51
|
Catalytic upgrading of ethanol to butanol over a binary catalytic system of FeNiO and LiOH. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63541-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
52
|
Daw P, Kumar A, Oren D, Espinosa-Jalapa NA, Srimani D, Diskin-Posner Y, Leitus G, Shimon LJW, Carmieli R, Ben-David Y, Milstein D. Redox Noninnocent Nature of Acridine-Based Pincer Complexes of 3d Metals and C–C Bond Formation. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
53
|
Das K, Yasmin E, Das B, Srivastava HK, Kumar A. Phosphine-free pincer-ruthenium catalyzed biofuel production: high rates, yields and turnovers of solventless alcohol alkylation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01679a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High TONs and TOFs are observed for the β-alkylation of alcohols using phosphine-free pincer-ruthenium catalysts at a very low base loading. Kinetic studies and DFT calculations were complementary and provide a clear understanding on the mechanism.
Collapse
Affiliation(s)
- Kanu Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Eileen Yasmin
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Babulal Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Hemant Kumar Srivastava
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research Guwahati
- Guwahati
- India
| | - Akshai Kumar
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
- Centre for Nanotechnology
| |
Collapse
|
54
|
Zhang B, Niu Y, Li L, Xu W, Chen H, Yuan B, Yang H. Combined experimental and DFT study on the adsorption of Co(II) and Zn(II) from fuel ethanol by Schiff base decorated magnetic Fe3O4 composites. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
55
|
Neumann CN, Rozeveld SJ, Yu M, Rieth AJ, Dincă M. Metal–Organic Framework-Derived Guerbet Catalyst Effectively Differentiates between Ethanol and Butanol. J Am Chem Soc 2019; 141:17477-17481. [DOI: 10.1021/jacs.9b08968] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Constanze N. Neumann
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Steven J. Rozeveld
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Mingzhe Yu
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Adam J. Rieth
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
56
|
Mathis CL, Geary J, Ardon Y, Reese MS, Philliber MA, VanderLinden RT, Saouma CT. Thermodynamic Analysis of Metal–Ligand Cooperativity of PNP Ru Complexes: Implications for CO2 Hydrogenation to Methanol and Catalyst Inhibition. J Am Chem Soc 2019; 141:14317-14328. [DOI: 10.1021/jacs.9b06760] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheryl L. Mathis
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Jackson Geary
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Yotam Ardon
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Maxwell S. Reese
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Mallory A. Philliber
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Ryan T. VanderLinden
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Caroline T. Saouma
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| |
Collapse
|
57
|
Chakraborty P, Gangwar MK, Emayavaramban B, Manoury E, Poli R, Sundararaju B. α-Alkylation of Ketones with Secondary Alcohols Catalyzed by Well-Defined Cp*Co III -Complexes. CHEMSUSCHEM 2019; 12:3463-3467. [PMID: 31240858 DOI: 10.1002/cssc.201900990] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/10/2019] [Indexed: 05/20/2023]
Abstract
Although α-alkylation of ketones with primary alcohols by transition-metal catalysis is well-known, the same process with secondary alcohols is arduous and complicated by self-condensation. Herein a well-defined, high-valence cobalt(III)-catalyst was applied for successful α-alkylation of ketones with secondary alcohols. A wide-variety of secondary alcohols, which include cyclic, acyclic, symmetrical, and unsymmetrical compounds, was employed as alkylating agents to produce β-alkyl aryl ketones.
Collapse
Affiliation(s)
- Priyanka Chakraborty
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Manoj Kumar Gangwar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Balakumar Emayavaramban
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| | - Eric Manoury
- Fine CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077, Toulouse Cedex 4, France
| | - Rinaldo Poli
- Fine CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, F-31077, Toulouse Cedex 4, France
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India
| |
Collapse
|
58
|
Liu Y, Shao Z, Wang Y, Xu L, Yu Z, Liu Q. Manganese-Catalyzed Selective Upgrading of Ethanol with Methanol into Isobutanol. CHEMSUSCHEM 2019; 12:3069-3072. [PMID: 30724026 DOI: 10.1002/cssc.201802689] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Isobutanol serves as an ideal gasoline additive owing to its good compatibility with current engine technology, high energy density, and high octane number. Herein, an efficient and selective Mn-catalyzed upgrading of ethanol with methanol into isobutanol is reported. This is the first example of deoxygenative coupling of lower alcohols to isobutanol by using a homogeneous non-noble-metal catalyst. This transformation proceeded at very low catalyst loading with a high turnover number (9233) and up to 96 % isobutanol selectivity.
