Riccardo Troncone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), Department of Medical Translational Sciences, University Federico II, Naples, Italy
| | | |
Collapse
|
69
|
Osorio CE, Wen N, Mejías JH, Mitchell S, von Wettstein D, Rustgi S. Directed-Mutagenesis of Flavobacterium meningosepticum Prolyl-Oligopeptidase and a Glutamine-Specific Endopeptidase From Barley. Front Nutr 2020; 7:11. [PMID: 32133368 PMCID: PMC7040222 DOI: 10.3389/fnut.2020.00011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Wheat gluten proteins are the known cause of celiac disease. The repetitive tracts of proline and glutamine residues in these proteins make them exceptionally resilient to digestion in the gastrointestinal tract. These indigested peptides trigger immune reactions in susceptible individuals, which could be either an allergic reaction or celiac disease. Gluten exclusion diet is the only approved remedy for such disorders. Recently, a combination of a glutamine specific endoprotease from barley (EP-B2), and a prolyl endopeptidase from Flavobacterium meningosepticum (Fm-PEP), when expressed in the wheat endosperm, were shown to reasonably detoxify immunogenic gluten peptides under simulated gastrointestinal conditions. However useful, these "glutenases" are limited in application due to their denaturation at high temperatures, which most of the food processes require. Variants of these enzymes from thermophilic organisms exist, but cannot be applied directly due to their optimum activity at temperatures higher than 37°C. Though, these enzymes can serve as a reference to guide the evolution of peptidases of mesophilic origin toward thermostability. Therefore, a sequence guided site-saturation mutagenesis approach was used here to introduce mutations in the genes encoding Fm-PEP and EP-B2. A thermostable variant of Fm-PEP capable of surviving temperatures up to 90°C and EP-B2 variant with a thermostability of up 60°C were identified using this approach. However, the level of thermostability achieved is not sufficient; the present study has provided evidence that the thermostability of glutenases can be improved. And this pilot study has paved the way for more detailed structural studies in the future to obtain variants of Fm-PEP and EP-B2 that can survive temperatures ~100°C to allow their packing in grains and use of such grains in the food industry.
Collapse
Affiliation(s)
- Claudia E. Osorio
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- Agriaquaculture Nutritional Genomic Center, Temuco, Chile
| | - Nuan Wen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Jaime H. Mejías
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Temuco, Chile
| | - Shannon Mitchell
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Sachin Rustgi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| |
Collapse
|
70
|
Sharma N, Bhatia S, Chunduri V, Kaur S, Sharma S, Kapoor P, Kumari A, Garg M. Pathogenesis of Celiac Disease and Other Gluten Related Disorders in Wheat and Strategies for Mitigating Them. Front Nutr 2020; 7:6. [PMID: 32118025 PMCID: PMC7020197 DOI: 10.3389/fnut.2020.00006] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Wheat is a major cereal crop providing energy and nutrients to the billions of people around the world. Gluten is a structural protein in wheat, that is necessary for its dough making properties, but it is responsible for imparting certain intolerances among some individuals, which are part of this review. Most important among these intolerances is celiac disease, that is gluten triggered T-cell mediated autoimmune enteropathy and results in villous atrophy, inflammation and damage to intestinal lining in genetically liable individuals containing human leukocyte antigen DQ2/DQ8 molecules on antigen presenting cells. Celiac disease occurs due to presence of celiac disease eliciting epitopes in gluten, particularly highly immunogenic alpha-gliadins. Another gluten related disorder is non-celiac gluten-sensitivity in which innate immune-response occurs in patients along with gastrointestinal and non-gastrointestinal symptoms, that disappear upon removal of gluten from the diet. In wheat allergy, either IgE or non-IgE mediated immune response occurs in individuals after inhalation or ingestion of wheat. Following a life-long gluten-free diet by celiac disease and non-celiac gluten-sensitivity patients is very challenging as none of wheat cultivar or related species stands safe for consumption. Hence, different molecular biology, genetic engineering, breeding, microbial, enzymatic, and chemical strategies have been worked upon to reduce the celiac disease epitopes and the gluten content in wheat. Currently, only 8.4% of total population is affected by wheat-related issues, while rest of population remains safe and should not remove wheat from the diet, based on false media coverage.
