51
|
Geminal Dimethyl Substitution Enables Controlled Polymerization of Penicillamine-Derived β-Thiolactones and Reversed Depolymerization. Chem 2020. [DOI: 10.1016/j.chempr.2020.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
52
|
Preparation of Degradable Polymenthide and Its Elastomers from Biobased Menthide via Organocatalyzed Ring-opening Polymerization and UV Curing. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2415-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
53
|
Gregory GL, Sulley GS, Carrodeguas LP, Chen TTD, Santmarti A, Terrill NJ, Lee KY, Williams CK. Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization. Chem Sci 2020; 11:6567-6581. [PMID: 34094122 PMCID: PMC8159401 DOI: 10.1039/d0sc00463d] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Thermoplastic elastomers benefit from high elasticity and straightforward (re)processability; they are widely used across a multitude of sectors. Currently, the majority derive from oil, do not degrade or undergo chemical recycling. Here a new series of ABA triblock polyesters are synthesized and show high-performances as degradable thermoplastic elastomers; their composition is poly(cyclohexene-alt-phthalate)-b-poly(ε-decalactone)-b-poly(cyclohexene-alt-phthalate) {PE-PDL-PE}. The synthesis is accomplished using a zinc(ii)/magnesium(ii) catalyst, in a one-pot procedure where ε-decalactone ring-opening polymerization yielding dihydroxyl telechelic poly(ε-decalatone) (PDL, soft-block) occurs first and, then, addition of phthalic anhydride/cyclohexene oxide ring-opening copolymerization delivers semi-aromatic polyester (PE, hard-block) end-blocks. The block compositions are straightforward to control, from the initial monomer stoichiometry, and conversions are high (85-98%). Two series of polyesters are prepared: (1) TBPE-1 to TBPE-5 feature an equivalent hard-block volume fraction (f hard = 0.4) and variable molar masses 40-100 kg mol-1; (2) TBPE-5 to TBPE-9 feature equivalent molar masses (∼100 kg mol-1) and variable hard-block volume fractions (0.12 < f hard < 0.4). Polymers are characterized using spectroscopies, size-exclusion chromatography (SEC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). They are amorphous, with two glass transition temperatures (∼-51 °C for PDL; +138 °C for PE), and block phase separation is confirmed using small angle X-ray scattering (SAXS). Tensile mechanical performances reveal thermoplastic elastomers (f hard < 0.4 and N > 1300) with linear stress-strain relationships, high ultimate tensile strengths (σ b = 1-5 MPa), very high elongations at break (ε b = 1000-1900%) and excellent elastic recoveries (98%). There is a wide operating temperature range (-51 to +138 °C), an operable processing temperature range (+100 to +200 °C) and excellent thermal stability (T d,5% ∼ 300 °C). The polymers are stable in aqueous environments, at room temperature, but are hydrolyzed upon gentle heating (60 °C) and treatment with an organic acid (para-toluene sulfonic acid) or a common lipase (Novozyme® 51032). The new block polyesters show significant potential as sustainable thermoplastic elastomers with better properties than well-known styrenic block copolymers or polylactide-derived elastomers. The straightforward synthesis allows for other commercially available and/or bio-derived lactones, epoxides and anhydrides to be developed in the future.
Collapse
Affiliation(s)
- Georgina L Gregory
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Gregory S Sulley
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | | | - Thomas T D Chen
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Alba Santmarti
- Department of Aeronautical Engineering, Imperial College London London SW7 2AZ UK
| | - Nicholas J Terrill
- Diamond Light Source, Harwell Science and Innovation Campus Didcot Harwell OX11 0DE UK
| | - Koon-Yang Lee
- Department of Aeronautical Engineering, Imperial College London London SW7 2AZ UK
| | - Charlotte K Williams
- Oxford Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
54
|
Batiste DC, Meyersohn MS, Watts A, Hillmyer MA. Efficient Polymerization of Methyl-ε-Caprolactone Mixtures To Access Sustainable Aliphatic Polyesters. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00050] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Derek C. Batiste
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marianne S. Meyersohn
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Annabelle Watts
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
55
|
Stadler BM, Brandt A, Kux A, Beck H, de Vries JG. Properties of Novel Polyesters Made from Renewable 1,4-Pentanediol. CHEMSUSCHEM 2020; 13:556-563. [PMID: 31794106 PMCID: PMC7027755 DOI: 10.1002/cssc.201902988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Indexed: 05/04/2023]
Abstract
Novel polyester polyols were prepared in high yields from biobased 1,4-pentanediol catalyzed by non-toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil-based 1,4-butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long-chain diacids (>C12 ) were used as the diacid building block. The low melting point of the C12 diacid-based material allows the development of biobased shape-memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature-sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4-pentanediol cannot be regarded as a direct substitute for 1,4-butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators.