Collapse
Affiliation(s)
- Yaqian Liu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P.R. China
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhihui Shao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Yujie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P.R. China
| | - Zhiyong Yu
- Department of Chemistry, Renmin University of China, Beijing, 100872, P.R. China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
59
|
Westhues N, Klankermayer J. Transfer Hydrogenation of Carbon Dioxide to Methanol Using a Molecular Ruthenium‐Phosphine Catalyst. ChemCatChem 2019. [DOI: 10.1002/cctc.201900932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Niklas Westhues
- Institut für Technische und Makromolekulare ChemieRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Jürgen Klankermayer
- Institut für Technische und Makromolekulare ChemieRWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
60
|
|
61
|
Debnath S, Sengupta A, Raghavachari K. Eliminating Systematic Errors in DFT via Connectivity-Based Hierarchy: Accurate Bond Dissociation Energies of Biodiesel Methyl Esters. J Phys Chem A 2019; 123:3543-3550. [DOI: 10.1021/acs.jpca.9b01478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sibali Debnath
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Arkajyoti Sengupta
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
62
|
Wilklow-Marnell M, Brennessel WW. A POCO type pincer complex of iridium: Synthesis, characterization, and catalysis. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
63
|
Thiyagarajan S, Gunanathan C. Catalytic Cross-Coupling of Secondary Alcohols. J Am Chem Soc 2019; 141:3822-3827. [DOI: 10.1021/jacs.9b00025] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Subramanian Thiyagarajan
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar-752050, India
| | - Chidambaram Gunanathan
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar-752050, India
| |
Collapse
|
64
|
Barriers of Biodiesel Adoption by Transportation Companies: A Case of Malaysian Transportation Industry. SUSTAINABILITY 2019. [DOI: 10.3390/su11030931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The need to develop an alternative fuel to fossil fuel is growing day by day, especially for the transportation industry, as the supply of fossil fuels is limited and is depleting at a rapid rate. One available resource that has emerged recently is biodiesel. However, the usage of biodiesel is very low among transportation companies. An investigation into the barriers of adopting biodiesel by transportation companies is the focus of the present study. A survey of 147 transportation companies in Malaysia was undertaken, and the data gathered were analyzed using partial least squares technique. Lack of government support, lack of environmental–commercial benefits, and lack of competitive pressure were found to be the barriers to biodiesel adoption. The results also indicated that differentiation strategy moderates the impact of lack of government support, lack of customer demand, lack of environmental-commercial benefits and lack of competitive pressure on biodiesel adoption. The results of this study could benefit policy makers by providing them key focus areas in which they can modify their strategies to actively and successfully promote the use of biodiesel among transportation companies in developing countries.
Collapse
|
65
|
Cao Z, Qiao H, Zeng F. Design, Synthesis, and Application of NNN Pincer Ligands Possessing a Remote Hydroxyl Group for Ruthenium-Catalyzed Transfer Hydrogenation of Ketones. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhengqiang Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi’an, Shaanxi 710127, P. R. China
| | - Hong Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi’an, Shaanxi 710127, P. R. China
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi’an, Shaanxi 710127, P. R. China
| |
Collapse
|
66
|
Rawat KS, Mandal SC, Bhauriyal P, Garg P, Pathak B. Catalytic upgrading of ethanol to n-butanol using an aliphatic Mn–PNP complex: theoretical insights into reaction mechanisms and product selectivity. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00501c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the product selectivity, conversion, and rate-determining steps in the catalytic upgrading of ethanol to butanol.
Collapse
Affiliation(s)
- Kuber Singh Rawat
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | | | - Preeti Bhauriyal
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Priyanka Garg
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Biswarup Pathak
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
- Discipline of Metallurgy Engineering and Materials Science
| |
Collapse
|
67
|
Zhang S, Ibrahim JJ, Yang Y. A pincer ligand enabled ruthenium catalyzed highly selective N-monomethylation of nitroarenes with methanol as the C1 source. Org Chem Front 2019. [DOI: 10.1039/c9qo00544g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A straightforward and highly selective N-monomethylation of nitroarenes with methanol as the C1 source was developed.