Collapse
Affiliation(s)
- Natasha Sharma
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Simran Bhatia
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Venkatesh Chunduri
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Satveer Kaur
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Saloni Sharma
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Payal Kapoor
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Anita Kumari
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| | - Monika Garg
- Agri-Food Biotechnology Laboratory, National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
71
|
Caio G, Ciccocioppo R, Zoli G, De Giorgio R, Volta U. Therapeutic options for coeliac disease: What else beyond gluten-free diet? Dig Liver Dis 2020; 52:130-137. [PMID: 31831308 DOI: 10.1016/j.dld.2019.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
Coeliac disease is a chronic and systemic autoimmune condition triggered by gluten ingestion in genetically predisposed subjects. Currently, the only effective treatment available is a strict, lifelong gluten-free diet. However, patients perceive gluten withdrawal as an unsustainable burden in their life and some of them can exhibit persistent symptoms despite a strict diet. Thus, gluten-free diet represents a challenge, leading scientists to look for alternative or complementary treatments. This review will focus on non-dietary therapies for coeliac disease highlighting six therapeutic strategies: (1) decreasing gluten immunogenic content before it reaches the intestine; (2) sequestering gluten in the gut lumen before absorption; (3) blocking the passage of gluten through a leaky intestinal barrier; (4) preventing the enhancement of immune response against gliadin; (5) dampening the downstream immune activation; (6) inducing immune tolerance to gluten. Most developing therapies are only in the pre-clinical phase with only a few being tested in phase 2b or 3 trials. Although new approaches raise the hope for coeliacs giving them a chance to come back to gluten, for the time being a cautionary appraisal of new therapies suggests that they may have a complementary role to gluten withdrawal, mainly to prevent inadvertent gluten contamination.
Collapse
Affiliation(s)
- Giacomo Caio
- Department of Medical Sciences, University of Ferrara, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G. B. Rossi and University of Verona, Italy
| | - Giorgio Zoli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | | | - Umberto Volta
- Department of Medical and Surgical Scieces, University of Bologna, Italy
| |
Collapse
|
72
|
Rustgi S, Shewry P, Brouns F. Health Hazards Associated with Wheat and Gluten Consumption in Susceptible Individuals and Status of Research on Dietary Therapies. WHEAT QUALITY FOR IMPROVING PROCESSING AND HUMAN HEALTH 2020:471-515. [DOI: 10.1007/978-3-030-34163-3_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
73
|
Syage JA, Green PHR, Khosla C, Adelman DC, Sealey-Voyksner JA, Murray JA. Latiglutenase Treatment for Celiac Disease: Symptom and Quality of Life Improvement for Seropositive Patients on a Gluten-Free Diet. ACTA ACUST UNITED AC 2019; 1:293-301. [PMID: 32313451 DOI: 10.1002/ygh2.371] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Celiac disease (CD) is a widespread autoimmune disease triggered by dietary gluten that can lead to severe gastrointestinal symptoms. Because there is no available treatment other than a lifelong gluten-free diet, many patients continue to experience chronic symptoms. Aim In this analysis we report on the efficacy of latiglutenase, an orally administered enzyme treatment, for improving multiple gluten-induced symptoms and consequent quality of life (QOL) due to inadvertent gluten consumption. Methods This analysis is based on data from the CeliAction study of symptomatic patients (ALV003-1221; NCT01917630). Patients were treated with latiglutenase or placebo for 12 weeks and instructed to respond to a symptom diary daily and to multiple QOL questionnaires at weeks 0, 6, and 12 of the treatment periods as secondary endpoints. The results were stratified by serostatus. Results 398 patients completed the 12-week CDSD study. In seropositive, but not seronegative, CD patients a statistically significant and dose-dependent improvement was seen in the severity and frequency of abdominal pain, bloating, tiredness, and constipation. In subjects receiving 900 mg latiglutenase, improvements (p-values) in the severity of these symptoms for week 12 were 58% (0.038), 44% (0.023), 21% (0.164), and 104% (0.049) respectively, relative to placebo-dosed subjects. The reduction in symptoms trended higher for more symptomatic patients. Similar results were observed for the QOL outcome measures. Conclusions Although this study was not powered to definitively establish the benefit of latiglutenase in seropositive CD patients, such patients appear to show symptomatic and QOL benefit from using latiglutenase with meals.
Collapse
Affiliation(s)
| | - Peter H R Green
- Celiac Disease Center, Columbia University, New York, NY, United States
| | | | | | | | | |
Collapse
|
74
|
E40, a novel microbial protease efficiently detoxifying gluten proteins, for the dietary management of gluten intolerance. Sci Rep 2019; 9:13147. [PMID: 31511534 PMCID: PMC6739405 DOI: 10.1038/s41598-019-48299-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022] Open
Abstract
Gluten proteins are the causative agent of Celiac Disease (CD), a life-long food intolerance characterized by an autoimmune enteropathy. Inadvertent gluten exposure is frequent even in celiac patients complying with a gluten-free diet, and the supplementation of exogenous gluten-digestive enzymes (glutenases) is indeed a promising approach to reduce the risk of dietary gluten boost. Here we describe Endopeptidase 40, a novel glutenase discovered as secreted protein from the soil actinomycete Actinoallomurus A8, and its recombinant active form produced by Streptomyces lividans TK24. E40 is resistant to pepsin and trypsin, and active in the acidic pH range 3 to 6. E40 efficiently degrades the most immunogenic 33-mer as well as the whole gliadin proteins, as demonstrated by SDS-PAGE, HPLC, LC-MS/MS, and ELISA. T lymphocytes from duodenal biopsies of celiac patients showed a strongly reduced or absent release of IFN-γ when exposed to gluten digested with E40. Data in gastrointestinal simulated conditions suggest that no toxic peptides are freed during gluten digestion by E40 into the stomach to enter the small intestine, thus counteracting the intestinal inflammatory cascade to occur in CD patients. E40 is proposed as a novel candidate in Oral Enzymatic Therapy for the dietary management of gluten toxicity.