Collapse
Affiliation(s)
- Bernhard M. Stadler
- Leibniz Institut für Katalyse e. V. an derUniversität RostockAlbert-Einstein-Strasse 29a18055RostockGermany
| | - Adrian Brandt
- Henkel AG & Co. KGaAHenkel-Str. 6740589DüsseldorfGermany
| | - Alexander Kux
- Henkel AG & Co. KGaAHenkel-Str. 6740589DüsseldorfGermany
| | - Horst Beck
- Henkel AG & Co. KGaAHenkel-Str. 6740589DüsseldorfGermany
| | - Johannes G. de Vries
- Leibniz Institut für Katalyse e. V. an derUniversität RostockAlbert-Einstein-Strasse 29a18055RostockGermany
| |
Collapse
|
56
|
Affiliation(s)
- Elizabeth R. Gillies
- Department of Chemistry, Department of Chemical and Biochemical Engineering, Centre for Advanced Materials and Biomaterials Research, TheUniversity of Western Ontario London, ON Canada N6A 5B7
| |
Collapse
|
57
|
Wang G, Huang D, Ji J, Völker C, Wurm FR. Seawater-Degradable Polymers-Fighting the Marine Plastic Pollution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001121. [PMID: 33437568 PMCID: PMC7788598 DOI: 10.1002/advs.202001121] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/31/2020] [Indexed: 05/06/2023]
Abstract
Polymers shape human life but they also have been identified as pollutants in the oceans due to their long lifetime and low degradability. Recently, various researchers have studied the impact of (micro)plastics on marine life, biodiversity, and potential toxicity. Even if the consequences are still heavily discussed, prevention of unnecessary waste is desired. Especially, newly designed polymers that degrade in seawater are discussed as potential alternatives to commodity polymers in certain applications. Biodegradable polymers that degrade in vivo (used for biomedical applications) or during composting often exhibit too slow degradation rates in seawater. To date, no comprehensive summary for the degradation performance of polymers in seawater has been reported, nor are the studies for seawater-degradation following uniform standards. This review summarizes concepts, mechanisms, and other factors affecting the degradation process in seawater of several biodegradable polymers or polymer blends. As most of such materials cannot degrade or degrade too slowly, strategies and innovative routes for the preparation of seawater-degradable polymers with rapid degradation in natural environments are reviewed. It is believed that this selection will help to further understand and drive the development of seawater-degradable polymers.
Collapse
Affiliation(s)
- Ge‐Xia Wang
- National Engineering Research Center of Engineering PlasticsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
| | - Dan Huang
- National Engineering Research Center of Engineering PlasticsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jun‐Hui Ji
- National Engineering Research Center of Engineering PlasticsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
| | - Carolin Völker
- ISOE – Institute for Social‐Ecological ResearchHamburger Allee 45Frankfurt60486Germany
| | - Frederik R. Wurm
- Max‐Planck‐Institut für PolymerforschungAckermannweg 10Mainz55128Germany
- Sustainable Polymer Chemistry GroupMESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit TwentePO Box 217Enschede7500 AEThe Netherlands
| |
Collapse
|
58
|
Șucu T, Shaver MP. Inherently degradable cross-linked polyesters and polycarbonates: resins to be cheerful. Polym Chem 2020. [DOI: 10.1039/d0py01226b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We summarise the most recent advances in the synthesis and characterisation of degradable thermosetting polyester and polycarbonates, including partially degradable systems derived from itaconic acid and isosorbide.
Collapse
Affiliation(s)
- Theona Șucu
- School of Natural Sciences
- Department of Materials
- The University of Manchester
- Manchester
- UK
| | - Michael P. Shaver
- School of Natural Sciences
- Department of Materials
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
59
|
Snyder RL, Lidston CAL, De Hoe GX, Parvulescu MJS, Hillmyer MA, Coates GW. Mechanically robust and reprocessable imine exchange networks from modular polyester pre-polymers. Polym Chem 2020. [DOI: 10.1039/c9py01957j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covalent adaptable networks (CANs) containing dynamic imine cross-links impart recyclability to thermoset materials, and the distribution of these cross-links greatly affects their observed thermomechanical properties.