Collapse
Affiliation(s)
- Shaochun Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- PR China
| | - Jessica Juweriah Ibrahim
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- PR China
- University of Chinese Academy of Sciences
| | - Yong Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- PR China
| |
Collapse
|
68
|
Awada A, Moreno-Betancourt A, Philouze C, Moreau Y, Jouvenot D, Loiseau F. New Acridine-Based Tridentate Ligand for Ruthenium(II): Coordination with a Twist. Inorg Chem 2018; 57:15430-15437. [PMID: 30475599 DOI: 10.1021/acs.inorgchem.8b02735] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new tridentate ligand based on acridine has been synthetized. The central acridine heterocycle bears two pyridine coordinating units at positions 4 and 5. The terdentate 2,7-di- tert-butyl-4,5-di(pyridin-2-yl)acridine (dtdpa) was then coordinated to a ruthenium(II) cation. The corresponding homoleptic complex could only be obtained where both ligands coordinate to the ruthenium in a fac fashion. Thus, a heteroleptic compound (2) was constructed in combination with a terpyridine ligand in order to constrain the ligand to adopt a mer geometry. Such a coordination imposes a dramatic twist on the acridine heterocycle, resulting in an unexpected photophysical behavior. The electrochemical and photophysical properties of both complexes were studied, and the molecular structure of 2 was determined by X-ray diffraction. The two compounds absorb at low energy wavelengths, and a very weak luminescence is detected only for complex 2 in the near-infrared region.
Collapse
Affiliation(s)
- Ali Awada
- Univ. Grenoble Alpes, CNRS, DCM , F-38000 Grenoble , France
| | | | | | - Yohann Moreau
- Univ. Grenoble Alpes, CEA, CNRS, BIG-LCBM, UMR 5249 , F-38000 Grenoble , France
| | | | | |
Collapse
|
69
|
Irrgang T, Kempe R. 3d-Metal Catalyzed N- and C-Alkylation Reactions via Borrowing Hydrogen or Hydrogen Autotransfer. Chem Rev 2018; 119:2524-2549. [DOI: 10.1021/acs.chemrev.8b00306] [Citation(s) in RCA: 419] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Torsten Irrgang
- Inorganic Chemistry II − Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| | - Rhett Kempe
- Inorganic Chemistry II − Catalyst Design, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
70
|
Wang Y, Shao Z, Zhang K, Liu Q. Manganese‐Catalyzed Dual‐Deoxygenative Coupling of Primary Alcohols with 2‐Arylethanols. Angew Chem Int Ed Engl 2018; 57:15143-15147. [DOI: 10.1002/anie.201809333] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Yujie Wang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Zhihui Shao
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Kun Zhang
- School of Biotechnology and Health SciencesWuyi University Jiangmen Guangdong Province 529090 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
- School of Biotechnology and Health SciencesWuyi University Jiangmen Guangdong Province 529090 China
| |
Collapse
|
71
|
Wang Y, Shao Z, Zhang K, Liu Q. Manganese‐Catalyzed Dual‐Deoxygenative Coupling of Primary Alcohols with 2‐Arylethanols. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yujie Wang
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Zhihui Shao
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
| | - Kun Zhang
- School of Biotechnology and Health SciencesWuyi University Jiangmen Guangdong Province 529090 China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS)Department of ChemistryTsinghua University Beijing 100084 China
- School of Biotechnology and Health SciencesWuyi University Jiangmen Guangdong Province 529090 China
| |
Collapse
|
72
|
Affiliation(s)
- Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, Chhattisgarh 492015, India
| | - David Milstein
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
73
|
Schmitz M, Erken C, Ohligschläger A, Schnoor JK, Westhues NF, Klankermayer J, Leitner W, Liauw MA. Homogeneously Catalyzed Synthesis of (Higher) Alcohols (C1-C4) from the Combination of CO2
/CO/H2. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201800053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M. Schmitz
- RWTH Aachen University; Institut für Technische und Makromolekulare Chemie; Worringerweg 1 - 2 52074 Aachen Germany
| | - C. Erken
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstraße 34 - 36 45470 Mülheim an der Ruhr Germany