Collapse
|
75
|
Vaquero L, Bernardo D, León F, Rodríguez-Martín L, Alvarez-Cuenllas B, Vivas S. Challenges to drug discovery for celiac disease and approaches to overcome them. Expert Opin Drug Discov 2019; 14:957-968. [DOI: 10.1080/17460441.2019.1642321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Luis Vaquero
- Gastroenterology Unit, University Hospital of León, León, Spain
| | - David Bernardo
- Mucosal Immunology lab, IBGM (University of Valladolid-CSIC), Valladolid, Spain
- Gut Immunology Research Lab, Instituto de Investigación Sanitaria Princesa (IIS-IP) & Centro de Investigación Biomédica en Red de Enfermdades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | | | - Laura Rodríguez-Martín
- Gastroenterology Unit, University Hospital of León, León, Spain
- Institute of Biomedicina (IBIOMED), University of León, León, Spain
| | | | - Santiago Vivas
- Gastroenterology Unit, University Hospital of León, León, Spain
- Institute of Biomedicina (IBIOMED), University of León, León, Spain
| |
Collapse
|
76
|
Liu H, Fan X, Song H, Hu X, Zhang G, Yu C, Yi L. Efficient production of gluten hydrolase Kuma030 in E. coli by hot acid treatment without chromatography. Enzyme Microb Technol 2019; 129:109356. [PMID: 31307580 DOI: 10.1016/j.enzmictec.2019.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/12/2019] [Accepted: 05/26/2019] [Indexed: 01/28/2023]
Abstract
Kumamolisin from Alicyclobacillus sendaiensis strain NTAP-1 is a serine protease with collagenase activity. After molecular engineering, a kumamolisin mutant, named Kuma030, was obtained with high proteolytic activity against gluten, which might cause celiac disease. Kuma030 exhibited its potential application in industrial and medicine, while challenges remained of its large-scale purification and production. In the studies here, we successfully overexpressed the Kuma030 in E. coli BL21 (DE3) by anchoring a SUMO (Small Ubiquitin-like Modifier) fusion protein at its N-terminal end. In addition, a fast protein purification procedure was developed according to the acidophilic and thermophilic properties of Alicyclobacillus sendaiensis. After a simple acid treatment followed by a heat treatment, a total of 9.9 mg functional Kuma030 was quickly obtained form 1 L LB media culture. This purified Kuma030 was confirmed to be functional to cleave the PQ sequences in a designed protein substrate, and the gluten in actual food samples, such as whole wheat bread and beer, in a fast manner. Our studies provided an efficient strategy for the overexpression and purification of functional Kuma030 in E. coli, which might expand its broad practical applications.
Collapse
Affiliation(s)
- Houquan Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-Enzyme Catalysis, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Road, Wuchang District, Wuhan, 430062, China
| | - Xian Fan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-Enzyme Catalysis, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Road, Wuchang District, Wuhan, 430062, China
| | - Haoyue Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-Enzyme Catalysis, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Road, Wuchang District, Wuhan, 430062, China
| | - Xiaoyun Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-Enzyme Catalysis, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Road, Wuchang District, Wuhan, 430062, China
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-Enzyme Catalysis, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Road, Wuchang District, Wuhan, 430062, China
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-Enzyme Catalysis, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Road, Wuchang District, Wuhan, 430062, China.
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-Enzyme Catalysis, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Road, Wuchang District, Wuhan, 430062, China.
| |
Collapse
|
77
|
Abstract
Gluten is known to be the main triggering factor for celiac disease (CeD), an immune-mediated disorder. CeD is therefore managed using a strict and lifelong gluten-free diet (GFD), the only effective treatment available currently. However, the GFD is restrictive. Hence, efforts are being made to explore alternative therapies. Based on their mechanisms of action on various molecular targets involved in the pathogenesis of CeD, these therapies may be classified into one of the following five broad approaches. The first approach focuses on decreasing the immunogenic content of gluten, using strategies like genetically modified wheat, intra-intestinal gluten digestion using glutenases, microwave thermal treatment of hydrated wheat kernels, and gluten pretreatment with either bacterial/ fungal derived endopeptidases or microbial transglutaminase. The second approach involves sequestering gluten in the gut lumen before it is digested into immunogenic peptides and absorbed, using binder drugs like polymer p(HEMA-co-SS), single chain fragment variable (scFv), and anti- gluten antibody AGY. The third approach aims to prevent uptake of digested gluten through intestinal epithelial tight junctions, using a zonulin antagonist. The fourth approach involves tissue transglutaminase (tTG) inhibitors to prevent the enhancement of immunogenicity of digested gluten by the intestinal tTG enzyme. The fifth approach seeks to prevent downstream immune activation after uptake of gluten immunogenic peptides through the intestinal mucosal epithelial layer. Examples include HLA-DQ2 blockers that prevent presentation of gluten derived- antigens by dendritic cells to T cells, immune- tolerizing therapies like the vaccine Nexvax2 and TIMP-Glia, cathepsin inhibitors, immunosuppressants like corticosteroids, azathioprine etc., and anti-cytokine agents targeting TNF-α and interleukin-15. Apart from these approaches, research is being done to evaluate the effectiveness of probiotics/prebiotics, helminth therapy using Necator americanus, low FODMAP diet, and pancreatic enzyme supplementation in CeD symptom control; however, the mechanisms by which they play a beneficial role in CeD are yet to be clearly established. Overall, although many therapies being explored are still in the pre-clinical phase, some like the zonulin antagonist, immune tolerizing therapies and glutenases have reached phase II/III clinical trials. While these potential options appear exciting, currently they may at best be used to supplement rather than supplant the GFD.