Collapse
Affiliation(s)
- Rachel L. Snyder
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | - Claire A. L. Lidston
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | | | | | | | - Geoffrey W. Coates
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| |
Collapse
|
60
|
Zhang CJ, Cao XH, Zhang XH. Metal-Free Alternating Copolymerization of Nonstrained γ-Selenobutyrolactone with Epoxides for Selenium-Rich Polyesters. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Cheng-Jian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Han Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xing-Hong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
61
|
Law AC, Stankowski DS, Bomann BH, Suhail S, Salmon KH, Paulson SW, Carney MJ, Robertson NJ. Synthesis and material properties of elastomeric high molecular weight polycycloacetals derived from diglycerol and
meso
‐erythritol. J Appl Polym Sci 2019. [DOI: 10.1002/app.48780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ariah C. Law
- Northland College 1411 Ellis Avenue Ashland Wisconsin 54806
| | | | - Blake H. Bomann
- Department of ChemistryUniversity of Wisconsin‐Eau Claire 105 Garfield Avenue Eau Claire Wisconsin 54701
| | - Shanzay Suhail
- Department of ChemistryUniversity of Wisconsin‐Eau Claire 105 Garfield Avenue Eau Claire Wisconsin 54701
| | - Kyle H. Salmon
- Northland College 1411 Ellis Avenue Ashland Wisconsin 54806
| | | | - Michael J. Carney
- Department of ChemistryUniversity of Wisconsin‐Eau Claire 105 Garfield Avenue Eau Claire Wisconsin 54701
| | | |
Collapse
|
62
|
Pang C, Jiang X, Yu Y, Chen L, Ma J, Gao H. Copolymerization of Natural Camphor-Derived Rigid Diol with Various Dicarboxylic Acids: Access to Biobased Polyesters with Various Properties. ACS Macro Lett 2019; 8:1442-1448. [PMID: 35651189 DOI: 10.1021/acsmacrolett.9b00570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, alicyclic (1R,3S)-1,2,2-trimethylcyclopentane-1,3-dimethanol (TCDM), derived from natural camphor, was copolymerized with linear α,ω-diacids, terephthalic acid (TPA), and 2,5-furandicarboxylic acid (FDCA), affording a series of polyesters with functional properties. 2D NMR spectroscopy revealed that the stereoconfiguration of TCDM was preserved after polymerization. The TCDM polyester based on TPA showed high thermostability, high Tg value (115 °C), high modulus (1.3 GPa), and high ultimate strength (29.8 MPa). The TCDM polyester based on 1,4-succinic acid exhibited excellent ductility and resilience. Lastly, the rigidity analysis based on van Krevelen's group contribution method, coupled with the comparisons between TCDM- and sugar-based polyesters, confirmed that TCDM is a highly reactive and rigid diol. Results indicate that TCDM polyesters are suitable for a wide range of applications, including hot-filled containers and transparent packaging materials. This work addresses some critical needs for high performance biopolymers such as achieving high Tg values, high thermostability, and high transparency.
Collapse
Affiliation(s)
- Chengcai Pang
- School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Xueshuang Jiang
- School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Yan Yu
- School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Li Chen
- School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Jianbiao Ma
- School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| | - Hui Gao
- School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Binshui West Road 391, Tianjin 300384, China
| |
Collapse
|
63
|
Haugan IN, Lee B, Maher MJ, Zografos A, Schibur HJ, Jones SD, Hillmyer MA, Bates FS. Physical Aging of Polylactide-Based Graft Block Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | | | - Seamus D. Jones
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | | | | |
Collapse
|
64
|
Watts A, Hillmyer MA. Aliphatic Polyester Thermoplastic Elastomers Containing Hydrogen-Bonding Ureidopyrimidinone Endgroups. Biomacromolecules 2019; 20:2598-2609. [PMID: 31241922 DOI: 10.1021/acs.biomac.9b00411] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polylactide- block-poly(γ-methyl-ε-caprolactone)- block-polylactide (LML) is a sustainable thermoplastic elastomer (TPE) candidate that exhibits competitive mechanical properties as compared to traditional styrenic TPEs. The relatively low glass transition temperature of the polylactide endblocks, however, results in stress relaxation and low levels of elastic recovery. We report the synthesis and characterization of poly(γ-methyl-ε-caprolactone) (PMCL) and LML end-functionalized with ureidopyrimidinone (UPy) hydrogen-bonding moieties to improve the elastic performance of these polymers. Although UPy-functionalized PMCL shows dynamical mechanical behavior that is distinct from the unfunctionalized homopolymer, it does not exhibit elastomeric behavior at room temperature. The addition of UPy endgroups to LML increases the ultimate tensile strength, elongation at break, and tensile toughness compared to unfunctionalized LML. Stress relaxation studies at a fixed strain show reduced levels of stress relaxation in LML with UPy endgroups. The stress relaxation was further reduced by including semicrystalline poly(( S, S)-lactide) as endblocks with UPy endgroups.