| | - A. Ohligschläger
- RWTH Aachen University; Institut für Technische und Makromolekulare Chemie; Worringerweg 1 - 2 52074 Aachen Germany
| | - J.-K. Schnoor
- RWTH Aachen University; Institut für Technische und Makromolekulare Chemie; Worringerweg 1 - 2 52074 Aachen Germany
| | - N. F. Westhues
- RWTH Aachen University; Institut für Technische und Makromolekulare Chemie; Worringerweg 1 - 2 52074 Aachen Germany
| | - J. Klankermayer
- RWTH Aachen University; Institut für Technische und Makromolekulare Chemie; Worringerweg 1 - 2 52074 Aachen Germany
| | - W. Leitner
- RWTH Aachen University; Institut für Technische und Makromolekulare Chemie; Worringerweg 1 - 2 52074 Aachen Germany
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstraße 34 - 36 45470 Mülheim an der Ruhr Germany
| | - M. A. Liauw
- RWTH Aachen University; Institut für Technische und Makromolekulare Chemie; Worringerweg 1 - 2 52074 Aachen Germany
| |
Collapse
|
74
|
Kosanovich AJ, Komatsu CH, Bhuvanesh N, Pérez LM, Ozerov OV. Dearomatization of the PCP Pincer Ligand in a Re
V
Oxo Complex. Chemistry 2018; 24:13754-13757. [DOI: 10.1002/chem.201802589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/03/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Alex J. Kosanovich
- Department of Chemistry Texas A&M University TAMU-3255 College Station Texas 77842 USA
| | | | - Nattamai Bhuvanesh
- Department of Chemistry Texas A&M University TAMU-3255 College Station Texas 77842 USA
| | - Lisa M. Pérez
- Laboratory for Molecular Simulation Texas A&M University TAMU-3255 College Station Texas 77842 USA
| | - Oleg V. Ozerov
- Department of Chemistry Texas A&M University TAMU-3255 College Station Texas 77842 USA
| |
Collapse
|
75
|
Shi J, Hu B, Ren P, Shang S, Yang X, Chen D. Synthesis and Reactivity of Metal–Ligand Cooperative Bifunctional Ruthenium Hydride Complexes: Active Catalysts for β-Alkylation of Secondary Alcohols with Primary Alcohols. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00432] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jing Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Bowen Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People’s Republic of China
| | - Shu Shang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Xinzheng Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Dafa Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| |
Collapse
|
76
|
Hsiao CM, Chen YF, Lin CH, Hu CH, Cai YR, Huang JH. Catalytic amination of benzyl alcohol using ruthenium cymene compounds containing bidentate N,O-donor ancillary ligands. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
77
|
Affiliation(s)
- Federica Zaccheria
- Institute of Molecular Science and Technology; Consiglio Nazionale delle Ricerche; Via Golgi 19 20133 Milano Italy
| | - Nicola Scotti
- Institute of Molecular Science and Technology; Consiglio Nazionale delle Ricerche; Via Golgi 19 20133 Milano Italy
| | - Nicoletta Ravasio
- Institute of Molecular Science and Technology; Consiglio Nazionale delle Ricerche; Via Golgi 19 20133 Milano Italy
| |
Collapse
|
78
|
Cai Y, Li F, Li YQ, Zhang WB, Liu FH, Shi SL. Base metal-catalyzed alcohol C–C couplings under hydrogen transfer conditions. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
79
|
Wu X, Fang G, Tong Y, Jiang D, Liang Z, Leng W, Liu L, Tu P, Wang H, Ni J, Li X. Catalytic Upgrading of Ethanol to n-Butanol: Progress in Catalyst Development. CHEMSUSCHEM 2018; 11:71-85. [PMID: 28895302 DOI: 10.1002/cssc.201701590] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/10/2017] [Indexed: 05/27/2023]
Abstract
Because n-butanol as a fuel additive has more advantageous physicochemical properties than those of ethanol, ethanol valorization to n-butanol through homo- or heterogeneous catalysis has received much attention in recent decades in both scientific and industrial fields. Recent progress in catalyst development for upgrading ethanol to n-butanol, which involves homogeneous catalysts, such as iridium and ruthenium complexes, and heterogeneous catalysts, including metal oxides, hydroxyapatite (HAP), and, in particular, supported metal catalysts, is reviewed herein. The structure-activity relationships of catalysts and underlying reaction mechanisms are critically examined, and future research directions on the design and improvement of catalysts are also proposed.