Collapse
Affiliation(s)
| | - Govind K. Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
78
|
Moehs CP, Austill WJ, Holm A, Large TAG, Loeffler D, Mullenberg J, Schnable PS, Skinner W, van Boxtel J, Wu L, McGuire C. Development of Decreased-Gluten Wheat Enabled by Determination of the Genetic Basis of lys3a Barley. PLANT PHYSIOLOGY 2019; 179:1692-1703. [PMID: 30696748 PMCID: PMC6446766 DOI: 10.1104/pp.18.00771] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/17/2019] [Indexed: 05/08/2023]
Abstract
Celiac disease is the most common food-induced enteropathy in humans, with a prevalence of approximately 1% worldwide. It is induced by digestion-resistant, proline- and glutamine-rich seed storage proteins, collectively referred to as gluten, found in wheat (Triticum aestivum). Related prolamins are present in barley (Hordeum vulgare) and rye (Secale cereale). The incidence of both celiac disease and a related condition called nonceliac gluten sensitivity is increasing. This has prompted efforts to identify methods of lowering gluten in wheat, one of the most important cereal crops. Here, we used bulked segregant RNA sequencing and map-based cloning to identify the genetic lesion underlying a recessive, low-prolamin mutation (lys3a) in diploid barley. We confirmed the mutant identity by complementing the lys3a mutant with a transgenic copy of the wild-type barley gene and then used targeting-induced local lesions in genomes to identify induced single-nucleotide polymorphisms in the three homeologs of the corresponding wheat gene. Combining inactivating mutations in the three subgenomes of hexaploid bread wheat in a single wheat line lowered gliadin and low-molecular-weight glutenin accumulation by 50% to 60% and increased free and protein-bound lysine by 33%.
Collapse
Affiliation(s)
| | | | - Aaron Holm
- Arcadia Biosciences, Davis, California 95618
| | | | | | | | - Patrick S Schnable
- Data2Bio, 2079 Roy J. Carver Co-Lab, Ames, Iowa 50011
- 2035B Roy J. Carver Co-Lab, Iowa State University, Ames, Iowa 50011
| | | | | | - Liying Wu
- Arcadia Biosciences, Davis, California 95618
| | | |
Collapse
|
79
|
Abstract
Celiac disease (CD) is an autoimmune enteropathy triggered by gluten. Gluten-free diets can be challenging because of their restrictive nature, inadvertent cross-contaminations, and the high cost of gluten-free food. Novel nondietary therapies are at the preclinical stage, clinical trial phase, or have already been developed for other indications and are now being applied to CD. These therapies include enzymatic gluten degradation, binding and sequestration of gluten, restoration of epithelial tight junction barrier function, inhibition of tissue transglutaminase-mediated potentiation of gliadin oligopeptide immunogenicity or of human leukocyte antigen-mediated gliadin presentation, induction of tolerance to gluten, and antiinflammatory interventions.
Collapse
Affiliation(s)
- Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, 175 Cambridge Street, CPZS - 574, Boston, MA 02114, USA; Celiac Research Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Ciaran P Kelly
- Celiac Research Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, 175 Cambridge Street, CPZS - 574, Boston, MA 02114, USA; Celiac Research Program, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
80
|
Asrarkulova AS, Bulushova NV. Wheat Gluten and Its Hydrolysates. Possible Fields of Practical Use. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818090107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
81
|
Banegas-Luna AJ, Imbernón B, Llanes Castro A, Pérez-Garrido A, Cerón-Carrasco JP, Gesing S, Merelli I, D'Agostino D, Pérez-Sánchez H. Advances in distributed computing with modern drug discovery. Expert Opin Drug Discov 2018; 14:9-22. [PMID: 30484337 DOI: 10.1080/17460441.2019.1552936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Computational chemistry dramatically accelerates the drug discovery process and high-performance computing (HPC) can be used to speed up the most expensive calculations. Supporting a local HPC infrastructure is both costly and time-consuming, and, therefore, many research groups are moving from in-house solutions to remote-distributed computing platforms. Areas covered: The authors focus on the use of distributed technologies, solutions, and infrastructures to gain access to HPC capabilities, software tools, and datasets to run the complex simulations required in computational drug discovery (CDD). Expert opinion: The use of computational tools can decrease the time to market of new drugs. HPC has a crucial role in handling the complex algorithms and large volumes of data required to achieve specificity and avoid undesirable side-effects. Distributed computing environments have clear advantages over in-house solutions in terms of cost and sustainability. The use of infrastructures relying on virtualization reduces set-up costs. Distributed computing resources can be difficult to access, although web-based solutions are becoming increasingly available. There is a trade-off between cost-effectiveness and accessibility in using on-demand computing resources rather than free/academic resources. Graphics processing unit computing, with its outstanding parallel computing power, is becoming increasingly important.