Collapse
Affiliation(s)
- Annabelle Watts
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455-0431 , United States
| | - Marc A Hillmyer
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
65
|
Zhang S, Han L, Ma H, Liu P, Shen H, Lei L, Li C, Yang L, Li Y. Investigation on Synthesis and Application Performance of Elastomers with Biogenic Myrcene. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Songbo Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Han
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongwei Ma
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Pibo Liu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Heyu Shen
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lan Lei
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chao Li
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lincan Yang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
66
|
Hatti-Kaul R, Nilsson LJ, Zhang B, Rehnberg N, Lundmark S. Designing Biobased Recyclable Polymers for Plastics. Trends Biotechnol 2019; 38:50-67. [PMID: 31151764 DOI: 10.1016/j.tibtech.2019.04.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 11/30/2022]
Abstract
Several concurrent developments are shaping the future of plastics. A transition to a sustainable plastics system requires not only a shift to fossil-free feedstock and energy to produce the carbon-neutral building blocks for polymers used in plastics, but also a rational design of the polymers with both desired material properties for functionality and features facilitating their recyclability. Biotechnology has an important role in producing polymer building blocks from renewable feedstocks, and also shows potential for recycling of polymers. Here, we present strategies for improving the performance and recyclability of the polymers, for enhancing degradability to monomers, and for improving chemical recyclability by designing polymers with different chemical functionalities.
Collapse
Affiliation(s)
- Rajni Hatti-Kaul
- Biotechnology, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden.
| | - Lars J Nilsson
- Environmental and Energy Systems Studies, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Baozhong Zhang
- Center for Analysis and Synthesis, Faculty of Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Nicola Rehnberg
- Bona Sweden AB, Murmansgatan 130, Box 210 74, SE-200 21, Malmö, Sweden
| | | |
Collapse
|
67
|
Dong M, Wessels MG, Lee JY, Su L, Wang H, Letteri RA, Song Y, Lin YN, Chen Y, Li R, Pochan DJ, Jayaraman A, Wooley KL. Experiments and Simulations of Complex Sugar-Based Coil-Brush Block Polymer Nanoassemblies in Aqueous Solution. ACS NANO 2019; 13:5147-5162. [PMID: 30990651 DOI: 10.1021/acsnano.8b08811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we investigated the fundamental molecular parameters that guide the supramolecular assembly of glucose-based amphiphilic coil-brush block polymers in aqueous solution and elucidated architecture-morphology relationships through experimental and simulation tools. Well-defined coil-brush polymers were synthesized through ring-opening polymerizations (ROP) of glucose carbonates to afford norbornenyl-functionalized poly(glucose carbonate) (NB-PGC) macromonomers, followed by sequential ring-opening metathesis polymerizations (ROMP) of norbornene N-hydroxysuccinimidyl (NHS) esters and the NB-PGC macromonomers. Variation of the macromonomer length and grafting through ROMP conditions allowed for a series of coil-brush polymers to be synthesized with differences in the brush and coil dimensions, independently, where the side chain graft length and brush backbone were used to tune the brush, and the coil block length was used to vary the coil. Hydrolysis of the NHS moieties gave the amphiphilic coil-brush polymers, where the hydrophilic-hydrophobic ratios were dependent on the brush and coil relative dimensions. Experimental assembly in solution was studied and found to yield a variety of structurally dependent nanostructures. Simulations were conducted on the solution assembly of coil-brush polymers, where the polymers were represented by a coarse-grained model and the solvent was represented implicitly. There is qualitative agreement in the phase diagrams obtained from simulations and experiments, in terms of the morphologies of the assembled nanoscopic structures achieved as a function of coil-brush design parameters ( e.g., brush and coil lengths, composition). The simulations further showed the chain conformations adopted by the coil-brush polymers and the packing within these assembled nanoscopic structures. This work enables the predictive design of nanostructures from this glucose-based coil-brush polymer platform while providing a fundamental understanding of interactions within solution assembly of complex polymer building blocks.