Collapse
Affiliation(s)
- Xianyuan Wu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Geqian Fang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yuqin Tong
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Dahao Jiang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhe Liang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenhua Leng
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liu Liu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Pengxiang Tu
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jun Ni
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaonian Li
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
80
|
Kulkarni NV, Brennessel WW, Jones WD. Catalytic Upgrading of Ethanol to n-Butanol via Manganese-Mediated Guerbet Reaction. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03653] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Naveen V. Kulkarni
- Department
of Chemistry, University of Rochester, Rochester, New York 14450, United States
- Department
of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala 690525, India
| | - William W. Brennessel
- Department
of Chemistry, University of Rochester, Rochester, New York 14450, United States
| | - William D. Jones
- Department
of Chemistry, University of Rochester, Rochester, New York 14450, United States
| |
Collapse
|
81
|
Newland RJ, Delve MP, Wingad RL, Mansell SM. Two isomers of a bis(diphenylphosphino)phosphinine, and the synthesis and reactivity of Ru arene/Cp* phosphinophosphinine complexes. NEW J CHEM 2018. [DOI: 10.1039/c8nj03632b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two isomers of a bis(diphenylphosphino)phosphinine have been synthesised, and the Ru coordination chemistry of a 2-phosphinophosphinine extended to include reactions of H2O across a PC double bond.
Collapse
|
82
|
Liu Q, Xu G, Wang Z, Liu X, Wang X, Dong L, Mu X, Liu H. Iridium Clusters Encapsulated in Carbon Nanospheres as Nanocatalysts for Methylation of (Bio)Alcohols. CHEMSUSCHEM 2017; 10:4748-4755. [PMID: 28948713 DOI: 10.1002/cssc.201701607] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/25/2017] [Indexed: 06/07/2023]
Abstract
C-H methylation is an attractive chemical transformation for C-C bonds construction in organic chemistry, yet efficient methylation of readily available (bio)alcohols in water using methanol as sustainable C1 feedstock is limited. Herein, iridium nanocatalysts encapsulated in yolk-shell-structured mesoporous carbon nanospheres (Ir@YSMCNs) were synthesized for this transformation. Monodispersed Ir clusters (ca. 1.0 nm) were encapsulated in situ and spatially isolated within YSMCNs by a silica-assisted sol-gel emulsion strategy. A selection of (bio)alcohols (19 examples) was selectively methylated in aqueous phase with good-to-high yields over the developed Ir@YSMCNs. The improved catalytic efficiencies in terms of activity and selectivity together with the good stability and recyclability were contributable to the ultrasmall Ir clusters with oxidation chemical state as a consequence of the confinement effect of YSMCNs with interconnected nanostructures.
Collapse
Affiliation(s)
- Qiang Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoqiang Xu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Zhendong Wang
- Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xiaoran Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xicheng Wang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Linlin Dong
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xindong Mu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Huizhou Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
83
|
Li H, Riisager A, Saravanamurugan S, Pandey A, Sangwan RS, Yang S, Luque R. Carbon-Increasing Catalytic Strategies for Upgrading Biomass into Energy-Intensive Fuels and Chemicals. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02577] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hu Li
- State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Anders Riisager
- Centre
for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Shunmugavel Saravanamurugan
- Laboratory
of Bioproduct Chemistry, Centre of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab 140306, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Rajender S. Sangwan
- Laboratory
of Bioproduct Chemistry, Centre of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab 140306, India
| | - Song Yang
- State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Rafael Luque
- Departamento
de Quimica Organica, Universidad de Cordoba, Campus de Rabanales, E-14014, Cordoba, Spain
| |
Collapse
|
84
|
Shee S, Paul B, Panja D, Roy BC, Chakrabarti K, Ganguli K, Das A, Das GK, Kundu S. Tandem Cross Coupling Reaction of Alcohols for Sustainable Synthesis of β-Alkylated Secondary Alcohols and Flavan Derivatives. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700722] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sujan Shee
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Bhaskar Paul
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Dibyajyoti Panja
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Bivas Chandra Roy