Collapse
Affiliation(s)
- Antonio Jesús Banegas-Luna
- a Bioinformatics and High Performance Computing Research Group (BIO-HPC) , Universidad Católica de Murcia (UCAM) , Murcia , Spain
| | - Baldomero Imbernón
- a Bioinformatics and High Performance Computing Research Group (BIO-HPC) , Universidad Católica de Murcia (UCAM) , Murcia , Spain
| | - Antonio Llanes Castro
- a Bioinformatics and High Performance Computing Research Group (BIO-HPC) , Universidad Católica de Murcia (UCAM) , Murcia , Spain
| | - Alfonso Pérez-Garrido
- a Bioinformatics and High Performance Computing Research Group (BIO-HPC) , Universidad Católica de Murcia (UCAM) , Murcia , Spain
| | - José Pedro Cerón-Carrasco
- a Bioinformatics and High Performance Computing Research Group (BIO-HPC) , Universidad Católica de Murcia (UCAM) , Murcia , Spain
| | - Sandra Gesing
- b Center for Research Computing , University of Notre Dame , Notre Dame , IN , USA
| | - Ivan Merelli
- c Institute for Biomedical Technologies , National Research Council of Italy , Segrate (Milan) , Italy
| | - Daniele D'Agostino
- d Institute for Applied Mathematics and Information Technologies "E. Magenes" , National Research Council of Italy , Genoa , Italy
| | - Horacio Pérez-Sánchez
- a Bioinformatics and High Performance Computing Research Group (BIO-HPC) , Universidad Católica de Murcia (UCAM) , Murcia , Spain
| |
Collapse
|
82
|
Affiliation(s)
- Julia König
- a Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences , Örebro University , Örebro , Sweden
| | - Robert J Brummer
- a Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences , Örebro University , Örebro , Sweden
| |
Collapse
|
83
|
QM/MM free energy Simulations of an efficient Gluten Hydrolase (Kuma030) Implicate for a Reactant-State Based Protein-Design Strategy for General Acid/Base Catalysis. Sci Rep 2018; 8:7042. [PMID: 29728674 PMCID: PMC5935664 DOI: 10.1038/s41598-018-25471-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/23/2018] [Indexed: 01/16/2023] Open
Abstract
It is a grand attraction for contemporary biochemists to computationally design enzymes for novel chemical transformation or improved catalytic efficiency. Rosetta by Baker et al. is no doubt the leading software in the protein design society. Generally, optimization of the transition state (TS) is part of the Rosetta’s protocol to enhance the catalytic efficiency of target enzymes, since TS stabilization is the determining factor for catalytic efficiency based on the TS theory (TST). However, it is confusing that optimization of the reactant state (RS) also results in significant improvement of catalytic efficiency in some cases, such as design of gluten hydrolase (Kuma030). Therefore, it is interesting to uncover underlying reason why a better binding in the RS leading to an increased kcat. In this study, the combined quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy (PMF) simulations, pKa calculation, and the statistical analysis such as the ANOVA test were carried out to shed light on the interesting but elusive question. By integration of our computational results and general acid/base theory, we answered the question why optimization of RS stabilization leads to a better TS stabilization in the general acid/base catalysis. In addition, a new and simplified protein-design strategy is proposed for the general acid/base catalysis. The idea, that application of traditional well-defined enzyme mechanism to protein design strategy, would be a great help for methodology development of protein design.
Collapse
|
84
|
|
85
|
Setiawan D, Brender J, Zhang Y. Recent advances in automated protein design and its future challenges. Expert Opin Drug Discov 2018; 13:587-604. [PMID: 29695210 DOI: 10.1080/17460441.2018.1465922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Protein function is determined by protein structure which is in turn determined by the corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are understood, it should be possible to refine or even redefine the function of a protein by working backwards from the desired structure to the sequence. Automated protein design attempts to calculate the effects of mutations computationally with the goal of more radical or complex transformations than are accessible by experimental techniques. Areas covered: The authors give a brief overview of the recent methodological advances in computer-aided protein design, showing how methodological choices affect final design and how automated protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, particularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility and immunogenicity issues, automated protein design is initially more likely to make an impact as a research tool for exploring basic biology in drug discovery than in the design of protein biologics.