Collapse
Affiliation(s)
- Mei Dong
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Michiel G Wessels
- Department of Chemical & Biomolecular Engineering, Colburn Laboratory , University of Delaware , Newark , Delaware 19716 , United States
| | - Jee Young Lee
- Department of Materials Science and Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Lu Su
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Hai Wang
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Rachel A Letteri
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Yue Song
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Yen-Nan Lin
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
- College of Medicine , Texas A&M University , Bryan , Texas 77807 , United States
| | - Yingchao Chen
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Richen Li
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Arthi Jayaraman
- Department of Chemical & Biomolecular Engineering, Colburn Laboratory , University of Delaware , Newark , Delaware 19716 , United States
- Department of Materials Science and Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Karen L Wooley
- Departments of Chemistry, Chemical Engineering, Materials Science & Engineering, and the Laboratory for Synthetic-Biologic Interactions , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
68
|
Volokhova AS, Waugh JB, Arrington KJ, Matson JB. Effects of graft polymer compatibilizers in blends of cellulose triacetate and poly(lactic acid). POLYM INT 2019. [DOI: 10.1002/pi.5820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Anastasia S Volokhova
- Department of Chemistry and Macromolecules Innovation InstituteVirginia Tech Blacksburg VA USA
| | - John B Waugh
- Department of Chemistry and Macromolecules Innovation InstituteVirginia Tech Blacksburg VA USA
| | - Kyle J Arrington
- Department of Chemistry and Macromolecules Innovation InstituteVirginia Tech Blacksburg VA USA
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation InstituteVirginia Tech Blacksburg VA USA
| |
Collapse
|
69
|
Yee GM, Wang T, Hillmyer MA, Tonks IA. Mechanistic Study of Palladium-Catalyzed Hydroesterificative Copolymerization of Vinyl Benzyl Alcohol and CO. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gereon M. Yee
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Tong Wang
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Ian A. Tonks
- Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
70
|
Saretia S, Machatschek R, Schulz B, Lendlein A. Reversible 2D networks of oligo(
ε
-caprolactone) at the air–water interface. Biomed Mater 2019; 14:034103. [DOI: 10.1088/1748-605x/ab0cef] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
71
|
Yuan J, Xiong W, Zhou X, Zhang Y, Shi D, Li Z, Lu H. 4-Hydroxyproline-Derived Sustainable Polythioesters: Controlled Ring-Opening Polymerization, Complete Recyclability, and Facile Functionalization. J Am Chem Soc 2019; 141:4928-4935. [DOI: 10.1021/jacs.9b00031] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jingsong Yuan
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Wei Xiong
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Xuhao Zhou
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yi Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Dong Shi
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zichen Li
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
72
|
Effective separation, recovery and recycling of deep eutectic solvent after biomass fractionation with membrane-based methodology. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
73
|
Brutman JP, Fortman DJ, De Hoe GX, Dichtel WR, Hillmyer MA. Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks. J Phys Chem B 2019; 123:1432-1441. [PMID: 30701978 DOI: 10.1021/acs.jpcb.8b11489] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cross-linked polymers are used in many commercial products and are traditionally incapable of recycling via melt reprocessing. Recently, tough and reprocessable cross-linked polymers have been realized by incorporating cross-links that undergo associative exchange reactions, such as transesterification, at elevated temperatures. Here we investigate how cross-linked polymers containing urethane linkages relax stress under similar conditions, which enables their reprocessing. Materials based on hydroxyl-terminated star-shaped poly(ethylene oxide) and poly((±)-lactide) were cross-linked with methylene diphenyldiisocyanate in the presence of stannous octoate catalyst. Polymers with lower plateau moduli exhibit faster rates of relaxation. Reactions of model urethanes suggest that exchange occurs through the tin-mediated exchange of the urethanes that does not require free hydroxyl groups. Furthermore, samples were incapable of elevated-temperature dissolution in a low-polarity solvent (1,2,4-trichlorobenzene) but readily dissolved in a high-polarity aprotic solvent (DMSO, 24 to 48 h). These findings indicate that urethane linkages, which are straightforward to incorporate, impart dynamic character to polymer networks of diverse chemical composition, likely through a urethane reversion mechanism.