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Kaushik Chakrabarti
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Kasturi Ganguli
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Ayan Das
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | - Gourab Kanti Das
- Department of Chemistry; Visva Bharati University; Santiniketan, West Bengal 731235 India
| | - Sabuj Kundu
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 India
| |
Collapse
|
85
|
Fu S, Shao Z, Wang Y, Liu Q. Manganese-Catalyzed Upgrading of Ethanol into 1-Butanol. J Am Chem Soc 2017; 139:11941-11948. [DOI: 10.1021/jacs.7b05939] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shaomin Fu
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhihui Shao
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yujie Wang
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Liu
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
86
|
Palermo A, Solovyov A, Ertler D, Okrut A, Gates BC, Katz A. Dialing in single-site reactivity of a supported calixarene-protected tetrairidium cluster catalyst. Chem Sci 2017; 8:4951-4960. [PMID: 28959418 PMCID: PMC5607854 DOI: 10.1039/c7sc00686a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/30/2017] [Indexed: 11/21/2022] Open
Abstract
A closed Ir4 carbonyl cluster, 1, comprising a tetrahedral metal frame and three sterically bulky tert-butyl-calix[4]arene(OPr)3(OCH2PPh2) (Ph = phenyl; Pr = propyl) ligands at the basal plane, was characterized with variable-temperature 13C NMR spectroscopy, which show the absence of scrambling of the CO ligands at temperatures up to 313 K. This demonstration of distinct sites for the CO ligands was found to extend to the reactivity and catalytic properties, as shown by selective decarbonylation in a reaction with trimethylamine N-oxide (TMAO) as an oxidant, which, reacting in the presence of ethylene, leads to the selective bonding of an ethyl ligand at the apical Ir site. These clusters were supported intact on porous silica and found to catalyze ethylene hydrogenation, and a comparison of the kinetics of the single-hydrogenation reaction and steady-state hydrogenation catalysis demonstrates a unique single-site catalyst-with each site having the same catalytic activity. Reaction orders in the catalytic ethylene hydrogenation reaction of approximately 1/2 and 0 for H2 and C2H4, respectively, nearly match those for conventional noble-metal catalysts. In contrast to oxidative decarbonylation, thermal desorption of CO from silica-supported cluster 1 occurred exclusively at the basal plane, giving rise to sites that do not react with ethylene and are catalytically inactive for ethylene hydrogenation. The evidence of distinctive sites on the cluster catalyst leads to a model that links to hydrogen-transfer catalysis on metals-involving some surface sites that bond to both hydrocarbon and hydrogen and are catalytically engaged (so-called "*" sites) and others, at the basal plane, which bond hydrogen and CO but not hydrocarbon and are reservoir sites (so-called "S" sites).
Collapse
Affiliation(s)
- Andrew Palermo
- Department of Chemical Engineering , University of California at Davis , One Shields Avenue , Davis , California 95616 , USA .
| | - Andrew Solovyov
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720-1462 , USA . ;
| | - Daniel Ertler
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720-1462 , USA . ;
| | - Alexander Okrut
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720-1462 , USA . ;
| | - Bruce C Gates
- Department of Chemical Engineering , University of California at Davis , One Shields Avenue , Davis , California 95616 , USA .
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720-1462 , USA . ;
| |
Collapse
|
87
|
Pellow KJ, Wingad RL, Wass DF. Towards the upgrading of fermentation broths to advanced biofuels: a water tolerant catalyst for the conversion of ethanol to isobutanol. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01553d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of methanol/ethanol mixtures to isobutanol with the pre-catalyst trans-[RuCl2(dppm)2] (1) is tolerant to the addition of water to the system, achieving an isobutanol yield of 36% at 78% selectivity with water concentrations typical of that of a crude fermentation broth.
Collapse
|
88
|
Scotti N, Zaccheria F, Evangelisti C, Psaro R, Ravasio N. Dehydrogenative coupling promoted by copper catalysts: a way to optimise and upgrade bio-alcohols. Catal Sci Technol 2017. [DOI: 10.1039/c6cy02670b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A one-pot one-step transformation of butanol into butyl butanoate takes place with excellent yield on a Cu/ZrO2 catalyst.
Collapse
Affiliation(s)
- Nicola Scotti
- CNR Institute of Molecular Sciences and Technology
- 20133 Milano
- Italy
| | | | | | - Rinaldo Psaro
- CNR Institute of Molecular Sciences and Technology
- 20133 Milano
- Italy
| | | |
Collapse
|
89
|
Affiliation(s)
- Hope Aitchison
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Richard L. Wingad
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Duncan F. Wass
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|