Collapse
Affiliation(s)
- Dani Setiawan
- a Department of Computational Medicine and Bioinformatics , University of Michigan , Ann Arbor , MI , USA
| | - Jeffrey Brender
- b Radiation Biology Branch , Center for Cancer Research, National Cancer Institute - NIH , Bethesda , MD , USA
| | - Yang Zhang
- a Department of Computational Medicine and Bioinformatics , University of Michigan , Ann Arbor , MI , USA.,c Department of Biological Chemistry , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
86
|
A computational approach for designing D-proteins with non-canonical amino acid optimised binding affinity. PLoS One 2017; 12:e0187524. [PMID: 29108013 PMCID: PMC5673230 DOI: 10.1371/journal.pone.0187524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 10/21/2017] [Indexed: 01/08/2023] Open
Abstract
Redesigning protein surface topology to improve target binding holds great promise in the search for highly selective therapeutics. While significant binding improvements can be achieved using natural amino acids, the introduction of non-canonical residues vastly increases sequence space and thus the chance to significantly out-compete native partners. The potency of protein inhibitors can be further enhanced by synthesising mirror image, D-amino versions. This renders them non-immunogenic and makes them highly resistant to proteolytic degradation. Current experimental design methods often preclude the use of D-amino acids and non-canonical amino acids for a variety of reasons. To address this, we build an in silico pipeline for D-protein designs featuring non-canonical amino acids. For a test scaffold we use an existing D-protein inhibitor of VEGF: D-RFX001. We benchmark the approach by recapitulating previous experimental optimisation with canonical amino acids. Subsequent incorporation of non-canonical amino acids allows designs that are predicted to improve binding affinity by up to -7.18 kcal/mol.
Collapse
|
87
|
Latiglutenase Improves Symptoms in Seropositive Celiac Disease Patients While on a Gluten-Free Diet. Dig Dis Sci 2017; 62:2428-2432. [PMID: 28755266 PMCID: PMC5709215 DOI: 10.1007/s10620-017-4687-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/19/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Celiac disease (CD) is a widespread condition triggered by dietary gluten and treated with a lifelong gluten-free diet (GFD); however, inadvertent exposure to gluten can result in episodic symptoms. A previous trial of latiglutenase (clinicaltrials.gov; NCT01917630), an orally administered mixture of two recombinant gluten-specific proteases, was undertaken in symptomatic subjects with persistent injury. The primary endpoint for histologic improvement was not met, presumably due to a trial effect. In this post hoc analysis, we investigated the efficacy of latiglutenase for reducing symptoms in subgroups of the study participants based on their seropositivity. METHODS The study involved symptomatic CD patients following a GFD for at least one year prior to randomization. Patients were treated for 12 weeks with latiglutenase or placebo. Of 398 completed patients, 173 (43%) were seropositive at baseline. Symptoms were recorded daily, and weekly symptom scores were compiled. p values were calculated by analysis of covariance. RESULTS A statistically significant, dose-dependent reduction was detected in the severity and frequency of symptoms in seropositive but not seronegative patients. The severity of abdominal pain and bloating was reduced by 58 and 44%, respectively, in the cohort receiving the highest latiglutenase dose (900 mg, n = 14) relative to placebo (n = 54). Symptom improvement increased from week 6 to week 12. There was also a trend toward greater symptom improvement with greater baseline symptom severity. CONCLUSIONS Seropositive CD patients show symptomatic improvement from latiglutenase taken with meals and would benefit from the availability of this treatment.
Collapse
|
88
|
Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park H, Shapovalov MV, Renfrew PD, Mulligan VK, Kappel K, Labonte JW, Pacella MS, Bonneau R, Bradley P, Dunbrack RL, Das R, Baker D, Kuhlman B, Kortemme T, Gray JJ. The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. J Chem Theory Comput 2017; 13:3031-3048. [PMID: 28430426 PMCID: PMC5717763 DOI: 10.1021/acs.jctc.7b00125] [Citation(s) in RCA: 918] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past decade, the Rosetta biomolecular modeling suite has informed diverse biological questions and engineering challenges ranging from interpretation of low-resolution structural data to design of nanomaterials, protein therapeutics, and vaccines. Central to Rosetta's success is the energy function: a model parametrized from small-molecule and X-ray crystal structure data used to approximate the energy associated with each biomolecule conformation. This paper describes the mathematical models and physical concepts that underlie the latest Rosetta energy function, called the Rosetta Energy Function 2015 (REF15). Applying these concepts, we explain how to use Rosetta energies to identify and analyze the features of biomolecular models. Finally, we discuss the latest advances in the energy function that extend its capabilities from soluble proteins to also include membrane proteins, peptides containing noncanonical amino acids, small molecules, carbohydrates, nucleic acids, and other macromolecules.