Collapse
Affiliation(s)
- Jacob P Brutman
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - David J Fortman
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853 , United States
| | - Guilhem X De Hoe
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - William R Dichtel
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Marc A Hillmyer
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
74
|
Luo SH, Wu YC, Cao L, Lin JY, Gao J, Chen SX, Wang ZY. Direct Metal-Free Preparation of Functionalizable Polylactic Acid-Ethisterone Conjugates in a One-Pot Approach. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shi-He Luo
- School of Chemistry and Environment; South China Normal University; Key Laboratory of Theoretical Chemistry of Environment; Ministry of Education; Guangzhou 510006 P. R. China
- PCFM Lab; School of Chemistry; Materials Science Institute; Sun Yat-Sen University; Guangzhou 510275 P. R. China
- School of Chemistry and Chemical Engineering; Key Laboratory of Functional Molecular Engineering of Guangdong Province; South China University of Technology; Guangzhou 510641 P. R. China
| | - Yan-Cheng Wu
- School of Chemistry and Environment; South China Normal University; Key Laboratory of Theoretical Chemistry of Environment; Ministry of Education; Guangzhou 510006 P. R. China
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 P. R. China
| | - Liang Cao
- School of Chemistry and Environment; South China Normal University; Key Laboratory of Theoretical Chemistry of Environment; Ministry of Education; Guangzhou 510006 P. R. China
- School of Chemistry and Chemical Engineering; Key Laboratory of Functional Molecular Engineering of Guangdong Province; South China University of Technology; Guangzhou 510641 P. R. China
| | - Jian-Yun Lin
- School of Chemistry and Environment; South China Normal University; Key Laboratory of Theoretical Chemistry of Environment; Ministry of Education; Guangzhou 510006 P. R. China
| | - Jian Gao
- School of Chemistry and Environment; South China Normal University; Key Laboratory of Theoretical Chemistry of Environment; Ministry of Education; Guangzhou 510006 P. R. China
| | - Shui-Xia Chen
- PCFM Lab; School of Chemistry; Materials Science Institute; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Zhao-Yang Wang
- School of Chemistry and Environment; South China Normal University; Key Laboratory of Theoretical Chemistry of Environment; Ministry of Education; Guangzhou 510006 P. R. China
- School of Chemistry and Chemical Engineering; Key Laboratory of Functional Molecular Engineering of Guangdong Province; South China University of Technology; Guangzhou 510641 P. R. China
| |
Collapse
|
75
|
Zhao JK, Yang GW, Zhu XF, Wu GP. Highly elastic and degradable thermoset elastomers from CO 2-based polycarbonates and bioderived polyesters. Polym Chem 2019. [DOI: 10.1039/c9py01085h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first example of CO2-based thermoset elastomers (CO2Es) on the basis of two sustainable and degradable polymers, rigid CO2-based polycarbonates and soft polyesters, is reported.
Collapse
Affiliation(s)
- Jin-Kai Zhao
- MOE Laboratory of Macromolecular Synthesis and Functionalization
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Xiao-Feng Zhu
- MOE Laboratory of Macromolecular Synthesis and Functionalization
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
76
|
Song Y, Ji X, Dong M, Li R, Lin YN, Wang H, Wooley KL. Advancing the Development of Highly-Functionalizable Glucose-Based Polycarbonates by Tuning of the Glass Transition Temperature. J Am Chem Soc 2018; 140:16053-16057. [DOI: 10.1021/jacs.8b10675] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | - Yen-Nan Lin
- College of Medicine, Texas A&M University, Bryan, Texas 77807, United States
| | | | | |
Collapse
|
77
|
Zhang CJ, Hu LF, Wu HL, Cao XH, Zhang XH. Dual Organocatalysts for Highly Active and Selective Synthesis of Linear Poly(γ-butyrolactone)s with High Molecular Weights. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01757] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cheng-Jian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou Shi, Zhejiang Sheng 310027, China
| | - Lan-Fang Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou Shi, Zhejiang Sheng 310027, China
| | - Hai-Lin Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou Shi, Zhejiang Sheng 310027, China
| | - Xiao-Han Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou Shi, Zhejiang Sheng 310027, China
| | - Xing-Hong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou Shi, Zhejiang Sheng 310027, China
| |
Collapse
|
78
|
He W, Tao Y, Wang X. Functional Polyamides: A Sustainable Access via Lysine Cyclization and Organocatalytic Ring-Opening Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01790] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wenjing He
- Key Laboratory of Polymer Ecomaterials and, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, P. R. China
- University of
Science and Technology of China, Hefei 230026, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials and, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, P. R. China
- University of
Science and Technology of China, Hefei 230026, P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials and, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, P. R. China
- University of
Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|