Collapse
Affiliation(s)
- Rebecca F. Alford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Andrew Leaver-Fay
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Jeliazko R. Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Matthew J. O’Meara
- Department of Pharmaceutical Chemistry, University of California at San Francisco, 1700 Fourth Street, San Francisco, California 94158, United States
| | - Frank P. DiMaio
- Department of Biochemistry, University of Washington, J-Wing Health Sciences Building, Box 357350, Seattle, Washington 98195, United States
| | - Hahnbeom Park
- Department of Biochemistry, University of Washington, Molecular Engineering and Sciences, Box 357350, 4000 15 Ave NE, Seattle, Washington 98195, United States
| | - Maxim V. Shapovalov
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, United States
| | - P. Douglas Renfrew
- Department of Biology, Center for Genomics and Systems Biology, New York University, 100 Washington Square East, New York, New York 10003
- Center for Computational Biology, Flatiron Institute, Simons Foundation, 162 5 Avenue, New York, New York 10010, United States
| | - Vikram K. Mulligan
- Department of Biochemistry, University of Washington, Molecular Engineering and Sciences, Box 357350, 4000 15 Ave NE, Seattle, Washington 98195, United States
| | - Kalli Kappel
- Biophysics Program, Stanford University, 450 Serra Mall, Stanford, California 94305, United States
| | - Jason W. Labonte
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Michael S. Pacella
- Department of Biomedical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Richard Bonneau
- Department of Biology, Center for Genomics and Systems Biology, New York University, 100 Washington Square East, New York, New York 10003
- Center for Computational Biology, Flatiron Institute, Simons Foundation, 162 5 Avenue, New York, New York 10010, United States
| | - Philip Bradley
- Computational Biology Program, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, United States
| | - Roland L. Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, United States
| | - Rhiju Das
- Biophysics Program, Stanford University, 450 Serra Mall, Stanford, California 94305, United States
| | - David Baker
- Department of Biochemistry, University of Washington, Molecular Engineering and Sciences, Box 357350, 4000 15 Ave NE, Seattle, Washington 98195, United States
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, California 94158, United States
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
89
|
Krishnareddy S, Stier K, Recanati M, Lebwohl B, Green PHR. Commercially available glutenases: a potential hazard in coeliac disease. Therap Adv Gastroenterol 2017; 10:473-481. [PMID: 28567117 PMCID: PMC5424869 DOI: 10.1177/1756283x17690991] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/01/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The only treatment for celiac disease (CD) is a gluten-free diet (GFD). However, there is interest among patients in a medical therapy to replace or help with a GFD. Therapies include gluten-degrading enzymes (glutenases). There are glutenases available marketed as dietary supplements that have not been demonstrated to digest the toxic epitopes of gluten. METHODS We investigated the contents, claims, and disclaimers of glutenase products and assessed patient interest using Google AdWords to obtain Google search frequencies. RESULTS Among 14 glutenase product, all contained proteases, eight contained X-prolyl exopeptidase dipeptidyl peptidase IV, two did not state the protease contents, and eight failed to specify the name or origin of all proteases. Eleven contained carbohydrases and lipases and three probiotics. One declared wheat and milk as allergens, two contained herbal products (type not stated) and one Carica papaya. Thirteen claimed to degrade immunogenic gluten fragments, four claimed to help alleviate gastrointestinal symptoms associated with eating gluten. Disclaimers included not being evaluated by the US Food and Drug Administration and products not intended to diagnose, treat, cure, or prevent any disease. On Google AdWords, the search frequency for the product names and the search terms was 3173 searches per month. CONCLUSIONS The names of these products make implicit claims that appear to be supported by the claims on the labels and websites for which there is no scientific basis. Google search data suggest great interest and therefore possible use by patients with CD. There needs to be greater oversight of these 'drugs'.
Collapse
Affiliation(s)
- Suneeta Krishnareddy
- Celiac Disease Center at Columbia University, Columbia University, New York, USA
| | - Kenneth Stier
- Celiac Disease Center at Columbia University, Columbia University, New York, USA
| | - Maya Recanati
- Celiac Disease Center at Columbia University, Columbia University, New York, USA
| | - Benjamin Lebwohl
- Celiac Disease Center at Columbia University, Columbia University, New York, USA
| | | |
Collapse
|
90
|
Thermal stability and kinetic constants for 129 variants of a family 1 glycoside hydrolase reveal that enzyme activity and stability can be separately designed. PLoS One 2017; 12:e0176255. [PMID: 28531185 PMCID: PMC5439667 DOI: 10.1371/journal.pone.0176255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/08/2017] [Indexed: 11/19/2022] Open
Abstract
Accurate modeling of enzyme activity and stability is an important goal of the protein engineering community. However, studies seeking to evaluate current progress are limited by small data sets of quantitative kinetic constants and thermal stability measurements. Here, we report quantitative measurements of soluble protein expression in E. coli, thermal stability, and Michaelis-Menten constants (kcat, KM, and kcat/KM) for 129 designed mutants of a glycoside hydrolase. Statistical analyses reveal that functional Tm is independent of kcat, KM, and kcat/KM in this system, illustrating that an individual mutation can modulate these functional parameters independently. In addition, this data set is used to evaluate computational predictions of protein stability using the established Rosetta and FoldX algorithms. Predictions for both are found to correlate only weakly with experimental measurements, suggesting improvements are needed in the underlying algorithms.
Collapse
|
91
|
Yao J, Luo H, Wang X. Understanding the Catalytic Mechanism and the Substrate Specificity of an Engineered Gluten Hydrolase by QM/MM Molecular Dynamics and Free Energy Simulations. J Chem Inf Model 2017; 57:1179-1186. [DOI: 10.1021/acs.jcim.7b00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jianzhuang Yao
- School
of Biological Science and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Haixia Luo
- Key
Laboratory of Ministry of Education for Conservation and Utilization
of Special Biological Resources in the Western China, Life Science
School, Ningxia University, Yinchuan 750021, P. R. China
| | - Xia Wang
- School
of Biological Science and Technology, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
92
|
Gobbetti M, Pontonio E, Filannino P, Rizzello CG, De Angelis M, Di Cagno R. How to improve the gluten-free diet: The state of the art from a food science perspective. Food Res Int 2017; 110:22-32. [PMID: 30029702 DOI: 10.1016/j.foodres.2017.04.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
The celiac disease is the most common food intolerance and its prevalence is increasing. Consequently, use of gluten-free diet has expanded, notwithstanding consumption as therapy for other gluten-related disorders or by wellbeing people without any medical prescription. Even the therapeutic efficiency has undoubtedly proven, several drawbacks mainly regarding the compliance, nutritional deficits and related diseases, and the alteration of the intestinal microbiota have described in the literature. Food science has been considered as one of the primary area of intervention to limit or eliminate such drawbacks. Efforts have approached shelf life, rheology and palatability aspects but more recently have mainly focused to improve the nutritional features of the gluten-free diet, and to propose dietary alternatives. The sourdough fermentation has shown the most promising results, also including a biotechnology strategy that has allowed the complete degradation of gluten prior to consumption.
Collapse
Affiliation(s)
- Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, Bozen, Italy.
| | - Erica Pontonio
- Department of Soil, Plant and Food Sciences, University of Bari, Aldo Moro, Bari, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Sciences, University of Bari, Aldo Moro, Bari, Italy
| | | | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari, Aldo Moro, Bari, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Free University of Bozen, Bozen, Italy
| |
Collapse
|
93
|
Gianfrani C, Mamone G, la Gatta B, Camarca A, Di Stasio L, Maurano F, Picascia S, Capozzi V, Perna G, Picariello G, Di Luccia A. Microwave-based treatments of wheat kernels do not abolish gluten epitopes implicated in celiac disease. Food Chem Toxicol 2017; 101:105-113. [DOI: 10.1016/j.fct.2017.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
|
94
|
Lutz S, Williams E, Muthu P. Engineering Therapeutic Enzymes. DIRECTED ENZYME EVOLUTION: ADVANCES AND APPLICATIONS 2017:17-67. [DOI: 10.1007/978-3-319-50413-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
95
|
Scherf KA, Wieser H, Koehler P. Novel approaches for enzymatic gluten degradation to create high-quality gluten-free products. Food Res Int 2016; 110:62-72. [PMID: 30029707 DOI: 10.1016/j.foodres.2016.11.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/04/2016] [Accepted: 11/15/2016] [Indexed: 02/08/2023]
Abstract
Celiac disease (CD), a chronic enteropathy of the small intestine caused by ingestion of gluten, is one of the most prevalent food hypersensitivities worldwide. The essential treatment is a strict lifelong gluten-free diet based on the avoidance of gluten-containing products from wheat, rye, barley and, in rare cases, oats. Products made from naturally gluten-free raw materials often have inferior nutritional, textural and sensory properties compared to the corresponding gluten-containing products. Therefore, the incorporation of wheat, rye and barley flours after efficient removal of the harmful component gluten into gluten-free products would be beneficial. Gluten modification resulting in decreased CD-immunoreactivity may be achieved via the formation of crosslinks using microbial transglutaminase. To effectively eliminate CD-immunoreactivity, plant, fungal, bacterial, animal or engineered peptidases are capable of degrading gluten proteins and peptides into harmless fragments. The application of peptidases from germinated cereal grains, fungal peptidases and/or lactic acid bacteria during food processing yielded high-quality sourdough wheat breads, pasta, wheat starch and bran, rye products and beer, all with gluten contents below the Codex Alimentarius threshold of 20mg/kg for gluten-free products. As with all gluten-free products, the legislative compliance of such treated materials needs to be monitored closely. Provided that all safety requirements are met, gluten-containing raw materials treated in an adequate way to remove CD-active gluten fragments may be used together with naturally gluten-free ingredients to create an extended choice of high-quality gluten-free products.
Collapse
Affiliation(s)
- Katharina Anne Scherf
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany.
| | - Herbert Wieser
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Peter Koehler
- Deutsche Forschungsanstalt für Lebensmittelchemie, Leibniz Institut, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| |
Collapse
|